Когда Елизавета I Английская получила папскую буллу 1582 года, астрономы настоятельно просили ее перейти на новый григорианский календарь, тогда как протестантские епископы были против. Эта гравюра 1641 года “Отец Время несет папу обратно домой в Рим” хорошо отражает популярные тогда настроения. Как сказано в стихах под изображением: “Эта куча тщеславия, груз коробейника / этот сундук мусора…” (© The Trustees of the British Museum / Art Resource, N. Y.)
Глава 19
Небесный проводник
Минутная досада капитана Ахава вполне простительна. “Пустота и однообразие морских просторов, бескрайнее однообразие поверхности океана естественным образом вели мореплавателей к поиску ориентиров в небесах”, – пишет Дэниел Бурстин; путеводная роль Солнца имеет долгую историю. Старейшим подтвержденным морским путешествием была миграция вполне анатомически современных homo sapiens в Австралии, начавшаяся примерно 6 тыс. лет назад; но самыми удивительными мореплавателями древности оказались полинезийцы, которые примерно за 2 тыс. лет до н. э. уже были превосходными астрономами. Солнце служило им главным ориентиром, но обычно в сочетании с другими звездами, так что они запоминали расположение сотен звезд. Китайцы шли следом, несильно отставая, они даже называли свои морские джонки “звездными плотами”. Древние греки тоже стали мореплавателями, хотя у Гомера и встречается история о “болтливом бритом моряке, который веселил команду и сбился с курса”, а у самих греков не было в языке своего слова для моря, когда начинались их военные действия в Средиземном море. Но все равно моряки, терявшие из виду землю, были вынуждены продвигаться наугад. И даже в коротких путешествиях люди часто оказывались в открытом море. Моряки обменивались мрачными историями о заблудившихся в стихиях Средиземноморья, от спартанского царя Менелая, чей направлявшийся домой флот снесло от Трои до Египта, до крушения корабля апостола Павла на Мальте. Отсутствие методов определения долготы (положения на оси восток – запад) часто представляло непреодолимую проблему.
Направления, по которым мы ориентируемся, – север, юг, восток и запад – задаются двумя осями координат, горизонтом и зенитом. Горизонт (от греч. ὁρίζων – ограничивающий) – воображаемая линия, отделяющая небо от земли. Зенит (из ошибочно прочитанного выражения, означающего “над головой”) – точка в небе, расположенная непосредственно над наблюдателем. Эта горизонтальная плоскость и устремленная вверх вертикаль составляют нашу изначальную систему отсчета. Люди привыкли соотносить восток и запад с восходами и заходами небесных тел, а перпендикулярные их курсам направления называть севером и югом. Наконец, появились меридианы – воображаемые линии, соединяющие кратчайшим образом любую заданную точку с земными полюсами.
Меридиан, на котором мы находимся, – это просто линия с севера на юг, которая проходит через наше месторасположение. В определенный момент один из таких меридианов оказывается в точности под Солнцем, и для всех находящихся на нем наступает полдень. Для тех, кто восточнее, это уже день (или позже), для тех, кто западнее, утро (или еще раньше), а в точности на противоположной стороне земного шара – полночь. Любая точка меридиана имеет одну и ту же долготу, которая измеряется по расстоянию (на восток или на запад) от нулевого меридиана (за который с 1884 года принят меридиан лондонского предместья Гринвич).
Древние штурманы могли грубо определить стороны света по восходу и заходу солнца. Позднее у мореплавателей появились и другие способы. Установить широту положения корабля (то есть его положение на оси север – юг) было просто – подъем солнца служил крайне точным инструментом (один градус широты соответствует примерно 65 морским милям, одна морская миля – 1,15 статутной мили или 1,85 км). В равноденствие полуденное Солнце находится прямо надо экватором, его угол – 90°; на полюсах оно невидимо зимой, но отчетливо видно летом. В интервале между экватором и полюсом наблюдатель может определить высоту полуденного Солнца и вычислить свое положение по астрономическим таблицам. Для этого требуется только инструмент, измеряющий угловую высоту Солнца. Греки не использовали и этого, они просто измеряли ночью высоту околополярных звезд над горизонтом.
Искусство морской навигации развивалось веками, там бывали и значительные прорывы, правда, не все они относились к солнечной ориентации. В 40 году н. э. греческий купец Гиппал сплавал из Береники (на египетском побережье Красного моря) до Мадраса и обратно всего за год, хотя раньше такое путешествие занимало два, и это открытие привело к переменам в морской коммерции. Гиппал обнаружил, что муссонные ветра (от ар. mawsim, сезон) меняют направление дважды в год, поэтому, отплывая непосредственно перед ними, корабли в Китайском море и Индийском океане могли покрывать огромные дистанции со значительно большей скоростью. Впоследствии греки так привыкли употреблять названия ветров для обозначения направлений, что слово “ветер” стало синонимом направления, и херувимы с надутыми щеками были на старых картах не просто декоративным элементом, а главным обозначением направления (с тех пор, например, появилась Австралия – “земля южного ветра”). Испанцы из команды Колумба понимали направление не в градусах на компасе, а в ветрах, в то время как португальцы называли свой компас rosa dos ventos, роза ветров, должным образом маркируя на нем все значимые небесные элементы.
С наступлением Средних веков (во времена Карла Великого, около 800 года) арабские мореплаватели измеряли широту либо с помощью камала (деревянный треугольник на шнурке), либо с помощью лука, к которому приделывались два прутика, – угол склонения измерялся путем выравнивания нижнего прутика по горизонту, а верхнего – по Солнцу (или другой звезде). И вот наконец в 1086 году в Китае начальник водораспределительной станции Шэнь Ку изобрел компас – или по крайней мере он был первым, кто оставил об этом письменное свидетельство. Впервые китайские мореплаватели смогли ориентироваться по абсолютному направлению в любой точке земного шара, не прибегая к сложным вычислениям. Их обеспечили (по словам Бурстина) “мировым абсолютом, чья роль для пространства сравнима с механическими часами и единой мерой для времени”. Шэнь Ку также советовал натереть кусочек стали о магнит и повесить его на нитке, тогда намагниченная иголка будет всегда показывать на юг. Хотя магнит был всего лишь куском руды с магнитными свойствами, его необычайные способности долгое время ассоциировались с черной магией (в Китае магнитные камни использовались в предсказаниях), а обычные моряки относились к нему с недоверием. Св. Августин рассказывал о своем удивлении при виде того, как магнит не только притягивает железо, но и дает ему силу притянуть еще, создавая таким образом целую цепь, удерживаемую невидимой силой, – отсюда ассоциация магнетизма с магией.
Происхождение этого чудесного нового инструмента до сих пор является предметом обсуждения, историки расходятся в оценках того, был ли он изобретен одновременно в разных местах или все же европейцы и арабы заимствовали его у китайцев. Но его чудесные способности не работали в экстремальных погодных условиях, свидетельства об этом доносятся до нас сквозь века.
Начиная с XI века у корабельных штурманов в ходу были вспомогательные книги, лучшей сохранившейся до наших времен “лоцией” стала Konungs Skuggsja (“Королевское зеркало”), написанная в форме диалога между викингами, отцом и сыном. Старший говорит младшему, что тот должен “следить за курсом небесных тел, узнавать четверти горизонта, отмечать движение океана и быть в курсе наступления приливов и отливов”. Однако способности определять положение солнца самой по себе недостаточно для хорошей навигации, она должна быть дополнена. Находясь в открытом море, викинги могли измерять широту посредством “солнечной доски” – деревянного круга со стержнем в середине, регулирующимся в соответствии с временем года. Диск плавал в сосуде с водой, и тень стержня от полуденного солнца можно было зафиксировать. “Если корабль держался курса, – объясняет Роберт Фергюсон в обзорной истории викингов, – тогда тень достигала круга, отмеченного на доске. Если она выходила за его пределы, это значило, что корабль сместился на север. Если тень не доходила до круга – значит, корабль сместился на юг. В таких случаях капитан мог внести соответствующие поправки в курс корабля”. Тем не менее без точного расчета широты навигация викингов зависела главным образом от хорошего знакомства с морями. В долгом плавании штурман настраивался на широту пункта назначения и стремился выдерживать курс, ориентируясь на землю (когда она была доступна) и небесные тела. Неудивительно, что корабли часто промахивались – именно так викинги оказались на “долгих и прекрасных пляжах” Гренландии и Лабрадора.
Викинги могли использовать еще одно открытие – “солнечный камень” (натуральный минерал), который поляризует свет и, соответственно, позволяет определить местонахождение солнца даже в пасмурную погоду. Считается, что солнечный камень викингов – это форма кордиерита, минерала, встречающегося почти исключительно на галечных пляжах Норвегии. Этот камень расщепляет белый свет на два цветных луча – если направить его на чистый кусок неба и начать вращать, он сменит цвет с желтого на синий в тот момент, когда окажется направлен на солнце (даже скрытое за облаками). Raudulfs Thattr, короткая история, сохранившися в манускриптах начала XIV века, рассказывает, как король Норвегии Олаф Харальдсон пришел однажды к богатому крестьянину. Король спрашивает у сына хозяина, Сигурда, есть ли у того какой-то особенный талант, и мальчик отвечает, что умеет назвать правильное время, даже когда на небе ничего не видно. Удивленный король на следующее утро проверяет Сигурда при небе, полностью затянутом облаками. Сигурд называет время, Олаф велит ему нацелить камень в направлении, где, как тот думает, находится Солнце. Солнечный луч проходит через призму, подтверждая дарование юного Сигурда.
Более традиционные инструменты не стояли на месте. Компас с проградуированной на 360° шкалой упоминается Пьером де Марикуром уже в 1269 году. Судя по гроссбухам британских кораблей, многие имели по крайней мере два компаса; на борту Магелланова флагмана было тридцать пять запасных стрелок для компаса. Тот факт, что стрелка компаса не всегда указывает прямо на полюс, а либо восточнее, либо западнее, – моряки называют это “вариацией” – был замечен довольно рано. Эта неточность, впрочем, была как следует оценена только к 1490 году, для предосторожности же по восходам и заходам Солнца продолжали ориентироваться вплоть до XVII века.
Начиная с 1480 года для определения высоты полуденного Солнца использовалась морская астролябия, с ее помощью вычисляли расстояние к северу или югу от экватора. Вслед за этим устройством (с кольцом, размеченным в градусах, для измерения небесной высоты) появился так называемый поперечный жезл (примерно метровая деревянная планка с нанесенной шкалой и поперечными планками, которые могут сдвигаться вдоль основной) и обратный градшток (или квадрант Дэвиса), вместе они были тремя важнейшими навигационными инструментами вплоть до изобретения секстанта в 1731 году. Тимоти Феррис воскрешает следующие сцены:
В полдень в любой ясный день на борту линейного корабля можно было видеть трех офицеров, занятых определением положения солнца: один пытается удерживать астролябию в неподвижности, другой ловит солнце в глазок, третий считывает показания. Матросы стоят наготове, чтобы ловить падающего штурмана или бежать за астролябией, когда она выскочит из рук офицера и покатится по наклонной палубе [582] .
Сервантес в “Дон Кихоте” (1605) открыто излагает свои мысли о способности людей к использованию всей этой новомодной машинерии. Дон Кихот разъясняет своему верному оруженосцу, что Птолемей остается большим авторитетом в вопросах навигации и что он сам смог бы определить их положение, будь у него нужный инструмент в руках. “Будь со мной астролябия, я бы измерил высоту полюса и сказал бы тебе точно, сколько мы с тобой проехали миль”, – восклицает Дон Кихот, на что Санчо Панса мрачно отвечает: “Вот уж, ей-богу, ваша милость, нашли кого приводить во свидетели и с кем дружбу водить: с каким-то не то Ни-бе-ни-меем, не то Пустомелей, – сами же вы честите его косоглазым, да еще, если я вас правильно понял, жулябией”.
На этот раз современники могли в порядке исключения посмеяться с сочувствием. Новые инструменты, возможно по причине их ассоциации с черной магией, проникали в повседневную жизнь медленно: говорилось, что навигаторы – единственные, кто продолжает поддерживать Птолемея, да и то не из-за веры во вращение Солнца вокруг Земли, так было проще считать для практического удобства. Джонатан Спенс справедливо замечает, что к началу XVII века “в искусстве навигации пока не появилось никакого практического применения начатым Коперником небесным исследованиям”.
Астролябии вышли из моды по причине своей большой неточности, им на смену пришли механические (часовые) модели планетной системы. Но будь это компас, астролябия, квадрант, секстант, телескоп или такая часовая модель, ни одно приспособление не было совершенно, и морякам по-прежнему необходимо было знание, как использовать собственные наблюдения за Солнцем для вычисления своих координат. Даже появление телескопа и подобных инструментов не означало завершения эры наблюдений невооруженным глазом, потому что было довольно сложно делать точные позиционные наблюдения, пока в 1660 годах в телескопах не появились визирные нити.
Капитан морского судна в одиночку нес гигантскую ответственность. Спенс пишет: “Вооруженные опытными знаниями о ветрах, течениях, косяках рыб и стаях птиц, с помощью простейших карт, рассказов других путешественников (если такие были), компаса, астролябии и квадранта капитаны принимали на себя ответственность за суда водоизмещением в несколько тысяч тонн, набитые сотнями пассажиров и членов команды”.
Вот как Фернан Бродель описывает путешествия XVI века: “Плава ние заключается почти исключительно в следовании линии берега, как было на заре судоходства. “Перебираться как крабы с камня на ка мень”, “от одной оконечности суши на остров и с острова на другую оконечность”… по словам современника-порту гальца, переходить от одного постоялого двора на море к другому, зав тракать в одном, ужинать в другом”. Лишь в исключительных обстоятельствах судно могло выйти из зоны видимости берега, когда сбивалось с курса или когда ложилось на один из трех-четырех курсов, давно используемых и известных, но крайне редко капитан сам решал выйти в открытое море. Еще большую угрозу (и больший риск) представляли штормы и пиратство (которое на протяжении веков считалось вполне достойной профессией). Средиземное море, добавляет Бродель, “не знает такого изобилия потомственных мореходов, как северные и атлантические моря”.
Взгляды Броделя вызвали определенную критику, историки указывали на то, что еще со времен Александра Македонского (356–323) в мореплавании началась новая эра благодаря возведению маяков, а также усовершенствованию такелажа и рулевого колеса, так что капитаны могли плавать по прямой, вместо того чтобы придерживаться берега. Однако независимо от маршрута морское путешествие оставалось малопредсказуемым: запись 1551 года свидетельствовала, что “один корабль, не убирая парусов, дошел до Неаполя из порта Дрепан, на Сицилии, за 37 ч” (расстояние составляет 200 морских миль), автор приписывал такое “скорое движение” силе “неистовых приливов и невероятных ветров”. Вне этих необычных обстоятельств дорога от Сицилии до Рима (800 морских миль) занимала от двадцати до двадцати семи дней, а за пределами Средиземноморья движение было еще медленнее: например, 2760 миль от Береники (Египет) до индийского полуострова занимали до шести месяцев – гораздо медленнее, чем миля в час. Во время таких путешествий оставалось полагаться только на солнце, и все же географ Ричард Хаклит в 1598 году писал, что “ни в одной профессии во всем содружестве люди не проводили свои дни со столь большим и постоянным риском для жизни… Из такого большого их числа лишь немногие доживали до седин”.
У всех этих инструментов, кроме солнца, был в безопасном плавании и другой союзник – надежные или хотя бы отчасти надежные карты. В той или иной форме они использовались веками, однако первое упоминание о карте на борту корабля относится только к 1270 году. Тогда французский король Людовик IX, причисленный к лику святых, во время крестового похода пытался напрямую добраться с юга Франции до Туниса, но был вынужден искать убежища от шторма в бухте Кальяри на побережье Сардинии. Чтобы уменьшить его опасения, команда показала ему на карте их точное местоположение. По мере того как мир съеживался, а торговля раздувалась, точные копии земной поверхности становились столь же ценными, сколь и редкими, и многие картографы смешивали выдумку, факты и предположения. Со времен Средних веков сохранилось около шести сотен карт, они известны как ойкуменические карты, поскольку стремились показать Ойкумену – весь населенный мир, круглый и с Иерусалимом в центре. Двадцать семь карт Птолемея, созданных для его “Географии” в 150 году н. э., были утрачены, но в XV веке открыты вновь и широко растиражированы. Впрочем, эти карты не учитывали кривизны земной поверхности и, будучи плоскими, регулярно уводили мореплавателей в сторону – эту ошибку не могли восполнить никакие украшения, заполнявшие карты.
Герард де Кремер (1512–1594), при записи во фламандский университет города Левена ставший Герардусом Меркатором Рюпелмунданусом (“купцом из Рюпелмонде”), разрешил проблему переноса сферического мира на плоский лист бумаги: его знаменитая проекция продлевала кривизну меридианов и параллелей на плоские поверхности. До Меркатора были и другие проекции, но его проекция позволяла передавать прямыми линии, пересекающие под определенным углом параллели или меридианы (такие линии называются локсодромами), что упрощало работу с маршрутами. Его карты, как и карты многих его современников, становились секретными, были инструментами имперского влияния: скопировать или отдать их иностранцам считалось тяжким преступлением.
К началу XVII века возрождение науки и развитие печатного дела привели к широкому распространению астрономических карт, глобусов и книг. В 1665 году ученый-иезуит Афанасий Кирхер создал первую карту мира Mundus subterraneus, на которую были нанесены течения, вулканы и долины, – так возникла тематическая картография. Но даже к 1740 году точные координаты были определены менее чем у ста двадцати мест в мире: картографы просто обозначали целые области словами “не изучено”. На одной французской карте 1753 года за пятнадцать лет до плавания Кука на Endeavour береговая линия отмечалась пунктиром и сопровождалась надписью Je suppose.
Отчасти по этим причинам повсеместно в Западной Европе астрономия воспринималась как вспомогательная дисциплина на службе у навигации, а не как наука, описывающая вселенную. Само слово “навигация”, заимствованное из латинского navis (корабль) и agere (вести), веками означало трудоемкое искусство ведения корабля сквозь морские просторы. Легенда гласит, что английский король Карл II узнал от своей бретонской любовницы, будто французы изобрели метод определения долготы по Луне. Недостоверность сведений не играла роли, астрономия была наукой чрезвычайной важности, и Карл решил инвестировать в астрономические техники, чтобы перехватить морскую инициативу. В 1675 году он основал Королевскую обсерваторию в Гринвиче. Навигация заняла настолько важное место в британском сознании, что поэт-лауреат Джон Драйден мог обозреть ее прогресс начиная с первых шагов (в поэме Annus Mirabilis: The Year of Wonders 1666):
Тем не менее во время Третьей англо-голландской войны (1672–1674) череда неудачных выступлений английского флота объяснялась недостатком астрономических данных, который не позволил морским командирам перемещаться и маневрировать более эффективно. В 1731 году член Королевского общества Джон Хэдли и стекольщик из Филадельфии Томас Годфри независимо друг от друга одновременно изобрели отражающий квадрант (он же октант), у которого сорокапятиградусная дуга делилась на девяносто частей, а ее края соединялись двумя рычагами. В 1757 году Джон Кэмпбелл сделал этот инструмент менее громоздким, увеличив его до 1/6 круга (его назвали секстантом) и повысив его точность добавлением фильтров и небольшого телескопа.
Уже в разгар XIX века, несмотря на изобилие инструментов, обсерваторий и карт, нередки были ситуации, когда солнце оставалось для моряков единственным проводником. В “Моби Дике”, когда капитан Ахав смотрит сквозь корабельный квадрант и ждет, когда солнце достигнет меридиана, он разражается тирадой в адрес этого приспособления. Его вспышка отражает гнев, смешанный с восхищением, который команда испытывает перед солнцем, их сомнения в полезности науки, их страх перед бесповоротной потерей курса:
Глупая детская игрушка! игрушка, какой развлекаются высокомерные адмиралы, коммодоры и капитаны; мир кичится тобой, твоим хитроумием и могуществом; но что в конечном-то счете умеешь ты делать? Только показывать ту ничтожную, жалкую точку на этой широкой планете, в которой случается быть тебе самой и руке, тебя держащей. И все! и больше ни крупицы. Ты не можешь сказать, где будет завтра в полдень вот эта капля воды или эта песчинка; и ты осмеливаешься в своем бессилии оскорблять солнце! Наука! Будь проклята ты, бессмысленная игрушка.
Ахав прекрасно понимал, сколь уязвимы эти “игрушки”. Чуть дальше в тексте романа наш одержимый капитан спрашивает у рулевого, куда направляется корабль, и получает в ответ: “На востоко-юго-восток”. “Лжешь!” – кричит Ахав и бьет моряка кулаком, но оба компаса показывают на восток, в то время как судно несомненно идет на запад:
Старый капитан воскликнул с коротким смешком: “Все понятно! Это случалось и прежде. Мистер Старбек, вчерашняя гроза просто перемагнитила наши компасы, вот и все [596] .
Ахав не отступает, он протягивает железный прут своему помощнику, приказав держать его прямо, не касаясь палубы. Затем он намагничивает иглу несколькими точными ударами молота, вынимает две иглы из нактоуза и подвешивает одну из них. Когда игла замирает, капитан указывает на нее и восклицает: “Теперь глядите сами, властен ли Ахав над магнитом! Солнце на востоке, и мой компас клянется мне в этом!”
Лучшие компасы были подвержены сменам настроения, самые современные инструменты ошибались, поэтому наука искала более точные способы измерения. В XVIII веке поиски сосредоточились на максимально точном определении долготы. В то время как определение широты (положение на оси север – юг) было относительно легким делом, долгота (положение на оси восток – запад, наиболее простым образом определяющееся как функция от времени) являла собой по-настоящему серьезный вызов. Обычно точность корабельных часов начала XVII века имела погрешность несколько минут в день, что за долгое время в море могло давать ошибку в мили. В своей книге Longitude (“Долгота”) Дава Собел напоминает, что плохая навигация обходится слишком дорого. Адмирал сэр Клаудсли Шоуэлл, возвращаясь в 1707 году после взятия Гибралтара, потерял четыре корабля на островах Силли (крайняя юго-западная точка Англии), полагая, что он в безопасности огибает берега Бретани примерно в 120 милях к западу. С ним погибло около 1,5 тыс. человек. Шок от этой невероятной катастрофы, произошедшей так близко от дома, побудил Парламент в 1714 году основать специальное Бюро долготы, а также учредить премию в 20 тыс. фунтов за точный метод определения долготы.
Еще в 1610 году Галилео Галилей оптимистично предположил, что в любой точке Земли можно измерить абсолютное время посредством ориентации на луны Юпитера. Он даже придумал специальный шлем с телескопом, который наблюдатель мог надеть, сидя в кресле, закрепленном на подобии карданной подвески, – примерно такое же устройство удерживало в горизонтальном положении корабельный компас. Это оказалось эффективным для землемерных работ на суше, но так и не заработало на море. Около 1710 года йоркширец Джереми Такер ввел в английский язык слово “хронометр”. В “Путешествиях Гулливера”, напечатанных в 1726 году, Гулливер представляет свою жизнь настолько долгой, что он был бы, вероятно, свидетелем многих великих открытий, например непрерывного движения, универсального лекарства и определения долготы. Свифту точное определение долготы, очевидно, казалось столь же невозможным, как и другие перечисленные чудеса.
В 1740–1744 годах, во время одной из войн Англии с Испанией, шесть британских кораблей под командованием адмирала Джорджа Энсона отправились в кругосветное плавание вокруг земли. Карта плавания Энсона показывает, что выпало на долю его команды от невозможности определить долготу (положение на оси запад – восток). Скачущая тонкая линия к западу от континента отражает продвижение эскадры и показывает, как часто Энсон и его команда теряли направление. Только один корабль – 500 человек из первоначальных 1900 – добрался до конечной цели путешествия. Карта, которой они пользовались, указывала местоположение островов Хуан-Фернандес в 220 км к западу от Вальпараисо на южноамериканском побережье. В действительности эти острова распложены в 580 км к западу. Не уверенный в своих картах, Ансон отправился в неверном направлении; к тому моменту, как он сменил курс, понадобилось девять дней, чтобы вернуться к начальной точке, за это время успело погибнуть семьдесят человек (Library of Congress, Rare Books Division)
Джонас Мур (1627–1679), ведущий математик времен Карла II, сумел убедить Парламент объявить большое денежное вознаграждение тому, кто первый решит проблему долготы. Иллюстрация из книги Мура “Новая система математики” (1681) изображает навигаторов и астрономов за своими инструментами (Lawrence H. Slaughter Collection, The Lionel Pincus and Princess Firyal Map Division, The New York Public Library, Astor, Lenox and Tilden Foundations)
Но так отнюдь не думали те, кто принял участие в соревновании. В теории задача звучала очень просто: следовало сравнить местное время с временем в определенном месте (Париже или Гринвиче), полагаясь на регулярную, “часовую” природу движения небесных тел, а затем применить простое математическое вычисление. Но для достижения этого первым делом требовалось иметь часы, которые могли бы сохранять точность хода на протяжении долгого тяжелого морского путешествия с резко меняющимися условиями – температурой, давлением и влажностью. В 1736 году, изрядно мотивированный внушительной премией в 20 тыс. фунтов (в сегодняшних деньгах это составляет 4,5 млн долларов, почти 3 млн фунтов), скромный часовщик Джон Харрисон (1693–1776) объявил о создании “морского хронометра”, или “морских часов”, с точностью до одной десятой секунды в день. Комиссия, созданная специально для оценки претендентов на премию, присудила Харрисону 500 фунтов на дальнейшие разработки, и в 1759 году он добился улучшения, создав ряд прочных переносных часов, которые он назвал “вахтами” – термин возник из практики деления корабельных суток на шесть вахт по четыре часа каждая. К несчастью для Харрисона, комиссией руководили профессиональные авторитетные астрономы, которые отказались признать, что человек со столь скромным бэкграундом мог добиться такого успеха. Они выдали ему лишь половину премии, и то только в 1765 году – более чем через три года после того, как все испытания показали потерю всего в 5,1 с за восемьдесят дней в море. Когда в 1773 году Кук впервые провел Resolution через южный полярный круг, среди знаменательных достижений этого плавания была реабилитация хронометра, работавшего на принципах Харрисона. К тому времени, когда величина его достижений была наконец признана, Харрисону оставалось жить всего три года.
В 1884 году конференция в Вашингтоне назначила нулевым меридианом гринвичский, перед этим почти столетие великие нации отсчитывали время от меридиана собственных столиц. В пользу Британии сказалось то, что обсерватория Гринвича разработала серьезную инструментальную базу и накопила данные за две сотни лет. Поэт патриотического толка Уильям Уотсон (1858–1935) отразил этот факт в оде на коронацию короля Эдуарда VII:
Но образование нулевого меридиана – нечто большее, чем элемент истории использования солнца в мореплавании. Это часть общей истории отсчета времени.
Глава 20
О часах и календарях
“Даже у самых образованных и умудренных опытом голова идет кругом от загадки подсчета времени”, – писал Умберто Эко перед началом нового тысячелетия. Писатель выражал общеизвестную истину, хотя говорил конкретно о путанице в общественном сознании, следует ли считать днем наступления нового тысячелетия 31 декабря 1999 года или 31 декабря 2000 года. С этим связан вопрос, начинается первый год с нуля или через год после нуля, где ноль относится, естественно, к моменту рождения Христа, что само по себе вызывает многочисленные дискуссии. Отсчет времени от Рождества Христова начался в VI веке н. э. с Дионисия Малого, до него даты отсчитывались от правления Диоклетиана (284–305) либо от сотворения мира (вычисленного с невероятной точностью), но Дионисий неправильно вычислил год Рождества, поэтому все расчеты были неверны еще на старте.
В 1956 году в Великобритании произошло большое смущение умов: в связи с множеством школьных экзаменов, а также театральных постановок и прочих мероприятий, приуроченных к двухтысячелетию со дня убийства Юлия Цезаря, люди обнаружили, что без учета нулевого года событие случилось только 1999 лет назад. Если так же считать возраст Христа, выйдет тридцать два, а не тридцать три года. Но, разумеется, есть и другие системы календарей и датировок. Двенадцатого сентября 2007 года эфиопы встретили наступление своего собственного тысячелетия, которое было рассчитано по календарю, на семь лет отстающему от григорианского. А есть еще город Хамельн, который ведет долгую историю муниципальных архивов не от Рождества Христова, а от 26 июля 1284 года, когда, судя по архивным записям, из города исчезло сто тридцать детей, чтобы никогда не вернуться назад, – очевидно, их увел Крысолов.
Возможных источников путаницы довольно много. Календари все еще расходятся в отношении того, когда начинается то или иное время года: приходится ли весеннее равноденствие на 20 марта или на 21-е. Предметом спора историков до сих пор является вопрос о времени вступления Великобритании в Первую мировую войну: английский ультиматум гласил, что страна вступает в состояние войны в полночь, но не уточнял, по лондонскому или по берлинскому времени. Из более недавних событий – память о налете на Перл-Харбор в 1941-м отмечается на Гавайях 7 декабря, а для Японии он случился 8 декабря, потому что она находится по другую сторону от линии перемены дат.
Отложим пока вопрос о правильном учете временных зон, эр и тысячелетий, но что с годами и месяцами? Все календарные вычисления подразумевают использование астрономии, будь то наблюдения за Солнцем, за Луной или за обоими. Каждая великая цивилизация разработала как минимум один календарь, отмечая в нем свои памятные даты и празднества. Не следить за временем значит потеряться в нем; в начале 1940-х один антрополог, изучающий племя сирионо в Боливии, сделал эффектное умозаключение: “Они не следят за ходом времени, и у них нет никакого календаря”. Племя, заключал он, являло собой “человека в первозданном природном состоянии”.
Почти все древние цивилизации начинали с лунных календарей – вавилоняне, греки, иудеи и египтяне на Среднем Востоке, ацтеки и инки на Американских континентах, китайцы и индусы в Восточной Азии, – а затем превращали их в некие лунно-солнечные гибриды. В конце концов, до появления сложных карт и навигационных устройств Луна была надежнее любой другой звезды, но этот календарь часто отличался от природного календаря земледельца и охотника. В итоге в произвольном обществе могло использоваться сразу три календаря – один для официальных целей, другой для соблюдения религиозных ритуалов, третий для повседневной жизни.
Эфиопы празднуют наступление нового тысячелетия – 12 сентября 2007 года по нашему летоисчислению (Roberto Schmidt / AFP / Getty)
Из мириадов известных истории календарей только четыре вида базировались целиком на солнце: египетский (в конечном итоге), ахеменидский древнеперсидский календарь (использовавшийся в Персии с 559 до 331 года до н. э.), календарь майя, принятый позже ацтеками, и наш собственный юлианско-григорианский. Даже в этих календарях участие Луны не было полностью устранено. Но в любом сообществе главные религиозные даты ежегодно сдвигались по отношению к сезонам, будь это Пасха, Курбан Айт, Дипавали, китайский Новый год или Йом-Кипур.
Трудности, поджидавшие первых создателей календаря, были чрезвычайно велики. Следить за временем можно было только по солнцу (в дневные часы) и по звездам (в ночные), и в процессе истории у каждого народа, порой даже у каждого поколения, появлялось свое решение. Дополнительный фактор появился в районе 3200-х годов до н. э. с возникновением письменности – распространение грамотности привело к тому, что люди стремились датировать записи, письма и описи понятным для остальных образом.
Когда бы ни должен был возникнуть календарь, его важность была столь велика, что превратилась в реальную силу. В древнем и средневековом Китае, где император считался воплощением воли небес, каждая смена правителя и даже, что важнее, смена царской династии подразумевала появление нового календаря с другими праздничными датами, с новыми датами сева и урожая, что показывало установление нового порядка небесных сил (можно только задаться вопросом, как много могло произойти таких изменений). Эта традиция укоренилась со времен династии Хань (206 год до н. э. – 220 год н. э.): в эпоху между ранней династией Хань и династией Мин в 1368 году н. э. появилось около сорока новых календарей. “Для сельскохозяйственной экономики, – замечает Джозеф Нидем, – владение астрономией в качестве регулирующего календарь фактора имело первостепенную важность. Тот, кто мог дать людям календарь, становился их лидером… Введение календаря императором было правом, сравнимым с правом выпуска чеканной монеты с изображением и надписью, которым обладали западные правители. Пользование календарем означало признание императорской власти”.
Начиная приблизительно со второго тысячелетия до н. э. вавилоняне привязывали свой календарь к непосредственным астрономическим наблюдениям. День начинался с заката, кроме первого дня каждого нового месяца, что определялось по форме молодой луны. Если ее не было видно в пасмурную погоду или из-за чрезмерной близости к солнцу, начало месяца просто откладывалось, хотя исходя из здравого смысла ни один месяц не мог длиться дольше тридцати дней. Строго говоря, лунный месяц – это период времени, за который луна проходит через все свои фазы – новая луна, половина, полная луна – и возвращается на исходную позицию: 29 дней 12 ч 44 мин 3 с. В некоторый момент в IV веке до н. э. была изобретена еще одна система, когда у вавилонян появилась идея “усредненного” солнца как несуществующего небесного тела, движущегося с постоянной скоростью, и эта идея без значительных изменений дожила до наших времен и находится в центре всех сегодняшних расчетов.
Китайцы, как и жители Вавилона, полностью полагались на наблюдения и, судя по всему, не делали выводов из происходящих в связи с этим ошибок: в их календарях постоянно случались отклонения. За 2 тыс. лет они внесли более пятидесяти изменений, и далеко не все из них обозначали смену правлений. Первый китайский календарь ориентировался на луну, а месяцы поочередно состояли из двадцати девяти и тридцати дней, что сокращало год на целых одиннадцать дней. Примерно к VI веку китайские астрономы, опять повторяя за вавилонянами, признали девятнадцатилетний цикл, по прошествии которого фазы луны начинают приходиться на те же дни солярного года, так что они по необходимости принялись добавлять дополнительные дни для “спасения явления”, то есть чтобы приблизить вычисления к природной реальности. К I веку до н. э. в Китае приняли систему двадцати четырех двухнедельных периодов, каждый из которых соответствовал пятнадцатиградусному перемещению Солнца вдоль эклиптики (своего видимого пути в небе). Их год начинался 5 февраля, а отдельные дни календаря носили имена, которые могли бы устыдить любую культуру, например “Пробуждение насекомых” (7 марта), “Зерно в ухе” (7 июня), “Сошествие инея” (24 октября). К VI веку христианства нерегулярность видимого движения солнца была принята в расчет, и в конечном итоге в систему были включены движения и Солнца, и Луны.
Исламский календарь, сперва лунный, впоследствии стал смешанным лунно-солнечным (полумесяц с рогами влево, знак новой луны, встречается на флагах мусульманских государств), его точность также повышалась путем добавления дней по мере необходимости. Но в 632 году н. э. пророк Мухаммед разгневался на то, что некоторые общины исправляли священные месяцы (во время которых запрещалось кровопролитие), и запретил такие вставки, заявив, что добавление дней для приближения календаря к солнечному году нарушает заветы Господа. В дальнейшем он ввел исключительно лунный календарь, но это сократило мусульманский год до 354–355 дней, так что по прошествии около тридцати четырех лет (наших) мусульманские праздники перестали попадать на соответствующие времена года.
Строгое следование лунному календарю также подразумевает, что объявление нового месяца зависит от видимости молодой луны, так что календарь не может быть определен наперед, месяцы становятся непредсказуемыми. Молодая луна, говорится в Коране, возвещает время для людей и для паломничества в Мекку. Каждый месяц с нетерпением ожидается официальное объявление новой луны, хотя в силу географической разбросанности мусульманских территорий стало довольно сложным следовать единому лунному календарю. В 1971 году иранский шах перевел свою страну с исламского (лунного) календаря на персидский (солнечный), приурочив это к подготовке празднования 2500-летия Павлиньего трона и инициировав целую международную программу по созданию единого исламского календаря, построенного одновременно на вычислении и наблюдении, но пока ни одна версия не получила повсеместного признания.
В иудейской традиции день делится на шесть частей (это отражено в Псалмах) от полуночи до следующей полуночи. В целях соответствия астрономическому году в иудейский високосный год добавляется целый месяц – в третий, шестой, восьмой, одиннадцатый, четырнадцатый, семнадцатый и девятнадцатый годы каждого девятнадцатилетнего цикла. Каждый двадцать восьмой год (нисан, когда солнце оказывается в том же положении, что и в день сотворения мира) ортодоксальные иудеи проводят благословление солнца (последний раз это происходило в 2009 году). Как и в мусульманском календаре, месяцы у иудеев отсчитываются по фазам луны, начинаясь с первым появлением молодого серпа на западе небесного склона.
Египтяне начинали с лунной модели, но она оказалась столь неточной, что год из двенадцати лунных месяцев отличался от астрономического на одиннадцать дней и праздничные даты опять подвергались сильному сдвигу. Тогда египтяне решили разделить календарь на три сезона – разлив Нила, спад воды и сезон урожая, каждый длился по четыре лунных месяца. Чтобы закончить год, они добавляли еще один месяц в случае позднего восхождения Сириуса в двенадцатом месяце. В конце концов, когда они установили, что длина года примерно равна тремста шестидесяти пяти дням, они стали добавлять лишние пять дней к последнему месяцу.
Перейдя к следованию за солнечным годом, египтяне разработали более сложный календарь, используя набор из тридцати шести звезд, расположенных вокруг Сириуса; появление каждой из них сигнализировало о наступлении нового дня. Каждый из тридцати шести деканов (так назвали эти звезды из-за их появления с десятидневным интервалом) был невидим в течение семидесяти дней до своего восхода. В любой момент времени от заката до восхода были видимы восемнадцать деканов, по три из них относились к начальному и конечному периоду сумерек, а оставшиеся двенадцать – к глубокой ночи (это слово обозначалось в египетском фразой “что сжимает внутренности”). Отсюда возникал двадцатичетырехчасовой день с часами меняющейся на протяжении года длины – например, дневные часы были длиннее летом, – пока в начале Нового Царства (1539 год до н. э.) не ввели шестидесятиминутный час. Каждые четыре года к году прибавляли лишний день.
Метод измерения времени, принятый у майя, был впечатляющим, но весьма таинственным. Их календарь использовал и солнечные, и сельскохозяйственные циклы, один из них состоял из восемнадцати месяцев по двадцать дней в каждом плюс один “вставной” пятидневный месяц под названием вайеб. Другие месяцы носили имена вроде поп, сип, сек, моль, яш и сак – они мелодично звучали, а позднее были включены в календарь, состоящий из тринадцати двадцативосьмидневных месяцев, построенных на лунных циклах. Первоначальный солнечный календарь остается точным с погрешностью около трех секунд в год, что делает его более точным, чем григорианский. Так называемый длинный счет майя заканчивается 21 декабря 2012 года, что совпадает с различными необычными расположениями небесных тел в нашей солнечной системе в достаточной степени, чтобы породить миллион теорий о грядущем конце света (под общей рубрикой “Пророчества древних майя”).
Календарь ацтеков состоял из 365-дневного цикла шиупоуалли (счет лет) и 260-дневного ритуального цикла тональпоуалли (счет дней). Первый регулировал сельскохозяйственный календарь, поскольку ориентировался на солнце, второй был сакральным календарем. Сходным образом два варианта календаря было и у инков. Когда я в 2004 году посетил горный город Куско, мне объяснили, что массивные солнечные колонны (к сожалению, уничтоженные испанцами) играли роль при посадке зерновых культур. Совсем недавно в руинах более чем двухтысячелетней давности был найден комплекс из тринадцати каменных башен, образующий некий солнечный указатель (наподобие Стоунхенджа), который инки использовали для управления собственной империей. Одновременно с этим низшими классами использовался звездный сельскохозяйственный календарь.
В астрономии инки (как и ацтеки) не были столь продвинуты, как майя, и все же у них имелся развитый календарь из двенадцати лунных месяцев, которые они время от времени корректировали в зависимости от наблюдений. Четыре месяца, обрамлявшие солнцестояния, восславляли Солнце; четыре, относящиеся к равноденствиям, были посвящены культу воды и богини Луны; оставшиеся четыре – сельскому хозяйству, смерти, богу Грома (божество войны и всех климатических стихий), богине планеты Венеры. В общем и целом подход инков к измерению времени не слишком отличался от других – образный, неточный, постоянно подправляемый, опирающийся на смесь солнечных и лунных наблюдений.
Мы научились определять время, теперь предлагаю ввести дедлайны.
Многочисленные греческие государства имели целый набор календарей. Один, использовавшийся в Афинах в V веке до н. э., имел отправной точкой летнее солнцестояние, а новый год в нем начинался со следующей новой Луны. В Афинах, как и на большинстве территорий, находящихся под греческой юрисдикцией, день начинался за закате – вполне естественное устройство для систем, отсчитывающих время по Луне. Однако власти могли повторять даты, при желании даже несколько раз, и один раз случилась череда 25-х чисел декабря. Это право имело свои ограничения, потому что год должен был заканчиваться правильной датой. Если один день повторялся, то другой следовало пропустить, и к последнему месяцу уже почти не оставалось пространства для маневра. Этот календарь наконец дождался реформы – около 432 года до н. э. Метон Афинский выравнял лунные месяцы по солнечному году путем вставки семи месяцев на протяжении девятнадцатилетнего цикла, а также варьируя длину месяцев от двадцати девяти до тридцати дней, удлиняя таким образом лунный месяц всего на две минуты.
После афинских инноваций 432 года до н. э. первые значительные изменения в европейских календарях произошли отчасти по политическим причинам, а отчасти по причинам практической необходимости (свою роль, видимо, сыграли и человеческие страсти). В Римской республике потребность в корректирующем месяце удовлетворяли раз в год, часто явно в угоду политическим соображениям. Гай Юлий Цезарь совмещал пост верховного понтифика (высшего священнослужителя государственной религии) и проконсула (губернатора провинции), календарь относился к ведению первого. Но он находился в серьезных, впоследствии перешедших в гражданскую войну разногласиях с фракцией, возглавляемой его зятем и бывшим соратником Помпеем. В этот период календарный год сократился, став меньше 365-дневного интервала, январь пришелся на осень.
Одержав победу, Цезарь повелел греческому астроному Созигену Александрийскому разработать новый календарь. Тот предложил удлинить некоторые месяцы на один день, а к февралю прибавлять один день лишь каждые три года (високосный год) – так появился новый календарь, юлианский, состоявший из 365,25 дня и начинавшийся с 1 января. Одной из сложностей этого календаря было то, что добавлялось слишком много високосных дней для соблюдения астрономических циклов. В среднем солнцестояния и равноденствия сдвигались на одиннадцать минут в год относительно календаря, что заставляло его отставать на один день каждые сто двадцать восемь лет. Цезарь на радостях прозвал 46 год до н. э. “последним годом путаницы”, но ввиду того, что 45 год продлился полных четыреста сорок пять дней, римляне остроумно переименовали его в “год великой путаницы”. Это не мешало им ликовать по причине того, что Цезарь на три месяца продлил им жизнь.
Некоторые наши месяцы отражают юлианский метод. Например, седьмой месяц называется сентябрь (от лат. septem – семь), восьмой – октябрь (от лат. octo – восемь) и т. д. Новая версия отражала греко-египетский календарь, введенный в 238 году до н. э.; у Цезаря были свои причины желать его появления: во-первых, он в то время состоял в романтических отношениях с Клеопатрой, а во-вторых, перед гражданской войной Сенат отказался добавлять лишние месяцы в старый календарь, поскольку это продлило бы срок правления Цезаря.
Новый календарь все еще был не очень хорош, поскольку ошибочно считал високосным каждый третий, а не каждый четвертый год, и к 11 году до н. э., всего через тридцать три года после смерти Цезаря, год уже начинался на три дня позже. Октавиан Август, внучатый племянник Цезаря, усыновленный им и оказавшийся более тактичным правителем, исправил положение, пропустив три високосных года и не добавляя дней вплоть до 8 года н. э. Во время его правления пятый и шестой месяцы, квинтилий и секстилий, были переименованы в июль и август в честь Цезаря и Августа соответственно.
Наступление христианства ознаменовалось новыми требованиями к учету времени. Юлианский календарь использовался для закрепления некоторых событий (таких как Рождество, Крещение и Благовещение), а также для расчета переходящей последовательности дат – Пасхи, Троицы и поста. Пасха приходится на воскресенье после первого полнолуния, случившегося 21 марта или позже; около дюжины других праздников следуют из даты Пасхи. Евангелие недвусмысленно указывает на то, что Иисус был распят на Песах (иудейская пасха, праздник опресноков), поэтому христианская Пасха зависела от сложных лунных расчетов, согласно которым иудеи назначали свой праздник. Многие ранние христиане полагали, что Христос умер в пятницу и воскрес двумя днями позже, но, если следовать иудейскому календарю, там нет никакой гарантии, что Пасха выпадет на воскресенье. Это привело к серьезному расхождению между Восточной православной церковью и Римом, который соблюдает Пасху на четырнадцатый день лунного месяца независимо от дня недели. В разных изводах христианской веры Пасха до сих пор празднуется в разные воскресенья.
Подходы к созданию идеального календаря были всесторонне изучены в 725 году Бедой Достопочтенным (в On the Theory of Time-Reckoning). Он рассчитал, что юлианский год длиной в 365,25 дня превосходит астрономический на 11 мин 4 с и более точной цифрой будет 365,24 дня. Однако ничего не было предпринято, а со временем календарь Цезаря все сильнее расходился с временами года. Когда наконец пришло время реформы, для нее понадобился папа. Как гласит легенда, когда стало окончательно ясно, что Пасха 1576 года придется на совсем неправильное время, папа Григорий XIII отправился в башню Ветров, где папский астроном показал ему, как изображение солнца движется по линии меридиана через Календарную комнату. Понтифик смог убедиться, что солнце отставало на десять дней от того, где должно было оказаться в равноденствие, 20–21 марта. В этот момент папа решил, что календарь должен быть подстроен под непреклонные небеса. Возможно, это правда, но в любом случае необходимость в реформе давно была признана: кроме Беды, еще в XIII веке Роджер Бэкон посылал папе Клименту IV трактат об изъянах календаря.
В течение нескольких недель новый план, разработанный хорошо известным калабрийским врачом и астрономом-любителем по имени Алоизий Лилиус (1510–1576), был представлен папе братом ученого (сам Лилиус скончался незадолго до описываемых событий). Папа Григорий обратился к иезуиту-математику Христофору Клавию. Клавий, баварец, проживавший в Риме и заработавший негласный титул Евклида XVI века, должен был рассмотреть план и вынести суждение. Он одобрил изменения и добавил несколько собственных. В течение следующих лет всем католическим странам было предписано пропустить десять дней. Папа назначил переходным 1582 год, переходным месяцем – октябрь, так как в нем было меньше всего церковных праздников, а значит, и меньше возможного ущерба.
Имелась и хорошая политическая причина: Пасха 1583 года приходилась на один и тот же день в юлианском (31 марта) и григорианском (10 апреля) календарях – счастливое совпадение, которое не повторилось бы еще много лет. Можно задаться вопросом, почему папа Григорий не пропустил пятнадцать дней вместо десяти, что сдвинуло бы весеннее равноденствие на традиционную дату 25 марта. Однако, если бы он это сделал, зимнее солнцестояние переместилось бы на 25 декабря, Рождество, к тому времени главный христианский праздник. Как отмечает Данкан Стил, “позволив Рождеству и солнцестоянию совпасть еще раз, церковь ступила бы на скользкую дорожку. Христианство успешно похитило праздник солнцестояния у языческих религий более двенадцати веков назад… и было совершенно не расположено отдавать его обратно”.
В Испании, Португалии и частично Италии новый календарь вступил в силу сразу, во Франции и Нидерландах – к концу года. Там, где сегодня расположена Бельгия, календарь перешел с 21 декабря 1582 года прямо к 1 января 1583-го, лишив всех Рождества. В 1584 году настала очередь католической Германии, Дании и Норвегии – в 1586-м, хотя Швеция продержалась до 1753-го. Большинство христиан-некатоликов отнеслись к новому календарю с пренебрежением; немецкие протестанты приняли его только в 1700 году. В Граубюндене, самом восточном кантоне Швейцарии, католики и протестанты на одной улице жили по разным календарям, и это длилось до 1798 года, когда французы вторглись к ним и обязали всех пользоваться григорианским летоисчислением.
Английские протестанты также с подозрением относились к любым предложениям из Рима, и, хотя королева Елизавета I оценила реформу вполне положительно, экспедиция Испанской армады в 1588 году благополучно сорвала все шансы принятия нового календаря. Вольтер шутил: “По мнению англичан, лучше быть в разладе с солнцем, чем в ладу с папой”. Вероятно, понимая все недостатки григорианского календаря, английские ученые считали, что разработка более совершенного календаря позволит Англии сблизиться с теми континентальными европейскими государствами, которые настроены против Рима. Одной из интерпретаций “Укрощения строптивой” было то, что Катарина символизирует протестантскую религию, а Петруччо – дореформенный католицизм, тогда его повеление ей называть солнце луной больше не выглядит таким абсурдным, если учесть, что во время написания пьесы (1592) Англия уже отставала на десять дней от римского календаря.
Билль 1751 года, установивший григорианский календарь, был настолько непопулярен, что Уильям Хогарт включил украденный лозунг тори “Верните нам наши одиннадцать дней!” (он лежит на полу под ногой у человека с тростью) в свою картину “Предвыборный банкет” (1755), изображающую встречу кандидатов-вигов в таверне и протестующих снаружи тори (Private Collection / Ken Welsh / The Bridgeman Art Library)
Британия вместе с колониями отложила введение нового календаря на два столетия, за это время их календарю потребовался сдвиг вперед на еще целый день – за средой, 2 сентября 1752 года, последовал четверг, 14 сентяб ря. Пока британский Парламент обсуждал грядущее изменение, по стране пошли слухи, что наемные работники потеряют оплату за одиннадцать дней, а все без исключения – одиннадцать дней из своей жизни. Эти протесты имели под собой основания: плательщики аренды обнаружили, что они зря оплатили целый месяц и никто им ничего не вернет, а банкиры отказались платить налоги 25 марта и отложили платежи на одиннадцать дней – с тех пор британский фискальный год начинается 5 апреля. И еще совсем недавно, в 1995 году, один политик в Ольстере нападал на Ватикан за вмешательство в календарные дела. Но, в конце концов, важны не возражения, а факт широкого согласия.
Япония приняла западный календарь только в 1872 году, и реформа привела к крестьянским мятежам. Турция сдалась последней, приняв неизбежное в 1927 году. Россия может похвастаться самой запутанной историей. До конца XV века каждый новый год начинался 1 марта, затем начало сместилось на 1 сентября вплоть до 1700 года, когда Петр Великий назначил начало года на 1 января. В 1709 году по благословлению православной церкви был введен юлианский календарь – более чем сто двадцать семь лет спустя после введения григорианского календаря в Западной Европе. Большую часть XIX века Министерство иностранных дел использовало григорианский календарь, так же поступал и активно участвующий в завоеваниях русский военный флот. Наконец, в 1918 году Ленин подписал декрет о переходе всей страны на григорианский календарь. К 1929 году функционировала пятидневная рабочая неделя, и, соответственно, каждый месяц состоял из шести недель. Это состояние продлилось до 1934 года, когда григорианский календарь вернулся в использование, но семидневная неделя была возвращена только в 1940 году. Большой потенциал для неразберихи был использован с лихвой.
Новый григорианский календарь имел свои достоинства и недостатки. Он был несовершенен в том, что касалось равноденствий и солнцестояний, но зато точнее отражал время года в соотношении с сезонами, поскольку строился на тропическом (солнечном) годе (это время, которое требуется Земле для оборота вокруг Солнца, измеряемое между двумя весенними равноденствиями) длиной в 365 дней 5 ч и 49 мин (приблизительно). Поскольку каждый год считается состоящим ровно из трехсот шестидесяти пяти дней, это означает, что следующий, новый год начинается на 5 ч 49 мин раньше, чем Земля закончит свой полный оборот; таким образом, каждые четыре года календарь обгоняет Солнце на четырежды по 5 ч 49 мин (почти сутки). Чтобы вновь их синхронизировать, вводится так называемый високосный год – когда добавляется дополнительный день, доводя год до трехсот шестидесяти шести дней. Ислам, например, не вносит таких коррекций, поэтому месяц рамадан (когда все мусульмане постятся) плавает от весны до зимы: это особенно сбивает с толку, потому что название месяца происходит от арабского слова для месяца августа – rams.
На самом деле каждый год набегает разница в 11 мин – каждые четыре года это уже 44 мин. За столетие из этих минут складывается почти целый день, однако если бы можно было просто все сложить, то в четыреста лет уложилось бы 146 100 дней вместо официальных 146 097. Для устранения этой разницы было решено, что три “столетних” года из каждых четырех, первые две цифры которых не делятся без остатка на четыре – пока это 1700, 1800 и 1900-й, – не считаются високосными, таким образом календарь опять возвращается на солнечный курс и мир снова в порядке.
Целью григорианского календаря было возвращение Пасхи на круги своя – эта поправка была мотивирована скорее вопросами веры, нежели научными соображениями. И тем не менее точный расчет праздничных дат (для этого праздника и для других) продолжает занимать наше внимание. В октябре 2003 года я посетил в Гейдельберге доктора Рейнгольда Бина в Институте астрономических вычислений. Одетый в удобную клетчатую рубашку, стеганые штаны и разношенные туфли, он был небольшого роста, округлый, похожий на дружелюбного ежа. В институте доктор Бин занимался небесными замерами, наносил на карту движение звезд и ежедневно анонсировал время завтрашнего восхода и захода солнца. Также в его обязанности входило рекомендовать немецкому правительству, когда следует проводить те или иные важные мероприятия. “Невозможно составить календарь на все время, – терпеливо объяснял он. – Земля замедляет свой ход, поэтому сегодняшняя точность перестает быть ею завтра”. Вскоре он уже рассказывал мне интересные истории о Христофоре Клавии и насмешках Джона Донна. Великий поэт, обратившийся из католичества в англиканскую веру, пренебрежительно называл Клавия обжорой и пьяницей. Пока доктор Бин защищал Клавия, я зацепился взглядом за маленькую записку над его загроможденным столом. Там было написано: “В этом году Рождество будет 25 декабря”. Шутка – но только отчасти.
Летосчисление – это только часть учета времени. Измерение часов и еще более малых частей времени, вероятно, началось значительно позже, хотя доподлинно неизвестно когда. Пока люди жили выращиванием пищи на земле и охотой, не было особенной необходимости в измерении небольших отрезков времени. Начиная как минимум с IX века во многих культурах появляются недельные отрезки, год начинает размечаться датами, возникшими из фольклора, из собственных нужд и наблюдений, из литургического календаря (в наиболее развитых городах). “Сознание дикаря – это что-то вроде естественного календаря, который значительно ближе к действительности в прогнозировании будущего”, – писал Уильям Хезлитт в 1827 году. Оставим за скобками все, что могло быть заложено в слове “дикарь”; но мы знаем, например, что люди племени консо в Центральной Африке и сегодня размечают свой день по функции, а не по часам: период с пяти до шести вечера у них называется kakalseema (“когда скот возвращается домой”), то есть период дня называется по тому, что в это время происходит.
На появление простого понятия часа как отрезка времени постоянной длины ушло более двух тысячелетий из известных нам пяти. Для египтян час в январе и час в августе или час в северной Александрии и час в южном Мемфисе обозначали разные отрезки времени. Самым естественным делением времени является деление на две части – день и ночь. Римляне до конца IV века до н. э. делили день на до полудня (ante meridiem) и после (post meridiem). Поскольку вся судебная деятельность заканчивалась в полдень, у римлян был специальный чиновник, который следил за движением солнца и в момент достижения им зенита объявлял об этом на форуме. Римляне также различали dies naturalis – естественный день, длящийся от восхода до заката, и dies civilis – гражданский день, равный одному обороту Земли, для них – от полуночи до полуночи. Слово “день” всегда допускало много толкований.
Появлялись и более тонкие различия: ночь делилась на четыре “стражи”, каждая называлась по своему последнему “часу” и провозглашалась стражниками. Там, где требовалась большая точность, вводились новые описательные слова: occasus soli (закат), crepusculum (сумерки), vesperum (появление вечерней звезды), conticinium (наступление тишины), concubium (время сна), пох intempesta (глухая ночь, когда все спит), gallicinium (крик петухов) и многие другие.
До индустриальной революции и появления хороших ламп и фонарей рабочие часы в европейском обиходе ограничивались восходом и закатом. Начиная примерно с XII века звон церковных колоколов отмечал начало и конец работы, возвещал начало комендантского часа и т. п.
В любую эпоху особое значение имел полуденный час. Полуденные демоны были безжалостными мучителями отшельников-пустынников ранней христианской церкви. И во Франции, и в Италии есть целые области, Midi и Mezzogiorno, названные в честь полуденного солнца. Древний Рим имел своих стражей времени, которые выкрикивали наступление полудня, а один парижский изобретатель приладил линзу к солнечным часам, которая действовала как поджигающее устройство, и ровно в полдень стреляла маленькая пушка: такие пушки до сих пор стреляют каждый день в столь отдаленных друг от друга местах, как Кейптаун и Сантьяго (Чили). Годами смотритель маяка в Броктон-Пойнте (Ванкувер) обозначал полдень, взрывая палку динамита. В XIX веке некоторые крупные порты запускали огромные воздушные шары в час пополудни, чтобы штурманы могли проверять свои хронометры по этому точному визуальному сигналу (это делалось не в полдень, потому что в полдень свои показания снимали обсерватории).
Определить время, хотя бы приблизительно, в дневные часы (кроме полудня, восхода или заката) было сложной задачей, но и здесь солнце давало для этого средства. Гномоны (от греч. γνώμων – указатель) сначала использовались для измерения высоты, но в дальнейшем использовались как первые солнечные часы, длина отбрасываемой тени определяла час дня.
Функцию гномона мог выполнять любой вертикальный предмет, включая человеческую фигуру. Как писал Чосер,
Туземцы с острова Борнео при помощи гномона измеряют тень от Солнца во время летнего солнцестояния. Джозеф Нидэм включил эту фотографию в свою книгу “Наука и цивилизация в Китае” (1953) (from Charles Hose and William McDougall, The Pagan Tribes of Borneo [London: Macmillan & Co., 1912])
Для отсчета времени после наступления темноты человек обратился к водяным часам, которые использовались в темное время суток в Египте с 1450 года до н. э., за тысячу лет до их появления в Риме. Однако они не могли похвастаться особой точностью вплоть до III века н. э., когда Ктесибий Александрийский (285–222 годы до н. э.) изобрел устройство, обеспечивающее равномерное течение. В Китае водяные часы появились в 30 году до н. э. и постепенно развились в целую серию небольших сосудов на вращающемся колесе. “Таким образом произошел большой прорыв в точном времяисчислении”, – писал Джозеф Нидэм.
Помимо клепсидр, свечных часов (изобретенных, по легенде, самим Альфредом Великим), песочных часов (горлышко которых изнашивалось от частого использования и пропускало песчинки слишком быстро, сокращая отмеряемые ими часы), огненных часов, египетского мерхета (сделанного из отвесного шнурка и пальмового листа), благовонных часов с разными ароматами (можно было определить время по запаху) есть множество других методов для учета времени. Но самым распространенным оставались солнечные часы. Как правило, они делались из камня или дерева, посередине находился металлический прут, параллельный земной оси и установленный под правильным углом к кругу, поделенному на нужное число засечек. Когда солнце светило, тень от металлической стрелки двигалась по кругу соответственно движению солнца по небу.
Самые древние известные солнечные часы – египетские, датируемые 1500 годом до н. э. К VI веку до н. э. солнечные часы уже использовались в Греции, именно Анаксимандр ввел научную “гномоническую” дисциплину. Солнечные часы оставались самым точным устройством для отсчета времени в ближайшую тысячу лет, но ушло много времени на их распространение, в том числе и по той причине, что ими не всегда правильно пользовались. Например, никто не понимал, почему часы, вывезенные в качестве трофея во время разграбления Сиракуз (широта около 37° N) в 212 году до н. э., перестали показывать правильное время, оказавшись в Риме (широта около 42°). Постепенно пришло понимание того, что часы должны делаться специально для своей широты, поскольку угловая высота Солнца уменьшается с приближением к полюсу, а тени удлиняются. “Чтобы отбрасываемая тень хотя бы приближалась к правильному времени, солнечные часы должны строиться с учетом широты к северу или югу от экватора в том месте, где они будут использоваться, принимая во внимание изменение высшей точки местонахождения Солнца в небе день ото дня в течение года, а также меняющуюся скорость движения Земли по своей орбите. В сооружении правильных солнечных часов нет ничего самоочевидного”. И разумеется, на протяжении веков люди не понимали, что все дело в этих взаимосвязях.
Полярно ориентированные часы появились только около 1371 года н. э. в Большой мечети Дамаска, их гномон был склонен с учетом широты и, следовательно, как мы теперь понимаем, с учетом кривизны Земли. Таким образом, время измерялось не длиной отбрасываемой тени, а ее углом. Это было значительным прорывом, но, по сути, так и не востребованным до изобретения механических часов. До того практически все обходились неравными часами.
Приближения, допускаемые при создании древних переносных часов, могли давать ошибки до четверти часа. О расхождениях в показаниях двух и более солнечных часов можно предположить из слов, которые Сенека (4–65) вложил в уста одного из своих персонажей, говорящего о смерти императора Клавдия: “Который был час, этого точно тебе не скажу: легче примирить друг с другом философов, чем часы”. Несмотря на неточность, солнечные часы поражали своей новизной и меняли отношение людей к времени, заставляя их с ностальгией вспоминать о счастливой жизни, когда за временем не следили. В одной пьесе, приписываемой Плавту (254–184), персонаж восклицает:
Очевидно, что солнечные часы были совершенно новым явлением. Но довольно скоро люди полюбили их и научились получать от них пользу.
В начале XV века были изобретены часы с боем, а к XVII веку их распространение достигло такого уровня, что театралы даже не замечали анахронизма в “Юлии Цезаре”, когда на реплику Брута: “…по теченью звезд / Я не могу узнать, как близок свет…” Шекспир заставляет Кассия ответить: “Пробило три”. Аналогичная ошибка случается в “Цимбелине”, часы опять бьют трижды; но в “Ричарде II” это уже солнечные часы – по велению Шекспира король упоминает их в качестве образа проходящего времени:
Растущее количество часов с гирями усилило роль времени в повседневной жизни и парадоксальным образом вызвало бум солнечных часов. Это стало настолько прибыльным делом, что методы изготовления таких часов тщательно оберегались. Искусство конструирования солнечных часов образовало целую важную ветвь математики, ему было посвящено множество учебников. Изготовление солнечных часов оставалось скорее в ведении астрономов, а не часовщиков, поскольку там требовалось учитывать вращение Земли, эллиптическое движение, а также наклон земной оси.
Даже наступление эпохи точного учета времени с появлением маятниковых часов и часовой пружины не уменьшило популярности солнечных часов. Как пишет Дава Собел, “часы могут следить за временем, но только солнечные часы его выясняют [запрашивая окружающий мир] – отчетливо различающиеся функции”. Карл I (1600–1649) носил при себе серебряный солнечный циферблат, который доверил слуге накануне своей казни для передачи в качестве последнего дара сыну, герцогу Йоркскому (в его честь назван Нью-Йорк). Томас Джефферсон в старости находил отвлечение от хронического ревматизма в вычислении часовых отметок для солнечных часов. Джордж Вашингтон носил вместо часов серебряный карманный солнечный циферблат, подаренный ему Лафайетом.
В разные эпохи солнечные часы принимали разные обличья – они бывали Т-образной формы, карманными, перпендикулярными, заглубленными, кубическими и плоскими (обычная, садовая разновидность). Витрувий, теоретик архитектуры, современник Юлия Цезаря, насчитал по меньшей мере тринадцать стилей, бывших в ходу в Греции в 30 году до н. э., и заключил, что новые стили изобрести уже невозможно, все здесь сделано. Но это оказалось не тем случаем. В течение XVIII века появились универсальные солнечные часы, подстраиваемые под любую широту. По мере повышения стандартов в часовом деле к дизайну также предъявлялись все более высокие требования. Многие часы становились предметами искусства.
Место ностальгии по эпохе до солнечных часов теперь заняли сами солнечные часы, ассоциирующиеся с пасторальным и деревенским покоем прежних времен, что делало их привлекательными в наступившую эпоху часов обычных. Король Генрих VI у Шекспира восклицает: “О боже! Мнится мне, счастливый жребий – / Быть бедным деревенским пастухом, / Сидеть, как я сейчас, на бугорке / И наблюдать по солнечным часам, / Которые я сам же смастерил / Старательно, рукой неторопливой, / Как убегают тихие минуты…”
Самрат Янтра, гигантские солнечные часы в обсерватории Джайпура, один из элементов целого семейства массивных инструментов, построенных при магарадже Савай Джай Сингхе II (1686–1743). Среди этих инструментов не было телескопов, они полагались на наблюдение невооруженным глазом и крайне точную собственную конструкцию (Science Museum / SSPL)
“Из разных методов счета времени счет с помощью солнечных часов является, вероятно, самым уместным и замечательным, если не самым подходящим или понятным. Солнечные часы не выставляют напоказ результаты, хотя и содержат в себе “мораль о времени”, а своей неподвижной природой образуют контраст с наиболее мимолетной из всех сущностей”, – пишет Хезлитт.
“Мораль о времени” отсылает к обычаю украшать солнечные часы различными изречениями. Их существует огромное количество. Вот английский стишок XVIII века: “Кто загадку прочитает, / Тот ответ скорей мне молвь: / Новый путь кто выбирает, / Снова старый, вновь и вновь?” Ответ – тень. Два других распространенных изречения были такими: “Я показываю только солнечное время” и “Часы частенько могут подводить. / Я ж – нет, пока лучи готовы мне светить”, хотя последнее кроме восхваления точности солнечных часов подчеркивает их главный недостаток: они работают лишь в ясную погоду. Тем не менее, когда в январе 2004 года НАСА отправило космический аппарат на Марс, на его борту имелось соответствующее часовое устройство: два алюминиевых солнечных циферблата размером с человеческую ладонь каждый были встроены в два марсохода и несли на себе изречение: “Два мира, одно Солнце”.
В 1930-е киномагнат Сэм Голдвин явился с визитом к нью-йоркским банкирам и заметил солнечные часы. Повернувшись к своим собеседникам, он воскликнул: “Что еще они теперь придумают?”
Глава 21
Как проходит время
В начале 1960-х мой отец оставил работу в семейной компании и открыл паб в Корнуолле, на юго-западной оконечности Англии. Во время школьных каникул я помогал отцу. Дважды в сутки, в половину третьего дня и в одиннадцать вечера, в соответствии с лицензионными правилами (согласно которым пабы должны были закрываться на три часа днем и на ночь), он провозглашал своим глубоким басом: “Джентльмены, извините, время!” Это был необычный социальный ритуал, вежливая просьба прекратить пить, которая воспринималась как телеологическое высказывание. Завсегдатаи знали, что у них есть минута-другая на то, чтобы допить напитки. В противоположность тем шестидесяти секундам тишины, которыми мой учитель заканчивал каждый свой урок, а мы мечтали, чтобы они скорее прошли, эту минуту суровые местные жители растягивали до последнего глотка – объявление никого никогда не радовало. Оливер Сент-Джон Гогарти (1878–1957), ирландский поэт, ставший прообразом для Быка Маллигана из “Улисса”, писал:
Время продолжало волновать человечество с самого начала времен (простите за тавтологию, но этого слова не избегнуть). Его сложность укрепляется противоречиями между субъективным восприятием времени человеком и его объективными измерениями, а также невозможностью совмещения двух данных аспектов. Энтони Берджесс указывает на это в своем эссе “Мысли о времени”:
В возникшем водовороте мыслей от введения единого общественного времени [среднего времени по Гринвичу] встречались художественные произведения… которые вдохновлялись двойственной сутью времени. Оскар Уайльд написал “Портрет Дориана Грея”, где герой переносит тяготы общего времени (как и публичной морали) на свой портрет, а сам скрывается в бездвижном личном времени… Опыт военного времени (в Первой и Второй мировых войнах) был совершенно внове для среднего участника… Бой начинался по общему времени, но солдаты жили по внутреннему – воспринимаемое как вечность в действительности длилось минуту, скука простиралась бескрайней пустыней, ужас выходил за пределы времени [639] .
Время в субъективном восприятии и впрямь может быть таинственной сущностью: в “Илиаде” оно проявляет одни свойства для победителей и совсем другие для проигравших. Святой Августин кисло замечал, что знал, что такое время, пока его не попросили объяснить это. Но независимо от того, как его анализировать, именно солнце определяет время, и наше использование этого светила для слежения за проходящим временем – самый распространенный из всех способов, каким цивилизация ставит солнце себе на службу.
Для астрономов и штурманов всегда было критично измерять время с большой точностью, но на протяжении истории новой эры именно от Церкви исходил главный импульс в направлении учета времени. То же верно и для мусульман и иудеев: ислам требует от верующих молиться пять раз в день, иудаизм – три. Что касается христиан, то св. Бенедикт в своем Уставе (530 год н. э.) указал точное время для богослужений: утреня, лауды, первый час, третий час, шестой час, девятый час, вечерня, комплеторий (или повечерие). Лауды и вечерня, службы восхода и заката, относятся именно к движению солнца, остальные просто привязаны к определенным часам. Это расписание распространилось повсеместно настолько, что папа Сабиниан (605-606) объявил, что церковные колокола должны отбивать часы. В последующие годы многие области гражданской жизни стали регулироваться временем. “Пунктуальность, – пишет Кевин Джексон, – стала новым наваждением, постоянные исследования в области механизмов, отсчитывающих время, в конце концов привели к появлению часов”.
В позднее Средневековье, примерно с 1270 по 1520 год, самой продающейся книгой в Европе стала вовсе не Библия, а “Часослов”, содержащий пояснения к бенедиктинскому Уставу. В эти годы поддерживалась практика определения часа как двенадцатой части дня или ночи, так что летом дневные часы были длиннее ночных, а зимой – наоборот; эта традиция завершилась лишь с появлением вновь изобретенных механических часов с их монотонным ходом, повторяющим движение небес, и эти часы постепенно приобщили людей к методике “среднего солнца”, используемой астрономами. Меха нические часы, приводимые в движением гирями и шестеренками, видимо, были изобретены в II веке неким арабским инженером и появились в Англии около 1270 года в качестве экспериментального образца. Первые часы в Европе, которыми стали пользоваться в постоянном режиме и о которых есть достоверные свидетельства, сделали Роджер Стоук для собора в Норвиче (1321-1325) и Джованни де Донди (Падуя). Де Донди сконструировал в 1364 году устройство высотой почти в метр, с астролябией, дисковыми календарями и указателями для Солнца, Луны и планет – оно обеспечивало постоянное представление всех основных элементов Солнечной системы (вращающейся вокруг Земли), а также правовой, религиозный и гражданский календари. Эти часовые устройства не показывали время, а озвучивали его. Слово clock в английском происходит от лат. Clocca – колокол, а отсчитывающие часы машины долго назывались хорологами (от греч. ὡρολόγιον – час + говорить), хотя средневековые часы с боем специально проектировались так, чтобы ночью не звонить. Как отмечает Дэниел Бурстин, это устройство было своего рода новой общественной службой, которая предлагала услуги тем горожанам, кто не мог себе этого позволить сам. Люди неосознанно отметили наступление новой эры, когда, обозначая время дня или ночи, стали говорить, например, nine o’clock – время “по часам”. Когда шекспировские персонажи упоминали время “по часам”, они вспоминали час, когда слышали последний бой часов.
Иллюминированная страница из “Великолепного часослова” герцога Беррийского (1412–1416) авторства трех братьев Лимбургов, изображающая месяц июнь, не самое подходящее время для сенокоса, с парижской резиденцией герцога Hôtel de Nesle на заднем плане. Книга представляет собой собрание религиозных текстов для каждого часа литургии (Réunion des Musées Nationaux / Art Resource, N. Y)
В 1504 году после уличной драки, в которой погиб человек, нюрнбергский часовых и замочных дел мастер Петер Хенляйн (1479–1542) нашел убежище в монастыре, где находился несколько лет. За это время он изобрел портативные часы – первые ручные часы в истории, – собранные, как гласит запись в нюрнбергских хрониках от 1511 года, “из множества колес, и эти часы в любом положении и без всякого груза показывали и били сорок часов подряд, даже если их носили на груди и в кошельке”.
Но еще довольно долго на протяжении XVI века людям приходилось ежедневно ставить свои часы по сдвигающемуся восходу и останавливать, чтобы скорректировать их слишком быстрый или слишком медленный ход. Ожидаемая точность не превышала четверти часа – часы Тихо Браге, что было довольно типично, имели только часовую стрелку. Кардинал Ришелье (1585–1642) однажды демонстрировал свою часовую коллекцию, и его гость случайно уронил два образца на пол. Ничуть не изменившись в лице, кардинал отметил, что “они за все время впервые прозвонили одновременно”.
К концу XVI века швейцарский часовщик Йост Бюрги сконструировал часы, которые могли отмерять не только минуты, но и секунды. “Но это был единичный экземпляр, не поддающийся воспроизведению, так что надежному измерению секунд пришлось подождать еще сто лет”. Вероятно, это все-таки преувеличение: к 1670 году минутные стрелки уже вошли в широкое употребление, а средняя ошибка лучших образцов сократилась до десяти секунд в день (слово “минута”, как и англ. minute, произошло от лат. pars minuta prima – первая маленькая часть – и вошло в английский язык в 1660-х; “секунда”, а также англ. second происходят от лат. pars minuta secunda). К 1680 году в часовой стандарт уже входили и минутная, и секундная стрелки.
Пунктуальность и счет времени скоро вошли в моду, даже стали фетишем: у Людовика XIV было четыре часовщика, которые сопровождали короля в его выездах вместе с арсеналом часовых устройств. Придворным в Версале полагалось организовывать дни согласно почасовому расписанию Короля Солнце в зависимости от его пробуждения, его молитв, собраний совета, трапез, прогулок, охот и концертов. Одним из шести классов французской аристократии было “дворянство колокола” (noblesse de cloche), в основном состоящее из мэров больших городов, а колокол выступал символом муниципальной власти. Часы уже были достаточно точными, философы от Декарта до Пейли стали использовать их как метафору совершенства божественного творения. Представители лилипутов сообщают о часах Лемюэля Гулливера: “Мы полагаем, что это… почитаемое им божество. Но мы более склоняемся к последнему мнению, потому что, по его уверениям… он редко делает что-нибудь, не советуясь с ним”. Фридрих Великий (1712–1786) и адмирал Кодрингтон (1770–1851), герой Трафальгара и Наварина, оба потеряли свои карманные часы, разбитые вражеским огнем вдребезги, что стало признаком командиров выдающейся смелости.
Чтобы соответствовать новым требованиям к личным часам (не только карманным, но и просто небольшого размера, подходящим для скромного жилища или ремесленной мастерской), часовщикам пришлось стать первопроходцами в создании научного оборудования: например, их продукция требовала использования точных отверток, которые в свою очередь нуждались в улучшении токарного станка. Механическая революция XIX века была в значительной мере результатом желания обычных людей знать, который час. Но даже и в ХХ веке еще встречались те, кто хотел остаться в стороне: Вирджиния Вульф в “Миссис Деллоуэй” чуть не кричит от вездесущих часов:
На части и ломти, на доли, дольки, долечки делили июньский день, по крохам разбирали колокола на Харли-стрит, рекомендуя покорность, утверждая власть, хором славя чувство пропорции, покуда вал времени не осел до того, что магазинные часы на Оксфорд-стрит возвестили братски и дружески, словно бы господам Ригби и Лаундзу весьма даже лестно поставлять полезные сведения даром, – что сейчас половина второго [645] .
Когда в 1834 году в рамках реконструкции уничтоженного огнем Вестминстерского дворца заказывали часы, правительство потребовало “благородные часы, настоящие королевские часы, самые большие в мире, чтобы их было видно и слышно в пульсирующем сердце Лондона”. Королевский астроном также настоял на том, чтобы их погрешность не превышала секунды. Результатом стал Биг-Бен (строго говоря, это название колокола, которое позже распространилось и на часы), окончательно законченный в 1859 году.
Но о каком именно времени люди говорили, научившись определять “точное” время? Было из чего выбирать. В 1848 году Соединенное Королевство стало первым в мире государством, которое стандартизовало время на всей территории, привязав его к сигналу Гринвичской обсерватории (дублинское среднее время было установлено со сдвигом в 25 мин). В том же году вышел роман “Домби и сын”, в котором безутешный мистер Домби жалуется: “Было даже железнодорожное время, соблюдаемое часами, словно само солнце сдалось”. Доктор Уотсон вспоминает, как они с Шерлоком Холмсом ездили на поезде расследовать одно дело в Западную Англию в 1890 году. Его впечатлило то, как Холмс измеряет малейшие колебания скорости поезда по проносящимся телеграфным столбам, установленным со стандартным шестидесятиярдовым интервалом; поезд в данном случае выступал как солнце, а столбы – как долготы. Яркий образ того, как идея стандартизации времени незаметно проникла в сознание людей.
Календарь, которым пользовался инуитский охотник в 1920-е годы, вскорости после проникновения христианста в восточную часть канадской Арктики. Дни недели отмечены прямыми палками, а воскресенья – крестиками. На календаре также велся учет добычи: карибу, рыба, тюлени, моржи и белые медведи (Revillon Frères Museum, Moosonee, Ontario)
Не всех, разумеется. Оскар Уайльд (1854–1900) однажды очень сильно опоздал к обеду. Хозяйка дома в негодовании указала на настенные часы и воскликнула: “Мистер Уайльд, знаете ли вы, который час?” – на что Уайльд ответил: “Дорогая сударыня, прошу, скажите мне, как эта противная маленькая машинка может проникнуть в замыслы нашего великого золотого светила?” Но она действительно могла.
Эйнштейн, конечно же, уверяет нас, что абсолютного времени не существует; здесь полезно вспомнить учреждение, где он так долго проработал, – Федеральное бюро патентования изобретений (в частности, связанных с синхронизацией часов). Он сам вспоминает: “В то время, пока я разбирался с устройством часов, меня ужасно раздражало присутствие часов в моей комнате”.
Хотя и могло показаться, что солнце утратило свои позиции, в действительности оно продолжало оказывать чрезвычайное влияние на весь цивилизованный мир. Еще в середине XIX века в больших и малых городах большинства стран использовались свои солнечные системы отсчета времени. Например, каждый французский город имел собственное время, вычисляемое опять же по собственному солнечному зениту. Время подчинялось пространству, а в отсчете секунд, минут или часов не было ничего божественного. Перспектива объединенного телеграфом, быстрыми поездами и пароходами земного шара постоянно отодвигалась, потому что вращающаяся под углом Земля и видимым образом движущееся Солнце обессмысливали идею единого времени. Часы в доме сообщали время семье, часы на городской ратуше – всем горожанам, но за соседним холмом часов могли вовсе не знать, и в этой ситуации введение стандартов единого времени могло быть даже опасным. Фельдмаршал фон Мольтке (1800–1891), главнокомандующий прусской (а позднее и германской) армией, на протяжении почти тридцати лет выступал за единую временную систему для всей Германии, которая должна была способствовать движению поездов по расписанию, вследствие чего мобилизация войск могла происходить эффективнее. Но его противники опасались, что наличие единой железнодорожной сети спровоцирует вторжение России. Тем не менее становилось ясно, что введение некоторого единообразия невозможно откладывать без конца. “Общества развиваются быстрее, чем их способность к измерениям”, – сформулировал историк Кларк Блез. Берджесс писал о Первой мировой войне, когда наручные часы стали широко использоваться (особенно их ценили часовые):
Эта война была войной железнодорожных расписаний. Транспортировка двух миллионов солдат на линию фронта для первых военных действий в августе 1914-го потребовала 4278 поездов, из них только девятнадцать пришли не вовремя. Наручные часы, которые до войны считались женским аксессуаром, стали признаком мужчины-командира. “Сверьте часы!” И затем – в атаку [651] .
В Соединенных Штатах проблема с временем, мучившая весь мир, касалась отдельных штатов. После Гражданской войны железные дороги стали стремительно развиваться. За следующие после 1860 года сорок лет (а в том году Соединенные Штаты уже имели самую большую в мире железнодорожную сеть) совокупная длина проложенных железнодорожных путей выросла в шесть раз. К концу века практически каждый город независимо от его размера имел свою железнодорожную станцию, а то и несколько. Однако, как в большей части Европы, отсчет времени был местным делом и устанавливался по местному полудню, который на широте Нью-Йорка отстает на одну минуту каждые 11 миль при движении на запад. Полдень в Нью-Йорке приходился на 11:55 по Филадельфии, 11:47 по Вашингтону, 11:35 по Питтсбургу. Штат Иллинойс имел двадцать семь различных часовых областей, Висконсин – тридцать восемь. Всего в Северной Америке было сто сорок четыре официальных “времени”, а путешественник, собравшийся в 1870-е проехать от округа Колумбия до Сан-Франциско и переставляющий часы на каждой промежуточной станции, вынужден был сделать это более двухсот раз. Если же пассажир пожелал бы узнать, во сколько он прибудет в конечный пункт, ему нужно было бы взять стандартное время своей железной дороги и произвести необходимые вычисления с местным временем на станциях посадки и высадки. Между двумя городами на расстоянии в 100 миль имелась временная разница в 10 мин, хотя поезд покрывал эту дистанцию менее чем за два часа. Время какого города было “официальным”? Сам поезд при этом мог направляться из третьего города в 500 милях от этих, так кому “принадлежало” время – городам по дороге, пассажирам или железнодорожной компании? Ничего удивительного, что Уайльд отметил главное занятие среднего американца – “ловлю поездов”. Он был в Америке в 1882 году, и можно только догадываться, сколько ему довелось пропустить пересадок.
Пока люди путешествовали со скоростью, не превышающей конский галоп, все эти соображения не играли никакой роли, но в экономике железнодорожного сообщения расписание было сущим кошмаром. Как пишет Блез, “именно постепенное наращивание скорости и мощности, соединение рельсов и пара подорвало нормы конного и парусного транспорта и в конечном итоге самого солнца в измерении времени”. Эта цитата из биографии Сэндфорда Флеминга, канадского предпринимателя, принадлежащей перу Блеза. В июне 1876 года Флеминг пропустил свой поезд на станции Бандоран (находящейся на главной ирландской железнодорожной ветке, соединяющей Лондондерри и Слайго), потому что в расписании была опечатка – 5:35 p. m. вместо 5:35 a. m.; следующего поезда ему пришлось ждать 16 ч. Флеминг, кроме прочего, был главным инженером Канадской тихоокеанской железной дороги, и его колоссальное раздражение от этой задержки вызвало желание пронумеровать все часы от единицы до двадцати четырех. “Зачем современному обществу придерживаться этого деления на ante meridiem и post meridiem, зачем считать все часы от одного до двенадцати дважды за сутки? [Часы] не следует считать часами в обычном смысле, а просто одной двадцать четвертой долей среднего времени, за которое Земля делает полный оборот”. Его миссией станет введение двадцатичетырехчасовой системы, в которой 5:35 p. m. станет 17:35. Позже он поставил перед собой более великую задачу – расположить мировые временные зоны согласно их долготе и ввести “земное время вместо местного”.
Стандартное время стало лучшей мерой в мире, оно было способно переводить небесное движение в гражданское время. К 1880 году Великобритания жила по стандартному времени уже более тридцати лет, там реформа времени началась с железных дорог. Так отчего тем же путем не последовала Америка? Потому что Конгресс США, опасаясь волнений со стороны местного самоуправления в случае начала реформы, тянул до последнего, а железнодорожная индустрия тоже колебалась, хотя прекрасно понимала негативные последствия для бизнеса от отсутствия стандартизации. Этот вопрос обсуждался с 1869 года, пока наконец недовольство населения не вынудило железнодорожных магнатов принять решение: в субботу 18 ноября 1883 года они в обход Конгресса перешли на гринвичское время, поделив всю страну на четыре зоны – Восточную, Центральную, Горную и Тихоокеанскую – с различием в один час. Этот день вошел в историю под именем “двухполуденное воскресенье”, потому что городам, расположенным вдоль восточной границы каждого часового пояса, пришлось переводить часы на полчаса назад (что и привело ко второму полудню), чтобы прийти в соответствие с городами ближе к западной границе того же часового пояса. В течение нескольких лет эта система стала фактическим стандартом, хотя и не без трений, а некоторые города (Бангор, штат Мэн, и Саванна, штат Джорджия) отказались присоединиться – либо по религиозным соображениям, либо просто из упрямства. Детройт, оказавшийся как раз посередине между Восточным и Центральным поясами, никак не мог определиться, так что его жители вынуждены были много лет уточнять называемое время: “Это по солнечному, железнодорожному или городскому?” Сам Конгресс так и не ратифицировал стандартное время, пока война не заставила его это сделать в 1918 году.
“Теперь не солнце, а телеграф сообщал время нации (объединенной временем) и в процессе этого прокладывал дорогу абстрактному, не привязанному локально, мировому времени”, – пишет историк Марк Смит. Сходным образом люди начали постепенно приходить к пониманию того, что для использования календаря глобально все даты нужно отсчитывать от единой солнечной линии дат. Вопрос состоял лишь в том, где эту линию провести. В 1884 году двадцать пять стран послали своих представителей на конференцию в Вашингтон. Одиннадцать национальных меридианов (проходящих через Санкт-Петербург, Берлин, Рим, Париж, Стокгольм, Копенгаген, Гринвич, Кадис, Лиссабон, Рио и Токио), а также дополнительные претенденты – Иерусалим, пирамиды в Гизе, Пиза (в честь Галилея), Военно-морская обсерватория в Вашингтоне, Азорские острова (основной отправной пункт в эпоху открытий) – соревновались за право первенства. Французы, представленные главой делегации и великим астрономом Пьером Жюлем Сезаром Жансеном, были непреклонны, настаивая (без особых оснований) на том, что их ligne sacrée – лучший выбор с точки зрения науки.
Сэнфорд Флеминг выступал за проведение линии ровно напротив Гринвича (с другой стороны земного шара) посреди Тихого океана, что избавило бы от конкуренции между нациями, но все равно позволило бы использовать Гринвич, не вовлекая в это Англию. Но каждый меридиан где-то касается суши, и, если бы предложение Флеминга прошло, каждый полдень Англия разделялась бы на два разных дня. Его предложение вскоре провалилось, а прения закончились только тогда, когда сэр Джордж Эйри, вспыльчивый британский королевский астроном, написал, что нулевой меридиан “должен проходить через Гринвич, потому что навигация практически всего мира [даже тогда на 90 %] зависит от вычислений, базирующихся на данных Гринвичской обсерватории”. Франция воздержалась от голосования, и в поддержку демонстративному поведению своих делегатов слово “Гринвич” никогда не появлялось на ее картах (по случайному стечению обстоятельств анархист, пытавшийся взорвать обсерваторию в 1894 году, оказался французом). Когда решение было принято большинством голосов, меридиан сдвинули на 19 футов к востоку от знаменитого обелиска на Поул-Хилле. Время солнечных часов, таким образом, миновало, его место заняла сложная абстракция.
В 1884 году Земля была поделена на двадцать четыре временные зоны, разница между которыми составляла ровно час: путешествующие на восток прибавляли часы, путешествующие на запад вычитали. Разумеется, должен был настать момент (который ожидает нас в западной части Тихого океана), когда по логике системы у путешественника на восток вычтется целый день; он же прибавится у путешественника на запад (герой Жюля Верна Филеас Фогг узнает об этом как раз вовремя, чтобы выиграть пари в романе “Вокруг света за восемьдесят дней”). Государства одно за другим переходили на среднее время по Гринвичу (GMT), в 1911 году это сделала даже Франция. Впрочем, в 1972 году французы, недовольные несправедливой, по их мнению, победой Британии, внесли резолюцию в ООН о введении наряду с GMT еще и UTC – Всемирного координированного времени, которе регулировалось бы сигналом из Парижа (естественно). В отличие от GMT, которое рассчитывается на базе вращения Земли и небесных наблюдениях, UTCотсчитывается атомными часами с цезиевым лучом, которые менее точны, но более просты в использовании. По сути, эти две системы редко расходятся более чем на секунду, поскольку UTC добавляет себе високосные секунды для компенсации замедляющегося вращения Земли.
Физики Джек Перри и Льюис Эссен настраивают атомные часы на луче атомов цезия, созданные ими в 1955 году. Одна секунда составляет примерно 9193 млн колебаний. Часы Перри и Эссена позволили заменить астрономическую секунду на атомную секунду в качестве стандартной единицы времени (National Physical Laboratory, Crown Copyright / SPL / Photo Researchers, Inc)
Тех, кто имел дело с солнцем из собственного интереса и удовольствия, ждали новые удары: следом наступила очередь перевода времени. Этот проект имеет смысл отсчитывать с Бенджамина Франклина (1706–1790), который, будучи американским послом во Франции (в возрасте семидесяти восьми лет, повинуясь моментной прихоти), 26 апреля 1784 года предложил парижанам экономить энергию (в форме парафина и жира) и подниматься с зарей, вместо того чтобы спать с закрытыми ставнями при свете дня.
Идея не была принята, и потребовался век, чтобы для нее нашлись благодарные слушатели. В июле 1907 года удачливый лондонский застройщик Уильям Уиллет (1857–1915), страстный наездник и игрок в гольф, выпустил брошюру “О растрате дневного света”, где убеждал людей радоваться свету раннего утра вместе с ним и сетовал на то, как раздражает необходимость прекращать игру в гольф из-за наступающей темноты. Ведь можно было бы переводить часы вперед (или назад) на 20 мин в течение четырех уикэндов, чтобы сделать этот переход легче. И дело было не только в заядлых спортсменах:
Все ценят длинные светлые вечера. Все сетуют на их сокращение, когда дни становятся короче, и почти все когда-либо высказывали сожаление в связи с тем, что ясный свет раннего утра весенних и летних месяцев так редко используется или даже просто кем-либо замечается [657] .
Мнения ученых, в частности астрономов, разделились, хотя пресса трещала: “Узнают ли курицы, когда им ложиться спать?”, а редакторы Nature высмеяли идею, сравнив перевод часов с искуственным подъемом показателей термометра:
Было бы разумнее поменять показания термометра в определенное время года, чем менять время, которое показывают часы… изменить на десять градусов показания термометра в зимнее время, чтобы 32 °F стали 42 °F. Одну температуру можно назвать другой так же запросто, как 2 a . m . могут быть названы 3 a . m .; в обоих случаях смена названия не поменяет обстоятельств [658] .
Но Уиллет не собирался так легко сдаваться, и в течение двух лет Daylight Saving Bill (Закон о летнем времени) был вчерне разработан и даже получил временное применение в качестве военной меры экономии в 1916 году. Еще раньше такой закон приняла Германия, надеясь сэкономить горючее и позволить фабричным работникам трудиться в вечерние смены без искусственного освещения. Сам Уиллет умер за год до этого, но соседи поставили ему изящный памятник – солнечные часы, всегда настроенные на летнее время.
Закон был принят и стал действовать постоянно во всей Великобритании с 1925 года. Америка приняла аналогичную меру в 1916-м, но та оказалась столь непопулярной, что Конгресс отменил ее тремя годами позднее (фермеры, которым эта система была призвана помочь, возненавидели летнее время, потому что им приходилось вставать с солнцем независимо от времени на часах, теперь же им нужно было подлаживать свое расписание, чтобы продавать урожай людям, которые жили по новой системе). Тогда в 1922 году президент Хардинг подписал указ, предписывающий всем федеральным служащим начинать работу в восемь утра вместо девяти. Работников частного сектора это не касалось. В результате наступил хаос: одни поезда, автобусы, театры и магазины сдвинули время, а другие нет. Вашингтонцы взбунтовались и высмеяли Хардинга. После лета анархии президент отменил свое решение. Летнее время вновь было принято только во время Второй мировой войны, воздержался от этого лишь губернатор штата Оклахома. Однако после окончания войны оно было вновь упразднено и в последующие десятилетия оставалось в Соединенных Штатах в качестве местного выбора, что привело к предсказуемо безумным результатам: как-то летом в одном только штате Айова действовало двадцать три разных системы летнего времени. В 1965 году семьдесят один из крупнейших американских городов принял летнее время, пятьдесят девять – нет. Военно-морская обсерватория США назвала собственную нацию “худшим в мире счетчиком времени”.
Проблема наконец была решена Актом о едином времени 1966 года (Uniform Time Act), хотя Индиана, большая часть Аризоны и Гавайи до сих пор не признают летнего времени. В 1996 году Европейский союз также стандартизовал летнее время, а в самих США летнее время удлинилось и начинается теперь во второе воскресенье марта вместо апреля, а заканчивается в первое воскресенье ноября (согласно Energy Policy Act 2005 года). На сегодняшний день летнее время принято и используется примерно миллиардом человек в семидесяти странах – чуть менее чем одной шестой населения земного шара.
Подобно тому как Робинзон Крузо делал зарубки на палке, а обитатели ГУЛАГа ставили черточки, отмечая каждый день своего заключения, так и мы опутаны временем и не можем от него дистанцироваться. Совсем недавно, в августе 2007 года, президент Венесуэлы Уго Чавес объявил о том, что в целях улучшения “метаболизма” своих граждан приказывает перевести все часы на полчаса вперед, “так как солнце благоприятно воздействует на человеческий мозг”, отменяя тем самым принятое в 1965 году обратное решение и ставя время в Венесуэле в один ряд с Афганистаном, Индией, Ираном и Мьянмой – у них разница с Гринвичем измеряется не в целых часах, а в дробных. Гейл Коллинз, который писал в New York Times о диктатуре Чавеса, сравнил это со сценой из фильма “Бананы” Вуди Аллена, где герой революции становится президентом южноамериканской страны и объявляет, что с этого дня следует ходить исподним наружу. Но, например, Ньюфаундленд тоже относится к получасовым системам, пренебрегая остальной Канадой, а Непал на пятнадцать минут обгоняет Индию, его разница с Гринвичем составляет 5 ч 45 мин. Саудовская Аравия предположительно переводит часы на полночь каждый день на закате. Как съязвил один обозреватель, “следить за правильностью своих часов на борту экспресса “Рияд-Рангун” должно быть крайне утомительным занятием”.
Не останавливается на достигнутом и тонкая настройка. В свое время секунда определялась как 1 / 31 556 925,9747 солнечного года. Но сейчас прошло уже около шестидесяти лет с тех пор, как в Национальной физической лаборатории в Теддингтоне (Великобритания) были изобретены атомные часы. Выяснилось, что можно с большей точностью отсчитывать время по вибрирующим атомам, чем по вращающейся Земле. “Это слегка сбивало с толку, – вспоминает Дэвид Руни, куратор контроля времени при Королевской обсерватории. – Когда часы расходятся, это нехорошо. В семидесятых нам понадобился очередной поправочный коэффициент. Так появилась високосная секунда, чтобы свести воедино время вращения Земли и время атомных колебаний”. Эти секунды добавляются не каждый год, решение о прибавлении или вычитании секунды (до сих пор их всегда прибавляли) принимается Международной службой вращения Земли в Париже. Последнее добавление имело место 1 января 2006 года: в сигнале точного времени на радио BBC появился один лишний “пип”.
Теперь, когда отсчет точного времени перешел под ответственность таких институций, как Военно-морская обсерватория США в Вашингтоне, округ Коламбия, Международная служба вращения Земли при Парижской обсерватории и Международное бюро мер и весов в Севре (Франция), каждая из которых определяет секунду как 9 192 631 770 колебаний излучения (с определенной длиной волны), испускаемого атомом цезия-133, солнце официально лишилось долгосрочной роли нашего хронометриста. Это определение секунды, впервые зависимое не от вращения Земли вокруг Солнца, а только от поведения атомов, было формально подписано в 1967 году. Но “високосные секунды”, периодически добавляемые для синхронизации наших часов с вращением планеты, которая несется сквозь космос, не оглядываясь на атомное время, подтверждают, что мы никогда не сможем окончательно выйти из-под опеки Солнца.
Эти махинации можно продолжать до бесконечности (старая шутка гласит, что даже остановившиеся часы два раза в день показывают правильное время). В 1907 году Эйнштейн выдвинул принцип эквивалентности, который утверждал, что в локальной системе гравитация неотличима от ускорения и уменьшается по мере увеличения расстояния от центра масс. Согласно этому принципу в Санта-Фе, расположенном высоко в горах Нью-Мексико, время идет примерно на одну миллисекунду в столетие быстрее, чем в Покипси, расположенном низко над уровнем моря, в Нью-Йорке. Недавний эксперимент в летящем вокруг света на запад истребителе показал, что часы выигрывают 273 нс, примерно две трети которых возникают благодаря гравитации. Кроме того, на вершине горы Вашингтон в Неваде построили часы диаметром 2,5 м, которые должны “протикать” десять тысяч лет (период времени, за который, как считается, цезиевые часы потеряют одну секунду), а французские часы, сконструированные инженером и астрономом Пассманом, демонстрировали вечный календарь, рассчитанный до 9999 года. Одна реклама превозносит The Ultimate Time-keeper – построенные на “сложных астрономических алгоритмах” часы, которые рассчитывают “местное время восходов и заходов солнца и луны, лунные фазы, а также цифровое, аналоговое или военное время в любой точке вашего местонахождения” в формате a.m. / p.m. или 24:00. В них запрограммировано пятьсот восемьдесят три города, они автоматически подстраиваются под летнее время. Сделанные из титана или стали с кристаллами сапфира, они предлагают “самую широкую интерпретацию времени, какая только доступна за деньги”, – их можно приобрести за 895 долларов.
Швейцарский часовой производитель Swatch предложил ввести всепланетное интернет-время, где пользователи со всего мира могли бы встречаться в едином времени независимо от своих часовых поясов. Тем временем ученые, которые обслуживают атомные часы в Теддингтоне, вместе с конкурентами из Соединенных Штатов и Японии работают над еще более точным устройством – ионно-циклотронной ловушкой, которая должна появиться уже в 2020 году. Эксперты считают, что, если их запустить сейчас и они дотикают до расчетного конца вселенной, к этому времени они ошибутся на полсекунды; если так, это в двадцать раз превышает точность самой продвинутой сегодняшней модели. В 2006 году США предложили, чтобы мировое время полностью перешло на исчисление по атомным часам, что подразумевало бы отказ от високосных секунд; это встретило ожесточенный отпор со стороны Британского королевского астрономического общества. Если бы это предложение было принято, говорит Дэвид Руни, впервые в истории время не зависело бы от восхода и захода солнца.
И напоследок – знаменитый обмен репликами из “В ожидании Годо”:
Владимир . Быстро время прошло.
Эстрагон . Оно бы и так прошло [667] .
Глава 22
Солнце в кармане
“Человек с золотым пистолетом” стал последним романом Яна Флеминга, он был опубликован неполным и посмертно. Это не помешало девятому фильму бондианы выйти в декабре 1974 года, в разгар энергетического кризиса 1970-х, когда интерес всего мира к альтернативным формам энергии достиг точки кипения. Бонду предстояло отыскать солнечный возбудитель, очень важный для специального преобразователя энергии. “На 95 % эффективное устройство, оно обуздает солнечную радиацию и подарит колоссальную силу своему хозяину”. Его главный противник – профессиональный киллер, которого играет Кристофер Ли (кузен Флеминга, первоначально выбранный им на роль Бонда); история достигает кульминации в момент разрушения солнечной установки на острове близ побережья Китая.
За десятилетия, прошедшие с тех времен, тема солнечной энергии стала еще более популярной. Возможно, роль верховных часов у Солнца перехватил атом, но пока все еще неясно, сможет ли он занять место Солнца в качестве источника энергии для человечества. Солнце является величайшим возобновляемым ресурсом – оно создает уголь, торф, нефть, гидроэлектричество и природный газ (метан). Оно поднимает влагу в атмосферу и возвращает ее в виде ливней, которые вращают турбины; оно приводит в движение ветер и волны и все с ними связанное; оно не проявляет никаких признаков умирания; оно щедро расточает свое богатство на всю планету, изливая на поверхность Земли за сорок минут больше энергии, чем мы используем за целый год. Около 35 % энергии, достигающей Земли, отражаются от облаков обратно в космос, еще около 19 % поглощаются атмосферой, но все равно остается в 12 тыс. раз больше энергии, чем используется во всех созданных человеком устройствах. Только два вида возобновляемой энергии не являются продуктом солнечного излучения – геотермальная энергия и приливная (Солнце поднимает приливную волну благодаря своей массе, а не радиации). Но лишь в последние тридцать лет этот изобильный источник стал серьезно рассматриваться властными кругами. Ян Флеминг обгонял свое время.
Идея поставить Солнце себе на службу возникла у людей почти сразу, как только они начали экспериментировать с окружающей средой. Уже в III веке до н. э. и греки, и римляне использовали “сжигающие зеркала”, ручные вогнутые рефлекторы, чтобы фокусировать солнечный свет на вражеских кораблях. Архимед (287–212 до н. э.), по легенде, соорудил целую батарею таких рефлекторов в 212 году до н. э.: чтобы спасти Сиракузы от блокады римского флота, он сжег паруса противника “на расстоянии полета стрелы” (около 50 м). История похожа на миф, но тем не менее показывает, что греки в это время уже знали об энергетической природе солнечного света и о ее опасности.
Около 100 года н. э. Плиний Младший (61–113) впервые использовал стекло при постройке дома для сохранения тепла; в последующие столетия римские публичные бани всегда проектировались с большими окнами на юг. Римляне также первыми стали строить теплицы. В VI веке император Юстиниан даже ввел закон, защищающий солнечные террасы, публичные и домашние, от возведения вокруг зданий, закрывающих солнечный свет.
Великий персидский ученый Х века Ибн аль-Хайсам (ок. 965–1031) написал значительный труд “О сферических зеркалах”, где, в частности, пересказывал легенду об Архимеде и рефлекторах в Сиракузах как имевшую место; в 1270 году это сочинение перевели на латынь, и оно попалось на глаза Роджеру Бэкону, который предупредил папу римского о том, что сарацины могут использовать вогнутые рефлекторы против крестоносцев в Святой земле. “Идея о преобразовании благотворных солнечных лучей в жестокое военное орудие для сжигания человеческих существ, – пишет об ответе Ватикана Франк Крыза в своей истории солнечной энергии, – воспринималась как извращение и дьявольское наваждение, плод колдовства и сатаны”.
По легенде, приблизительно в 212 года до н. э. греческий астроном и математик Архимед использовал зеркала, пытаясь сфокусировать солнечные лучи и поджечь римские корабли (Archive Photos / Getty Images)
В начале XVI века Леонардо да Винчи предложил использовать гигантское зеркало четырех миль в поперечнике в коммерческих целях как источник тепла, а не в качестве оружия. По каким-то причинам – недостаток финансирования или ресурсов (его проект требовал больше стекла, чем тогда существовало!) – из этой затеи ничего не вышло, но сама мысль обозначила смену фокуса с разрушительного использования на практическое, а также подтолкнула солнечные исследования – расцвел интерес к зеркалам и линзам.
В царствование короля Людовика XIV было произведено множество солнечных экспериментов – возможно, вдохновлял их сам Король Солнце. В 1747 году, уже во времена преемника Людовика XIV, Жорж Бюффон (1707–1788) использовал сто сорок плоских зеркал, чтобы зажечь кусок дерева, находящийся в 60 м, доказав тем самым, что подвиг Архимеда был по меньшей мере возможен. Затем наступила индустриальная революция и возникло новое мышление. “В эпоху паровых двигателей казалось, что до овладения энергией Солнца рукой подать… Инженеры XIX века имели дело с достаточно внушительными силами, которые впервые в истории давали им чувство господства над природой, владения инструментами, которые могут изменить условия жизни всего человечества. Почему же не приручить солнечную энергию?” – замечает Крыза. Солнечные насосы, тепловые двигатели и кипятильники были просто побочными продуктами.
В 1830-х во время пребывания в Южной Африке сэр Джон Гершель изобрел актинометр, по сути представлявший колбу с водой, которая при помещении под солнечное излучение позволяла вычислить количество энергии, полученной от Солнца. Позже, как сообщал Стюарт Кларк,
он проводил еще более странные эксперименты. Например, он клал свежее яйцо в жестяную чашку, а сверху – кусок оконного стекла. Возвращаясь позднее с женой и шестью детьми, он, ошпаривая пальцы, доставал уже сварившееся яйцо. Ученый церемонно разрезал яйцо на кусочки и раздавал его окружающим, так что все могли сказать, что ели яйцо, сварившееся вкрутую на южноафриканском солнце. Обнаружив у себя эти неожиданные кулинарные способности, на следующей неделе он приготовил отбивную с картофелем тем же способом. “Она тщательно прожарилась и была очень неплоха”, – записал он в дневнике [673] .
Гершель преуспел еще сильнее: он построил солнечную печь из кусков красного дерева, окрашенного в черный, и добился максимальной температуры около 115 °C – на 11 % выше точки кипения воды на уровне моря.
Давнишней целью было произвести пригодный двигатель на солнечной энергии. Попытки построить такую машину предпринимались с начала XVII века, когда Саломон де Косс сконструировал первый прототип, используя линзы, раму и металлический сосуд для воды и воздуха, но в глазах общественности это было скорее курьезом, нежели чем-то практическим. Однако в 1861 году французский учитель математики Огюстен Мюшо налил воды в железное ведро и окружил его солнечными рефлекторами. Вода при испарении произвела достаточный объем пара, чтобы привести в движение небольшой мотор. За четыре года Мюшо смог создать вполне приемлемый паровой двигатель. Когда он продемонстрировал устройство Наполеону III, тот, впечатленный, предложил финансовую помощь. Мюшо смог увеличить объем своей машины, а также оптимизировал рефлектор, превратив его в подобие усеченного конуса вроде тарелки со скошенными внутрь краями. Он также разработал устройство, которое позволяло всей машине постоянно поворачиваться вслед за солнцем. Спустя шесть лет он поразил зрителей своим детищем, которое один репортер описывал как “перевернутый огромный абажур… покрытый изнути очень тонким слоем серебристого металла”, а сам котел находился в середине. как “колоссальный наперсток” из черненой меди, закрытый стеклянным колоколом. На парижской Всемирной выставке в 1878 году Мюшо выставлял печатный пресс, работающий на солнечной энергии, где использовалось параболическое зеркало, паровой двигатель и поршень; солнечная энергия вернулась на мировую выставку только спустя сто двадцать два года – на “Экспо-2000” во Фрайбурге.
Стремясь скорее применить эти изобретения на практике, французское правительство решило, что лучшим полигоном станет Алжир – колония, купающаяся в почти не гаснущем солнечном свете, но полностью зависящая от угля, который был там баснословно дорог. Мюшо с радостью отправился туда. “Рано или поздно промышленности в Европе не хватит ресурсов для удовлетворения своей стремительной экспансии, уголь, безусловно, закончится. Что дальше?” Вскоре Мюшо изобрел портативную солнечную плитку для французских войск, а также солнечный двигатель, который мог приводить в движение печатный пресс. Но высокая стоимость этих изобретений вкупе с растущей дешевизной английского угля вынесла им приговор – индустриальная революция ревела дальше. В те дни ничто не предвещало глобального потепления.
В 1891 году Кларенс Кемп, изобретатель из Балтимора, “настоящий отец американской солнечной энергии”, запатентовал “Климакс” – первый коммерческий водонагреватель на солнечной энергии, который соединял старую практику нагревания металлического контейнера на солнце с научным принципом термостата, увеличивая тем самым их способность к поглощению тепла. К 1897 году, как гордо утверждали биографы, “30 % нагревателей в Пасадене, штат Калифорния, были производены Кемпом”, но это лишь подчеркивало тот факт, что подобные изобретения имели успех лишь в рамках штата. Когда в 1902 году Кемпу удалось с помощью рефлектора из тысячи семисот восьмидесяти восьми отдельных зеркал произвести достаточно энергии для пятнадцатисильногосолнечного насоса, чтобы оросить страусиную ферму в Пасадене, об этом сообщалось лишь как об эксцентричном эксперименте.
Европейская традиция выращивания деревьев вдоль фруктовых шпалер насчитывает столетия – это сохраняет солнечный жар, постепенно выпуская его на исходе дня, когда солнце заходит; примерно столько же и использованию парников с южными скатами в Англии и Голландии. Первым коммерческим использованием солнечной энергии, видимо, было выпаривание соли из морской воды, а первым масштабным применением стала дистилляция питьевой воды из солоноватых колодцев или изолированных участков морской воды. Опреснитель, установленный в Чили в 1872 году, более сорока лет производил 6 тыс. галлонов воды в день из 4,7 тыс. кв. м водной поверхности.
Печатный станок Огюстена Мюшо, работающий на солнечной энергии, на Всемирной выставке 1878 года в Париже (The Granger Collection, New York)
История приручения Солнца продолжала развиваться резкими скачками. В конце 1870-х Уильям Гриллс Адамс, мелкий чиновник английской короны в Бомбее, написал получившую несколько премий книгу Solar Heat: A Substitute for Fuel in Tropical Countries (“Солнечное тепло: замена горючему в тропических странах”) и попытался внедрить эти технологии в Британской Индии, но без малейшего успеха. Затем эстафету перехватили французы, а именно инженер Шарль Теллье, “отец охлаждения”, который в 1885-м установил себе на крышу сборщик энергии, похожий на современные солнечные панели. Для производства пара вместо воды он использовал жидкий аммиак, который обращается в пар при более низкой температуре. Будучи выставленным на солнце, такой контейнер вырабатывает достаточное количество газообразного аммиака, чтобы работал водяной насос, способный поднять 300 галлонов воды за дневное время. Но Теллье решил посвятить себя разработке систем охлаждения (в хранении пищи было больше денег), и Франции пришлось распрощаться с развитием преобразования солнечной энергии на своей территории вплоть до ХХ века.
Несколькими годами спустя, в 1900 году, бостонский предприниматель Обри Энеас основал первую компанию, занимающуюся солнечной энергией, и начал производить машины на этой энергии, орошающие аризонскую пустыню. В 1903 году он переехал в Лос-Анджелес, ближе к потенциальным клиентам, а уже в следующем году продал свою первую систему за 2160 долларов. Не прошло и недели, как шторм свалил раму котла прямо на рефлектор. Привыкший к неудачам Энеас построил новый насос. Осенью 1904-го хозяин ранчо в Аризоне купил улучшенную модель, но и ее уничтожил шторм, на этот раз сопровождавшийся градом. Стало ясно, что большой параболический рефлектор слишком уязвим, и компания свернула свою деятельность. У Энеаса были последователи (в частности, Генри Э. Уилси, действовавший в Сен-Луисе и Нидлсе (штат Калифорния), который создал систему ночного функционирования машин на тепле, сохраненном в течение дня), но их компании также не смогли принести никакой прибыли.
Несмотря на мрачные истории, изобретатели продолжали считать, что, если обнаружить правильную технологическую комбинацию, можно будет производить энергию без ограничений. Одним из тех, кто разделял эту мечту, был инженер из Бруклина Фрэнк Шуман (1862–1918). Его первый солнечный двигатель, построенный в 1897 году, показал себя не очень хорошо, поскольку даже при значительном давлении пар производил недостаточное усилие. Вместо того чтобы попытаться произвести больше тепла, Шуман заменил трубы котла на плоские металлические контейнеры, похожие на контейнеры Теллье, и разработал дешевые рефлекторы – два соединенных ряда зеркал, удваивающих объем улавливаемого солнечного света. Кроме того, он сконструировал крупнейшую на тот момент систему преобразования энергии, способную выдавать 55 лошадиных сил и питающую водяной насос, перекачивающий около 12 тыс. л в минуту, по цене в 150 долларов за лошадиную силу. Для сравнения, обычная система на угле стоила 80 долларов за одну силу. Шуман полагал расходы вполне приемлемыми, учитывая, что вложения быстро окупятся из-за бесплатного горючего. Еще одной причиной, по которой он не слишком беспокоился о высокой цене энергии, вырабатываемой его машиной в сравнении с угольными или нефтяными двигателями, было то, что, как и другие французские предпиниматели, он планировал использовать свое изобретением в огромной, залитой солнцем Северной Африке.
В 1912 году в Египте, некогда центре солнцепоклонничества, он начал работу над первой в мире солнечной электростанцией. Местом был выбран пригород Маади, в 15 милях к югу от Каира; предметом гордости были семь вогнутых отражателей, 60 м в диаметре каждый, а также паровой двигатель в тысячу лошадиных сил. Но все закончилось не начавшись. Через два месяца после финальных испытаний был убит эрцгерцог Франц Фердинанд и началась Первая мировая война. Инженеры, работавшие на шумановской станции, вернулись каждый на свою родину для выполнения разнообразных военных заданий, а сам Шуман умер еще до наступления перемирия. После конца войны с падением цен на нефть интерес к солнечным экспериментам в очередной раз испарился.
К тому времени нефтяные и угольные компании развили серьезные инфраструктуры, имели стабильные рынки и богатые запасы углеводородного горючего. Пионеры солнечной энергии, напротив, еще только пытались совершенствовать свою технологию и сталкивались с дополнительной трудностью убеждения скептиков в том, что солнечная энергия была чем-то большим, чем просто курьез. Обнаружение огромных залежей природного газа в бассейне Лос-Анджелеса в 1920-е и 1930-е уничтожило на корню всю местную индустрию солнечных водонагревателей. Георгий Гамов в 1940-м мог пренебрежительно комментировать: “Прямое употребление солнечного тепла… используется только в нескольких хитроумных устройствах – в холодильниках, которые охлаждают напитки в аризонской пустыне, и в нагревателях воды в публичных банях в восточном городе Ташкенте”. Некий всплеск интереса к солнечным водонагревателям произошел во Флориде, к 1941 году в Солнечном штате их использовалось около 6 тыс. штук. Бестселлер Yo u r Solar House (“Ваш солнечный дом”, 1947), куда вошли работы сорока семи архитекторов, отражал реальный спрос. Однако после Второй мировой войны электрическая компания Florida Power and Light вела агрессивную кампанию по увеличению потребления электричества и предлагала электрические водонагреватели по бросовым ценам. Солнечной энергии опять пришлось отступить.
Такая же ситуация была повсюду. В Японии, где выращивающим рис фермерам остро требовалась дешевая горячая вода, одна компания начала продвигать простой нагреватель, сделанный из резервуара, накрытого стеклом, и к 1960-м в ходу их было уже более сотни тысяч, но индустрия рухнула из-за изобилия дешевой нефти, так же как это случилось в Калифорнии и Флориде. Даже в Австралии с ее богатым солнечным освещением нагревательные устройства, работающие на солнце, исчислялись всего несколькими тысячами. В Израиле в первое время после основания электричество было нормированным, поэтому люди стремились удовлетворить свои нужды другими способами, и к середине 1960-х одно домохозяйство из двадцати человек имело солнечный водонагреватель; но затем дешевая нефть с промыслов, захваченных во время Шестидневной войны, вновь отодвинула солнечную энергию на вторые роли.
Вращающийся солярий в Экс-ле-Бен, Франция, сентябрь 1930 (Fox Photos / Hulton / Getty Images)
В Соединенных Штатах первое офисное здание, отапливаемое солнечной энергией, было построено в начале 1950-х, затем появились первые дома, отапливаемые солнцем и им же охлаждаемые (цена такой модификации доходила до 4 тыс. долларов – около 30 тыс. в сегодняшних деньгах), а некоторые компании вновь принялись производить солнечные элементы и водонагреватели. В 1953–1954-м исследователи в Bell Laboratories (сегодня входящих в AT&T) сделали удивительное открытие, основанное на старой технологии. В 1839 году французский физик Александр Эдмон Беккерель установил, что, если два электрода погрузить в кислоту и пустить ток через один из них, ток пойдет и через второй. В 1873 году британский инженер Уиллоуби Смит обнаружил, что элемент селений меняет электрическое сопротивление под воздействием солнечного света, но ему не удалось достичь эффекта хоть сколько-нибудь значительного уровня. Сотрудники Bell Labs, экспериментируя с различными материалами, обнаружили, что кремний обладает тем же свойством, только в пятикратном размере, так что самым эффективным методом конвертации солнечных лучей в электричество оказалось использование кремниевых фотоэлектрических пластин.
Bell Labs вскоре начали производить тонкие пластины сверхчистого кремния с небольшими добавками мышьяка и бора для улучшения проводимости. При попадании солнечных лучей на пластину электроны кремния вышибаются проникающим теплом и перемещаются ближе к поверхности пластины, создавая дисбаланс между передней и задней частями элемента. Если верхняя и нижняя поверхности соединены проводником – обычно просто металлическим проводом, – то по нему начинает идти ток. “Солнечный элемент в целом гораздо более простая структура, чем зеленый лист, – пишет химик Мэри Арчер (жена популярного романиста Джеффри Арчера), – но напоминает лист тем, что одна из его сторон адаптирована для приема солнечного света”.
New York Times провозгласила открытие Bell Labs “началом новой эры, которые в конечном итоге приведет к… приспособлению почти безграничной энергии Солнца к нуждам цивилизации”. В самом деле, произошли значительные изменения: при ярком солнечном свете уровень конверсии энергии достигает высокого показателя в 22 %. Но даже с учетом этого фотоэлектрические пластины все еще не были экономически целесообразны, их стоимость достигала 300 долларов за киловатт (2200 в долларах 2010 года). Но тогда было время космической гонки, и правительственный бюджет на разработку солнечных батарей взлетел до небес, как только стало ясно, что спутники таким образом смогут вырабатывать электроэнергию, которая не требует возобновления. В 1958 году первый спутник с солнечными батареями, Vanguard 1, был выведен на орбиту. За последующие десятилетия цены резко упали, в среднем на 4 % в год за последние пятнадцать лет.
Фотоэлектрические элементы защищают трубопроводы от замерзания, они питают свет, радио, придорожные телефоны экстренной помощи, холодильники, кондиционеры, водяные насосы и деревенскую электрификацию. Они встречаются даже в самых мелких устройствах – карманных калькуляторах и часах, зарядках для iPod, камерах и автомобильных зеркалах. В 2003 году около половины фотоэлементов производились в Японии, на Соединенные Штаты приходилось примерно 12 %. В 1985 году мировая годовая потребность находилась на уровне 21 мВт (21 млн ватт), в 2005-м – 1,501 мВт: рост более чем на 7000 %.
Всего за пять лет у меня собралось около десятка книг и более ста сорока статей на эти темы, и я понял, что различные инициативы в области солнечной энергии возникают в постоянно растущем количестве повсюду, от Китая до Танзании, от ЮАР, где светофоры на солнечных батареях спасают движение от капризов слабой электросети, до Абу-Даби, столицы Объединенных Арабских Эмиратов, которые, несмотря на свою репутацию нефтяной столицы мира и главного же источника CO2, планируют построить исследовательский центр и пятисотмегаваттную солнечную электростанцию. Возникает вопрос: как далеко зашла эта революция?
В 2004 и 2006 годах я предпринял два путешествия, чтобы ответить себе на этот вопрос. Первым пунктом моего назначения стал Фрайбург, город с населением около 215 тыс. человек в земле Баден-Вюртемберг между Черным лесом и долиной Рейна. Он очень сильно пострадал во время Второй мировой войны: в 1940 году немецкие самолеты по ошибке сбросили шестьдесят бомб около железнодорожного вокзала, а в ноябре 1944-го воздушный рейд союзников уничтожил 80 % старого города. Но это означало, что после 1945 года началась масштабная программа реконструкции, и в последнее время Фрайбург привлек множество игроков индустрии солнечной энергии и исследований; ни в одном другом немецком городе нет такого количества предприятий и лабораторий, связанных с окружающей средой. С учетом этого, а также того факта, что это самый солнечный город страны, неудивительно, что Фрайбург гордо носит звание экологической столицы Германии.
В специальном центре солнечной энергии SolarRegionFreiburg я встречался с тремя экспертами: Франциской Брайер, подтянутой блондинкой лет тридцати, лесником по профессии; Томом Дрезелем, социологом и публицистом, обозревающим “солнечные” проекты; Отто Вербахом, директором городского планетария. Фрау Брайер объяснила, что “все началось буквально случайно”. “В пятнадцати километрах отсюда находится деревушка Виль, около которой в начале 1970-х планировалось построить атомную электростанцию. Студенты, фермеры и виноделы (у нас винодельческий район) организовали сидячий протест, а строительная площадка была превращена в дискуссионный центр. В конце концов планы были отозваны, но в адрес протестующих прозвучало: “Вы не хотите атомной энергии – прекрасно, но что вы предлагаете взамен? Против быть легко, попробуйте выступить с конструктивным предложением”. И это заставило людей задуматься”.
Первые робкие шаги по направлению к солнечной энергии начались в 1976 году, а в 1981-м во Фрайбурге был основан Институт систем солнечной энергии Фраунгофера. В свое время Институт вызывал насмешки в научном сообществе, в глазах которого он недалеко ушел от энтузиазма бунтующих хиппи, но сегодня это крупнейший центр такого рода в Европе, в нем работает более трехсот пятидесяти человек. Его успех во многом обязан меняющейся политической реальности. В 1983 году, впервые за тридцать лет, новая политическая партия набрала 5 % голосов, необходимых по избирательному праву Западной Германии для получения мест в федеральном парламенте – зеленые (Die Grünen) вошли в бундестаг. Эти фотокадры обошли весь мир: бородатые длинноволосые депутаты без галстуков сидели в парламенте рядом с канцлером Колем. Успех зеленых наэлектризовал жителей Фрайбурга, и началось развитие целой “солнечной” экономики. В 1992 году городской совет разрешил возведение на муниципальной земле только зданий с низким потреблением энергии. В дополнение к солнечным панелям и сборщикам света на крыше стали популярны многие пассивные функции – высококачественная изоляция, ориентированные на юг окна с низкоэмиссионным стеклом, изоляционные пеноблоки. “Будущее начинается каждый день, – говорит Дрезель. – Можно наблюдать развитие города шаг за шагом”.
В 1945 году город находился в зоне французской оккупации. В конце 1990-х на месте бывшей французской военной базы началось строительство Вобана (названного в честь французского маршала XVII века) – нового жилого района на 6 тыс. человек, призванного стать “моделью экологически чистого района”. Солнечная энергия используется там для подогрева воды в большинстве домов, а сам район разработан в соответствии с принципами экологии. “Дорога к экологии вымощена инновациями”, – улыбается фрау Брайер. Очевидным образом Вобан функционирует.
Мы вчетвером разговарили почти два часа, а затем я отправился на прогулку по городу. На первый взгляд он напоминал средний университетский город – преуспевающий, чистый, наполненный студентами. Но постепенно я стал замечать и инновации. На окраине поверх давно заброшенного серебряного рудника сейчас построена солнечная обсерватория. Пять ветряных турбин в пределах города удвоили долю возобновляемого электричества в структуре потребления. К концу моей прогулки я насчитал тридцать разных объектов: технологический парк, несколько солнечных электростанций, отель с “нулевыми выбросами”, железнодорожная станция с солнечной электростанцией башенного типа, множество домов с панелями солнечных батарей на крышах. Постройки тридцатилетней давности подверглись редизайну в целях адаптации их под “солнечные” нужды (с финансированием от сберегательных и заемных институций), а частные компании и общественные службы подготовили крыши для солнечных модулей. Местные жители приобрели доли в панелях, получая возмещение по мере продажи электроэнергии городской сети. Совокупная площадь фотоэлектрических панелей на крышах Фрайбурга составляет около 70 тыс. кв. м, и благодаря специально запрограммированным солнечным сканерам эти панели подстраиваются под солнце каждые 12–15 мин, чтобы поглощение было максимальным. В городе также появилось первое в мире полностью автономное от каких-либо энергетических сетей здание, получающее всю энергию прямо от солнца. В школах есть свои “солнечные” образовательные центры и солнечные электростанции, и это все в стране, которая в среднем имеет только тысячу пятьсот двадцать восемь солнечных часов в год.
“Фрайбург задает тон остальным немецким городам”, – говорит Франциска Брайер. Например, Гельзенкирхен, стоящий на северной части Рейна, был важнейшим угольным и стальным центром Европы в начале XII века – “городом тысячи печей”. Сегодня он переосмысливает себя как “город тысячи солнц”, заимствуя многие инновации Фрайбурга. “Наши нововведения могли бы позаимствовать и Китай, и обе Кореи”. Кстати, у Пекина с Фрайбургом уже есть одна общая черта – велосипедов в два раза больше, чем автомобилей. Но причины разные. В Пекине велосипед является основным видом транспорта, тогда как во Фрайбурге езда на велосипеде символизирует экологическое мышление. Скоро студенты будут подкатывать к университету на мотоциклах на солнечной энергии, это только вопрос времени, убедили меня.
Следующей целью моего путешествия был город Альмери´я в южной Испании. Там я оказался два года спустя, в июле 2006-го. Всего в часе езды от города находится Табе´рнас – единственная сохранившаяся в Европе песчаная пустыня. Кроме того что на этой земле солнце нещадно палит триста пятьдесят пять дней в году, она еще и идеально подходит для киносъемок: там снимались такие фильмы, как “Паттон”, “Великолепная семерка”, “Ветер и лев”, “Индиана Джонс и последний крестовый поход” и “Лоуренс Аравийский”. Там же снималась знаменитая “долларовая” трилогия спагетти-вестернов Серджо Леоне – “За пригоршню долларов”, “На несколько долларов больше”, “Хороший, плохой, злой”. Но этот успех не приносил процветания Альмерии. К началу 1970-х этот район был самым бедным во всей Испании. И вдруг там обнаружились огромные объемы грунтовых вод. Началась сельскохозяйственная революция. Возникли сотни теплиц, пользующиеся преимуществами доступной воды и ежедневного солнечного освещения (“Солнце проводит зиму в Альмерии”, – гласит поговорка: среднегодовая температура там составляет 17 °C); местные жители вскоре стали хвастаться тем, что из космоса видно не Великую Китайскую стену, а их парники – огромное море пластика. К концу века город стал одним из самых богатых в южной части Испании, туда в массовых количествах стали прибывать иммигранты.
Этот период частично совпал с нефтяным кризисом 1970-х, а уже в начале 1980-х Международное энергетическое агентство при участии девяти стран установило в этой области небольшую электростанцию для проведения испытаний двух разных установок солнечной энергии. Одна состояла из целого поля (девяноста штук) контролируемых компьютером зеркал (гелиостатов), которые следили за солнечными лучами и собирали их пучком на центральной башне, где их энергия преобразовывалась в тепловую; другая – из трех полей вогнутых рефлекторов, которые также следовали за солнцем и отражали его энергию на металлические трубы, заполненные маслом. Эти трубы медленно нагревались до 290 °C, а масло направлялось в парогенератор. Потом добавился и третий проект, уже целиком испанский: центральная башня, снабженная тремястами гелиостатами, отражающими концентрированное тепло на черные поглощающие панели на верхушке башни с его дальнейшей передачей на водяной / паровой приемник и систему теплохранения из контейнеров с солевым расплавом. Расчет был на то, что хотя бы один проект окажется коммерчески состоятельным, но к концу 1980-х все партнеры Испании разочаровались из-за отсутствия какого-либо прогресса и вышли из проекта, осталась только Германия. Начиная с 1999 года лишь один проект продолжил развиваться, но зато он процветал. Plataforma Solar de Almería (PSA) с тех пор стала крупнейшим научно-исследовательским центром по солнечной энергетике в Европе (в мире с ней соперничают только Институт Вайцмана в Израиле, Sandia Laboratories в Альбукерке, Нью-Мексико, и 2 тыс. гигантских зеркал в пустыне Мохаве под городом Барстоу, Калифорния).
Одним из первых уроков, который я усвоил в Альмерии, был следующий: концентрация солнечной энергии и фотоэлектрические панели представляют совершенно разные технологии. В панелях солнечные фотоны используются для возбуждения электронов и создания тока, в то время как в термальной солнечной энергии, в использовании которой пионером стала Альмерия, фотоны служат для нагревания молекул жидкости. Для этого энергетического перехода требуются длинные металлические зеркала, фокусирующие солнечный свет на трубах, а воду нужно прогонять через теплообменник, генерирующий пар для вращения турбины. Поскольку весь этот процесс требует большой площади и обилия солнечного света, его идеальным местоположением оказывается высушенная солнцем пустыня.
Моим провожатым по территории стал Хосе Мартинес Солер, бодрый сотрудник проекта тридцати с небольшим лет, заканчивающий диссертацию о маркетинге солнечной энергии. Он с гордостью известил меня, что PSA вскоре отметит свое двадцатипятилетие, а также сообщил, что две испанские компании смогли найти коммерческое применение некоторым исследованиям научного центра. Город вроде Фрайбурга не может вырабатывать слишком много тепла из солнечного света, но высокотехнологичные кремниевые панели и посеребренные зеркала в Альмерии могут усиливать солнечный свет до температур, тысячекратно превышающих его начальный уровень (пока Хосе объяснял мне это, мы проходили мимо двери с табличкой: “Опасно, концентрированный солнечный свет”).
Увиденное впечатлило меня, но не смогло убедить в том, что солнечная энергия может сделать значительный вклад в мировые энергетические потребности. Я также встретился с Альфонсо Севильей Портильо, местным экспертом по вопросам энергетики и первым директором PSA. Пятидесятилетний элегантный мужчина, Портильо категорически не поддерживает стратегию своей бывшей компании. PSA разрабатывает технологию для продажи, тогда как “нам надо формировать потребление. Если мы будем продолжать жить так, как живем, мы никогда не сможем обеспечить энергией все свои потребности”. Научное исследование солнечной энергии должно быть составной частью общей жизненной философии, говорит он. Доктор Севилья оставил PSA и перешел на работу в новый проект в Кронсберге, под Ганновером, где около 6 тыс. жилых блоков, вмещающих 15 тыс. человек, образуют пять компактных кварталов. Городок будет использовать на 40 % меньше энергии, сохранив при этом тот же уровень жизни.
Ведет ли эта дорога в будущее? В то время как в прошлом изобретателей по большей части интересовали научные и философские аспекты “ловли солнца”, сегодняшний энтузиазм исследователей происходит из страхов, связанных с глобальным потеплением и истощением запасов естественного топлива, а также тем, что основные месторождения нефти находятся в политически нестабильных регионах, таких как Персидский залив, Нигерия и Венесуэла. Источники энергии ископаемого топлива могут прибавляться – газолин, керосин, пропан, – но и техники по преобразованию альтернативных форм энергии также множатся: солнечная энергия, ядерное расщепление и термоядерный синтез, энергия ветра, волн, переработка биоматериала (мертвые растительные и животные ткани преобразуются в этанол, биогазовое и биодизельное топливо). Почти каждый день в газетах появляется новая история о таких альтернативах, но не каждая из них реализуема. Как замечали скептики о энергии ветра, “со времен Дон Кихота ветряные мельницы не порождали столько иллюзий”.
Хирам вам позже перезвонит. Он возится с нашими солнечными панелями.
Но даже самые фантастические идеи могут превращаться в реальность. В 1980-е великий фантаст Артур Кларк утверждал, что мы сможем получать электричество из океана в неограниченных количествах и без “огромной массы вращающихся машин”. Он конкретизировал свою идею в The Shining Ones (“Сверкающих”), где использовались тепловые двигатели, “работающие на термальном перепаде между теплыми поверхностными слоями и ледяными глубинными водами”. В действительности Pelamis, змееподобная машина длиной в 150 м (почти с пассажирский поезд), сегодня генерирует электроэнергию из поглощаемой энергии волн, а горизонтальные турбины, смонтированные на морском дне, работают по принципу подводных ветряков. Одна только Великобритания может генериров ать до 20 % требуемой электроэнергии из волн и приливов.
Гелиос, прототип летающего крыла, парящего на солнечной энергии над Гавайями, июль 2001-го Первый испытательный полет продлился 18 ч (Nick Galante / PMRF / NASA)
В 1981 году аэроплан на солнечной энергии впервые пролетел над Ла-Маншем, а сейчас часовая компания “Омега” разрабатывает летательный аппарат, который сможет облететь земной шар на солнечной энергии (запасая ее в литиевых батареях, расположенных на крыльях). В марте 2007 года швейцарское судно sun21 пересекло Атлантику за шестьдесят три дня; сегодня в рамках исследования космоса планируется испытание аппарата, получающего энергию посредством гигантского солнечного отражателя. Тем временем ученые, обслуживающие знаменитую крупнейшую в мире солнечную печь в Фон-Роме-Одейо в Пиренеях, смогли добиться от концентрации солнечного света температуры в 3500 °C. В городе Удайпуре местный махараджа ввел рикши на солнечной энергии. А последние несколько десятилетий инженеры работают над автомобилями на солнечной энергии, и, хотя до коммерческого применения пока далеко, каждые два года в Центральной Австралии на 3000-километровой трассе от Дарвина до Аделаиды устраиваются соревнования таких машин. У гибридов типа Volkswagen Eos (названного в честь греческой богини зари) и французского Venturi Eclectic имеется убирающаяся крыша с солнечными батареями. Но солнечный свет не может дать энергии больше чем на 23 км в день, и автомобиль должен быть крайне легким и аэродинамичным, рассчитанным только на водителя.
В изобретательности нет недостатка, куда ни глянь. В мае 2009 года модный журнал Visionaire сделал “солнечный” номер с черно-белой обложкой, чье фотохромное покрытие расцветало полноцветным спектром под солнечными лучами. Solio, портативное зарядное устройство размером с мобильный телефон, разворачивает фотоэлектрический трилистник для улавливания солнечных лучей, энергию которых оно может затем направить в мобильный телефон, наладонные компьютеры, игровые приставки или плееры. Такие персональные устройства могут подключаться и к спортивным сумкам или “солнечным курткам” (сделанным из специального материала – микротина), у которых небольшие пластины вшиты в съемный воротник. Мусорные баки, установленные на американских пляжах, имеют фотоэлементные сенсоры, которые отправляют сообщение в коммунальный департамент, когда контейнер заполняется на три четверти. Химики пока еще работают над производством краски, которая могла бы преобразовывать солнечный свет прямиком в электричество, но ученые Национальной лаборатории в Айдахо уже в 2008 году изобрели пластик, который делает ровно это: Solar Skin (“солнечная кожа”) представляет из себя тонкую пленку из полупроводника (селенида меди – индия – галлия), которую можно нанести непосредственно на стекло или металл. Также разработана самовосстанавливающаяся краска для автомобилей и мебели, которая устраняет повреждение покрытия за несколько минут под воздействием солнца.
Если посмотреть в более крупном масштабе, то инженеры в Нью-Джерси запатентовали устройство для переключения государственной электрической сети с обычной энергии на солнечную в течение нескольких секунд после отказа первой. Солнечные печи сегодня способны печь шестьсот блюд дважды в день; метан, образующийся на мусорных свалках, продается как источник энергии; разрабатываются биосистемы, где можно было бы использовать облучаемые солнцем водоросли для преобразования СО2 и воды в кислород и богатые протеином углеводороды и в конечном итоге в топливо.
Утверждается, что медленное осевое вращение Луны, отсутствие атмосферы и избыток строительного материала благоприятствуют возведению на поверхности нашего спутника установок для сбора солнечной энергии. Эта энергия, собранная посредством сотен лунных панелей, обеспечивала бы бесперебойное питание всевозможным космическим аппаратам, а в конце концов и землянам. Еще одна альтернативная энергетика, космическая, подразумевает запуск спутников, снабженных большими фотоэлектрическими поверхностями, которые будут расправляться (или надуваться, технология пока находится в стадии эксперимента), когда спутник ляжет на орбиту. В ближнем космосе солнечный свет примерно в восемь раз интенсивней, чем на поверхности Земли, но полномасштабные испытания этой программы еще не проводились, а попытка запустить в 2005 году первый аппарат с солнечным парусом, Cosmos 1, провалилась.
Все эти инициативы делают довольно сложной задачей оценку прогресса в области солнечной энергетики – в конце концов, в первые годы администрации президента Рейгана энтузиазм правительства в отношении солнечной энергии заметно поубавился одновременно с исчезновением солнечных панелей, которые Джимми Картер велел установить на крыше Белого дома. Рейган также урезал бюджет Института исследований солнечной энергии и позволил свернуть налоговые льготы на возобновляемые источники энергии. Дело было не только в Рейгане: между 1980-м и 2005-м доля всех расходов США на научные исследования по энергетике упала с 10 до 2 %, а бюджет 2007 года выделял на исследования по солнечной энергии всего 159 млн долларов, половину от бюджета на ядерную энергию (303 млн) и треть от бюджета на угольную (427 млн). В конце 2009 года в Конгресс США поступил законопроект, согласно которому предполагалось законсервировать тринадцать солнечных и ветряных электростанций, запланированных к развертыванию в пустыне Мохаве в Калифорнии, “вероятно, самой солнечной земле в мире”, по словам одного эколога. В мире, ожидающем прироста населения на 2,5 млрд человек к середине столетия, государственные и корпоративные инвестиции в энергетику сокращаются, а не растут.
Важный момент – насколько долго будут продолжаться ассигнования: любые “солнечные” проекты в большой степени поддерживаются налоговыми льготами, грантами и программами, в рамках которых энергетические компании должны возмещать средства абонентам, направляющим энергию от своих солнечных приспособлений в государственные энергосети. Но, например, в Дании, где 17 % электричества поступают от ветряных турбин, новые проекты были практически полностью заморожены, когда дотации пали жертвой изменчивых политических приоритетов. В Испании, где правительственное финансирование щедрее, чем где-либо в Европе, в 2008 году была принята программа сокращения расходов. Другие страны, скорее всего, последуют той же дорогой: в октябре 2009 года компании – импортеры солнечных панелей в США понесли 70 млн долларов расходов по причине неожиданно выросших тарифов.
В Германии также происходят политические стычки на этой почве (консерваторы утверждают, что субсидии на солнечную энергию растут так быстро, что это вскорости начнет влиять на счета за электричество). Несмотря на столкновения на почве субсидий, страна продолжает оставаться лидером в области солнечной энергетики: пятнадцать из двадцати крупнейших мировых электростанций находятся в Германии, они производят 750 мВт энергии, что в пять раз превышает аналогичную цифру в США за 2006 год. Японцы не сильно отстают – 1,5 млн строений в Токио имеют солнечные водонагреватели, это больше, чем во всех Соединенных Штатах. В январе 2010 года сообщалось, что Китай, не занимавший никакой доли в индустрии еще пять лет назад, неожиданно перегнал Японию и Запад, став крупнейшим производителем солнечных батарей на земном шаре. Такими темпами уже скоро Китай будет производить больше половины мирового продукта, а также станет ведущим производителем ветряных турбин.
В 2005 году в Испании был принят закон о том, что все новые жилые помещения должны иметь устройства для вырабатывания солнечной энергии. Израиль использует солнечные водонагревательные системы в 30 % построек, а в новых домах они обязательны. Китай принимает сходные меры, а Швеция планирует полностью отказаться от энергии ископаемого топлива. Солнечные электростанции строятся в Мексике, ЮАР, Египте, Алжире и Марокко. Несколько американских штатов законодательно защитили “право на свет” для городских парков – запоздалый поклон Юстиниану, – а Калифорния, где возникла программа “Миллион солнечных крыш”, в одиночку производит 54 % мировой ветряной энергии. Десять лет назад только на пятистах крышах в Калифорнии стояли солнечные панели; сегодня таких установок уже почти 50 тыс., и они обеспечивают энергию, эквивалентную энергии большой электростанции.
Сравнительно новым явлением во всем мире стала теплоизоляция посредством съемных панелей на крыше. Этот конструктивный элемент стал частью домовой архитектуры только в 1980-е, по инициативе замечательного американского инженера Гарольда Хэя. Хэй был в Индии с делегацией американского правительства в 1950-е и заметил, что многие живут в заржавленных лачугах из листового железа, которые страшно нагреваются днем и остывают ночью. Он разработал кровельные панели, которые можно было снимать днем и ставить обратно ночью (в зимние месяцы) либо наоборот – в летний период. Одна простая идея сыграла важную роль для сотен тысяч индийских домов. В 1976 году Хэй дал прозорливый совет:
Мы средиземноморское, а вовсе не всесезонное животное. Мы принадлежим умеренным зонам Земли… но наша технология сделала возможным нагревание арктических областей планеты и охлаждение тропиков в достаточной мере, чтобы нам там было комфортно. В определенном смысле весь энергетический кризис состоит в этом. Мы научились использовать энергию для создания себе комфортных условий в областях, к жизни в которых мы физически не приспособлены… Мы можем использовать солнечную энергию и даже злоупотребить ею [695] .
Проповедники перехода на солнечную энергию осторожны с выводами, но указывают на то, что стоимость начала снижаться. “Тридцать лет назад солнечная энергия была экономически эффективной для спутников, – говорит Дэниел Шугар, президент калифорнийской SunPower Systems, – сегодня она становится рентабельной уже для домов и предприятий”. Рынок, в 2007 году оцениваемый в 11 млрд долларов, растет более чем на 25 % в год. Но, несмотря на это, солнечные панели до сих пор относительно дороги.
В начале 2008 года газета New York Times попросила четыре компании предоставить расценки на установку солнечных батарей на крышу жилого дома на Манхэттене. После торга самая низкая цена составила 370 тыс. долларов за пятидесятикиловаттную систему. Государственные гранты и налоговые льготы закрыли 265 тыс., а остаток был профинансирован десятилетней ссудой под небольшой процент – двести шестьдесят шесть панелей устанавливались с расчетом на двадцать пять лет работы. Потом в процесс включается взаимозачет электроэнергии: домовладельцы с солнечными электрическими системами видят, как их счетчики вращаются в обратную сторону, когда светит яркое солнце, – их баланс растет, что частично, а иногда и целиком снижает их расходы на электричество. Так что солнечная энергия, вначале дорогая, предположительно становится экономически целесообразной при длительной эксплуатации.
Срок может быть действительно долгим. В 2009 году солнечная энергия производила 0,5 % всего электричества в Германии, все возобновляемые ресурсы вместе – 14,2 %; в США в 2001 году возобновляемые ресурсы покрывали 6 % потребляемой энергии, и предполагается, что эта цифра останется неизменной следующие четверть века. В США сейчас насчитывается 128 млн домов, и только в 80 тыс. из них стоят какие-либо установки солнечной энергии. Поступление солнечной энергии в мировом масштабе покрывает около 9 % энергетических потребностей человечества, и ожидается, что этот показатель опустится до 8 % (разные источники приводят разные цифры: журнал National Geographic оценивает этот показатель менее чем в 1 %).
Некоторые долгожданные формы энергии все еще пребывают на этапе предварительного планирования. Термоядерный синтез – производство энергии посредством соединения атомов водорода в атомы гелия, на этом процессе работает Солнце – десятилетиями обсуждается в качестве потенциально безграничного источника энергии, но до его эксплуатации еще очень далеко. Хотя результаты, получаемые от возобновляемых источников энергии, быстро растут, они начинались с таких маленьких цифр, что их совокупная доля в энергетической цепочке остается минимальной.
“Большая проблема в больших числах, – говорил Нейл де Грасс Тайсон из Хайденского планетария. – В мире потребляется около 320 млрд квт·ч энергии в день”. А к наступлению следующего века мы будем использовать в три раза больше. Американцы отличаются особенно высоким потреблением: население США составляет менее 5 % от мирового населения, а потребляет оно более 20 % энергоресурсов. Полноценный переход на солнечную энергию в Соединенных Штатах потребовало бы 420 млрд долларов субсидий – гигантская цифра, которая, однако, составляет всего одиннадцать дней от годового ВВП США. В своей инаугурационной речи президент Обама провозгласил: “Мы используем энергию солнца, ветра и почвы для заправки наших машин и работы наших фабрик”, – и уже через месяц подписал создание стимулирующего пакета в 787 млрд долларов, нацеленного на удвоение объемов энергии из возобновляемых источников за следующие три года. В октябре 2010-го первая из девяти многомиллиардных солнечных ферм в Калифорнии, Неваде и Аризоне получила зеленый свет, а двадцать семь американских штатов уже требуют от своих энергетических компаний прироста доли электроэнергии, производимой с помощью возобновляемых источников энергии. Энтузиасты говорят о 650 тыс. кв. км земли только на юго-западе США, пригодных для установки солнечных электростанций, а также указывают на то, что, если всего 0,35 % земной поверхности будет покрыто солнечными элементами (площадь Франции), этого будет достаточно для удовлетворения всех наших потребностей. Всего…
Доктор Тайсон ставит проблематику в ошеломительный контекст с помощью простой истории. В 1964 году русский астроном Николай Кардашев предложил ввести три типа цивилизации в зависимости от использования энергии. Цивилизация I типа эксплуатирует энергию внутри своей планеты и на ее поверхности. Она контролирует весь солнечный свет, падающий на поверхность планеты, и может по желанию воспользоваться энергией вулкана или урагана. Более продвинутая цивилизация II типа способна освоить всю энергию своей материнской звезды, что делает ее в 10 млрд раз более мощной, чем цивилизации I типа. А III тип использует энергию всех звезд в своей галактике, увеличивая собственную мощь в 10 млрд раз относительно II типа.
“К какому типу относятся земляне? – заключает Тайсон. – Простите за плохие новости, но цивилизация, население которой запасает ископаемые, бежит прочь от извергающихся вулканов, эвакуирует города от надвигающихся ураганов и спасается в горах от цунами, не отвечает за собственную планету и вряд ли может претендовать на статус выше, чем тип ноль”. Возможно, у нас есть надежда. Как полагает биолог Оливер Мортон,
нам предстоит задача обнаружить новые технологии, расположенные в пространстве между фотоэлектрическим элементов и растительным листом, – новые гибридные формы индустрии и природы. Чтобы делать растительноподобные вещи, генерирующие альтернативное топливо или, возможно, даже электричество… нам нужно работать над полным диапазоном технологий, преобразующих солнечную энергию [700] .
Такие решения наверняка имеются. В 1931 году, незадолго до смерти, Томас Эдисон, крестный отец электричества, говорил Генри Форду: “Я бы поставил деньги на солнце и солнечную энергию. Вот это источник энергии! Надеюсь, что мы примемся за него прежде, чем закончатся нефть и уголь”.