СТРАНИЧКИ ИСТОРИИ

Так же как Фарадей не догадывался, что открытие электромагнитной индукции приведет к созданию электротехники, и Резерфорд считал чуть ли не невежеством болтовню о том, что из атомного ядра можно будет извлечь энергию, так и Генрих Герц, обнаруживший электромагнитные волны и показавший, что возможно их улавливать на расстоянии в несколько метров, не только не помышлял о радиосвязи, но даже отрицал ее возможность. Занятные три факта, не правда ли? Но обсуждение их — задача психолога. Поэтому, ограничившись констатацией этого удивительного обстоятельства, посмотрим, как развивались события после ранней кончины Генриха Герца, последовавшей в 1894 г.

Классические опыты Герца, которые мы описали достаточно подробно, привлекли к себе внимание ученых всего мира. Профессор Петербургского университета Н. Г. Егоров точно скопировал эти опыты. Искра в резонаторе была еле заметной. Ее можно было рассмотреть лишь в полной темноте, да и то с помощью увеличительного стекла.

Александр Степанович Попов (1859–1906), скромный преподаватель электротехники в военном училище города Кронштадта, в 1889 г., в возрасте 30 лет, принялся совершенствовать опыты Герца. Искры, которые он получал в своих резонаторах, были куда сильнее тех, которые удавалось создать другим исследователям.

ПОПОВ АЛЕКСАНДР СТЕПАНОВИЧ (1859–1906) — русский физик, электротехник — изобретатель радио. Работы А. С. Попова получили высокую оценку современников. В 1900 году на Всемирной выставке в Париже ему была присуждена за его изобретение золотая медаль.

Осенью 1894 г. в английском журнале «Electrition» появилась статья известного физика Оливера Лоджа, который сообщил о том, что резонатор Герца можно усовершенствовать, если использовать трубку Бранли. Французский ученый Эдуард Бранли изучал проводимость металлических опилок. Он обнаружил, что эти опилки не всегда оказывали одинаковое сопротивление электрическому току. Оказалось, что сопротивление опилок, насыпанных в трубку, резко падает, если она расположена вблизи резонатора Герца. Происходило это потому, что опилки слипались. Сопротивление опилок можно было восстановить, но для этого трубку следовало встряхнуть.

Вот этим-то свойством металлических опилок и воспользовался Лодж. Он составил цепь из трубки Бранли (которая получила название когерера, т. е. «слипателя»), батареи и чувствительного гальванометра. В момент прохождения электромагнитных волн стрелка прибора отклонялась. Лоджу удалось обнаружить радиоволны вплоть до расстояний около 40 м.

Неудобство этой системы заключалось в том, что когерер тут же выходил из строя. Нужно было придумать способ, каким образом возвращать сцепившиеся (сварившиеся) опилки в прежнее состояние, и притом придумать такую схему, чтобы встряхивание происходило бы «само собой».

Вот эту задачу и решил Попов. Он перепробовал много разных устройств когерера и в конечном счете остановился на следующей конструкции. «Внутри стеклянной трубки на ее стенках приклеены две полоска тонкой листовой платины АВ и CD почти во всю длину трубки. Одна полоска выведена на внешнюю поверхность с одного конца трубки, другая — с противоположного конца. Полоски платины лежат своими краями на расстоянии около 2 мм при ширине 8 мм; внутренние концы полосок В и С не доходят до пробок, закрывающих трубку, чтобы порошок, в ней помещенный, не мог, набившись в пробку, образовать проводящие нити, неразрушаемые сотрясением, как то случалось в некоторых моделях. Длина всей трубки достаточна в 6–8 см при диаметре около 1 см. Трубка при своем действии располагается горизонтально, так что полоски лежат в нижней ее половине и металлический порошок покрывает их. Наилучшее действие получается, когда трубка наполнена не более чем наполовину».

Схема когерера Попова, описанная его словами, показана на рис. 6.1. Попов употреблял железный или стальной порошок.

Но главной задачей было не усовершенствование когерера, а изобретение способа возвращения его в исходное состояние после приема электромагнитной волны. В первом приемнике Попова, схема которого показана на рис. 6.2, эту работу выполнял обыкновенный электрический звонок. Звонок заменяет стрелку гальванометра, а его молоточек ударяет по стеклянной трубке, когда возвращается в исходное положение.

Какое простое решение головоломной задачи! И взаправду простое. Оцените, читатель, главную идею, до которой не додумались такие превосходные физики, как Герц и Оливер Лодж. Ведь в простой схеме впервые используется то, что техники называют релейной схемой. Ничтожная энергия радиоволн принимается не непосредственно, а используется для управления цепью тока.

В весенние дни 1895 года Попов вынес свой опыт в сад. Приемник начали отдалять от вибратора. 50 метров — звонок откликается на искру вибратора, 60 метров — работает, 80 метров — молчит. Тогда Попов подносит, к приемнику моток медной проволоки, набрасывает его на дерево, а нижний конец присоединяет к когереру. Звонок зазвонил. Так появилась первая в мире антенна.

7 мая мы празднуем День радио. В 1895 г. в этот день Попов делает доклад под скромным названием «Об отношении металлических порошков к электрическим колебаниям» на очередном заседании Русского физико-химического общества. Среди присутствующих многие лица видели несколько лет назад демонстрацию опытов Герца, тех опытов, при которых крошечную искру надо было рассматривать в лупу. Но услышав бойкие трели звонка приемника Попова, все поняли, что родился телеграф без проводов, появилась возможность передавать сигналы на расстояние.

12 марта 1896 г. Попов передает первую в мире радиограмму. На расстоянии 250 м из одного здания в другое замыканием ключа на короткие и длительные промежутки передаются слова «Генрих Герц», которые записываются на телеграфную ленту.

К 1899 г. дальность радиосвязи на кораблях учебного минного отряда достигает уже 11 км. Практическое значение беспроволочного телеграфа не подвергается сомнению даже самыми скептическими умами.

Итальянский изобретатель Гуглиемо Маркони начал свои опыты несколько позже Попова. Он тщательно следил за всеми достижениями в области электротехники и изучения электромагнитных волн и умело использовал их для улучшения качества радиоприема и радиопередачи. Его большая заслуга лежит не столько в технической стороне дела, сколько в организационной. Но и это не мало, так что имя Маркони следует произносить с уважением, не забывая в то же время, что бесспорный, признанный во всем мире приоритет в открытии радио принадлежит скромному русскому ученому, который всегда отказывался от того, чтобы отдать свои знания другой стране.

Маркони не упоминал Попова в своих статьях и выступлениях. Но не всем известно, что в 1901 г. он приглашал профессора А. С. Попова поступить на работу в акционерное общество, председателем коего он был.

Дальность радиоприема возрастала быстрыми темпами. В 1899 г. Маркони осуществляет радиосвязь между Францией и Англией, а в 1901 г. радио соединяет Америку с Европой.

Какие же технические новинки способствовали этому успеху и рождению радиовещания?

Начиная с 1899 г., радиотехника начинает прощаться с когерером. Вместо того чтобы обнаруживать радиоволны за счет падения сопротивления в цепи, происходящего под действием электромагнитной волны, можно воспользоваться совсем другим приемом. Выпрямленная пульсирующая электромагнитная волна может быть принята на слух обычной телефонной трубкой.

Начинается поиск различных выпрямителей. Широко распространенный контактный детектор, который применялся вплоть до двадцатых годов нашего века, представлял собой кристалл с односторонней проводимостью. Такие кристаллы были известны с 1874 г. К ним относятся сульфиды металлов, медные пириты, сотни различных минералов. Мои сверстники помнят такие приемники и раздражающую процедуру поиска «хорошего контакта» с помощью пружинящей иглы, который возникал тогда, когда острие пружины упиралось в «подходящую» точку кристалла (рис. 6.3).

В это время работало уже много радиостанций, а посему приемник надо было настраивать на волну, что и достигалось контактным переключением, если имелся в виду прием считанного числа станций, или плавным изменением емкости конденсатора, который осуществляется и в современных устройствах.

От искровых радиостанции было трудно, если не невозможно, получить большие мощности: нагревался разрядник. Им на смену пришли вольтова дуга и машина высокой частоты. Подсчет мощности пошел на сотни киловатт.

Однако настоящую революцию в радиосвязи, позволившую перейти от радиотелеграфии к передаче человеческой речи и музыки, принесло использование электронной лампы.

В октябре 1904 г. английский инженер электрик Джон Флеминг (1849–1945) показал, что высокочастотный электрический ток может быть выпрямлен с помощью вакуумной лампы, состоящей из накаливаемой током нити, окруженной металлическим цилиндром. На рис. 6.4 приводится ее схема.

Флеминг сознавал значимость вакуумного диода для превращения электрических колебаний в звук (он называл также эту лампу аудионом, от латинского слова «аудио» — слушаю), однако не сумел добиться широкого применения своего детектора.

Лавры изобретателя электронной лампы достались американцу Ли де Форесту (1873–1950). Он первый превратил лампу в триод (1907 г.). Ламповый приемник Ли де Фореста принимал сигналы на сетку лампы, выпрямлял их и позволял прослушивать на телефоне телеграфные сигналы.

Возможности электронной лампы, как усилителя, были очевидны американскому инженеру. Но лишь через шесть лет, в 1913 г., немецкий инженер Мейсснер применил триод в генераторной схеме.

Попытки передачи речи, т. е. модулирования электромагнитной волны, производились до использования электронной лампы в качестве генератора. Но трудности были очень велики, полоса частот модуляции не могла быть сделана широкой. Кое-как удавалось передавать человеческий голос, но не музыку. Лишь в двадцатых годах радиопередатчики и радиоприемники, работающие на электронных лампах, позволили увидеть воистину неисчерпаемые возможности радиосвязи как передачи, охватывающей весь диапазон звуковых частот.

Следующий революционный скачок произошел совсем недавно, когда полупроводниковые элементы вытеснили из радиосхем электронные лампы. Возникла новая отрасль прикладной физики, рассматривающая огромный комплекс проблем, связанных с приемом, передачей и хранением информации.

ЛАМПОВЫЙ ТРИОД И ТРАНЗИСТОР

Ламповые триоды произвели революцию в радиотехнике. Но техника стареет быстрее, чем люди. Уже сейчас электронную лампу можно назвать старушкой, и если вы пойдете в магазин, торгующий телевизорами, то наверняка услышите, как нетерпеливые покупатели справляются о выпуске телевизоров на полупроводниках. Не сомневаюсь, что они будут в продаже в большом количестве, когда эта книга увидит свет.

Но старость заслуживает уважения, и кроме того принципы двух фундаментальных применений ламп и транзисторов, а именно усиления и генерирования волн определенной частоты, проще объяснить на примере электронной лампы. Поэтому на ее действии мы остановимся подробнее, чем на работе транзистора.

В колбу трехэлектродной лампы, кроме анода и разогреваемой током катодной нити, впаян еще третий электрод, который называется сеткой. Электроды свободно проходят через сетку. Ее отверстия во столько же раз больше размеров электронов, во сколько Земля больше пылинки. На рис. 6.5 показано, как сетка позволяет управлять анодным током. Очевидно, что отрицательное напряжение на сетке будет уменьшать анодный ток, положительное — увеличивать.

Проделаем простой эксперимент. Наложим между катодом и анодом напряжение в 100 вольт. Затем начнем менять сеточное напряжение — скажем, как это показано на рис. 6.6, примерно в пределах от минус восьми вольт до плюс пяти. С помощью амперметра будем измерять ток, протекающий через анодную цепь. Получится кривая, которая показана на рисунке. Она называется характеристикой лампы. Повторим эксперимент, беря теперь, анодное напряжение равным 90 вольтам. Получим похожую кривую.

Теперь обратите внимание на следующий замечательный результат. Как видно из заштрихованного на рисунке треугольника, можно добиться усиления анодного тока на 5 миллиампер двумя способами: либо увеличив анодное напряжение на 10 вольт, либо увеличив сеточное напряжение на 2 вольта. Введение сетки делает ламповый триод усилителем. Коэффициент усиления в примере, который мы рассмотрели, равен 5 (десять, поделенное на два). Иными словами, напряжение на сетке действует на анодный ток в пять раз сильнее, чем анодное.

Теперь рассмотрим, как триод позволяет генерировать волны определенной длины.

Соответствующая предельно упрощенная схема показана на рис. 6.7.

При включении анодного напряжения начинается зарядка конденсатора Ск колебательного контура через лампу. Нижняя обкладка будет заряжаться положительно. Незамедлительно наступит процесс "разрядки конденсатора через катушку самоиндукции Lк. Возникнут свободные колебания. Они затухли бы, если бы энергия не поступала все время от лампы. А как добиться, чтобы эта энергетическая поддержка происходила в такт и колебательный контур «раскачивался» бы наподобие качелей? Для этого нужна так называемая обратная связь. В катушке LCB ток колебательного контура наводит ЭДС индукции той же частоты, что и частота свободных колебаний. Таким образом, сетка создает в анодной цепи пульсирующий ток, который будет раскачивать контур с его собственной частотой.

Описанные два гениальные принципа создали радиотехнику и сопряженные с ней области. Электронная лампа сходит со сцены и уступает свое место транзистору, но идеи усиления и генерирования электромагнитных колебаний остались теми же.

В транзисторе, как и в ламповом триоде, малой мощностью во входной цепи можно управлять большой мощностью в выходной цепи. Есть различие в характере управления. Анодный ток лампы, как мы только что видели, зависит от сеточного напряжения, а величина тока коллектора зависит от величины тока эмиттера.-

Но мы еще не сказали, что представляет собой транзистор. Он имеет три электрода. Эмиттер соответствует катоду, коллектор — аноду и база (или основание) — сетке. Вывод от эмиттера является входом, а от коллектора — выходом.

Транзистор, как это видно из рис. 6.8, состоит из двух переходов р-n-типа.

Можно, чтобы р-слой был посередине, а можно и иметь транзисторы n-p-n-типа.

На эмиттер всегда подается напряжение положительного смещения, так что он может давать большое число основных носителей заряда. Когда эмиттерная цепь низкого сопротивления изменяет ток в коллекторной цепи высокого сопротивления, то в этом случае получаем усиление.

Схемы включения транзисторов и их использование в качестве усилителей и генераторов в общем аналогичны принципам работы лампового триода. Но мы не будем здесь обсуждать эту важнейшую область современной физики.

РАДИОПЕРЕДАЧА

Классифицировать виды радиопередач можно по мощности станции. Крупные радиостанции посылают в эфир мощности, доходящие до мегаватта. Крошечный радиопередатчик, с помощью которого автоинспектор сообщает своему коллеге, что автомобиль ММЦ 35–69 проехал на красный свет и подлежит задержанию, излучает мощность порядка милливатта. Для некоторых целей достаточны и меньшие мощности.

Существенны различия в устройстве станций, работающих на волнах с длиной более нескольких метров, и передающих устройств, излучающих ультракороткие волны длиной в десятки, а то и доли сантиметров. Но и внутри каждого диапазона длин волн и мощностей у инженера, проектирующего станцию, огромный выбор схем, который может быть продиктован местностью, специфическими целями, экономическими соображениями, да и просто технической выдумкой.

Основой радиопередатчика является генератор радиоволн. На каком вы хотите остановить свое внимание? Возможностей по крайней мере пять. Можно взять ламповый генератор. Диапазон его исключительно широк. Мощности могут колебаться от долей ватта до сотен киловатт, частоты — от десятков килогерц до нескольких гигагерц. Но если вам нужны малые мощности порядка десятых долей ватта, то вас устроит лишь транзисторный генератор. Наоборот, придется пока что (но вероятно ненадолго) отказаться от транзисторов, если нужны мощности более нескольких сотен ватт. Ну, а если речь идет о мощностях, для которых годятся оба типа генераторов, то конструктор, вероятно, предпочтет транзисторный вариант. Без сомнения, элегантность инженерного решения выиграет. Передатчик на транзисторах займет значительно меньше места и, если требуется, его гораздо легче сделать подвижным, чем передатчик на ламповом генераторе.

Более специализированное применение имеют магнетронный и клистронный генераторы. Первый может оказаться весьма полезным, если в пространство надо посылать импульсы мощностью в несколько мегаватт. Диапазон частот, для которых годится магнетронный генератор, много уже, он лежит примерно между 300 мегагерц и 300 гигагерц.

Для этого же диапазона ультракоротких волн используются и клистроны. Но ими интересуются лишь в том случае, если речь идет о малых мощностях, не превосходящих нескольких ватт в сантиметровом и нескольких милливатт в миллиметровом диапазоне.

Эти два последние генератора, так же как и пятый тип — квантовый генератор, весьма специфичны и нуждаются в особом рассмотрении. Что же касается транзисторных и ламповых передающих устройств, то они похожи. Существуют четкие радиотехнические правила, действуя по которым можно заменить лампу на эквивалентный ей транзистор.

Но выбор генератора электромагнитных колебаний — это еще далеко не все. Надо решить, каким образом усилить мощность, создаваемую первичным (или, как говорят, задающим) генератором. Нужно также выбрать способ модуляции несущей волны звуковой частотой. Имеется также много вариантов передачи энергии на антенное поле. Да и сама организация антенного поля дает широкий простор для инженерной фантазии.

В радиотехнике очень часто прибегают к так называемым блок-схемам. На рисунке изображают несколько прямоугольников с надписями. А что находится в каждом ящике — объясняют по мере необходимости. Блок-схема радиостанции показана на рис. 6.9.

Задающий генератор создает незатухающие почти гармонические колебания той самой частоты и длины волны, на которые вы настраиваете, при желании поймать передачу этой станции, свой приемник. Второй блок — это усилитель мощности. Название говорит само за себя, а об устройстве его мы рассказывать не станем. Задача блока под названием модулятор — превратить звуковые колебания в электрические и наложить их на несущую волну радиостанции.

Модуляция может производиться различными способами. Проще всего объяснить, как происходит частотная модуляция. Микрофон в ряде случаев представляет собой конденсатор, емкость которого меняется благодаря звуковому давлению: ведь емкость зависит от расстояния между пластинами. Представьте себе теперь, что такой конденсатор включен в колебательный контур, генерирующий волну. Тогда частота волны будет меняться в соответствии со звуковым давлением.

Поскольку мы «влезли» с микрофоном в колебательный контур, то в эфир отправляется не строго определенная частота, а некоторая полоса частот. Достаточно очевидно, что в идеале это размытие должно захватывать весь звуковой интервал частот, который, как нам известно, равен примерно 20 кГц.

Если радиопередача идет на длинных волнах, которым соответствуют частоты порядка 100 кГц, то полоса пропускания составляет пятую часть от несущей частоты. Ясно, что на длинных волнах не удастся обеспечить работу большого числа неперекрывающихся станций Совершенно меняется дело для коротких волн. Для частоты 20 МГц ширина полосы будет составлять уже доли процента от значения несущей частоты.

Нет, наверное, в нашей стране ни одного дома, в котором не было бы розетки для радио. Эти передачи вы принимаете от так называемой радиотрансляционной сети. Ее также называют проводным вещанием.

Впервые трансляционная однопрограммная сеть появилась в Москве в 1925 г. Передача шла одновременно через 50 громкоговорителей.

Однопрограммное вещание ведется на звуковых частотах. Из радиостудии программа передается по проводам на центральную усилительную станцию. От центральной станции, опять-таки по проводам, звуковые колебания передаются на опорные пункты, где еще раз усиливаются и передаются по магистральным фидерным линиям на трансформаторные подстанции. От каждой подстанции провода опять расходятся по подстанциям, так сказать, следующего ранга. В зависимости от величины города или области число звеньев цепи и, соответственно, число понижений напряжения может быть различным. В абонентских линиях напряжение равно 30 вольтам.

С 1962 г. в городах нашей страны внедряется трехпроводное вещание. Передача двух дополнительных программ производится по автономным сетям методом амплитудной модуляции с несущими частотами 78 и 120 кГц. Эти две передачи вы будете демодулировать (т. е. выделять звук и «отсеивать» высокую частоту) у себя дома поворотом ручки сетевого приемника «Маяк» или ему подобного.

Таким образом, при трехпрограммном вещании по одному и тому же проводу идут одновременно три программы: одна — главная — на звуковых частотах и две недемодулированные. Поэтому их передача не мешает друг другу. Просто придумано, а результат превосходный! Экономичность, надежность и высокое качество передачи позволяют полагать, что проводному вещанию предстоит большое будущее, включая создание проводных сетей для телевидения.

РАДИОПРИЁМ

Конструкций радиоприемников существует несчетное множество. Область радиоэлектроники развивается исключительно быстро, так что вдобавок приемники быстро стареют, и каждый год в магазинах появляются новые изделия, которые лучше предыдущих.

Что значит «лучше» по отношению к радиоприемнику? Ответ известен каждому читателю, даже и тому, который не разбирается в физике. Хороший приемник должен выделить из хаоса радиоволн, которые приходят к антенне, лишь те сигналы, которые нужны. Это свойство носит название избирательности. Приемник должен быть как можно более чувствительным, т. е. должен принимать самые слабые сигналы. И, наконец, он должен воспроизводить музыку и речь станции, на которую мы настроились, без всяких искажений.

Итак, чувствительность, избирательность и точность. Пожалуй, можно добавить еще одно пожелание: приемник должен хорошо работать на всех диапазонах волн.

Блок-схема радиоприемника прямого усиления достаточно очевидна (рис. 6.10).

Прежде всего надо выделить нужную длину волны и усилить колебания высокой частоты, которые создает в антенне волна интересующей нас станции. Далее необходимо произвести детектирование, или демодуляцию, — так называется процесс «отбрасывания» несущей частоты и выделения из электрического тока той информации, которая несет звук. Наконец, придется установить еще один усилитель — уже для низкочастотных колебаний. Завершающей стадией является превращение этих электрических колебаний в звуковые, что выполняется динамиком или телефонными наушниками, которыми пользуются деликатные люди, не желающие причинять беспокойство соседям.

Антенна радиоприемника обычно индуктивно связана с колебательными контурами нескольких диапазонов. Когда мы поворачиваем ручку диапазонов, то совершаем операцию, которая схематически показана на рис. 6.11.

В пределах каждого диапазона мы настраиваемся обычно, меняя емкость конденсатора приемного колебательного контура. Способность приемника избрать частоту оптимальным образом определяется кривой резонанса колебательного контура.

Передо мной паспорт автомобильного приемника. Избирательность его характеризуется величиной 9 кГц для диапазонов длинных и средних волн. Это, конечно, далеко не предел, которого Можно достигнуть.

Чувствительность приемника характеризуют наименьшей величиной ЭДС в антенне приемника, которая дает возможность достаточно отчетливо (не могу сказать, чтобы эта формулировка была точной) слушать передачу. В автомобильном приемнике чувствительность для длинных волн — не хуже 175 мкВ, для диапазона УКВ — не хуже 5 мкВ.

Чувствительность зависит от коэффициента усиления и от внутренних шумов. Коэффициенты усиления приемников колеблются в пределах 105—108. Отсюда следует, что станция, которую я хочу принять, должна создавать в антенне приемника ЭДС индукции не меньше 10-8 мкВ.

РАСПРОСТРАНЕНИЕ РАДИОВОЛН

Самый простой случай — это распространение радиоволны в свободном пространстве. Уже на небольшом расстоянии от радиопередатчика его можно считать точкой. А если так, то фронт радиоволны можно считать сферическим. Если мы проведем мысленно несколько сфер, окружающих радиопередатчик, то ясно, что при отсутствии поглощения энергия, проходящая через сферы, будет оставаться неизменной. Ну, а поверхность сферы пропорциональна квадрату радиуса. Значит интенсивность волны, т. е. энергия, приходящаяся на единицу площади в единицу времени, будет падать по мере удаления от источника обратно пропорционально квадрату расстояния.

Конечно, это важное правило применимо в том случае, если не приняты специальные меры для того, чтобы создать узко направленный поток радиоволн.

Существуют различные технические приемы для создания направленных радиолучей. Один из способов решения этой задачи состоит в использовании правильной решетки антенн. Антенны должны быть расположены так, чтобы посылаемые ими волны отправлялись в нужном направлении «горб к горбу». Для этой же цели используются зеркала разной формы.

Радиоволны, путешествующие в космосе, будут отклоняться от прямолинейного направления — отражаться, рассеиваться, преломляться — в том случае, если на их пути встретятся препятствия, соизмеримые с длиной волны.

Наибольший интерес представляет для нас поведение волн, идущих вблизи земной поверхности. В каждом отдельном случае картина может быть весьма своеобразной, в зависимости от того, какова длина волны.

Кардинальную роль играют электрические свойства земли и атмосферы. Если поверхность способна проводить ток, то она «не отпускает» от себя радиоволны. Электрические силовые линии электромагнитного поля подходят к металлу (шире — к любому проводнику) под прямым углом.

Теперь представьте себе, что радиопередача происходит вблизи морской поверхности. Морская вода содержит растворенные соли, т. е. является электролитом. Морская вода — превосходный проводник тока. Поэтому она «держит» радиоволну, заставляет ее двигаться вдоль поверхности моря.

Но и равнинная, а также лесистая местности являются хорошими проводниками для токов не слишком высокой частоты. Иными словами, для длинных волн лес и равнина ведут себя как металл.

Поэтому длинные волны удерживаются всей земной поверхностью и способны обогнуть земной шар. Кстати говоря, этим способом можно определить скорость радиоволн. Радиотехникам известно, что на то, чтобы обогнуть земной шар, радиоволна затрачивает 0,13 секунды. А как же горы? Ну что же, для длинных волн они не столь уж высоки, и радиоволна длиной в километр более или менее способна обогнуть гору.

Что же касается коротких длин волн, то возможность дальнего радиоприема на этих волнах обязана наличию над землей ионосферы. Солнечные лучи обладают способностью разрушать молекулы воздуха в верхних областях атмосферы. Молекулы превращаются в ионы и на расстояниях 100–300 км от Земли образуют несколько заряженных слоев. Так что для коротких длин волн пространство, в котором движется волна, — это слой диэлектрика, зажатого между двумя проводящими поверхностями.

Поскольку равнинная и лесистая поверхности не являются хорошими проводниками для коротких волн, то они не способны их удержать. Короткие волны отправляются в свободное путешествие, но натыкаются на ионосферу, которая отражает их, как поверхность металла.

Ионизация ионосферы неоднородна, и, конечно, различна днем и ночью. Поэтому пути коротких радиоволн могут быть самыми различными. Они могут добраться до вашего радиоприемника и после многократных отражений Землей и ионосферой. Судьба короткой волны зависит от того, под каким углом попадет она на ионосферный слой. Если этот угол близок к прямому, то отражения не произойдет и волна уйдет в мировое пространство. Но чаще имеет место полное внутреннее отражение и волна возвращается на Землю.

Для ультракоротких волн ионосфера прозрачна. Поэтому на этих длинах волн возможен радиоприем в пределах прямой видимости или с помощью спутников. Направляя волну на спутник, мы можем ловить отраженные от него сигналы на огромных расстояниях.

Спутники открыли новую эпоху в технике радиосвязи, обеспечив возможность радиоприема и телевизионного приема на ультракоротких — волнах.

Интересные возможности предоставляет передача на сантиметровых, миллиметровых и субмиллиметровых волнах. Волны этой длины могут поглощаться атмосферой. Но, оказывается, имеются «окна», и, подобрав нужным образом длину волны, можно использовать волны, залезающие в оптический диапазон. Ну, а достоинства этих волн нам известны: в малый волновой интервал можно «вложить» огромное число неперекрывающихся передач.

РАДИОЛОКАЦИЯ

Принципы радиолокации достаточно просты. Посылаем сигнал, он отражается от интересующего нас объекта и возвращается обратно. Если объект находится на расстоянии 150 м, то сигнал возвратится через 1 мкс, если на расстоянии 150 км, то через 1 мс. Направление, в котором посылается сигнал, является направлением линии, на которой находился самолет, ракета или автомобиль в тот момент, когда его встретил радиолуч.

Понятно, что радиоволна должна быть остронаправленной, угол раствора, в котором сосредотачивается основная часть мощности луча, должен быть порядка одного градуса.

Принцип действительно несложен, но техника далеко не проста. Начнем с того, что высокие требования предъявляются к генератору. В метровом и дециметровом диапазоне (более длинные волны явно не годятся) применяют ламповые генераторы, в сантиметровом диапазоне — клистроны и магнетроны.

Наиболее естественным представляется импульсный метод работы. В пространство периодически посылаются кратковременные импульсы. Длительность импульса в современных радиолокационных станциях лежит в пределах от 0,1 до 10 мкс. Частота повторения импульсов должна быть выбрана так, чтобы отраженный сигнал успел придти во время паузы.

Максимальная дальность, на которой можно обнаружить самолет и ракету, ограничена лишь условием прямой видимости. Читателю несомненно известно, что современные радиолокаторы способны принять сигналы, отраженные от любых планет нашей Солнечной системы. Разумеется, при этом должны использоваться волны, беспрепятственно проходящие через ионосферу. Удачно, что укорочение длины волны и непосредственно влияет на увеличение дальности локационного видения, поскольку она пропорциональна не только энергии посланного импульса, но и частоте излучения.

На экране осциллографа (электронно-лучевой трубки) можно видеть всплески от посланного и отраженного импульсов. Если самолет приближается, то отраженный сигнал будет сдвигаться в сторону посланного.

Радиолокаторы не обязательно должны работать в импульсном режиме. Предположим, самолет движется в сторону антенны со скоростью v. От него непрерывно отражается радиолуч. Эффект Допплера приводит к тому, что частота принимаемой волны будет связана с частотой посланной волны уравнением:

Величины частот определяются радиотехническими методами весьма точно. Настроившись в резонанс, мы определим vпр и по ее значению рассчитаем скорость. Если, скажем, частота посланного сигнала равняется 109 Гц, а самолет или ракета приближаются к антенне локатора со скоростью 1000 км/ч, то принимаемая частота будет больше передающей на величину 1850 Гц.

Отражение радиолуча от самолета, ракеты, теплохода или автомашины — это не отражение от зеркала. Длины волн соизмеримы или существенно меньше размеров отражающего объекта, имеющего сложную форму. При отражении от разных точек объекта лучи будут интерферировать между собой и рассеиваться в стороны. Оба эти явления приведут к тому, что эффективная отражающая поверхность объекта будет существенно отличаться от его истинной поверхности. Расчет здесь сложен, и лишь опыт работника, пользующегося локатором, помогает ему сказать, что за предмет встретился на пути луча.

Вы, конечно, видели радиолокационные антенны — проволочные сферические зеркала, которые все время находятся в движении — они обозревают пространство. Можно заставить зеркало локатора совершать самые различные движения, например так, чтобы луч двигался, исчерчивая пространство строчками или окружностями. При такой работе можно не только определить дальность самолета, но и следить за траекторией его движения.

Этим способом ведут самолет на посадку в условиях отсутствия видимости. Такая задача может быть возложена и на человека, и на автомат.

Радиолокатор можно «обмануть». Во-первых, объект можно закрыть материалами, которые поглощают радиоволны. Для этой цели годятся угольная пыль, каучук. При этом вдобавок, чтобы уменьшить коэффициент отражения, покрытия выполняют гофрированными, заставляя таким методом львиную долю излучения рассеиваться беспорядочно во все стороны.

Если с самолета сбрасывать пачками полоски алюминиевой фольги или металлизированного волокна, то радиолокатор будет полностью дезориентирован. Впервые этот прием применили англичане еще во время второй мировой войны. Наконец, третий способ состоит в том, чтобы заполнить эфир ложными радиосигналами.

Радиолокация — интереснейший раздел техники, находящий широкое применение для многих мирных целей и без которого сейчас невозможно мыслить средства обороны.

Соперником радиолокатора является лазер. Принципы локации объектов с помощью лазера не отличаются от описанных выше.

Радиолокационные принципы лежат в основе связи между космическими кораблями и Землей. Радиотелескопы расположены так, чтобы не терять корабль из вида. Их антенны имеют огромные размеры до сотен метров. Нужда в таких больших антеннах объясняется необходимостью послать очень сильный сигнал и принять слабый сигнал от радиопередатчика. Естественно, что очень важно иметь узкий радиолуч. Если антенна работает на частоте 2,2 миллиарда колебаний в секунду (длина волны около 1 см), то на расстоянии до Луны луч размывается всего лишь до диаметра в 1000 км. Правда, когда луч доберется До Марса (300 миллионов километров), то его диаметр уже будет равен 700 000 км.

ТЕЛЕВИДЕНИЕ

Поскольку 99 читателей из 100 ежедневно проводят час-другой около телевизора, было бы несправедливо не сказать несколько слов об этом великом изобретении. Сейчас речь пойдет лишь о принципах телевизионной передачи.

Идея передачи изображения на расстояние сводится к следующему. Передаваемое изображение разбивается на мелкие, квадраты. Физиолог подскажет, каков должен быть размер квадрата, чтобы глаз перестал замечать изменения яркости внутри этого изображения. Световая энергия каждого участка изображения может быть при помощи фотоэлектрического эффекта преобразована в электрический сигнал. Надо придумать способ, каким образом считывать эти сигналы. Конечно, это проводится в строго определенной последовательности, как при чтении книги. Эти электрические сигналы накладываются на несущую электромагнитную волну совершенно таким же способом, как это делается при радиопередаче. И далее события разыгрываются вполне тождественно радиосвязи. Модулированные колебания усиливаются и детектируются. Телевизор должен преобразовать электрические импульсы в видимое изображение.

Передающие телевизионные трубки носят название супериконоскопа, суперортикона и видекона. С помощью линзы изображение проектируется на фотокатод. Наиболее распространенными фотокатодами являются кислородно-цезиевый и сурьмяно-цезиевый. Фотокатод монтируется в вакуумном баллоне вместе с фотоанодом.

В принципе можно было бы передавать изображение, поочередно проектируя световой поток от каждого элемента изображения. В этом случае фототок должен протекать только в течение короткого времени, пока длится передача каждого элемента изображения. Однако такая работа была бы неудобна, и в передающей трубке, используется не один фотоэлемент, а большое их количество, равное числу элементов, на которое разлагается передаваемое изображение. Эта приемная пластинка называется мишенью и выполняется в виде мозаики.

Мозаика — это топкая пластинка слюды, с одной стороны которой нанесено большое количество изолированных крупинок серебра, покрытых окисью цезия. Каждое зернышко — фотоэлемент» С другой стороны слюдяной пластинки нанесена металлическая пленка. Между каждым зерном мозаики и металлом как бы образуется маленький конденсатор, который заряжается электронами, выбитыми из катода. Ясно, что заряд каждого конденсатора будет пропорционален яркости соответствующего места передаваемого изображения.

Таким образом, на металлической пластинке возникает как бы скрытое электрическое изображение предмета. Как же снять его с этой пластинки? С помощью электронного луча, который надо заставить обегать пластинку так, как глаз скользит по строкам книги. Электронный луч играет роль ключа, замыкающего на мгновение электрическую цепь через микроконденсатор. Ток в этой мгновенно созданной цепи будет однозначно связан с яркостью изображения.

Каждый сигнал может и должен быть усилен во много раз обычными способами, применяемыми в радиотехнике. При передаче изображения глаз не должен замечать того, что электронный луч последовательно обегает разные точки светящегося экрана. Полное изображение, полученное на экране приемной трубки за один цикл движения электронного луча, называется кадром. Необходимо создать такую частоту смены кадров, чтобы за счет инерционности зрения не наблюдалось мелькание яркости.

Какую же надо взять частоту смены кадров? Выбрать надо число, связанное с частотой тока в сети. Дело в том, что пульсирующее напряжение, которое приложено к сетке электронно-лучевой трубки, создает на экране темные и светлые полосы. Если частота смены кадров будет равна или кратна частоте сети, то только в этом случае полосы будут неподвижны и незаметны. Слитность движения возникает при частоте смены кадров около 20 Гц, поэтому частота смены кадров в телевидении принята 25 Гц, но при этой частоте мелькание яркости еще заметно. Брать частоту кадров 50 Гц нежелательно, поэтому техники прибегли к следующему занятному приему: они воспользовались чересстрочной разверткой. Оставлена частота 25 Гц, но электронный луч прочерчивает сначала нечетные строки, а затем четные. Частота смены полукадров становится-равной 50 Гц и мелькание яркости изображения становится незаметным.

Частоты кадровой и строчной разверток должны быть строго синхронизированы. Здесь нет места входить в технические детали, поэтому мы не станем объяснять, что эта синхронизация требует, чтобы число строк было нечетным и состояло из нескольких целых сомножителей. В нашей стране принято делить кадр на 625 строк, т. е. 54; поскольку в одну секунду сменяется 25 кадров, частота строк становится 15 625 Гц. Из этого условия вытекает ширина спектра частот телевизионного сигнала.

Низшая частота 50 Гц — частота полукадра. А высшая частота определяется временем для передачи одного элемента.

Довольно простой расчет, которого мы здесь не будем приводить, показывает, что высшую частоту приходится взять равной 6,5 МГц. Отсюда следует, что несущая частота передатчика не может быть меньше 40–50 МГц, поскольку частота несущей волны должна быть по крайней мере в 6–7 раз больше ширины полосы передаваемых частот. Теперь вам понятно, почему для телевизионных передач могут быть использованы только ультракороткие волны и почему, следовательно, дальность телепередачи ограничена прямой видимостью.

Но я оговорился — была ограничена. Революционным событием, позволяющим вести телепередачу на любые расстояния, является использование спутников связи.

Наша страна была первой, которая использовала спутники для этой цели. В настоящее время просторы нашей Родины охвачены связью, осуществляемой рядом спутников.

Не затрагивая вопроса об устройстве мощных телевизионных станций, приведем лишь интересные цифры, характеризующие огромныё возможности современной радиотехники в усилении сигналов. Обычный видеосигнал имеет до усиления, мощность до 10-3 Вт, усилитель мощности увеличивает его в миллион раз.

Мощность в 103 Вт подается на параболическую антенну диаметром порядка 30 м. Эта антенна дает узко направленный луч, который будет отражен спутником. После того как электромагнитная волна пройдет примерно 35 000 км до спутника, ее мощность будет равна 10-11 Вт.

Усилитель, установленный на спутнике, увеличивает мощность этого исключительно слабого сигнала примерно до 10 Вт. Отраженный от спутника сигнал вернется на Землю с мощностью в 10-17 Вт. Усиление возвратит мощность видеосигнала к исходному значению 10-3 Вт.

Я думаю, что десять лет назад этим числам не поверил бы самый оптимистически настроенный инженер.

МИКРОЭЛЕКТРОННЫЕ СХЕМЫ

Невозможно закончить главу, посвященную радиотехнике, не сказав хотя бы несколько слов о новой революции, происходящей на наших глазах.

Речь идет о фантастической миниатюризации всех радиотехнических приборов, которая стала возможной благодаря переходу от приборов, составленных из отдельных элементов — сопротивлений, транзисторов и т. д., — соединенных между собой проволочками, к электрическим схемам, «нарисованным» при помощи специальной техники на кусочке кремния размером несколько миллиметров.

Новая технология (один из ее вариантов) состоит в том, чтобы, используя различного вида маски и серию химикатов, можно было бы вводить в нужные места кристалла кремния или германия р-примеси и n-примеси. Для этой цели применяют обработку ионными пучками.

Электрическая схема, состоящая из десятка тысяч элементов (!), размещается на площадке с линейными размерами около двух миллиметров. Когда мы сказали: «нарисовать» схему, у читателя могло создаться впечатление, что речь идет лишь об обработке поверхности кусочка полупроводника. Но это не так. Дело обстоит сложнее. Каждый радиотехнический элемент имеет трехмерную структуру. На крошечном участке кремния надо создать несколько, слоев, содержащих разные количества примесей.

Что же нужно сделать для этой цели? Прежде всего на поверхности кремния создают слой окиси. На него накладывается светочувствительный материал. Получившийся бисквит освещается ультрафиолетовым светом через маску рассчитанной формы. После проявления на поверхности кремниевого кусочка образуются углубления лишь в тех местах, где свет прошел через маску.

Следующий этап состоит в обработке будущей радиосхемы с помощью плавиковой кислоты. Она удаляет окись кремния, но не действует пи на первичную поверхность (то есть кремний), ни на светочувствительный слой. Теперь последний шаг: действие другим растворителем, который удаляет светочувствительный слой. В результате наш кусочек покрыт изолятором — окисью кремния — там, где этого требует расчет. Углубление нужной формы — обнажившийся кремний. Его-то и подвергают обработке ионным пучком для введения нужного количества примесей.

Создание микроэлектронных схем является в настоящее время одной из наиболее боевых отраслей техники.

Новые идеи и новые открытия в области физики полупроводников показывают, что достигнутые на сегодня фантастические результаты не являются предельными.

* * *

* * *