Современное состояние биосферы и экологическая политика

Колесник Ю. А.

Ижко Ю. А.

Глава 8

Биогенная миграция химических элементов и биогеохимические принципы

 

 

8.1. Природа биогенной миграции атомов в биосфере

По В. И. Вернадскому, работа живого вещества в биосфере может проявляться в двух основных формах:

♦ химической (биохимической) – I род геологической деятельности;

♦ механической – II род такой деятельности.

Геологическая деятельность I рода – построение тела организмов и переваривание пищи, конечно, является более значительной.

Следует напомнить, что в зависимости от использования источников энергии все организмы делятся на три группы:

1) хемотрофы – главным образом бактерии, которые получают энергию за счет неорганической реакции (окисление железа, серы и др.);

2) фототрофы используют солнечный свет для фотосинтеза;

3) гетеротрофы окисляют имеющиеся органические соединения разной степени сложности (Проссер, 1977, с. 242).

Несомненно, что для каждой эпохи и ее периодов, начиная с архейской эры, у существующих тогда организмов преобладал тот или иной тип питания – фактора, осуществляющего потоки атомов от неживой природы к живой и обратно через выделение и гибель организмов.

Согласно современным представлениям, первичные организмы были в основном гетеротрофами, которые потребляли готовые органические соединения. После появились фототрофы и, наконец, те гетеротрофы, которые мы называем животными. Появление автотрофов обусловило накопления в атмосфере планеты кислорода, вследствие чего восстановительная атмосфера, после достижения точки Пастера (это когда концентрация О2 в атмосфере достигла 1/100 части современной, примерно 1,5 млрд лет назад), стала окислительной. Как следствие, многие организмы приобрели аэробный тип обмена, что ускорило процесс видообразования. В этой связи, приведем третий биохимический принцип, сформулированный В. И. Вернадским:

«В течение всего геологического времени, с криптозоя, заселение планеты должно было быть максимально возможным для всего живого вещества, которое тогда существовало» (1940, с. 185; 1965, с. 283–286).

Можно полагать, что на каждом этапе эволюционного процесса существующие и вновь появившиеся тогда организмы стремились максимально использовать энергетические ресурсы за счет все возрастающего увеличения скорости обмена веществ в экосистемах. Об этом свидетельствуют данные В. А. Ковды, который на обширном фактическом материале показал, что зольность растений возрастает от представителей древних таксонов к более молодым (лидирую травы) (цит. по: Зимов и Чупрынин, 1991, с. 62–63).

Так, по данным Л. Н. Тюрюканова, в пшенице, например, полная смена атомов происходит для фосфора за 15 суток, а для кальция – в 10 раз быстрее: за 1,5 суток! Собственно говоря, постоянный обмен веществ между живым организмом и внешней средой и обусловливает проявление большинства функций живого вещества в биосфере, которые мы рассмотрим в этой части книги. По подсчетам биолога П. Б. Гофмана-Кадошникова, в течение жизни человека через его тело проходит 75 т воды, 17 т углеродов, 2,5 т белков, 1,3 т жиров. Между тем, по геохимическому эффекту своей физиологической деятельности человек отнюдь не самый важный вид разнородного живого вещества биосферы. Геохимический эффект физиологической деятельности организмов обратно пропорционален их размерам, и наиболее значимой оказывается деятельность прокариотов – бактерий и цианобактерий (Елисеев, 2002, с. 257).

Большое значение имеет также количество пропускаемого через организм вещества. В этом отношении максимальный геохимический эффект на суше имеют грунтоеды, а в океане – илоеды и фильтраторы. Еще Чарльз Дарвин подсчитал, что слой экскрементов, выделяемых дождевыми червями на плодородных почвах Англии, составляет около 5 мм в год. Таким образом, почвенный пласт мощностью в 1 м дождевые черви полностью пропускают через свой кишечник за 200 лет. В океане с дождевыми червями по «пропускной способности» могут конкурировать их близкие родственники, представители того же типа кольчатых червей – поли-хеты, а также ракообразные. Достаточно 40 экземпляров полихет на 1 м2, чтобы поверхностный слой донных осадков мощностью в 20–30 см ежегодно проходил через их кишечник. Субстрат при этом существенно обогащается кальцием, железом, магнием, калием и фосфором по сравнению с исходными илами (цит. по: Елисеев, 2002, с. 257).

Копролиты (ископаемые остатки экскрементов) известны в геологических отложениях, начиная с ордовика, однако бесспорно, что большинство их при геологических описаниях не учитывается. Происходит это из-за слабой изученности вопроса и из-за отсутствия диагностических признаков для определения копролитов.

Между тем, в донных отложениях современных водоемов фекальные комочки беспозвоночных распространены очень широко и нередко являются основной частью осадка. В южной Атлантике, например, илы почти нацело слагаются фекалиями планктонных ракообразных, а по берегам Северного моря донные осадки, образованные фекалиями мидий, имеют мощность до 8 м.

О биогеохимической роли организмов свидетельствуют следующие данные. Так, В. Р. Вильямс полагал, что если 75 % общего количества ежегодно синтезируемого растениями органического вещества не будет минерализовано гетеротрофами, то через 3–4 года жизнь на Земле должна прекратиться. В этом плане поразительна «мудрость» природы. Подсчитано, что на территории нашей страны количество почвенных животных в килограммах на один гектар составляет:

♦ в тундре – 90;

♦ в северной тайге – 100–150;

♦ в южной тайге – 160–350;

♦ в смешанных лесах – 800-1000;

♦ в лесостепи – 500–900;

♦ в степи – 200;

♦ в пустыне – 20 (Тюрюканов, 1990, с. 110–112).

Бпольшая часть биомассы приходится на долю дождевых червей – 50–80 %. Велика и их роль в повышении плодородия почвы.

Дождевые (земляные) черви – крупные беспозвоночные животные-сапрофиты, питающиеся разложенными остатками. Они составляют важное звено в биологическом круговороте вещества и энергии и участвуют в почвообразовании. В копролитах червей естественной популяции содержание гумуса составляет 11–15 %. Масса таких копролитов составляет несколько сотен тонн на гектар.

За лето популяция из 100 червей на одном квадратном метре прокладывает в почве до километра подземных ходов диаметром 3–7 мм. Это улучшает аэрацию почвы и благоприятно сказывается на росте растений. В сообществах умеренной зоны они занимают ведущие позиции.

Практически все виды червей – дождевые, норные (Lumbricus terrestrus), пашенный (Aporrectodea calliginosa), красный калифорнийский, подвид навозного (Eisenia fetida и др.), представляют собой небольшие «химические лаборатории», обогащающие почву азотом, фосфором калием и другими макро– и микроэлементами. Кроме главной их деятельности – создания плодородия почвы, они широко используются в птицеводстве, являясь прекрасным кормом для кур (Тимофеева, Колесник, 2004, с. 132–141).

Биогенная миграция атомов II рода – механическая – отчетливо проявляется в наземных экосистемах с хорошо развитым почвенным покровом, позволяющим животным создавать глубокие укрытия (гнездовые камеры термитов, например, расположены на глубине 2–4 м от поверхности). Благодаря выбросам землероев, в верхние слои почвы попадают первичные не выветрившиеся минералы, которые, разлагаясь, вовлекаются в биологический круговорот. Недаром известный геолог Г. Ф. Мирчинк (1889–1942) называл сурка-тарбагана «лучшим геологом Забайкалья» – его норы окружены «коллекциями» горных пород, добытых с глубины нескольких метров! Обыкновенные кроты перерывают от 3,9 до 35 т на гектар почвы. Если выразить биогеохимическую работу почвенных животных в килограммах на гектар, то в дерново-подзолистых почвах кроты перемещают углерода 76 кг/га, азота – 4,8, кремния – 2942, железа – 338, алюминия – 481 кг/га. Это намного больше, чем в ежегодном растительном опаде (Тюрюканов, 1990, с. 110–112).

Понятие «нора» и «гнездо» обычно ассоциируются у нас с грызунами и птицами. Между тем биогенная миграция атомов II рода распространена не только в наземных, но и в морских экосистемах, и здесь ее роль может быть еще более значительна. И на дне моря организмы строят себе укрытия, причем не только в мягком, но и в скальном грунте. Олигохеты и полихеты углубляются в грунт на 40 см и более. Двустворчатые моллюски зарываются обычно неглубоко, но некоторые из них – солениды и миа – роют норы, которым позавидует и сурок: они достигают глубины нескольких метров. В зоне прибоя и на перемываемом волнами песке – вот беда! – норы не выроешь и гнездо не совьешь. Приходится сверлить скальные породы. И они сверлят. Этим занимаются водоросли и губки, бактерии и моллюски, полихеты, морские ежи, рачки.

Сверлильщики появились в далеком геологическом прошлом. Источенные ими породы находят даже в докембрийских отложениях; и поныне они продолжают свою разрушительную работу. Сверлящая деятельность моллюсков фолад вызывает иногда катастрофические последствия (Елисеев, 2002, с. 258).

К биогенной миграции II рода можно отнести и перемещение самого живого вещества. Сюда относятся сезонные перелеты птиц, перемещения животных в поисках корма, массовые миграции животных. Естественно, что все эти разнообразные формы движения живого вызывают и транспортировку небиогенного вещества.

Как мы видели ранее, В. И. Вернадский подразделял процессы, осуществляемые в биосфере живым веществом, по характеру самих процессов.

Несколько иначе подошел к этому вопросу его современник – Н. А. Андрусов.

«Химическая деятельность организма вообще, имеющая геологическое значение, – писал Андрусов, – может быть сведена к двум категориям: во-первых, к образованию на наружной поверхности или внутри твердых выделений, способных сохраняться;во-вторых, к образованию жидких и газообразных выделений, способных вступать в различные химические реакции с окружающим неорганическим миром» (цит. по: Елисеев, 2002, с. 259).

Для понимания той работы, которую совершает живое вещество в биосфере, очень важными являются три основных положения, которые Владимир Иванович называл «биогеохимическими принципами». Обсудим этот вопрос подробнее в следующем разделе.

 

8.2. Биогеохимические принципы

В формулировке В. И. Вернадского биогеохимические принципы звучат следующим образом.

I принцип : «Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению».

II принцип : «Эволюция видов в ходе геологического времени, приводящая к созданию форм жизни устойчивых в биосфере, идет в направлении, увеличивающем биогенную миграцию атомов биосферы» (или в другой формулировке: «При эволюции видов выживают те организмы, которые своею жизнью увеличивают биогенную геохимическую энергию»).

III биогеохимический принцип : «В течение всего геологического времени, с криптозоя, заселение планеты должно было быть максимально возможным для всего живого вещества, которое тогда существовало» (1940, с. 185;1965, с. 283–286).

Для Вернадского первый биогеохимический принцип был тесно связан со способностью живого вещества неограниченно размножаться в оптимальных условиях. «Вихрь атомов», который представляет собой жизнь, по определению Жоржа Кювье, стремится к безграничной экспансии. Следствием этого и является максимальное проявление биогенной миграции атомов в биосфере.

Второй биогеохимический принцип, по существу, затрагивает кардинальную проблему современной биологической теории – вопрос о направленности эволюции организмов. По мысли В. И. Вернадского, преимущества в ходе эволюции получают те организмы, которые приобрели способность усваивать новые формы энергии или «научились» полнее использовать химическую энергию, запасенную в других организмах. В ходе биологической эволюции, таким образом, увеличивается «КПД» биосферы в целом. Второй принцип справедлив и в отношении деструктивной ветви. Например, если для биогенного разложения мхов и лишайников необходимы десятилетия, то для трав – месяцы (Зимов, Чупрынин, 1991, с. 63–64). Объяснение этого факта заключается в том, что прогрессивные растения больше содержат легко усваиваемых сахаров, азотистых соединений и меньше лигнина, целлюлозы и являются более совершенными консументами, деструкторами. Если мхи разлагаются простейшими, то в минерализации «высокооборотистых растений» принимают активное участие почвенная зоомасса и позвоночные (Зимов, Чупрынин, 1991, с. 63).

В. И. Вернадский первым стал исследовать жизнь как целое, как геологически своеобразное живое вещество, характеризующееся весом, химическим составом, энергией и геохимической активностью. Он подчеркивал, что за геологическую историю организмы, по-видимому, осваивали новые области планеты, приспосабливаясь к многообразным природным условиям и участвуя в их изменении. Одно из выражений геологической активности живого вещества – скорость размножения организмов. Она колеблется в широких пределах и в идеальных условиях(отсутствующих в природе) достигает скорости звука. Бактерия холеры, например, способна (теоретически) за тридцать часов покрыть сплошной пленкой всю поверхность планеты. Крохотная инфузория туфелька может за пять лет выработать массу протоплазмы, по объему в десять тысяч раз превышающую нашу планету. Одноклеточная водоросль диатомея за восемь дней способна образовать массу материи, равную объему Земли, а в течение следующего дня удвоить эту массу.

Скорость передачи жизни, геохимическую активность живого вещества, отраженную в способности к размножению, Вернадский выразил в виде формулы:

2πΔ = N n ,

где n – число дней с начала размножения, Δ – показатель прогрессии, для одноклеточных соответствующий числу поколений в сутки, N n – число неделимых, существующих благодаря размножению через n дней (Вернадский, 2003, с. 67).

По подсчетам В. И. Вернадского, количество свободного кислорода в биосфере, равное 1,5 1021 г, есть число того же порядка, как и количество существующего и с ним неразрывно связанного живого вещества, исчисляемого в 1020-1021 г. В каждый момент на Земле существует около 1020 и более граммов живого вещества, которое постоянно разрушается и создается – главным образом, не ростом, а размножением. Поколения создаются в промежутки от десятков минут до сотен лет. Ими обновляется вещество, охваченное жизнью. То, которое находится в каждую минуту в наличии, составляет ничтожную долю созданного в году, т. к. колоссальные количества создаются и разрушаются даже в течение суток (Вернадский, 2003, с. 76).

И если справедлив первый биогеохимический принцип, т. е. непрерывное стремление живого вещества к экспансии, к максимальному проявлению жизни, то столь же должен быть справедлив и выраженный второй биогеохимический принцип

Таким образом, первый биогеохимический принцип свидетельствует об экстенсивном захвате вещества для метаболизма, а второй – об интенсивной стороне того же процесса, в историческом геологическом аспекте. Иначе говоря, количество жизни остается неизменным, а качество ее непрерывно повышается. Чисто схематически этот процесс можно было бы попытаться описать так.

Допустим, есть всего одна бактерия, она в соответствии с геометрической прогрессией размножения чисто теоретически, не имея ограничивающего давления других организмов, выйдет на свою стационарную константу размножения и сразу освоит всю поверхность планеты, ограничиваясь только ее физическими параметрами; второй организм, создавая с первым систему биосферы, отнюдь не расширит лог ареал, а охватит его же, довольствуясь вдвое меньшим физическим пространством для жизни. Третий – займет в нем же свою нишу, разделив физическое пространство на три. И так продолжается при дальнейшей дифференциации живого вещества биосферы. Биомасса растет, появляется, например, лес или гигантские водоросли, или крупные животные, они вовлекают все более разнообразные виды атомов вещества в круговорот жизни. Но количество охваченных атомов остается постоянным, как и количество жизни по отношению к массе планеты. А внутренняя емкость пространства, вероятно, увеличивается, или оно структурируется. Точно также справедлива и обратная мыслительная операции. Из сегодняшней развитой биосферы будем отнимать, в каком угодно порядке: по одному виду, или по классу или по экологической нише, или но иному признаку. Что будет происходить с объемом биосферы? Он будет оставаться постоянным, другие организмы будут заполнять объем, пока смогут выполнять функции биосферы. Отнимем какой-то последний организм, – и она погибнет сразу, целиком, как и наш организм и как любой другой.

В. И. Вернадский через понимание функций и их историческое движение, выраженное в первом и втором биогеохимических принципах, нашел стандарт биосферы. Если живое вещество его поддерживает, то он действует, и наоборот. В последнем случае нет и биосферы.

 

8.3. Законы экологии и их следствия

Огромное биоразнообразие флоры и фауны, которое сохраняется на протяжении многих веков было бы немыслимо без его подчинения законам экологии. Как известно, законом называют наличие внутренней причинно-устойчивой связи между явлениями или свойствами различных объектов, отражающей отношения между объектами. Если изменение одних процессов или явлений (причина) вызывает вполне определенное изменение других (следствие), то это означает проявление действия закона. Какие же законы присущи для биосистем?

Закон больших чисел : при очень большом числе случайных явлений средний их результат практически перестает быть случайным и может быть предсказан с большой точностью. Каждый индивид в популяции имеет свою стратегию поведения, но объединенные в стаю, они, несмотря на кажущуюся хаотичность, действуют согласованно.

Принцип Ле Шателье – Брауна : при действии на систему сил, вызывающих нарушение равновесия, система переходит в такое состояние, в котором эффект внешнего воздействия ослабляется. Способность экосистем и биосферы в целом к сохранению своего устойчивого состояния является косвенным доказательством подчинения их этому принципу. В настоящее время предложено новое определение биоты и биосферы (Горшков и др., 1990): «под биотой следует понимать такие естественные сообщества живых организмов, которые способны подчиняться принципу Ле Шателье и компенсировать все возникающие возмущения окружающей среды.

Под биосферой следует понимать такое состояние биоты, окружающей ее взаимодействующей с ней внешней среды, в которой антропогенное возмущение находится ниже порога нарушения принципа Ле Шателье». Закон минимума Ю. Либиха : жизненные возможности организма лимитируют экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму. Присутствие или процветание тех или иных видов в экосистеме зависит от комплекса факторов. По каждому фактору имеются пределы толерантности, выход за которые делает существование вида невозможным. Из огромного количества лимитирующим можно считать такой фактор, по которому для достижения положительного эффекта требуется его наличие в минимальном количестве. Например, общая ниша для рыбостракофилов (горчак) может быть оптимальной для его существования, но отсутствие двухстворчатых моллюсков делает процесс размножения для этой рыбы невозможным. Вид в данных условиях существовать не будет.

Закон 10 % Р. Линдемана : средняя эффективность переноса энергии между трофическими уровнями составляет 6-15 %, а в среднем 10 %. Этот закон вытекает из законов термодинамики, когда все виды энергии превращаются биосистемами в теплоту, а на прирост биомассы идет от общей ее величины меньшая часть. Так, для гидробионтов использование ассимилированной пищи на рост составляет примерно 10–25 %.

Закон обеднения разнородного вещества в островных его сгущениях : индивидуальная система, работающая в среде с уровнем организации более низким, чем уровень самой системы, обречена, т. к., постепенно теряя свою структуру, система через некоторое время растворяется в окружающей среде. Любые сложные биотические сообщества, сохраненные на незначительных пространствах, обречены на постоянную деградацию. Этот закон имеет некоторое отношение и к выбору стратегии введения сельского хозяйства. Известно, что биоценозы, которые возникают на землях сельхозпользования, называются агроценозами.

Какие отличительные признаки этих ценозов?

Первое – низкое их биоразнообразие.

Второе – неспособность основных культур противостоять многим болезням и вредителям.

Третье – доминирование монокультур.

Стоит только человеку на время прекратить борьбу с нежелательными (сорными) видами растений, как окультуренные земли быстро зарастают разнотравьем и выходят из оборота, т. е. растворяются в окружающей среде. Лучший вариант введения сельского хозяйства – это формирования агроэкосистем, т. е. сознательно спланированных человеком территорий, на которых сбалансировано получение сельскохозяйственной продукции и возврат ее составляющих на поля (Кормилицын и др., 1997). В правильно спланированные агроэкосистемы, кроме пашен, входят пастбища или луга и животноводческие комплексы.

Закон обратимости биосферы : биосфера после прекращения воздействия на ее компоненты антропогенных факторов обязательно стремится восстановить свое первоначальное биоразнообразие. Этот закон является следствием вышеприведенного закона об обеднении разнородного вещества.

Закон природной зональности : в пределах обширных территорий (зон) природные условия сохраняют многие черты. Однако они заметно изменяются от зоны к зоне. Или, экосистемы различных биоклиматических поясов, как правило, имеют существенно разные почвенные профили.

Имеется еще ряд важных законов (энтропии, квантитативной компенсации и др.), которые способствуют формированию устойчивого состояния биосферы.

И все же, изменяя природу, человек создает новые экологические ниши, которые заселяются наиболее пластичными видами. Тогда, в каком направлении следует ожидать изменения биоты биосферы? Ведь известно, что отдельные организмы приспосабливаются к изменившимся условиям очень быстро, в то время как другие, не успевшие приспособиться, – вымирают.

Например, в Канаде, в районе озера Онтарио 70 лет действуют металлургические предприятия, нанесшие огромный вред окружающей среде. На сотнях квадратных километров вокруг этих предприятий оказалась уничтоженной всякая растительность в результате выброса в атмосферу большого количества двуокиси серы и накопления в почве тяжелых металлов. И все же, в созданной человеком пустыне неожиданно появилась и стала размножаться трава щучка, которой ранее здесь не было. Это растение приобрело способность выдерживать воздействие двуокиси серы, меди, никеля, кобальта, серебра, а также и свинца, цинка, кадмия, которых здесь нет. Аналогичные устойчивости к тяжелым металлам обнаружены у обитающих в почве некоторых водорослей.

Одному из авторов в свое время представилась возможность наблюдать значительные изменения в травостое фитоценозов, расположенных в районе воздействия Селенгинского бумажного комбината (1979–1980), который находится в устье реки Селенги, впадающей в озеро Байкал.

Все подобные случаи заслуживают пристального внимания и тщательного изучения. Они наглядно демонстрируют способность живого приспосабливаться в результате естественного отбора к самым неблагоприятным внешним условиям и занимать свободные экологические ниши. Быстрота возникновения таких приспособлений наглядно показывает, сколь стремительно может протекать эволюционный процесс тогда, когда последствия человеческой деятельности стали важным фактором изменения окружающей среды.

Правило обязательности заполнения экологических ниш . Согласно этому правилу, пустующие экологические ниши всегда бывают заполнены. Экологическая ниша как функциональное место вида в экосистеме позволяет форме, способной выработать приспособительные особенности, заполнить эту нишу, но иногда для этого требуется значительное время. Бывают ситуации, что эти ниши заполняются видами самым неожиданным образом (Кормилицын и др., 1997). Это надо учитывать при проведении тех или иных мероприятий, связанных с эксплуатацией видового состава экосистем. Следует напомнить, что термин «экологическая ниша» введен в 1928 г. Дж. Гриннелом, хотя без добавления слова «экологическая» был применен в том же смысле уже годом ранее Элтоном, подчеркивавшим, что ниша животного – «это значит место в живом окружении, его отношение к пище и врагам». В настоящее время под термином «ниша» понимается место вида в природе, включающее его положение в пространстве и времени существования, его функциональную роль в природе и положение относительно абиотических условий существования (Тупикин, 2002). Под этим термином можно понимать и весь комплекс абиотических и биотических условий среды, позволяющий на данном пространстве и в данное время наилучшим образом обеспечивать виду его существование.

 

8.4. Генетика и эволюция биосферы

Общепризнанно, что теория Ч. Дарвина о происхождении видов эволюционным путем совершила переворот в мировоззрении не только ученых, но и многих миллионов людей. Это был сильнейший удар метафизическому взгляду на природу, который показал, что весь современный облик биоты является продуктом процесса развития, длившегося миллионы лет. Можно однозначно утверждать, что Ч. Дарвин впервые установил изменяемость видов и преемственность между ними.

Второе научное событие XIX в. – это установление и обоснование Г. Менделем дискретной природы факторов наследственности. И наконец, открытие Ф. Мишером нуклеина – вещества, из которого, как теперь известно, построены гены. После этих прорывов в познании природы биологических явлений наука достигла такого совершенства, что способна не только объяснить механизмы видообразования растений и животных, но и управлять этими процессами. К настоящему времени накопленный научный материал свидетельствует в пользу теории эволюции. Материальной ее основой является генная система организмов, которая способна изменяться путем мутаций в ответ на перемены во внешней среде.

Можно утверждать, что нет более точного и краткого определения жизни, чем то, которое дал Ф. Энгельс. Современная наука внесла в это определение важные поправки и уточнения, не изменяя, однако, основного ее содержания. Именно обмен веществ, как указывал Ф. Энгельс, является необходимым условием поддержания жизни. Это принципиальное различие в развитии живых и неживых тел. Обмен веществ есть протекающий сам по себе процесс, присущий, прирожденный своему носителю – белку, без которого не может быть жизни. В этом заключается генетическая основа развития живых тел.

Генетика доказала, что генная система обеспечивает организму возможность его жизни и отличия данной формы жизни от других, не родственных (или родственных) ей. Стал очевидным тот факт, что развитие живой материи имеет закономерный и определенный характер в силу ее генетической обусловленности. Основой этого развития является строго определенная генетическая информация, а поэтому жизнь является производной материи, энергии и информации.

Как отмечалось выше, возникновению жизни предшествовала химическая эволюция, которая привела к органической ее форме. С появлением жизни наступил подлинный расцвет химии органических соединений, возникла биохимия, т. к. появились отличные от неживых тел живые с их особенным биологическим временем – пространством. В пределах этого пространства возникли такие условия, где действию законов физики и химии открывался неизмеримо больший простор, что предопределило появление структур, существование которых невозможно вне живого.

Здесь вполне уместен вопрос: как во времени соотносится появление жизни и возникновение генов?

Имеется мнение (Меркурьев и др., 1983, с. 387–389), согласно которому гены образовались не ранее и не после появления живых тел, а знаменовали собой возникновение жизни. Когда нуклеиновые структуры и белки приобрели возможность соответственного соединения, возникла жизнь. Устойчивые линейно организованные структуры нуклеиновых кислот обеспечили основу для воспроизводства соответствующих их строению белков. Они оказались способными к ферментативному контролю над химическими превращениями в окружающей среде. Важно отметить, что белки образуются на рибосомах, которые уже сами состоят из белков и РНК. Однако некоторые белки, например, глютатион и грамицидин, синтезируются вне рибосом непосредственно в цитоплазме, что указывает на возможность образования белков в первичных биологических системах. Приведенные Е. К. Меркурьевым и Г. Н Шангин-Березовским (1983, с. 386–398) факты, убедительно опровергают муссируемые околонаучными апологетами посылки о невозможности возникновения жизни на нашей планете эволюционным путем. Следующий этап преобразования биосферы – это переход ее в качественно новое состояние – ноосферу (сферу действия разума).