1. Barker S.F. Philosophy of Mathematics. — Engelwood Cliffs, N.J.: Prentice-Hall, 1964. 

2. Baum R.J. Philosophy and Mathematics from Plato to the Present. — San Francisco: Freeman, Cooper & Co., 1973. 

3. Bell E.T. The Place of Rigor in Mathematics. — Amer. Math. Month., 1934, 41, p. 599-607. 

4. Benacerraf P., Putnam H. Philosophy of Mathematics, Selected Readings. — Engelwood Cliffs, N.J.: Prentice-Hall, 1964. 

5. Beth E.W. The Foundations of Mathematics. — New York: North-Holland Publishing Co., 1959; New York: Harper and Row, 1966. 

6. Beth E.W. Mathematical Thought: An Introduction to the Philosophy of Mathematics. — Dordrecht, Holland: D. Reidel, 1965; New York: Gordon and Breach, 1965. 

7. Bishop E. et al. The Crisis in Contemporary Mathematics. — Hictoria Mathematica, 1975, 2, p. 505-533. 

8. Black M. The Nature of Mathematics. — New York: Harcourt, Brace, Jovanovich, 1935; London: Routledge & Kegan Paul, 1933. 

9. Blumenthal L.M. A Paradox, A Paradox, A Most Ingenious Paradox. — Amer. Math. Month., 1940, 47, p. 346-353. 

10. Bochenski I.M. A History of Formal Logic. — New York: Chelsea переиздание, 1970.

11. Bourbaki N. The Architecture of Mathematics. — Amer. Math. Month, 1950, 57, p. 221-232; также в [54]Хорошо известно, как страдал Лобачевский от непризнания его работ в официальных кругах, в частности в Российской академии наук; не получил никакого признания и Appendix Я. Бойаи. Характерно также, что еще в 1869-1870 гг. видный французский математик, академик Жозеф Бертран (1822-1900) печатал в «Докладах» Парижской академии наук свои «опровержения» неевклидовой геометрии, к которым он относился с полной серьезностью.
, т. I, p. 23-26. [Русский перевод: Бурбаки Н. Архитектура математики. — В кн. Очерки по истории математики. — M.: ИЛ, 1963, с. 245-259; в кн.: Математическое просвещение (новая серия), вып. 5. — М.: Физматгиз, 1960, с. 99-112; в кн. Архитектура математики, — М.: Знание, 1972, с. 4-18.]

12. Brouwer L.E.J. Intuitionism and Formalism. — Amer. Math. Soc. Bulletin, 1913-1914, 20, p. 81-96.

13. Burington A.S. On the Nature of Applied Mathematics. — Amer. Math. Month., 1949, 56, p. 221-241.

14. Calder A. Constructive Mathematics. — Scientific American, Oct, 1979, p. 146-171.

15. Cantor G. Contributions to the Founding of the Theory of Transfinite Numbers. — New York: Dover Inc., 1955. [Немецкий оригинал в кн.: Cantor G. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. — Heidelberg Springer, 1980; русский перевод (неполный): Кантор Г. Теория ансамблей. — Спб.: Образование, 1914 («Новые идеи в математике», вып. 6).]

16. Cohen M.R. A Preface to Logic. — New York: Holt, Rinehart and Winston. 1944; New York: Dover Inc., 1977.

17. Cohen P.J., Reuben Hersh. Non-Cantorian Set Theory. — Scientific American, Dec. 1967, p. 104-116. [Русский перевод: Коэн П., Херш Р. Неканторовская теория множеств. — Природа, 1969, №4, с. 43-51; в кн, Математика в современном мире. — М.: Знание, 1969, с. 20-32.]

18. Courant R. Mathematics in the Modern World. — Scientific American, Sept, 1964, p. 40-49. [Русский перевод: Курант Р. Математика в современном мире. — В кн. [137] Теорема Гёделя о неполноте применима и в случае обращения к исчислению предикатов второй ступени (гл. VIII). [По поводу теорем Гёделя см., например, [81], а также обращенные к более широкому кругу читателей статью [82] и брошюру [83]. — Ред. ]
, с. 13-27.]

19. Dauben J.W. Georg Cantor: His Mathematics and Philosophy of the Infinite. — Cambridge: Harvard University Press, 1978.

20. Davis M., Hersh R. Nonstandard Analysis. — Scientific American, June 1972. p. 78-86. [Вошло также в книгу: Davis M., Hersh R. The Mathematical Experience. Boston: Birkhauser, 1981.]

21. Davis P.J. Fidelity in Mathematical Discourse: Is One and One Really Two? — Amer. Math. Month., 1972, 79, p. 252-263.

22. De Long H. A Profile of Mathematical Logic. — Reading, Mass, Addison-Wesley, 1970.

23. De Long H. Unsolved Problems in Arithmetic. — Scientific American. March 1971, p. 50-60.

24. Desua F. Consistency and Completeness — A Résumé. — Amer. Math. Month., 1956, 63, p. 293-305.

25. Dieudonné J. Modern Axiomatic Methods and the Foundations of Mathematics. [Французский оригинал статьи — в оригинальном издании собрания математических статей, составленного Ле Лионне — см. [54]Хорошо известно, как страдал Лобачевский от непризнания его работ в официальных кругах, в частности в Российской академии наук; не получил никакого признания и Appendix Я. Бойаи. Характерно также, что еще в 1869-1870 гг. видный французский математик, академик Жозеф Бертран (1822-1900) печатал в «Докладах» Парижской академии наук свои «опровержения» неевклидовой геометрии, к которым он относился с полной серьезностью.
. vol. I, p. 251-266.]

26. Dieudonné J. The Work of Nicolas Bourbaki. — Amer. Math. Month., 1970, 77, p. 134-145. [Русский перевод: Дьедонне Ж. О деятельности Бурбаки. — Успехи математических, наук, т. 28, вып. 3(171), 1973, с. 205-216; Дело Никола Бурбаки. В кн.: Очерки о математике. М.: Знание, 1973, с. 44-56.]

27. Dresden A. Brouwer's Contributions to the Foundations of Mathematics. — Amer. Math. Soc. Bulletin, 1924, 30, p. 31-40.

28. Dresden A. Some Philosophical Aspects of Mathematics. — Amer. Math. Soc. Bulletin, 1928, 34, p. 438-452.

29. Eves H., Carroll V.N. An Introduction to the Foundations and Fundamental Concepts of Mathematics, rev. ed. — New York: Holt, Rinehart and Winston, 1965.

30. Fraenkel A.A. On the Crisis of the Principle of the Excluded Middle. — Scripta Mathematica, 1951, 17, p. 5-16.

31. Fraenkel A.A. The Recent Controversies about the Foundations of Mathematics. — Scripta Mathematica, 1947, 13, p. 17-36,

32. Fraenkel A.A., Bar-Hillel Y., Levy A. Foundations of Set Theory, 2nd rev, ed. — New York: North-Holland, 1973. [Имеется русский перевод 1-го изд «книги: Френкель А., Бар-Хилел И. Основания теории множеств. — М.: Мир, 1966]

33. Gödel K. What is Cantor's Continuum Problem? — Amer. Math. Month., 1947, 54, p. 515-525; с дополнением вошло в кн. [4]Трудно не процитировать здесь столь почитаемого Клайном Германа Вейля: «…Процесс познания начинается, так сказать, с середины и далее развивается не только по восходящей, но и по нисходящей линии, теряясь в неизвестности. Наша задача заключается в том, чтобы постараться в обоих направлениях пробиться сквозь туман неведомого, хотя, конечно, представление о том, что колоссальный слон науки, несущий на себе груз истины, стоит на каком-то абсолютном фундаменте, до которого человек может докопаться, является не более чем легендой» (из статьи «Феликс Клейн и его место в математической современности»; Felix Klein. Stellung in der mathematischen Gegenwart. Die Naturwissenschaften, Bd 18, 1930, S. 4-11; Gesammelte Abhandlungen, Bd, 3. — Berlin: Springer-Verlag, 1968, S. 292-299).
, р. 258-273.

34. Goodman N.D. Mathematics as an Objective Science. — Amer. Math. Month., 1979, 86, p. 540-551.

35. Goodstein R.L. Essays in the Philosophy of Mathematics. — Leicester: The University Press, 1965.

36. Hahn H. The Crisis in Intuition. — B [65]За единицу площади здесь принимается квадрат со стороной, равной единице длины. — Ред.
, vol. III, p. 1956-1976. [Русский перевод: Хан. Г. Кризис интуиции. — В кн.: Математики о математике. — М.: Знание, 1972, с. 25-42.]

37. Halmos P.R. The Basic Concepts of Algebraic Logic. — Amer. Math. Month., 1956, 63, p. 363-387.

38. Hardy G.H. Mathematical Proof. — Mind, 1928, 38, p. 1-25; Collected Papers, vol. VII, 58, p. 1-606.

39. Hardy G.H. A Mathematician's Apology. — Cambridge: University Press, 1981. [Русский перевод отрывков из книги: Харди Г.Г. Исповедь математика. — В кн.: Математики о математике. — М.: Знание, 1967, с. 4-15.]

40. Heijenoort J. van, ed. From Frege to Gödel, A Source Book in Mathematical Logic, 1879-1931. — Cambridge, Mass.: Harvard University Press, 1967.

41. Hempel C.G. Geometry and Empirical Science. — Amer. Math. Month., 1945, 52, p. 7-17.

42. Hempel C.G. On the Nature of Mathematical Truth. — Amer. Math. Month., 1945, 52, p. 543-556; также вошло в кн. [4]Трудно не процитировать здесь столь почитаемого Клайном Германа Вейля: «…Процесс познания начинается, так сказать, с середины и далее развивается не только по восходящей, но и по нисходящей линии, теряясь в неизвестности. Наша задача заключается в том, чтобы постараться в обоих направлениях пробиться сквозь туман неведомого, хотя, конечно, представление о том, что колоссальный слон науки, несущий на себе груз истины, стоит на каком-то абсолютном фундаменте, до которого человек может докопаться, является не более чем легендой» (из статьи «Феликс Клейн и его место в математической современности»; Felix Klein. Stellung in der mathematischen Gegenwart. Die Naturwissenschaften, Bd 18, 1930, S. 4-11; Gesammelte Abhandlungen, Bd, 3. — Berlin: Springer-Verlag, 1968, S. 292-299).
.

43. Hersh R. Some Proposals For Reviving the Philosophy of Mathematics. — Advances in Mathematics, 1979, 31, p. 31-50.

44. Hilbert D. Über das Unendliche. — Mathematische Annalen, 1925, 95, 161-190; англ. переводы On the Infinite в кн. [4]Трудно не процитировать здесь столь почитаемого Клайном Германа Вейля: «…Процесс познания начинается, так сказать, с середины и далее развивается не только по восходящей, но и по нисходящей линии, теряясь в неизвестности. Наша задача заключается в том, чтобы постараться в обоих направлениях пробиться сквозь туман неведомого, хотя, конечно, представление о том, что колоссальный слон науки, несущий на себе груз истины, стоит на каком-то абсолютном фундаменте, до которого человек может докопаться, является не более чем легендой» (из статьи «Феликс Клейн и его место в математической современности»; Felix Klein. Stellung in der mathematischen Gegenwart. Die Naturwissenschaften, Bd 18, 1930, S. 4-11; Gesammelte Abhandlungen, Bd, 3. — Berlin: Springer-Verlag, 1968, S. 292-299).
, p. 131-151 и в кн. [40]Это принадлежащее (или приписываемое) Лапласу высказывание выразительно демонстрирует успехи, которые к тому времени сделал «галилеев подход» к естественнонаучным проблемам (математическая формула, а не физическое описание). Ньютону бог был необходим для того, чтобы объяснить гравитационное «дальнодействие» (можно полагать, что паскалевское «определение» бога: «сфера, центр которой находится всюду, а периферия нигде», полностью снимающее вопрос об «агенте», передающем гравитационное воздействие, было достаточно близко Ньютону); именно этот «теологический» характер теории Ньютона делал ее неприемлемой для рационалистов Лейбница и Гюйгенса. Лаплас же полностью принял завет Галилея; никогда не спрашивать «как?», если мы можем ответить на вопрос «на сколько?»; поэтому для него бог в ньютоновской системе мира оказался уже вовсе ненужным.
, с. 367-392. [Русский перевод сокращенного варианта статьи: Гильберт Д. О бесконечном. В кн.: Гильберт. Основания геометрии. — М. — Л.: Гостехиздат, 1948, 338-364.]

45. Kline M. Mathematical Thought from Ancient to Modern Times. — New York: Oxford University Press, 1972.

46. Kline M. Mathematics in Western Culture. — New York: Oxford University Press, 1958.

47. Kneale W., Kneale M. The Development of Logic. — New York: Oxford University Press, 1962.

48. Kneeborn G.T. Mathematical Logic and the Foundations of Mathematics. — New York: D. Van Nostrand, 1963.

49. Körner S. The Philosophy of Mathematics. — London: Hutchinson University Library, 1960.

50. Lakatos I. Mathematics, Science and Epistemology, 2 vols. — New York: Cambridge University Press, 1978.

61. Lakatos I., ed. Problems in the Philosophy of Mathematics, vol. I. — New York: North-Holland, 1972.

62. Lakatos I. Proofs and Refutations. — New York: Cambridge University Press., 1976. [Русский перевод более краткого варианта книги: Лакатос И. Доказательства и опровержения. — М.: Наука, 1967.]

63. Langer S.K. An Introduction to Symbolic Logic, 2nd ed. — New York: Dover, 1953.

64. Le Lionnais F. ed. Great Currents of Mathematical Thoughts, 2 vols. — New York: Dover, 1971. [Французский оригинал: La Lionnais F. Les grands courants de la pensée mathématiques. — Cahiers du Sud, 1948.]

65. Lewis C.I. A Survey of Symbolic Logic. — New York: Dover, 1960.

66. Luchins E. and A. Logicism. — Scripta Mathematics, 1965, 27, p. 223-243.

57. Luxemburg W.A.J. What is Non-Standard Analysis? — Amer. Math. Month., 1973, 80, p. 11, p. 38-67.

58. Mackie G.L. Truth, Probability and Paradox. — New York: Oxford University Press, 1973.

59. Mendelson E. Introduction to Mathematical Logic. — New York: Van Nostrand, 1979, (2nd ed.) [Русский перевод 1-го изд. книги: Мендельсон Э. Введение в математическую логику. — М.: Наука, 1971.]

60. Monk J.D. On the Foundation of Set Theory. — Amer. Math. Month., 1970, 77, p. 703-711.

61. Myhill J. What is a Real Number? — Amer. Math. Month., 1972, p. 748-754.

62. Nagel E., Newman J.R. Gödel's Proof. — Scientific American, June 1956, p. 71-86.

63. Nagel E., Newman J.R. Gödel's Proof. — New York: New York University Press, 1958. [Сокращенный русский перевод: Нагель Э., Ньюмен Д. Теорема Гёделя. — М.: Знание, 1970.]

64. Neumann J. von. The Mathematician. In: Heiwood R.B. The Works of the Mind. — Chicago: University of Chicago Press, 1947; 180-196; также в кн.: [65]За единицу площади здесь принимается квадрат со стороной, равной единице длины. — Ред.
, vol, IV, p. 2053-2068; Neumann J. von, Collected Works, vol. I, 1961, p. 1-9. [Русский перевод: Нейман Дж. фон. Математик. — Природа, 1983, №2, с. 88-95.]

65. Newman J.R. The World of Mathematics, 4 vols. — New York: Simon and Schuster, 1956,

66. Pierpont J. Mathematical Rigor Past and Present. — Amer. Math. Soc. Bulletin, 1928, 34, p. 23-52.

67. Poincaré H. The Foundations of Science. — Lancaster, Pa.; The Science Press, 1946,

68. Poincaré H. Last Thoughts. — New York: Dover Publications, 1963. [Неполный русский перевод (с французского) книг [67]Диофантовым анализом (см. по этому поводу: Башмакова и Славутин [34]) обычно называют теорию решений неопределенных уравнений (т.е. уравнений, содержащих более одного переменного) в целых числах, тогда как Диофанта интересовала родственная проблема отыскания рациональных решений подобных уравнений.
, [68]Почти одновременно с шотландцем Джоном Непером и независимо от него к идее логарифмов пришел швейцарский часовщик Иобст Бюрги (1552-1632).
— см. книгу [1]Ныне этот журнал переводится на русский язык и публикуется издательством «Мир» под названием «В мире науки».
в списке Дополнительной литературы]

69. Putman H. Is Logic Empirical? — Boston Studies in Philosophy of Science. 1969, p. 216-241.

70. Putnam H. Mathematics, Matter and Method, Philosophical Papers, vol. 1. — New York: Cambridge University Press, 1975.

71. Quine W.V. The Foundations of Mathematics. — Scientific American, Sept, 1964, p, 112-127.

72. Quîne W.V. From a Logical Point of View, 2nd ed. — Cambridge, Mass. Harvard University Press, 1961.

73. Quine W.V. Paradox. — Scientific American, April 1962, p. 84-96.

74. Quine W.V. The Ways of Paradox and Other Essays. — New York: Random House, 1966.

75. Richmond D.E. The Theory of the Cheshire Cat. — Amer. Math. Month., 1934, 41, p. 361-368.

76. Robison A. Non-Standard Analysis, 2nd ed. — New York: North-Holland, 1974.

77. Rotman B., Kneebone G.T. The Theory of Sets and Transfinite Numbers. — London: Oldbourne, 1966.

78. Russell B. The Autobiography of Bertrand Russell: 1872 to World War I. — New York: Bantam Books, 1965.

79. Russell B. Introduction to Mathematical Philosophy. — London: George Allen & Unwin, 1919.

80. Russell B. Mysticism and Logic. — London: Longmans, Green, 1925.

81. Russell B. The Principles of Mathematics, 2nd ed. — London: George Allen & Unwin, 1937.

82. Schrodinger E. Nature and the Greeks. — New York: Cambridge University Press, 1954.

83. Sentilles D. A Bridge to Advanced Mathematics. — Baltimore: Williams & Wilkins, 1975.

84. Snapper E. What is Mathematics? — Amer. Math. Month., 1979, 86, p. 551-557.

85. Stone M. The Revolution in Mathematics. — Amer. Math. Month., 1961, 68, p. 715-734.

86. Tarski A. Introduction to Logic and to the Methodology of Deductive Sciences, 2nd ed. — New York: Oxford University Press, 1946. [Русский перевод 1-го изд.: Тарский А. Введение в логику и методологию дедуктивных наук. — М.: ИЛ, 1948.]

87. Tarski A. Truth and Proof. — Scientific American, June 1969, p. 63-77.

88. Waisman F. Introduction to Mathematical Thinking. — New York: Harper & Row, 1959.

89. Wavre R. Is There a Crisis in Mathematics? — Amer. Math. Month., 1934, 41, p. 488-499.

90. Weil A. The Future of Mathematics. — Amer. Math. Month., 1950, 57, p. 295-306.

91. Weyl H. A Half-Century of Mathematics. — Amer. Math. Month., 1951, 58, 523-553. [Русский перевод: Вейль Г. Полвека математики. — M.: Знание, 1969.]

92. Weyl H. Mathematics and Logic. — Amer. Math. Month, 1946, 53, p. 2-13,

93. Weyl H. Philosophy of Mathematics and Natural Sciences. — Princeton: University Press, 1949. [Немецкий оригинал: Weyl H. Philosophie der Mathematik und Naturwissenschaften. — München: Oldenberg, 1922; русский перевод (частичный): Вейль Г. О философии математики. — М.: Гостехиздат, 1934, с. 34-91; 2-е изд. доп. и перераб. München: Leibniz Verlag, 1950; русский перевод отрывков — в кн.: Прикладная математика (под ред. Э. Беккенбах). — М.: Мир, 1968, с. 309-361.]

94. White L.A., The Locus of Mathematical Reality: An Anthropological Footnote. — Philosophy of Science, 1947, 14, p. 289-303; vol. IV, p. 2348-2364.

95. Whitehead A.N., Russell В. Principia Mathematica, 3 vols. — New York: Cambridge University Press., 1st ed., 1910-1913; 2nd ed., 1925-1927.

96. Wigner E.P. The Unreasonable Effectiveness of Mathematics. — Corn. Pure and Appl. Math., 1960, 13, 1-14. [Русский перевод: Вигнер Е. Непостижимая эффективность математики в естественных науках. — В кн.: Вигнер Е. Этюды о симметрии. — М.: Мир, 1971, 182-198; также: УФН, т. 94, вып. 3. 1968, с. 535-546; в кн.: Проблемы современной математики. — М.: Знание, 1971, с. 22-33.]

97. Wilder R.L. Introduction to the Roundations of Mathematics, 2nd ed. — New York: John Wiley, 1965. 

98. Wilder R.L. The Nature of Mathematical Proof. — Amer. Math., 1944, 51, p. 309-323. 

99. Wilder R.L. The role of Axiomatic Method. — Amer. Math. Month., 1967, 74, p. 115-127. 

100. Wilder R.L. The Role of Intuition. — Science, 1967, 156, p. 605-610.