Глава 2
Оптические приборы
ПРИЗМА
Арсенал приборов, которыми пользуются в лабораториях и промышленности, меняется столь быстро, что исследователь, по каким-то причинам оставивший научную деятельность на пару десятков лет, а затем возвратившийся к своей работе, был бы вынужден учиться заново. Но и сейчас, и, вероятно, в далеком будущем он всегда встретится со своими старыми знакомыми — призмой и линзой. Поэтому напомним читателю простые законы, которым подчиняется ход светового луча при встрече с этими предметами, изготовленными из прозрачных материалов. Впрочем, прозрачность — понятие относительное. Для иных электромагнитных волн прозрачны дерево и бетон.
Законы встречи луча с телами, которые способны отражать и преломлять этот луч, просты до тех пор, пока не заявит о себе волновой аспект света. Они сводятся к закону отражения (угол падения равен углу отражения) и закону преломления света.
Как известно, падая на границу двух сред, луч света отклоняется от первоначального направления. Углы падения i и преломления r связаны соотношением
n = sin i/sin r
Этот закон был установлен тщательными измерениями физиком Виллебордом Снеллиусом (1580–1626), профессором университета в Лейдене. Содержание его курса лекций, в которых рассказывалось о явлениях встречи света с прозрачными телами, было хорошо известно узкому в то время кругу европейских ученых.
Вероятно, по этой причине с насмешкой была принята современниками статья Рене Декарта (1596–1650), опубликованная в 1637 г. под названием «Рассуждение о методе направления разума для поиска научных истин», в которой он вроде, бы «доказал» этот закон с помощью довольно странных для нас рассуждений. Туманные фразы Декарта отнюдь не привели, в трепет восхищения его коллег. А то обстоятельство, что в результате своих рассуждений Декарт пришел к правильной формуле, объясняли весьма просто: подгонкой рассуждений под результат, который был уже известен ранее. Так что Декарту пришлось вытерпеть и обвинение в плагиате.
Пожалуй, можно присоединиться к скептическому отношению современников к этой статье. Декарт рассматривает мяч, брошенный на слабую сетку. Мяч прорывает сетку, и теряет половину своей скорости. Тогда, — пишет великий философ, — движение мяча совершенно отличается от его предназначения в одну или в другую сторону. Понять, что сие означает, трудновато. Возможно, этой фразой Декарт хотел сказать, что горизонтальная составляющая скорости движения мяча не меняется., а вертикальная меняется, поскольку именно в этом направлении сетка препятствует движению мяча.
Но возвратимся к закону преломления. Углы i и r принято откладывать от положения нормали так, как показано на ряс. 2.1.
Величина n, называемая показателем преломления, зависит от сред, о которых идет речь. Чтобы сравнивать тела по их оптическим свойствам, удобно составить таблицу показателей преломления для случая падения луча из воздуха (если быть педантичным, то следует сказать: из вакуума) в среду. В этом случае угол преломления всегда будет меньше угла падения, а значит; показатель преломления будет больше единицы.
Показатель преломления, вообще говоря, расчет с плотностью среды. Так, у алмаза показатель преломления равен 2,4, а у льда 1,3.
Я не стану уделять место таблице показателей преломления. Но если бы мне пришлось это сделать, то я должен был бы указать, для какой длины волны света приводятся данные. Показатель преломления зависит от длины волны. Это важное явление, лежащее в основе действия ряда приборов, разлагающих электромагнитное излучение в спектр, носит название дисперсии.
Если свет падает из более плотной среды в менее плотную, то может произойти полное внутреннее отражение. В этом случае показатель преломления меньше единицы. По мере возрастания угла падения угол преломления будет все больше и больше приближаться к 90°. При условии
sin r = 1, sin i = n
свет перестанет проходить во вторую сроду, а будет полностью отражаться от границы раздела. Для воды угол полного внутреннего отражения равен 49°.
Преломление света плоской пластинкой можно использовать для того, чтобы «сдвинуть», луч, оставив его параллельным caмомy себе. А с помощью призмы луч света можно повернуть.
Если читатель захочет вспомнить вывод формулы угла поворота D луча, то найдет его в школьном учебнике. Вывод требует лишь знания элементарной геометрии, но он очень громоздкий, в особенности если проделать его для толстой призмы и любого, значения угла встречи луча с призмой. Простая формула получается в том случае, если призма тонкая, а угол падения луча на грань призмы не слишком отличается от прямого. Если так, то
D = (n — 1)∙p
где p — угол между гранями призмы.
С помощью призмы в конце XVII века великий изотоп впервые доказал, что белый свет не монохроматичен, а состоит из лучей разных цветов. Сильнее всего отклоняются фиолетовые лучи, слабее всего — красные. Именно поэтому мы говорим «ультрафиолетовые» и «инфракрасные» лучи, а не инфрафиолетовые и ультракрасные.
Научный мир узнал об открытии Ньютона в 1672 г. В описании своих опытов Ньютон ясен и точен. Здесь виден его гений. Что же касается словесного обрамления, то понять его — труд великий. Лишь мучительно пробираясь сквозь лес слов, удается установить одно: хотя автор обещал описывать факты и не создавать гипотез (знаменитое ньютоновское «гипотезис нон финго»), своего обещания он не выполнял. Многие аксиомы и определения, вроде: «луч света — это его мельчайшая часть», звучат на редкость странно для современного уха.
Пока что несет свою службу в химии спектрограф, основной частью которого является ньютонова призма. Материал должен обладать большой дисперсией. Призмы для спектрографа готовят из кварца, флюорита, каменной соли. Исследуемый свет пропускают через щель, которая расположена в главной фокальной плоскости входной линзы. Поэтому на призму падает параллельный пучок света. Фотоны различной частоты пойдут в разных направлениях. Вторая, выходная линза соберет одинаковые фотоны в одной точке фокальной плоскости. При желании можно на спектр посмотреть глазом. Для этого надо поставить матовое стекло. Можно спектр сфотографировать.
В настоящее время спектр регистрируют с помощью самописцев. Вдоль спектра скользит приемник энергии — фотоэлемент или термоэлемент, дающий ток, сила которого пропорциональна интенсивности света.
Этот ток заставляет отклоняться подвижную часть записывающего устройства точно таким же образом, как ток гальванометра отклоняет его стрелку. К отклонившейся части приспосабливается перо; оно пишет спектр на рулоне бумаги, разворачивающейся с постоянной скоростью.
ЛИНЗА
Существует, большая отрасль промышленности, которая изготовляет линзы. Прозрачные тела, ограниченные двумя сферическими поверхностями или одной сферической и одной плоской, встречаются самых разных размеров. В некоторых приборах используются линзы размером с десятикопеечную монету, в больших телескопах диаметр линзы может быть равен нескольким метрам. Изготовление больших линз — это великое искусство, ибо хорошая линза должна быть однородной.
Конечно, каждый из читателей держал линзу в руках и знает основные ее особенности. Линза увеличивает предмет, линза фокусирует лучи. При помощи линзы, поставленной на пути солнечного луча, легко зажечь клочок бумаги. Линза «собирает» лучи в одну точку. Это фокус линзы.
То, что параллельные, лучи сходятся в одной точке, и, наоборот, то, что линза создает параллельный пучок лучей, если точечный источник света поместить в фокусе линзы, доказывается с помощью закона преломления и простых геометрических соображений.
Если точка находится не в фокусе, а на расстоянии а от центра линзы, то исходящие от нее лучи соберутся на расстоянии а'. Эти два расстояния связаны известной формулой:
(1/a) + (1/a') = 1/f
здесь f — фокусное расстояние линзы.
Нетрудно показать, что лучи света, идущие от предмета, расположенного дальше двойного фокусного расстояния, создадут его перевернутое и уменьшенное в отношении а'/а изображение между фокусом и двойным фокусным, расстоянием.
Если перенести предмет в ту позицию, которую занимало изображение, то изображение перейдет в положение, которое занимал предмет. Работает так называемый принцип обратимости хода лучей.
Когда мы используем линзу как лупу, предмет лежит между линзой и ее фокусом. В этом случае изображение не переворачивается и лежит по ту же сторону, что и предмет (рис. 2.2).
Напоминаю различие между случаем лупы и двумя предыдущими примерами: лупа создаёт «мнимое» изображение, а при иных размещениях предмета мы получаем изображения, которые можно увидеть на экране или сфотографировать. С полным основанием мы их называем действительными.
Увеличение лупы тем больше, чем меньше ее фокусное расстояние. Предельные возможности лупы довольно скромные: угол зрения, под которым видно мнимое изображение, удается сделать от силы в 20–30 раз большим угла зрения, под которым мы видим предмет невооруженным глазом.
Многие оптические приборы были бы крайне простыми и состояли бы из одиночных линз, если бы не ряд неизбежных дефектов. Мы хотим чтобы параллельный пучок белого света собирался линзой в одной точке. Но этому мешает явление дисперсии. Ведь фотоны разного цвета будут отклоняться линзой в разных направлениях. В результате вместо точки мы получим растянутую вдоль оси линзы цветную линию. Это хроматическая аберрация.
Другой бедой является сферическая аберрация. Лучи, которые идут ближе к оси линзы, будут фокусироваться в более далекой точке, чем лучи, путь которых лежит подальше от оси.
По-разному ведут себя лучи, падающие на поверхность линзы под большими и малыми углами. Вместо точки мы получаем светящееся ядро, смещенное в сторону от правильной позиции. От ядра отходит хвост. Этот эффект называется комой. Слово «кома» в переводе с греческого означает нечто вроде «распущенные волосы».
На этом далеко не кончается перечень искажений, которые дает одиночная линза. Рассматривая квадрат, мы увидим четырехугольник, вершины которого соединены дугами, «проваленными» внутри. Происходит это потому, что лучи, исходящие из вершин квадрата и из середин его сторон, будут преломляться по-разному.
Большие неприятности доставляет конструкторам оптический приборов дефект, который называют астигматизмом. Если точка лежит вдалеке от главной оптической оси линзы, то ее изображение расщепится на две полоски, перпендикулярные друг другу и смещенные в противоположные стороны по отношению к позиции идеального изображения.
Есть и другие искажения. Специалисты в области производства линз сводят обычно все виды искажений к семи основным типам. Из них мы упомянули лишь пять.
Как это сплошь и рядом бывает в технике, при создании хорошей линзы мы должны избрать некое компромиссное решение. Совершенно ясно, что с размером линзы будут возрастать искажения, но, с другой стороны, освещенность изображения (т. е. число фотонов видимого света, приходящихся на единицу площади) пропорциональна квадрату диаметра линзы (т. е. ее площади). Но это еще не все. Допустим, что предмет, который изображает линза, находится далеко. Тогда изображение соберется в фокусе. Чем меньше фокусное расстояние, тем размер изображения будет меньше. Иными словами, поток света, исходящий из предмета, соберется на меньшей площади. Значит, освещенность будет обратно пропорциональна фокусному расстоянию.
По этим двум причинам светосилой линзы называют квадрат отношения ее диаметра к фокусному расстоянию.
Наименьшим фокусным расстоянием обладают толстые линзы — линзы, поверхности которых образованы малыми радиусами. Но именно такие линзы будут давать наибольшие искажения. Значит, увеличение светосилы линзы — будь то за счет ее размера, будь то за счет радиуса кривизны — приводит к плохому качеству изображения. Нелегкую задачу приходится решать техникам.
ФОТОАППАРАТ
Простейший фотоаппарат представляет собой линзу, играющую роль окошка в темном ящике. Изображение, даваемое линзой, фиксируется фотопластинкой, расположенной против окошка.
Но простая линза создает искаженное изображение. Поэтому она заменяется сложной системой линз, которая должна уничтожить оптические несчастья всех сортов. Эта система носит название фотообъектива.
Как же можно избавиться от искажений? Достаточно давно было предложено пользоваться системой линз, подобранных таким образом, чтобы дефекты каждой из них компенсировались дефектами других. Этот принцип получения «плюса» умножением двух «минусов» оказывается возможным осуществить для уничтожения всех семи дефектов с помощью всего лишь трех линз. Однако это лишь в принципе. Для создания наиболее совершенного изображения пользуются более сложными комбинациями. Одна из них (далеко не самая сложная) показана на рис. 2.3. Эта система вогнутых и выпуклых линз способна давать неискаженное изображение при значительном варьировании степени увеличения. Первая и третья компоненты системы перемещаются друг по отношению к другу, чем достигается непрерывное изменение фокусного расстояния в три раза.
Фотоаппарат нуждается в несложном приспособлении, позволяющем «наводить аппарат на фокус». Для этого надо иметь возможность менять расстояние между центром объектива и фотопленкой. Еще до сих пор сохранились фотоаппараты, в которых камера выполняется в форме гармоники, которую можно сжать. И надо сказать, что такие аппараты дают совсем неплохие снимки.
В современном фотоаппарате, умещающемся на ладошке, эта операция выполняется изящнее: винтовым движением оправы объектива. Как ясно из рассуждения о светосиле линзы, качество изображения улучшается, если мы уменьшим елико возможно зрачок камеры. Это достигается с помощью диафрагмы переменного диаметра. Размер диафрагмы мы выбираем так, чтобы он был поменьше, но пропускал достаточно света, чтобы дать хорошее изображение при заданной экспозиции.
Почему так забавно выглядят фотографии, снятые в те времена, когда фототехника была еще в пеленках? Так и чувствуется, что люди на фотоснимке застыли в напряженных позах. Объяснение весьма простое: фотограф вынужден был прибегать к большим экспозициям. Поэтому ему и приходилось изрекать сакраментальное: «Спокойно, снимаю».
Борьба за получение хорошего изображения при минимальной экспозиции ведется двумя путями. Первый путь — это совершенствование объектива. Делается это не только за счет подбора геометрии линз, составляющих объектив. В объективе, составленном из нескольких линз, чуть ли не половина света отражается. Это приводит, во-первых, к потере освещенности изображения и, во-вторых, создает световой фон, который уменьшает контрастность изображения. Борются с этим явлением приемом, который носит название просветления оптики. На поверхность линз наносятся тончайшие пленки. Благодаря явлению интерференции доля отраженного света резко уменьшается. Объективы с просветленной оптикой легко узнать: их стекло имеет голубоватый оттенок.
Второй путь улучшения фотоснимка — это совершенствование, фотографической пленки.
Скажем несколько слов о фотохимическом процессе, приводящем к образованию изображения. Фоточувствительный слой представляет, собой желатину, в которую вкраплены кристаллики бромистого серебра с небольшой примесью иодистого серебра. Величина кристаллических зернышек колеблется в пределах от одной тысячной до одной десятитысячной миллиметра. Число зерен, приходящихся на 1 см2, пленки, лежит в пределах от десятка до сотен тысяч. Если рассматривать фотоэмульсионный слой в микроскоп, то можно увидеть, что зернышки расположены довольно тесно.
Фотоны, попадающие на зерно эмульсии, разрушают связи между атомами серебра и атомами галоида. Число атомов серебра, получивших свободу, строго пропорционально числу фотонов, упавших на пленку. Фотограф подбирает такую выдержку, при которой разрушается значительное число связей между атомами серебра и брома. Но в то же время экспозиция не должна быть слишком велика. Большая экспозиция приведет к тому, что связи между атомами серебра и брома у всех кристалликов будут разрушены полностью. Тогда после проявления все кристаллики выделят все серебро, которое в них содержалось, и пластинка будет одинаково черной во всех местах.
При правильной экспозиции на фотопластинке возникает скрытое изображение предмета. В каждом зернышке число разорванных связей пропорционально числу фотонов, пришедших к этому зерну. Процесс проявления состоит в том, чтобы дать возможность объединиться потенциально свободным атомам серебра. При этом количество выделившегося серебра на негативе после проявления пленки будет пропорционально интенсивности света.
Из сказанного очевидно, что мельчайшие детали, которые показывает фотография объекта, никак не могут быть больше величины кристаллического зернышка бромистого серебра.
После того как пластинка проявлена, ее закрепляют. Этот процесс состоит в удалении неразложившегося бромистого серебра. Если мы не удалим эти неразложившиеся зерна, то, вынув негатив на свет, мы его «засветим»; ведь в этом случае зерна выделят полностью все содержащееся в них серебро.
Физика получения позитивного изображения столь очевидна, что мы не станем на ней останавливаться.
Техника современной цветной фотографии далеко не проста и заслуживает большого восхищения. Что же касается физики этого процесса, то она совсем не сложна. Модель восприятия цвета, которая предлагалась еще в середине XVIII века, вполне справедлива. Глаз человека обладает рецепторами трех цветов: красного, зеленого и синего. Комбинируя эти цвета в различных пропорциях, можно создать ощущение любого цвета. Соответственно со сказанным для получения цветного изображения надо располагать трехслойной пленкой. Верхний слой должен быть чувствительным к синим лупам, средний — к зеленым, а нижний — к красным. Как химики добиваются такого положения вещей, мы рассказывать не будем. Цветной негатив превращают в цветной позитив, используя опять же трехслойную фотобумагу.
ГЛАЗ
Глаз, созданный природой, является великолепным физическим прибором. Возможности различать десятки тысяч цветовых оттенков, видеть на далеком и близком расстояниях, ощущать двумя глазами объёмные соотношения предмета, чувствительность к весьма незначительным световым интенсивностям — все это свойства, которые сделают честь прибору самого высокого класса. Правда, глаз человека видит лишь небольшой участок спектра. Глаза ряда животных в некоторой степени лишены этого недостатка.
Устройство глаза напоминает устройство фотоаппарата. Роль объектива играет хрусталик, имеющий форму двояковыпуклой линзы. Хрусталик мягок и способен изменять свою форму под действием мышц, которые его охватывают. В этом состоит процесс аккомодации глаза, позволяющий одинаково хорошо видеть близкие и далекие предметы. С возрастом хрусталик твердеет, а мускулы слабеют, в связи с этим человеку необходимы очки «для дали» и «для чтения».
Изображение предмета проецируется на заднюю стенку глаза. Глазной нерв передает это ощущение в мозг.
Нормальный глаз молодого человека способен рассмотреть в деталях предмет, расположенный на расстоянии не меньшем, чем 10 см. С возрастом возникает обычно дальнозоркость, и это расстояние увеличивается до 30 см.
Перед хрусталиком находится зрачок, который играет роль диафрагмы фотоаппарата. Размеры зрачка могут меняться в пределах от 1,8 до 10 мм.
Роль фотопластинки, на которой образуется изображение, играет сетчатая оболочка, имеющая очень сложное строение. Под сетчатой оболочкой помещается зрительный эпителий, состоящий из светочувствительных клеток, которые носят название палочек и колбочек. Вы можете сравнить число этих клеток с числом зерен бромистого серебра в фотопластинке. Число зрительных клеток превышает сто миллионов. Поскольку человек способен различать цвета, то ясно, что зрительные клетки обладают неодинаковой чувствительностью к различным участкам спектра. К тому же результату мы придем, если будем полагать, что клетки делятся на классы, восприимчивые, к разным участкам спектра.
Если зрение нормальное, то задний фокус глаза в спокойном состоянии находится на сетчатке. Если он лежит перед сетчаткой, то человек близорук; если за сетчаткой, то человек страдает дальнозоркостью. К этим двум распространенным дефектам приводит слишком большая или слишком малая толщина хрусталика. Встречаются люди, страдающие астигматизмом. В этом случае в нормальном состоянии хрусталик не имеет правильной формы тела, ограниченного двумя сферическими поверхностями.
Все эти дефекты исправляются очками, которые должны совместно с хрусталиком дать оптическую систему, фокусирующую изображение предмета на сетчатку.
Линзы очков характеризуют числом диоптрий. Диоптрия — единица оптической силы линзы, а оптическая сила обратно пропорциональна фокусному расстоянию. Оптическая сила в диоптриях равна единице, поделенной на фокусное расстояние в метрах. Фокусные расстояния рассеивающих линз, которые применяют для своих очков близорукие люди, отрицательны.
Угол зрения глаза много больше, чем нам кажется. Ряд событий, происходящих под углом 90° в каждую сторону от прямого взгляда, фиксируется непосредственно подсознанием. Это обстоятельство приводит зачастую людей к ошибочному мнению, что они «чувствуют» взгляд прохожего, не видя его. Глаз плохо распознает предметы, которые он видит под углом, меньшим, чем одна, минута дуги. И это при хорошем освещении.
ПОЛЯРИЗАТОР
Световая волна является волной электромагнитной. Как было сказано в 3-й книге, наглядными экспериментами можно продемонстрировать, что вектор электрического поля перпендикулярен направлению луча. Если этот же факт трактовать, рассматривая свет в корпускулярном аспекте, то следует сказать, что частица света — фотон — представляет собой не шарик, а стрелочку. В ряде сложных расчетов физики-теоретики приходили к заключению, что фотон обладает спином (равным 1). Таким образом, представление фотона стрелочкой весьма естественно.
Обычный луч света — это поток фотонов, спины которых расположены беспорядочно. Такой луч света называется неполяризованным. Однако в ряде случаев мы имеем дело с пучком фотонов, у которых все спины смотрят в одну сторону, или, говоря на другом языке, имеем дело с электромагнитными волнами, электрический вектор которых имеет вполне определенное направление. Такие лучи называются поляризованными.
Один из способов получения поляризованных лучей состоит в том, что луч света заставляют пройти через низкосимметричный кристалл. Такие кристаллы, ориентированные надлежащим образом по отношению к падающему лучу, обладают способностью расщеплять естественный луч на два луча, поляризованные в двух взаимно перпендикулярных направлениях
К сожалению, я не могу дать читателю даже слабое представление о том, почему так происходит. Это связано с тем, что молекулы кристалла по-разному «встречают» волны с разно расположенными электрическими векторами. Но боюсь, что от этой фразы вам легче не стало. Смею лишь заверить, что теория расщепления лучей существует, и притом это очень хорошая теория, которая описывает все детали этого интересного явления. В частности, можно предсказать, как будет меняться картина прохождения света, если мы будем подставлять кристалл под разными углами к световому лучу.
Расщепив неполяризованный луч на два поляризованных, мы далее можем без особого труда добиться такого положения вещей, чтобы один из этих лучей ушел куда-нибудь в сторону. Сделав это, мы получим прибор, который называется николем, по имени его создателя английского физика Уильяма Николя (1768–1851). Прибор был предложен еще в 1820 г. Интересно отметить, что все объяснения поляризаций света давались в то время на корпускулярном языке и считались превосходным подтверждением корпускулярной теории света Ньютона.
Вскоре были обнаружены явления интерференции и дифракции, которые столь естественно объяснялись на волновом языке, что теория световых корпускул была погребена. Но… прошло столетие, и теория возродилась, как птица Феникс из пепла, — правда, уже в гораздо более скромном обличии лишь одного из двух аспектов электромагнитного поля.
Если на пути света поставить поляризатор, то интенсивность луча упадет, как и следовало ожидать, в два раза. Но самое интересное явление, которое и доказывает существование поляризации, произойдет тогда, когда на пути луча мы поставим второй такой же прибор. Его называют анализатором, хотя он ничем не отличается от первого николя. Начнем теперь поворачивать николь около луча света. Окажется, что интенсивность света, прошедшего через два николя, при некотором взаимном положении николей остается той же, что и в отсутствие николей. Мы говорим: в этом положении николи параллельны. Теперь начнем поворачивать анализатор. Когда мы повернем его на 90°, свет перестанет проходить. Мы скажем: николи скрещены.
В промежуточном положении, когда второй николь будет повернут от параллельного положения на угол α, интенсивность будет равна 1/2 I∙cos2 α. Формула легко объясняется, если принять, что вектор электрического поля разложился на две компоненты — одну перпендикулярную, а другую параллельную «щели» анализатора. Ну, а интенсивность пропорциональна квадрату амплитуды волны, т. е. квадрату электрического вектора. Поэтому изменение интенсивности света и должно происходить по закону квадрата косинуса.
Анализ поляризованного света имеет ряд практических применений. Представим себе, что николи скрещены, а между ними помещено прозрачное тело, которое способно поворачивать электрический вектор волны. Тогда произойдет просветление наблюдаемого поля. Такой способностью обладают тела, находящиеся под напряжением. В зависимости от величины напряжения поворот светового вектора, а вместе с ним и просветление поляка скрещенными николями будут различными. Мы увидим красивые картинки (и притом окрашенные, так как фотоны разного цвета ведут себя по-разному), которые позволяют судить о напряжениях в образце или о том, ориентированы или нет молекулы образца. Это ценные сведения, и поэтому хороший микроскоп снабжен двумя николями, чтобы изображение предмета можно было рассматривать в поляризованном свете.
Информация о структуре будет намного богаче. Поворачивать электрический вектор световой волны умеют и растворы многих веществ, например сахарные. При этом угол поворота оказывается строго пропорциональным количеству сахара в растворе. Так что можно приспособить поляриметр для измерения содержания, сахара, такие приборы называются сахариметрами, и их можно найти почти в любой химической лаборатории.
Этими двумя примерами не исчерпывается применение поляриметров, но приведенные два, пожалуй, являются главными.
МИКРОСКОП И ТЕЛЕСКОП
Оптическая часть микроскопа состоит из окуляра и объектива. Окуляр — это линза, к которой мы приближаем глаз; объектив почти касается рассматриваемого предмета. Предмет помещается на расстоянии, несколько большем фокусного расстояния объектива. Между объективом и окуляром возникает перевернутое увеличенное изображение. Надо, чтобы оно оказалось между окуляром и фокусом окуляра. Окуляр играют роль лупы. Можно доказать, что увеличение микроскопа равно произведению увеличений, которые дают окуляр и объектив по отдельности.
На первый взгляд может показаться, что с помощью микроскопа можно рассмотреть сколь угодно мелкие детали предмета. Почему бы, например, не сделать фотографию, увеличивающую размеры в тысячи раз, затем рассмотреть ее в микроскоп, и получить уже увеличение в миллион раз, и так далее.
Такого рода рассуждение не выдерживает критики. Прежде всего напомним, что увеличение фотографических картинок ограничено размером зернышка фотопленки. Ведь каждый кристаллик бромистого серебра действует как целое. Читатель, без сомнения, видел сильно увеличенные фотографии и замечал, что увеличение вовсе не приводит к уточнению картины, а только размазывает детали.
Но если мы сможем избежать операции фотографирования и будем увеличивать изображение оптическими способами, к чему имеется полная возможность (никто не мешает увеличивать число линз), то мы быстро убедимся, что и в этом случае большое увеличение не имеет смысла. Предел полезному увеличению любого прибора дает волновой аспект электромагнитного поля. Рассматриваем ли мы предмет через увеличительное стеклышко, просто глазом, с помощью микроскопа или телескопа — все равно во всех этих случаях световая волна, идущая от светящейся точки, должна пройти через отверстие. Но при этом возникает явление дифракции, т. е. отклонение светового луча от прямого пути. Луч в той или иной степени «заглядывает за угол». Поэтому изображение точки никогда не будет точкой, а будет пятнышком. И как ни стараться, невозможно сделать размер этого пятна меньшим длины волны света.
Существенно уметь прикинуть, при каких условиях ход электромагнитной волны заметно отклоняется от прямолинейного пути.
Если обозначить через х линейное отклонение от прямого пути, наблюдаемое на расстоянии f от источника излучения, а размер препятствия или отверстия, которое находится на пути следования луча, равен а, то имеет место следующее соотношение:
x = λ∙f/a
Здесь λ — длина волны. Из этого уравнения следует, что дифракцию можно наблюдать и от мельчайших частиц, и от небесных тел. Все зависит от того, о волнах какой длины и о каких расстояниях идет речь. То же самое можно сказать и об отверстиях. Вовсе не обязательно иметь дело с крошечными отверстиями, чтобы наблюдать дифракцию. Скажем, отверстие, в которое пролезет теннисный мяч, позволит наблюдать дифракционные явления, но, правда, лишь на расстояниях порядка сотен метров.
Простенькое уравнение, которое мы привели, позволяет судить о предельных возможностях микроскопов и телескопов.
Микроскоп не разрешает нам разглядеть детали предмета с большей точностью, чем микрометр. Ну, а детали миллиметрового размера мы видим невооруженным глазом. Отсюда ясно, что, пользуясь оптическим микроскопом, нет смысла добиваться увеличения больше чем в тысячу раз.
Но, это ограничение касается оптического микроскопа. Вот если бы удалось сконструировать микроскоп, который мог работать не со световыми лучами, а с какими-либо другими, у которых длина волны была бы меньшей, то полезное увеличение микроскопа возросло бы. Такой микроскоп давно создан и работает во многих научных лабораториях. Это электронный микроскоп. Длина волны электронов может быть выбрана очень маленькой (см. с. 112).
С помощью электронного микроскопа удается видеть детали строения вещества, измеряемые десятимиллионными долями миллиметра. Биологи увидели молекулы ДНК — те самые длинные молекулы, с помощью которых наследственные черты передаются от родителей их потомству. Видны молекулы белков, можно разобраться в структуре мембран клеток, увидеть детали строения мышечных волокон. Я привожу лишь одну рекордную фотографию (рис. 2.4), которая с увеличением большим, чем в 3 миллиона, показывает кристаллическую решетку минерала пирофиллита. Видно расстояние между плоскостями кристалла, равное 4,45 А°.
Предел возможностям электронного микроскопа связан не с его разрешающей способностью — мы можем без труда уменьшить длину волны электронов. Все дело в контрастности изображения: изучаемую молекулу надо положить на подложку, а она ведь сама состоит из молекул. На фоне молекул подложки трудно разглядеть ту молекулу, которая нас интересует.
Электронный микроскоп — сложный и дорогой прибор. Обычно его «рост» — порядка полутора метров. Электроны разгоняются высоким напряжением. А за счет чего создается увеличение? Принцип тот же, что и у оптического микроскопа. Увеличение создается линзами. Но, разумеется, эти «линзы» совсем не похожи на линзы обычного микроскопа. Электроны фокусируются электрическими полями, приложенными к металлическим пластинам с отверстиями, а также магнитными полями, созданными катушками.
Существует множество различных технических приемов, помогающих создать изображение. При помощи микротомов изготовляются тончайшие срезы, рассматриваемые на просвет, молекулы на подложке оттеняются путем осаждения на них паров металлов. Можно также получить «реплику» образца, т. е. покрыть его тончайшей пленкой прозрачного материала, а затем стравить сам объект.
Электронная микроскопия — большой и важный раздел физики, ей стоило бы посвятить отдельную главу. Но малый объем сочинения гонит меня вперед.
Мысли о том, что при помощи выпуклых стекол можно рассматривать удаленные предметы, высказывались еще в XVI веке. Тем не менее мы не ошибемся, если припишем открытие телескопа (вернее — подзорной трубы) великому Галилею. Она была построена в июле 1609 г., и уже через год Галилей опубликовал свои первые наблюдения звездного неба.
Как и микроскоп, зрительная труба (телескоп-рефрактор) является в принципе комбинацией тех же двух линз — объектива, обращенного к предмету, и окуляра, обращенного к глазу. Так как рассматривается бесконечно удаленный предмет, то его изображение создается в фокальной плоскости объектива. Фокальная плоскость окуляра совпадает с плоскостью объектива, и из окуляра выходят пучки параллельных лучей.
Возможности телескопа растут с увеличением диаметра объектива. Так, например, большим телескопам доступны на Луне кратеры диаметром 1 км, в небольшие же телескопы обычно можно рассмотреть кратеры диаметром 150 км.
В астрономической обсерватории мы найдем не только телескопы-рефракторы. Придется наверняка познакомиться и с телескопом-рефлектором. Поскольку мы рассматриваем далекие предметы и требуется собрать лучи в фокусе, то для этой цели можно воспользоваться не сферической линзой, а сферическим зеркалом. Преимущество очевидно: мы избавляемся от хроматической аберрации. Недостатки зеркального телескопа связаны лишь с трудно осуществимыми высокими требованиями, предъявляемыми к поверхности зеркала.
Разумеется, и у телескопа имеется предел полезного увеличения, связанный с волновым аспектом света. Луч далекой звезды размывается в кружок, и это дает предел угловому расстоянию между звездами, которые мы можем разглядеть в телескоп. Желание увеличить возможности телескопа и здесь связано с увеличением его диаметра. Вероятно, предельные возможности телескопов лежат где-то близко к одной десятой секунды дуги.
В последние годы на помощь телескопам пришла новая техника. Астрономы изучают небо, фиксируя весь спектр электромагнитных волн, которые присылает нам космос. Немного мы поговорим о вторжении современной физики в тихую обитель звездочетов в гл. 7.
ИНТЕРФЕРОМЕТРЫ
Как уже неоднократно подчеркивалось, электромагнитное поле обладает волновым аспектом. Так же точно волновым аспектом обладают потоки частиц — электронов, нейтронов, протонов. Звук является результатом механических смещений среды, происходящих по закону волны. Общим для всех этих физических процессов является возможность приписать любому излучению длину волны, частоту и скорость распространения, связанные уравнением с = λ∙v. Простейшее излучение монохроматично, т. е. описывается одной длиной волны. В общем случае излучение представляет собой сложный спектр, т. е. сумму волн разной длины и разной интенсивности.
Волновой аспект излучения проявляется в двух явлениях: при сложении волн, прошедших разные пути, а также при рассеянии телами, встречающимися по пути луча. Важный частный случай рассеяния волн — это дифракция. Сложение волн носит название интерференции.
Здесь речь пойдет об интерференции света. Это явление лежит в основе действия приборов, которые помогают точно измерять расстояния, а также некоторые другие физические величины. Приборы, использующие явление интерференции для прикладных целей, и носят название интерферометров.
Принцип измерения расстояний сводится к подсчету числа волн, укладывающихся на измеряемом отрезке.
На первый взгляд может показаться, что такие измерения проводить несложно. Возьмем два источника света и сведем их лучи в одну точку. В зависимости от того, придут ли волны в точку наблюдения «горб к горбу» или «горб к впадине», создастся светлое или темное пятно. Поставим теперь задачу измерить расстояние, на которое мы хотим переместить один из источников света. При таком перемещении фазовые соотношения двух волн в точке наблюдения будут меняться. Нам остается лишь считать количество смен света на темноту, и тогда, учитывая геометрию опыта и зная длину волны света, вычислим без труда величину перемещения.
В принципе все верно. Но, действуя таким способом, мы не будем наблюдать картины чередования света и темноты. Экран будет все время оставаться светлым. Итак, простой опыт не удался.
Совершено несомненным является такой результат: два луча света, испускаемые разными источниками, сведенные в одну точку, всегда будут усиливать друг друга. Так, может быть, волновая теория неверна?
Нет, теория верна, электромагнитному излучению присущ волновой аспект. Но мы попытались действовать, сделав неверное предположение. Для того чтобы наблюдалась интерференция, необходимо, чтобы между складывающимися волнами все время сохранялась неизменная разность фаз. А ведь фазовые соотношения даже между волнами, исходящими от двух атомов одного и того же источника, совершенно, случайны. Мы уже говорили, что атомы света выбрасывают фотоны, не «договариваясь» друг с другом о своем поведении. Следовательно, два разных источника излучают несогласованно, или, как говорят, создают некогерентное излучение.
Но не оказывается ли тогда согласованное, т. е. когерентное, излучение чем-то вроде Синей птицы? Не оказывается!
Решение проблемы исключительно красиво и в то же время крайне просто, как большинство оригинальных идей: надо заставить излучение атома складываться с самим собой! А для этого требуется расщепить луч, идущий от каждого источника, на две части, заставить эти две части одного луча пройти разные пути, а затем уже свести в одну точку. Вот при этом условии мы, наблюдая интерференцию и меняя разности путей частей расщепленного луча, и вправду можем измерить интересующие пас перемещение и длину, подсчитывая число чередований света и темноты.
Мы описали принцип, лежащий в основе интерферометрических измерений, открытый еще в 1815 г. французским физиком Огюстеном Френелем (1788–1827). Рассмотрим теперь способы, лежащие в основе действия интерферометров, с помощью которых расщепляют луч и создают разности хода между расщепленными частями луча.
Остановимся поподробней на интерференции лучей света, отраженных от внешней и внутренней сторон прозрачной пластинки или пленки. Явление заслуживает внимания как по своей практической значимости, так и потому, что наблюдается в природе. Кроме того, на этом примере легко уясняются многие важные понятия, которыми мы пользуемся при описании световых и других электромагнитных волн.
Рис. 2.5 позволяет вычислить сдвиг фаз между такими двумя лучами. Разность фаз определяется разностью хода, т. е. разностью путей, пройденных двумя лучами.
Как видно из чертежа, разность хода x = 2d∙cos r. Но как перейти от разности хода лучей к разности фаз, которая определяет, будут ли две волны усиливать или ослаблять друг друга?
Поговорим с читателем, которого не пугает формула косинуса. Колебание светового вектора в любой точке пространства, можно записать следующим образом: A cos 2π∙v∙t. Сдвиг по фазе, на угол φ означает необходимость добавления этого угла к аргументу косинуса. Если мы хотим сравнить фазы точек одной и той же волны, разделенных расстоянием х, то нам надо учесть, сколько длин волн укладывается на этом участке, и полученное число умножить на 2π. Эта величина и будет фазовым сдвигом. Итак, φ = 2π∙x/λ.
Теперь вернемся к интерференции лучей в пластинке. Выражение для разности хода мы записали. Значит, остается лишь поделить эту величину на λ. Но… стоп. Кто нам сказал, что длина волны света в пустоте и внутри прозрачной пластинки одинакова? Напротив, у нас есть все основания подозревать, что с волной что-то происходит, когда она переходит из одной среды в другую. Ведь существует явление дисперсии: фотоны разной частоты ведут себя по-разному. Частота, длина волны и скорость ее распространения, связаны равенством c = v∙λ. Какие же из этих величин меняются, когда волна попадает в другую среду? На этот вопрос отвечает опыт.
Можно непосредственно измерить скорость распространения волны в теле и убедиться в том, что показатель преломления, заставляющий волну изменять направление своего движения при косом падении на поверхность раздела двух сред, равен отношению скоростей распространения света в них. В случае, если одна из сред — воздух (точнее — вакуум),
n = c/v.
где с — принятое обозначение скорости света в пустоте, a v — скорость распространения в среде. Ну, а дальше? Какой из двух параметров — частота или длина волны — меняется при переходе света из воздуха в среду? Чтобы объяснить результаты интерференционных опытов, необходимо предположить, что частота фотона остается неизменной, а длина волны меняется. Поэтому для показателя преломления справедлива также формула
n = λ0/λ,
где λ0— длина волны в воздухе.
Вот теперь мы уже знаем всё, для того чтобы записать разность фаз между лучами в описываемом опыте с пластинкой. Поскольку один из лучей шел в воздухе, а второй — в стекле, то разность фаз будет равна
Что же можно измерить, изучая интерференцию лучей в пластинке? Формула отвечает на этот вопрос. Если известна толщина, то можно определить показатель преломления материала. Если известно значение n, то можно с очень большой точностью (доли длины световой волны) найти толщину, и, наконец, можно измерять длины волн разной «цветности».
Если пластинка имеет переменную толщину, материал ее всюду однороден и угол падения практически одинаков для рассматриваемого участка пластинки, то интерференция будет обнаружена в виде так называемых полос равной толщины. На неровной пластинке возникнет система темных и светлых (или радужных в случае белого света — ведь фотон каждой цветности будет вести себя по-своему) полос, обрисовывающих места равной толщины. В этом состоит объяснение цветных разводов, которые мы так часто видим на пленках нефти или масла, разлитых на воде.
Очень красивые полосы равной толщины легко наблюдать на мыльной пленке. Сделайте проволочную рамку. Опустите ее в мыльный раствор и выньте. Мыло стекает, и в верхней части пленка будет тоньше, чем в нижней. На пленке появятся цветные горизонтальные полосы.
Интерференционный метод широко применяется для измерения малых расстояний или малых изменений расстояний. Он позволяет заметить изменения толщины, меньшие сотых долей длины световой волны. В интерференционных измерениях неровностей на поверхности кристалла удается достигнуть точности порядка 10-7 см.
Широко распространен этот метод в оптической промышленности. Если, скажем, нужно проверить качество поверхности стеклянной пластинки, то это делается рассмотрением полос равной толщины воздушного клина, создаваемого испытуемой пластинкой с идеально плоской поверхностью. Если прижать эти две пластинки с одного края, то образуется воздушный клин. Если обе поверхности плоские, то линии равной толщины будут параллельными прямыми.
Представим себе, что на испытуемой пластинке имеется впадина или бугор. Тогда линии равной толщины искривятся и будут обходить дефектное место. При изменении угла падения света полосы движутся в ту или другую сторону в зависимости от того, бугром или впадиной является дефект. На рис. 2.6 показано, как выглядит поле микроскопа в этих случаях. Оба рисунка соответствуют дефектным образцам. У первого дефект расположен справа у самого края, а у второго — слева.
Точные измерения показателей преломления вещества могут быть проделаны при помощи интерференционных рефрактометров. В этих приборах наблюдается интерференция между двумя лучами, которые по возможности отдалены друг, от друга.
Положим, что на пути одного из лучей установлено тело длиной l и с показателем преломления n. Если показатель преломления среды есть n0, то оптическая разность хода изменится на Δ = l∙(n — n0). Два луча сводят в одну, точку при помощи фокусирующей линзы. Какую же картину будем мы наблюдать в зрительной трубе? Систему светлых и темных полос. Но это не полосы равной толщины, которые видны невооруженным глазом. Система полос, возникающая, в рефрактометре, имеет другое происхождение. Ведь исходный пучок света не идеально параллельному, а слегка расходящийся. Значит, падать на пластинку лучи, составляющие конус, будут под слегка разными углами.
Интерференционные события будут проходить одинаково у лучей одинакового наклона. Они и соберутся в одном месте фокальной плоскости зрительной трубы. Если разность хода между расщепленными частями пучка будет меняться, то полосы придут в движение. При изменении разности хода на величину Δ через окуляр трубы пройдут Δ/λ, полос.
Точность метода очень велика, ибо смещение в 0,1 полосы улавливается без труда. При таком смещении Δ = 0,1∙λ = 0,5∙10-5 см, что на длине l = 10 см позволит зафиксировать изменение показателя преломления на 0,5∙10-6.
Необходимо рассказать теперь об интерферометре другого типа, не использующего явление преломления. Это интерферометр, созданный американским физиком Альбертом Майкельсоном (1852–1931). Трудно переоценить ту роль, которую он сыграл в истории физики (я рискну даже на более сильное утверждение: в истории человеческой мысли). С помощью этого интерферометра был впервые установлен факт исключительной важности: скорость света в направлениях вдоль и поперек земной орбиты одинакова. Это значит, что скорость света не складывается со скоростью движения лампы, дающей световую вспышку, по тем правилам, по которым складывается скорость пули со скоростью сдвижения стрелка с ружьем. Открытие этого замечательного факта привело к становлению теории относительности, к коренному пересмотру смысла основных научных понятий — длины, времени, массы, энергии. Но об этом речь у нас впереди. А об интерферометре Мендельсона нам стоит поговорить сейчас, так как его значимость определяется не только местом, занимаемым в истории физики, но и тем, что до сего времени простые принципы, лежащие в основе его конструкции, используются для измерения длин и расстояний.
В этом приборе параллельный пучок монохроматического света падает на плоскопараллельную пластинку P1 (рис. 2.7), покрытую со штрихованной стороны полу прозрачным слоем серебра. Эта пластинка поставлена под углом 45° к падающему от источника лучу и делит его на два, один из которых идет параллельно падающему лучу (к зеркалу M1), а другой — перпендикулярно (к зеркалу М2).
Разделенные лучи падают на оба зеркала перпендикулярно и возвращаются в те самые места полупрозрачной пластинки, из которых они вышли. Каждый луч, вернувшийся от зеркала, повторно расщепляется на пластинке. Часть света возвращается в источник, а другая часть поступает в зрительную трубу. На рисунке видно, что луч, идущий от зеркала, стоящего напротив трубы, три раза проходит через стеклянную пластинку с полупрозрачным слоем. Поэтому для обеспечения равенства оптических путей луч, идущий от зеркала М1, пропускается через компенсационную пластинку P2, идентичную первой, но без полупрозрачного слоя.
В поле зрения трубы будут наблюдаться круговые кольца, соответствующие интерференции в воздушном слое (толщина которого равна разности расстояний зеркал от места расщепления лучей) первичных лучей, образующих конус. Перемещение одного из зеркал (например, зеркала М2 в положение, показанное пунктиром) на четверть длины волны будет соответствовать переходу от максимума к минимуму, т. е. вызовет смещение картины на полкольца. Это может быть отчетливо отмечено наблюдателем. Таким образом, в фиолетовых лучах чувствительность интерферометра больше чем 100 нм.
Появление на сцене лазеров произвело революцию в технике интерферометрии.
Дело заключается в следующем. Время излучения атома равно 10-8—10-9 с. Единичный акт излучения состоит в испускании цуга волн. Поскольку время излучения столь мало, то, несмотря на большую скорость света, цуг очень короткий. Когда мы расщепляем луч на части, то интерферировать могут только две части одного и того же цуга волн. Это значит, что один отрезок синусоиды должен существенно перекрыться с другим отрезком. Но для этого, разумеется, необходимо, чтобы разность хода между расщепившимися частями луча была значительно меньше длины цуга.
Максимальная разность хода между лучами, при которой может наблюдаться интерференция, носит название когерентной длины. Для света это доли миллиметра.
Но смотрите, сколь разительно меняется ситуация при лазерном излучении. Лазер непрерывного действия создает фотоны стимулированного излучения, отправляющиеся в путешествие в одной и той же фазе. Или, говоря на волновом языке, цуги волн, исходящие из равных атомов, накладываются друг на друга, создавая как бы единую волну. Когерентная длина практически становится неограниченной и во всяком случае измеряется метрами и километрами (идеал, как всегда, недостижим; но я не стану останавливаться на различных факторах, влияющих на когерентную длину).
Пользуясь лазерным светом, можно строить интерферометры, позволяющие решать задачи, которые ранее считались неосуществимыми. Так, скажем, при обычном источнике света зеркало интерферометра Майкельсона можно смещать лишь на величины порядка миллиметра. Если же световой луч создается лазером, то путь луча, падающего на зеркало М1, может быть равен нескольким сантиметрам, а луча, отраженного от М2,— десяткам метров.
Интерферометры для контроля сферичности линз могут быть изготовлены с одной-единственной поверхностью сравнения, в то время как, используя обычный свет, с изменением радиуса испытываемой линзы приходилось менять и эталон сравнения (так как нельзя было работать с большими разностями хода). Мы уже не говорим о том, что интерференционные картины стали несравненно ярче, а поэтому анализируются легко и более точно.
Возможность обходиться без компенсации оптического пути одного из лучей позволяет изготовлять интерферометры совершенно нового типа. Становится возможным следить за смещениями плотин, геологическим дрейфом, колебаниями земной коры. Отражая лазерный свет от объектов, находящихся на большом расстоянии, и заставляя его интерферировать с исходным, можно производить точные измерения скорости движения таких объектов.
ЛАЗЕРНЫЕ ИНСТРУМЕНТЫ
Устройство, создающее лазерный луч, конечно, можно назвать прибором, поскольку оно применяется для анализа, контроля, наблюдений. Однако, в отличие от других оптических приборов, несравненно большее значение лазер имеет в промышленности. Использование лазеров настолько всеобъемлюще, что мы будем к нему неоднократно возвращаться. В этом параграфе мы остановимся на применениях лазера для обработки материалов. Если не нужна большая мощность, то можно воспользоваться компактным неодимовым лазером. Сердцем этого лазера является, как уже говорилось, стекло, легированное неодимом. Стеклянный стержень имеет длину 50 мм и диаметр 4 мм. Вспышка света, производящего накачку, дается ксеноновои лампой. Для того чтобы избежать потерь световой энергии, лампа и стержень заключены в цилиндрическую камеру, которая охлаждается водой.
Для разнообразных применений этого или подобного инструмента важны следующие его свойства: возможность локализации энергии на исключительно малой площади, возможность точной дозировки порции энергии, возможность подачи энергии без применения каких-либо проводов дли контактов.
Характерно применение лазера в часовой промышленности. Всем хорошо известно, что часы изготовляются на «камнях». Возможно, читатель и не знает, для чего нужны в часах маленькие рубины, но что их количество определяет качество часов — ему, конечно, известно. В рубиновых шайбах надо буравить отверстия. Без помощи лазера эта операция занимала несколько минут для каждого камня. Теперь процесс полностью автоматизирован и занимает доли секунды. Если учесть, что число камней, нужных промышленности, измеряется многими миллионами в год, то значение этого использования инструмента становится совершенно очевидным.
Тем же целям служит лазер в алмазной промышленности. При изготовлении алмазных камней для протяжки или бурения лазер применяется как инструмент, с помощью которого камню можно придать любой профиль и проделать в нем отверстие вплоть до размера в несколько микрометров!
Но я прервал разговор о производстве часов. Лазер оказывает ему еще одну большую услугу: приваривает пружину к часовому механизму. Вполне очевидно, что и во всех других областях промышленности, где требуется точечная сварка (а современная техника имеет в этом крайнюю нужду), может о большим успехом использоваться лазерный луч. Огромным достоинством тончайшего луча является, то, что нет заботы об охране и охлаждении частей, соседствующих с местом, подлежащим сварке.
Уже тривиальным стало использование лазерного инструмента как ножа для вырезывания любых контуров на любом материале.
Упомянем об одной неожиданной области применения лазера: для реставрации мраморных скульптур. Атмосфера XX века, увы, — далеко не чистый воздух. Различные вредные газы, и прежде всего окись серы, образуют на мраморе черную корку. Корка эта пориста и поэтому как губка впитывает влагу и дополнительные дозы вредных веществ. Удаление корки механическими, и химическими средствами может привести к порче скульптуры. Действуя же лазером в импульсном режиме, удаляют корку не затронув мрамора.
При помощи лазера на углекислом газе осуществляется рост кристаллов без тиглей. Процесс этот не нов. Токи высокой частоты применялись уже давно для такого выращивания кристаллов, но не для диэлектриков, обладающих слишком малой теплопроводностью. При помощи лазеров сейчас растят без тиглей кристаллы ниобатов и других очень нужных веществ. Важность безтигельного роста кристаллов для нужд микроэлектроники невозможно переоценить, ибо миллионные доли примесей могут сыграть отрицательную роль; а избавиться от того, чтобы какие-либо «вредные» атомы не перешли из материала тигля в кристалл, практически невозможно.
Я не буду останавливаться на описании конструкции соответствующего аппарата. О росте кристаллов шла речь во 2-й книге. Как и в случае токов высокой частоты, луч лазера создает небольшую расплавленную зону, которая медленно подводит вещество к растущему кристаллу. Мне кажется вероятным, что использование лазера потеснит другие методы выращивания кристаллов.
ФОТОМЕТРИЯ
Каждый источник света можно охарактеризовать энергией, которую он излучает. Однако во многих случаях нас интересует только та часть потока энергии, которая приводит к зрительному ощущению. Такой особенностью обладают, как мы говорили, электромагнитные волны, длины которых лежат в пределах примерно от 380 до 780 нм.
Воспринимаемый мозгом свет характеризуется яркостью и цветом. Если сопоставить зрительные ощущения, которые создаются светом равной интенсивности, но разной длины волны, то окажется, что наиболее ярким глазу представляется источник света, дающий волну длиной 555 нм, что соответствует зеленому цвету.
Восприятие света можно характеризовать кривой видимости (рис. 2.8), которая показывает (в относительных единицах) чувствительность нормального глаза к волнам различной длины. Однако техники оставляют эту кривую вне внимания и предоставляют глазу выносить суждение об интегральной силе света.
Идя по этому пути, надо выбрать какой-то эталонный источник света, а затем сравнивать с ним другие источники. За единицей силы света долго сохранялось название свечи, ибо первые попытки выбора эталона как раз и заключались в том, чтобы подобрать некое стандартное пламя свечи. Не приходится и говорить, как это трудно сделать.
Международный эталон, принятый на сегодня, представляет собой раскаленное черное тело. Материалом служит платина. Черное тело испускает свет, излучаемый платиной, нагретой до температуры плавления, т. е. до 2046 К, через небольшое отверстие.
Единица силы света получила название канделы («свеча» по-латыни). Международное определение старается избежать прямого указания на температуру свечения (чтобы не внести ошибки, связанные с измерением температуры). Поэтому кандела определяется так: если в качестве источника взять платину, находящуюся в состоянии затвердевания при нормальном атмосферном давление, то площадь 1/610-5 м2 дает в направлении, перпендикулярном поверхности, силу света, равную одной канделе.
На достаточно больших расстояниях, источник света представляется точкой. Именно в этих случаях и удобно измерять силу света. Построим около точечного источника сферу, выделим на этой поверхности участок площадью S. Поделив S на квадрат расстояния от центра, мы получим так называемый телесный угол. Единицей телесного угла является стерадиан. Если на сфере радиусом один метр вырезается площадка S = 1 м2, то телесный угол равен одному стерадиану.
Световым потоком называют силу света точечного источника, умноженную на величину телесного угла.
Пусть вас не смущает то обстоятельство, что световой поток обращается в нуль, когда речь идет о параллельных лучах. В подобных случаях понятием светового потока не пользуются.
За единицу светового потока принимается люмен, равный потоку, который посылает точечный источник с силой света в одну канделу в угол, равный одному стерадиану. Суммарный световой поток, излучаемый точкой во все стороны, будет равняться 4π лм.
Сила света характеризует источник света вне зависимости от его поверхности. В то же время совершенно ясно, что впечатление будет различным в зависимости от протяженности источника. Поэтому пользуются понятием яркости источника. Это — сила света, отнесенная к единице поверхности источника света. Яркость измеряется в стильбах: один стильб равен канделе, поделенной на квадратный сантиметр.
Один и тот же источник света принесет равную световую энергию к странице раскрытой книги в зависимости от того, где он находится. Для читателя важно, какова освещенность участка письменного стола, на котором лежит книга. Если размер источника невелик (точечный источник), то освещенность равна силе света, поделенной на квадрат расстояния от источника. Почему на квадрат? Ответ ясен: световой поток остается неизменным внутри заданного телесного угла, как бы далеко мы ни ушли от светящейся точки. Ну, а площадь сферы и площадь участка, вырезаемого заданным телесным углом, будут шести обратно пропорционально квадрату расстояния. Это простое правило называют законом обратных квадратов. Изменив расстояние читаемой книги от маленькой лампочки с 1 до 10 м, мы уменьшим освещенность страницы книги в сто раз.
Единица освещенности — люкс. Такую освещенность создает поток света, равный 1 лм, на площади в 1 м2.
Освещенность в безлунную ночь равна 0,0003 лк. Так что когда мы говорим: «ни зги не видно», то определяем освещенность, этой самой «зги». В лунную ночь освещенность равна — 0,2 лк. Чтобы читать, не напрягая глаз, требуется освещенность 30 лк. При киносъемке включают мощные прожекторы и доводят освещенность предметов до 10 000 лк.
Но мы ничего еще не сказали о приборах, которые служат для измерения, световых потоков и освещенностей. В настоящее время такие измерения — не проблема. Фактически мы действуем именно так, как надо было бы поступить, дав новое определение канделы. Мы измеряем энергию, падающую на фотоэлемент, а шкалу фотоэлемента градуируем в люксах с учетом кривой видности.
Существовавшие в прошлом веке фотометры работали по принципу сравнения яркостей двух освещенных смежных площадок. На одну из них падал свет, силу которого мы хотели измерить. С помощью нехитрых приспособлений световой поток уменьшали в известное число раз так, чтобы в конце концов смежные площадки были освещены одинаково.
ГОЛОГРАФИЯ
Создание лазеров знаменует новую эпоху в развитии науки и техники. Трудно найти такую область знания, в которой стимулированное излучение не открыло бы новые возможности.
В 1947 г. Д. Габор предложил использовать когерентный свет для получения изображения объекта совершенно новым способом. Новая техника, получившая название голографии, коренным, образом отличается от фотографии. Голография становится возможной только лишь благодаря особенностям стимулированного излучения, отличающим его от обычного света.
Еще раз подчеркнем, что при лазерном излучении почти все фотоны совпадают по всем своим признакам — частоте, фазе, поляризации и направлению распространения. Лазерный луч размывается в ничтожной степени, т. е. можно получить чрезвычайно тонкий луч на больших расстояниях от источника, лазерному лучу свойственна очень большая когерентная длина (длина цуга волн). Благодаря последнему обстоятельству (оно-то и важно для голографии) возможна интерференция расщепленных лучей с большой разностью хода.
Верхняя часть рис. 2.9 поясняет технику получения голограммы.
Наблюдаемый объект освещается широким несильным (чтобы не повредить объект) лазерным лучом. Один и тот же луч рассеивается объектом и отражается зеркалом, которое создает так называемую опорную волну. Две волны накладываются. Происходит интерференция, картина которой фиксируется фотопластинкой.
Взгляните на рис. 2.10.
Сверху показан объект, а под ним — его «изображение». Мы не оговорились: эта сложная комбинация темных и светлых колец, называемая голограммой, действительно является изображением объекта, но только изображением скрытым. Голограмма содержит полную информацию об объекте, точнее — полные сведения об электромагнитной волне, рассеянной шахматными фигурками. Фотография не содержит таких всеобъемлющих сведений. Лучший фотоснимок точно передает все сведения об интенсивности рассеянных лучей. Но ведь волна, рассеянная любой точкой объекта, полностью характеризуется не только своей интенсивностью (амплитудой), но и фазой. Голограмма — это интерференционная картина, и каждая светлая или темная линия говорит нам не только об интенсивности, но и о фазе лучей, пришедших от объекта в соответствующие места фотопластинки.
Как и любую фотопластинку, голограмму проявляют, закрепляют и хранят сколько угодно времени. Когда нам захочется полюбоваться на снятый объект, мы облучим, как это показано на нижней части рис. 2.9, голограмму светом того же лазера, восстановив геометрическое расположение, имевшее место при съемке: луч лазера направим так, как шел луч, отраженный от зеркала. Тогда там, где находился объект, возникнет изображение предмета, в идеале тождественное той картине, которую видел глаз.
Теории получения голограммы мы не можем касаться. Основная идея состоит в том, что при освещении голограммы возникают рассеянные волны, обладающие теми же амплитудами и фазами, которые создали эту голограмму. Эти волны складываются в волновой фронт, тождественный тому волновому фронту, который создал голограмму. Происходит своеобразная реконструкция волны при освещении голограммы в тех же условиях, в которых освещался объект. Благодаря этому создается изображение объекта.
Исследования в области голографии продолжаются. Сейчас имеется возможность получать цветные изображения. Возможно улучшить результаты, снимая несколько голограмм с разных позиций. Наконец (и это, пожалуй, самое важное), оказывается, что можно рассматривать голограммы, не прибегая к лазеру.
Имеются книги, трактующие предмет голографии в деталях. Голография заслуживает внимания по той причине, что является очень емким способом хранения трехмерной информации об объекте. Последнее слово в этой области еще не сказано, и будущее покажет в какой мере, голография войдет в быт и в технику.