СИНУСОИДАЛЬНАЯ ЭДС
Аккумулятор и батарея являются источниками постоянного тока. А вот электрическая сеть дает нам переменный ток. Слова «постоянный» и «переменный» относятся к величинам напряжения, ЭДС и силы тока. Если в процессе протекания тока все эти величины остаются неизменными, то ток постоянный, если они меняются, то ток переменный.
Характер изменения электрического, тока во времени может быть разным в зависимости от устройства, которое создает ток. Кривую, описывающую изменение электрического тока, можно получить при помощи электронно-лучевой трубки. Электронный луч отклоняется полями двух взаимно перпендикулярных плоских конденсаторов. Накладывая на пластины конденсаторов разные напряжения, можно заставить светящееся пятнышко, оставляемое лучом на экране, бродить по всей плоскости экрана.
Для получения картины переменного тока поступают следующим образом. К одной паре пластин подводят так называемое пилообразное напряжение, кривая которого показана на рис. 4.1.
Если электронный луч находится только под его действием, то пятнышко равномерно движется по экрану, а затем скачком возвращается в исходное положение. Положение пятнышка дает сведения о моменте времени. Если на другую пару пластин наложено изучаемое переменное напряжение, то оно «развернется», совершенно таким же образом, как механическое колебание «разворачивается» с помощью простого устройства, показанного в первой книге.
Сказав «колебание», я не оговорился. Большей частью величины, характеризующие переменный ток, колеблются по тому же гармоническому закону синусоиды, которому подчиняются отклонения маятника от равновесия. Чтобы убедиться в этом, достаточно подключить к осциллографу городской переменный ток.
По вертикали могут быть отложены ток или напряжение. Характеристики тока те же, что и параметры механического колебания. Промежуток времени, после которого картина изменений повторяется, носит, как известно, название периода Т; частота тока ν — величина, обратная периоду, — равна обычно для городского тока 50 колебаниям в секунду.
Когда рассматривается одна синусоида, то выбор начала отсчета времени безразличен. Если же две синусоиды накладываются друг на друга так, как это показано на рис. 4.2, то надо указать, на какую долю периода они смещены по фазе. Фазой называется угол φ = 2π∙(t/T). Так что если кривые сдвинуты по отношению друг к другу на четверть периода, то мы говорим, что они смещены по фазе на 90 градусов, если на восьмую часть периода — то значит на 45 градусов по фазе, и т. д.
Когда идет речь о нескольких синусоидах, сдвинутых по фазе, техники говорят о векторах тока или напряжения. Длина вектора соответствует амплитуде синусоиды, а угол между векторами — сдвигу фаз. Многие технические устройства дают нам не простой синусоидальный ток, а такой, кривая которого является суммой нескольких смещенных синусоид.
Покажем, что простой синусоидальный ток возникает в том случае, если проводящая рамка вращается в однородном магнитном поле с постоянной скоростью.
При произвольном направлении рамки по отношению к силовым линиям магнитный поток, проходящий через контур, равен
Ф = Фмакс∙sin φ
φ — угол между плоскостью витка и направлением поля.
Этот угол меняется со временем по закону φ = 2π∙(t/T).
Закон электромагнитной индукции позволяет вычислить ЭДС индукции. Запишем выражения магнитных потоков для двух мгновений, отличающихся на очень малый промежуток времени τ:
Разность этих выражений:
Так как τ очень мало, то справедливы следующие приближенные равенства:
ЭДС индукции равна этой разности, отнесенной ко времени. Значит,
Мы доказали, что ЭДС индукции выражается синусоидой, сдвинутой по отношению к синусоиде магнитного потока на 90 градусов. Что касается максимального значения ЭДС индукции — ее амплитуды, то оно пропорционально произведению амплитуды магнитного потока на частоту вращения рамки.
Закон для силы тока получится, если разделить ЭДС индукции на сопротивление цепи. Но мы сделаем грубую ошибку, если приравняем сопротивление переменному току, которое стоит в знаменателе выражения
Iперем = инд/Rперем
омическому сопротивлению — той величине, с которой мы имели дело до сих пор: Оказывается, что Rперем определяется не только омическим сопротивлением, но зависит еще от двух параметров цепи: ее индуктивности и включенных в цепь емкостей.
То, что закон Ома усложняется, когда мы переходим от постоянного тока к переменному, показывает следующий простой опыт. На рис. 4.3 изображена цепь тока, проходящего через электрическую лампочку и катушку, в которую можно вставлять железный сердечник. Сначала подключим лампочку к источнику постоянного тока. Будем вдвигать железный, сердечник в катушку и выдвигать его. Никакого эффекта! Сопротивление цепи не меняется, значит и сила тока остается неизменной.
Но повторим этот же опыт для случая, когда цепь подключена к переменному току. Эффектный результат, не правда ли? Теперь лампочка горит ярко, если сердечник не вставлен в катушку, и тускло, если вы вдвинули железо в катушку.
Итак, при неизменном внешнем напряжении, при неизменном омическом сопротивлении (зависящем лишь от материала, длины и сечения проводов) сила тока меняется в зависимости от положения железного сердечника в катушке.
Что это значит?
Мы вспоминаем, что железный сердечник резко увеличивает (в тысячи раз) магнитный поток, проходящий через катушку. В случае переменной ЭДС магнитный поток в катушке все время меняется. Но если без железного сердечника он менялся от нуля до какой-то условной единицы, то при наличии сердечника он будет меняться от нуля до нескольких тысяч единиц.
При изменении магнитного потока силовые линии будут пересекать витки «своей» катушки. В катушке будет возникать ток самоиндукции. Согласно правилу Ленца этот ток будет направлен так, чтобы ослабить эффект, его вызвавший: внешняя ЭДС встречает особую помеху, которой не существовало тогда, когда ток был постоянным. Иными словами, у переменного тока имеется дополнительное сопротивление, обязанное тому, что магнитное поле, пересекая привода своей цепи, создает особую ЭДС, называемую ЭДС самоиндукции, которая ослабляет среднюю силу тока. Это дополнительное сопротивление называется индуктивным.
Опыт говорит (и это обстоятельство, без сомнения, покажется читателю вполне естественным), что магнитный поток, пронизывающий катушку (или, говоря более общо, пронизывающий весь контур тока), пропорционален силе тока: Ф = L∙I. Что же касается коэффициента пропорциональности L, который называется индуктивностью, то он зависит от геометрии проводящего контура и от того, какие сердечники он охватывает. Как очевидно из формулы, численное значение индуктивности равно магнитному потоку при силе тока в один ампер. Единица измерения L — генри (1 Г = = 1 Ом∙с).
Можно теоретически вывести и подтвердись на опыте, что индуктивное сопротивление RL выражается формулой:
RL = 2π∙ν∙L.
Если омическое сопротивление (с которым мы знакомы) и емкостное сопротивление (с которым познакомимся ниже) малы, то сила тока в цепи равна;
I = /RL
Для того чтобы судить о том, что «мало», а что «велико», прикинем значение индуктивного сопротивления для частоты городского тока и индуктивности 0,1 Г. Получим примерно 30 Ом.
Ну, а что собой представляет катушка с индуктивностью в один генри? Для оценки индуктивности катушек и дросселей (катушек с железными сердечниками) применяется следующая формула, которую мы даем без вывода:
здесь n — число витков, l — длина катушки, S — поперечное сечение. Так что 0,002 генри даст, например, катушка со следующими параметрами: l = 15 см, n = 1500, S =1 см2. Если вставить железный сердечник с μ = 1000, то индуктивность, будет равна 2 генри.
ЭДС любого происхождения, а значит и ЭДС самоиндукции, производит работу. Эта работа, как нам известно, равна ∙I. Если ток переменный, то и , и I в каждое мгновение меняют свои значения. Пусть в момент t их величины равны и 1 и I1, а в момент (t + τ) они равны 2 и I2. Магнитный поток, пересекающий витки катушки с индуктивностью L, равен L∙I. В момент t он имел значение L∙I1, а в момент t + τ — значение L∙I2. Чему же равна работа, которая потребовалась для увеличения тока от значения I1 до I2? ЭДС равна изменению магнитного потока, отнесенному ко времени изменения:
Чтобы получить работу ∙I∙τ, надо умножить это выражение на время и на силу тока. На какую? На среднее значение, т. е. на (I1 + I2)/2. Приходим к заключению, что работа ЭДС самоиндукции равна:
Этот арифметический результат можно выразить следующим образом: работа ЭДС равняется разности величины L∙I2/2 в два момента времени. Это означает, что на индуктивном сопротивлении энергия не рассеивается, не переходит в тепло, как это имеет место в цепях с омическим сопротивлением, а переходит «в запас».
Именно поэтому вполне правомерно назвать величину L∙I2/2 магнитной энергией тока.
Рассмотрим теперь, как скажется на сопротивлении контура переменному току включение конденсатора.
Если в цепь постоянного тока включить конденсатор, то ток не пойдет. Ведь включить конденсатор — это все равно, что разорвать цепь. Но тот же самый конденсатор в цепи переменного тока не обратит ток в нуль.
Нас, разумеется, интересует причина этого различия. Объяснение несложное. После подключения цепи к источнику переменного тока электрический заряд начинает накапливаться на обкладках конденсатора. К одной обкладке подходит положительный заряд, к другой — отрицательный. Положим, что индуктивное и омическое сопротивления малы. Зарядка будет происходить до тех пор, пока напряжение на обкладках конденсатора не станет максимальным и равным ЭДС источника. В это мгновение сила тока равна нулю. Теперь напряжение источника начинает падать, конденсатор «разряжается».
Измеряя с помощью какого-либо прибора силу тока в цепи с конденсатором, мы можем убедиться в том, что сила тока будет разной в зависимости от двух величин. Во-первых, доказывается (и на опыте, и с помощью теоретических рассуждений), что ток уменьшается по мере падения частоты. Значит емкостное сопротивление обратно пропорционально частоте. Результат вполне естественный, ибо чем меньше частота, тем больше переменный ток, так сказать, приближается к току постоянному.
Изменяя геометрические параметры конденсатора, т. е. расстояние между пластинами и площади пластин, мы убедимся в том, что емкостное сопротивление также обратно пропорционально и емкости конденсатора.
Формула емкостного сопротивления имеет такой вид:
Rc = 1/2π∙ν∙C
Конденсатор, емкость которого 30 микрофарад, при частоте городского тока дает сопротивление около 100 Ом.
Я не собираюсь рассказывать читателю, как рассчитывается сопротивление сложных цепей тока, составленных из омических, индуктивных и емкостных сопротивлений. Предупрежу только об одном: общее сопротивление цепи не равно сумме отдельных сопротивлений.
Сила электрического тока и напряжение на отрезке цепи, включающем омическое сопротивление, конденсатор и индуктивную катушку, могут быть обычным способом измерены с помощью осциллографа (электронно-лучевой трубки). И ток, и напряжение мы увидим на экране в виде синусоид. Мы не удивимся, обнаружив, что эти синусоиды сдвинуты друг со отношению к другу на некоторый фазовый угол φ. (То, что так и должно быть, читатель быстро сообразит, вспомнив, что, скажем, в цепи с конденсатором ток равняется нулю, когда напряжение на конденсаторе максимально.)
Значение сдвига фаз φ весьма важно. Ведь мощность тока равняется произведению силы тока на напряжение. Если синусоиды тока и напряжения совпадают, это значение будет максимальным, а если сдвинуты так, как это будет в цепи, обладающей одним емкостным или одним индуктивным сопротивлением, то мощность будет равняться нулю. В этом нетрудно убедиться, нарисовав две синусоиды, сдвинутые на девяносто градусов, перемножив их ординаты и сложив эти произведения за один период. Можно строго доказать, что в общем случае в среднем за период мощность переменного тока равна
W = I∙U∙cos φ.
Увеличение cos φ — задача инженера-электрика.
ТРАНСФОРМАТОРЫ
Вы приобрели холодильник ЗИЛ. Продавец вас предупредил, что холодильник рассчитан на напряжение в сети 220 вольт. А у вас в доме сетевое напряжение 127 вольт. Безвыходное положение? Ничуть. Просто придется сделать дополнительную затрату и приобрести трансформатор.
Трансформатор — очень простое устройство, которое позволяет как повышать, так и понижать напряжение. Он состоит из железного сердечника, на который надеты две обмотки (катушки). Число витков в катушках разнос.
Подключим к одной из катушек сетевое напряжение. С помощью вольтметра мы убедимся в том, что на концах другой обмотки появится напряжение, отличающееся от сетевого. Если первичная обмотка имеет w1 витков, а вторичная w2, то отношение напряжений будет:
U1/U2 = w1/w2
Таким образом, трансформатор будет повышать напряжение, если первичное напряжение подведено к катушке с меньшим числом витков, и понижать в обратном случае.
Почему так получается? Дело в том, что весь магнитный поток проходит практически через железный сердечник. Значит обе катушки пронизаны одинаковым числом силовых линий. Трансформатор будет действовать лишь в случае, если первичное напряжение переменное.
Синусоидальное изменение тока в первичной катушке будет вызывать синусоидальную ЭДС индукции, во вторичной катушке. Виток первичной и виток вторичной катушек находятся в одинаковых условиях. ЭДС одного витка первичной катушки равна ЭДС сети, поделенной на число витков первичной катушки, U1/w1, а ЭДС вторичной катушки равна произведению U1/w1 на число витков w2.
В принципе каждый трансформатор может быть использован и как повышающий, и как понижающий — в зависимости от того, к какой катушке подключено первичное напряжение.
В житейской практике часто приходится иметь дело с трансформаторами (рис. 4.4).
Кроме тех трансформаторов, которыми мы пользуемся волей-неволей из-за того, что торговые приборы рассчитаны на одно напряжение, а в городской сети используется другое, кроме них приходится иметь дело с бобинами автомобиля. Бобина — это повышающий трансформатор. Для создания искры, поджигающей рабочую смесь, требуется высокое напряжение, которое мы и получаем от аккумулятора автомобиля, предварительно превратив постоянный ток аккумулятора в переменный с помощью прерывателя.
Нетрудно сообразить, что с точностью до потерь энергии, идущей на нагревание трансформатора, при повышении напряжения уменьшается сила тока, и наоборот.
Для сварочных аппаратов требуются понижающие трансформаторы. Для сварки нужны очень сильные токи, и трансформатор сварочного аппарата имеет всего лишь один выходной виток.
Вы, наверное, обращали внимание, что сердечник трансформатора изготовляют из тонких листков стали. Это сделано для того, чтобы не терять энергии при преобразовании напряжения. Как мы говорили выше, в листовом материале вихревые токи будут играть меньшую роль, чем в сплошном.
Дома вы имеете дело с маленькими трансформаторами. Что же касается мощных трансформаторов, то они представляют собой огромные сооружения. В этих случаях сердечник с обмотками помещен в бак, заполненный охлаждающим маслом.
МАШИНЫ, КОТОРЫЕ СОЗДАЮТ ЭЛЕКТРИЧЕСКИЙ ТОК
Машины, превращающие механическое движение в электрический ток, были созданы всего лишь каких-то полтораста лет назад.
Первым генератором тока была машина Фарадея, в которой проволочный виток вращался в поле постоянных магнитов. Достаточно быстро пришла в голову (но не Фарадею!) мысль заменить один виток катушкой и таким образом суммировать все ЭДС, создаваемые во всех витках. Лишь в 1851 г. постоянные магниты были заменены электромагнитами, т. е. катушками, надетыми на железный сердечник. Возник термин «возбуждение машины», ибо для того, чтобы машина начала давать ток, нужно было «оживить» электромагнит. Сначала для возбуждения машины в обмотку электромагнита подавали ток от постороннего источника питания.
Следующим этапом явилось открытие принципа самовозбуждения машины, согласно которому не обязательно иметь дополнительный источник питания для возбуждения электромагнитов. Достаточно обмотку возбуждения электромагнитов соединить тем или иным способом с основной обмоткой машины. К концу 80-х годов прошлого столетия электрическая машина приобрела основные черты, сохранившиеся до сегодняшнего дня. Простейшая модель генератора постоянного тока изображена на рис. 4.5. Если вращать рамку в поле постоянных магнитов, в ней будет наводиться синусоидальная ЭДС.
Если пожелать получить из переменного тока постоянный, то придется снабдить машину специальным устройством, которое называется коллектором. Коллектор представляет собой два полукольца А и В, изолированных друг от друга и надетых на общий цилиндр (рис. 4.5). Цилиндр вращается вместе с рамкой. На полукольца наложены контакты Р и Q (щетки), с помощью которых ток отводится во внешнюю цепь. При каждом полуобороте рамки концы ее переходят с одной щетки на другую. Поэтому, несмотря на изменение направления тока в самой рамке, ток во внешней цепи своего направления не меняет. Так как вращающаяся часть реальной машины состоит из большого числа рамок — секций, сдвинутых на определенный угол друг относительно друга, а коллектор состоит из соответствующего числа пластин, то на щетках, машины получаем практически постоянную ЭДС.
В настоящее время строятся генераторы постоянного тока на мощности от долей киловатта до нескольких тысяч киловатт. Крупные генераторы применяются для электролиза в химической промышленности и цветной металлургии (производство алюминия, цинка). Они рассчитаны на большие токи и относительно низкие напряжения (120–200 В, 1000—20 000 А). Машины постоянного тока используются также для электросварки.
Но генераторы постоянного Тока не являются основными производителями электрической энергии. В СССР для производства и распределения электроэнергии принят переменный ток частотой 50 Гц. Генератор переменного тока создается таким, чтобы от него можно было получить одновременно три ЭДС одинаковой частоты, но отличающиеся одна от другой по фазе на угол 2π/3.
Такой трехфазный генератор схематически изображен на рис. 4.6. На рисунке каждая из катушек заменена одним витком.
На нашем рисунке провода одного из витков помечены С1—С4, второго С2—С5 и третьего C3—C6. Если ток входит в C1, то он выходит в С4, и т. д. (Разумеется, в моменты, соответствующие разным расположениям ротора и статора, любой из концов может быть входом или выходом тока.) ЭДС в неподвижных витках обмотки статора наводится, в результате пересечения их магнитным полем вращающегося электромагнита — ротора. При вращении ротора с равномерной скоростью в обмотках фаз статора возникают периодически изменяющиеся ЭДС одинаковой частоты, но отличающиеся друг от друга по фазе на угол 120° вследствие их пространственного смещения.
Три витка катушки могут быть соединены между собой по-разному: в звезду или треугольник. Эти схемы разработаны и внедрены в практику Михаилом Осиповичем Доливо-Добровольским (1862–1919) в начале 90-х годов прошлого столетия. При соединении звездой концы всех обмоток генератора С4, С5, С6 соединяют в одну точку, которая называется нулевой или нейтральной. С приемниками энергии генератор соединяют четырьмя проводами: тремя «линейными», идущими от начал обмоток С1, С2, С3, и нулевым или нейтральным проводом, идущим от нулевой точки генератора. Эта система называется четырехпроводной.
МИХАИЛ ОСИПОВИЧ ДОЛИВО-ДОБРОВОЛЬСКИЙ (1862–1919) — замечательный русский ученый и инженер, создатель системы трехфазного тока, которая лежит в основе всей современной электротехники. Разработал все без исключения элементы трехфазных цепей переменного тока. В 1888 году построил первый трехфазный генератор переменного тока с вращающимся магнитным полем.
Напряжение между нулевой точкой и началом фазы называется фазным. Напряжение между началами обмоток называется линейным. Эти напряжения связаны соотношением
Uл = √3∙Uф
Если нагрузки (I, II, III) всех трех фаз одинаковы, то ток в нулевом проводе равен нулю. В этом случае нулевой провод можно упразднить и перейти к трех проводной системе. Схемы соединения звездой показаны на рис. 4.7.
Соединение треугольником также допускает трехлинейную проводку. При этом конец каждой обмотки соединен с началом следующей так, что они образуют замкнутый треугольник. Линейные провода присоединены к вершинам треугольника. Здесь линейное напряжение равно фазному, а токи связаны соотношением
Iл = √3∙Iф
Трехфазные цепи имеют следующие преимущества: более экономичная передача энергии по сравнению с однофазными цепями, возможность получения в одной установке двух напряжений — фазного и линейного.
Описанный генератор переменного тока относится к классу синхронных электрических машин. Такое название носят машины, у которых частота вращения ротора совпадает с частотой вращения магнитного поля статора.
Синхронные генераторы являются основными производителями энергии и имеют несколько конструктивных разновидностей в зависимости от способа приведения во вращение их ротора.
Читатель может задать вопрос: раз применяется название «синхронные машины», значит должны быть и асинхронные? Правильно! Но они используются как двигатели, и мы поговорим о них в следующем разделе. Там же остановимся и на том, почему вращается магнитное поле в трехфазной машине переменного тока.
ЭЛЕКТРОДВИГАТЕЛИ
Больше половины всей вырабатываемой электрической энергии преобразуется с помощью электродвигателей в механическую для различных нужд промышленности, сельского хозяйства, транспорта и быта. Наибольшее распространение получил простой, надежный, дешевый, неприхотливый в обслуживании асинхронный двигатель, изобретенный в 1889 г. все тем же талантливым инженером Доливо-Добровольским и до сих пор сохранивший свои основные черты. Асинхронный двигатель используется для привода различных станков, насосно-компрессорных, кузнечно-прессовых, подъемно-транспортных и других механизмов.
Прообразом асинхронного двигателя следует считать модель Доменика Араго (1786–1853). В 1824 г. Араго в Парижской Академии паук демонстрировал явление, названное им «магнетизмом вращения». Он показал, что медный диск приходит во вращение, если его поместить в поле вращающегося постоянного магнита. Эту идею блестяще использовал Доливо-Добровольский, сочетая ее с особенностями трехфазной системы токов, позволяющей получить вращение магнитного поля без всяких дополнительных устройств.
Рассмотрим схему на рис. 4.8.
Для предельного упрощения на этой схеме представлены три витка (на самом деле, разумеется, машина использует катушки с большим числом витков). Крестик и черная точка показывают вход и выход тока в каждом витке в какой-то определенный момент времени. Эти три витка образуют друг с другом углы в 120 градусов. На рис. 4.8, а показаны фазовые соотношения трех токов i1, i2, i3, протекающих по виткам. Нас интересует результирующее магнитное поле этих трех катушек. На рис. 4.8, б показаны силовые линии результирующего поля для момента t1 (вход в С2, С3, и С4), такие же построения выполнены на рис. 4.8, в и г, для моментов времени t2 и t3. Итак, мы видим, что интересующее нас поле вращается (обратите внимание на положения крестиков), вращается в полном смысле этого слова! Ось поля в центре системы располагается по оси того витка (фазы), ток в котором максимален в данный момент времени.
Рисунок, который мы только что обсудили, дает представление о том, как распределена трехфазная обмотка переменного тока в статоре трехфазного асинхронного двигателя. Ротор (рис. 4.9), который увлекается в движение вращающимся магнитным полем, короткозамкнутый, т. е. мы не видим ни начал, ни концов обмотки. Похож ротор на беличью клетку — ряд стержней и замыкающие их кольца.
Сравните с машиной постоянного тока. Насколько проще! Подводим к статору переменный трехфазный ток. В машине создается вращающееся магнитное поле. Магнитные силовые линии этого поля пересекают стержни ротора и индуцируют в них токи. В результате взаимодействия стержня, по которому идет ток, и магнитного поля ротор начинает вращаться со скоростью, близкой к скорости поля, но не достигает ее. Так и надо, ибо в противном случае не было бы пересечения стержнями ротора магнитных силовых линий вращающегося поля статора и не было бы вращения беличьего колеса. Поэтому такие машины и называются асинхронными. Отставание ротора называется скольжением.
Асинхронные двигатели охватывают большой диапазон мощности — от долей ватта до сотен киловатт. Существуют и более мощные асинхронные двигатели — до 6000 кВт на напряжение 6000 В.
Асинхронные микромашины применяются в устройствах автоматики в качестве исполнительных двигателей для преобразования подводимого к ним электрического сигнала в механическое перемещение вала, а также в качестве тахогенераторов, преобразующих вращение в электрический сигнал.
Электродвигателями могут быть и рассмотренные ранее синхронные машины, и машины постоянного тока. Это следует из очевидного принципа обратимости электрической машины, который заключается в том, что любая электрическая машина может работать и генератором, и двигателем.
Например, в состав Киевского гидроузла на Днепре входит гидроаккумулирующая станция, оборудованная обратимыми агрегатами, которые могут работать и как насосы, и как турбины. При избытке электроэнергии в энергосистеме насосы-турбины поднимают воду в аккумулирующий бассейн. В этом случае входящая в агрегат синхронная машина работает двигателем. При максимальном потреблении электроэнергии агрегат «срабатывает» накопленную воду.
На металлургических заводах, шахтах, холодильниках синхронные двигатели приводят в движение насосы, компрессоры, вентиляторы и другие механизмы, работающие с неизменной скоростью. В автоматических устройствах широко применяются синхронные микродвигатели мощностью от долей ватта до нескольких сотен ватт. Так как частота вращения этих двигателей жестко связана с частотой питающей сети, то они используются там, где требуется поддерживать постоянную скорость вращения, — в электрических часовых механизмах, лентопротяжных механизмах самопишущих приборов и киноустановок, в радиоаппаратуре, программных устройствах, а также в системах синхронной связи, где скорость вращения механизмов управляется изменением частоты питающего напряжения.
По своему принципиальному устройству двигатель постоянного тока ничем не отличается от генератора постоянного тока. Машина имеет неподвижную систему полюсов, обмотка возбуждения которых тем или иным способом соединена с обмоткой якоря (последовательно или параллельно). Машина может возбуждаться и от независимого источника питания. Якорь имеет распределенную в пазах обмотку, которая подключается к источнику постоянного тока. Двигатель, так же как и генератор, имеет коллектор, назначение которого состоит в том, что он «выпрямляет» вращающий момент, т. е. заставляет машину длительно вращаться в одну сторону.
Двигатель постоянного тока с последовательным возбуждением особенно пригоден для электрической тяги, для кранов и подъемников. В этих случаях требуется, чтобы при больших нагрузках частота вращения резко падала, а тяга значительно увеличивалась. Такими свойствами и обладает двигатель постоянного тока с последовательным возбуждением.
Первые опыты неавтономной электрической тяги в России были произведены Федором Аполлоновичем Пироцким (1845–1898). Еще в 1876 г. он приспособил для передачи электроэнергии обычный железнодорожный рельсовый путь, а в августе 1880 г. осуществил пуск электрического трамвая на опытной линии в районе Рождественского парка конной железной дороги в Петербурге. В качестве первого трамвайного электровагона был взят двухъярусный вагон конной железной дороги, к кузову которого был подвешен электродвигатель.
Первый трамвай в России — киевский — был открыт для общего пользования в 1892 г. Питание его электродвигателя осуществлялось от верхнего контактного провода. Причем строительная комиссия примирилась с трамваем лишь после того, как в результате подсчетов убедилась в техническом преимуществе электрической тяги перед конной в условиях тяжелого профиля киевских улиц, оказавшегося не под силу ни конной, ни паровой тяге.
Первые опыты по «электронавигации» были проведены Борисом Семеновичем Якоби (1801–1874), который в 1838 г. демонстрировал на Неве электрический бот, вмещавший четырнадцать человек. Он приводился в движение электродвигателем мощностью 550 ватт. Для питания этого двигателя Якоби использовал 320 гальванических батарей. Это было первое в истории применение электродвигателя для целей тяги.
За последние годы в печати стало появляться слово «турбоэлектроход». Смысл этого названия выясняется просто: на таком корабле пар приводит в движение мощные генераторы постоянного тока, а винты размещаются на валах электромоторов. Не лишнее ли это усложнение? Почему бы не поместить винт прямо на вал турбины?
Дело в том, что паровая турбина развивает максимальную мощность лишь при строго определенных оборотах. Мощные турбины делают 3000 оборотов в минуту. При замедлении вращения мощность падает. Если бы винты находились прямо на валу турбин, то корабль, снабженный такой силовой установкой, обладал бы неважными ходовыми качествами. Электрический же двигатель постоянного тока имеет идеальную тяговую характеристику: чем больше силы сопротивления, тем большее тяговое усилие он развивает, причем такой мотор может отдавать большую мощность при малых оборотах, в момент трогания с места.
Таким образом, генератор и двигатель постоянного тока, стоящие между турбиной и винтом турбоэлектрохода, играют роль бесступенчатой автоматической коробки передач, обладающей высоким совершенством. Может показаться, что такая система несколько громоздка, но при больших мощностях современных турбоэлектроходов любая другая была бы столь же объемистой, но менее надежной.
Значительно усовершенствовать силовую установку турбоэлектрохода можно иначе: весьма выгодно заменить громоздкие паровые котлы атомным реактором. При этом достигается огромная экономия на объеме топлива, которое приходится брать в рейс. Мировую известность получил первый советский атомный ледокол «Ленин». Ядерная силовая установка этого турбоэлектрохода обеспечивает автономность плавания более года.
Двигатели постоянного тока установлены на магистральных электровозах, пригородных электропоездах, трамвайных вагонах и троллейбусах. Энергия для их питания поступает от стационарных электрических станций. Для электрической тяги в СССР применяется постоянный ток и однофазный переменный ток промышленной частоты 50 Гц. На тяговых подстанциях трамвая, троллейбуса и метрополитена широкое применение получили кремниевые выпрямители. В случае железнодорожного транспорта выпрямление тока может происходить как на подстанциях, так и на самих электропоездах.