Современное состояние биосферы и экологическая политика

Колесник Ю. А.

Ижко Ю. А.

Глава 7

Биогеохимические процессы и продукционные циклы

 

 

7.1. Общие положения

Как отмечалось выше, биомасса живых организмов (любого систематического уровня) характеризует один из аспектов биосферы. Зная ее величину, можно составить представление о количестве изъятых из окружающей среды биогенных элементов. Однако этот показатель еще не дает основания судить о скорости их оборачиваемости в системе «окружающая среда – живое вещество». Речь идет о биогеохимических круговоротах. В этом плане большое влияние на динамику биосферы оказывают такие процессы, как скорость круговорота веществ, которая в свою очередь во многом определяется скоростью продуцирования органических веществ. Кроме этого, немаловажное значение для формирования биогеохимических циклов характер воспроизводства организмов, смена их поколений и, в конечном итоге, особенности динамики численности многих видов популяций растений и животных.

Известно, что существуют организмы, обладающие способностью преимущественного (более 10 %) накопления отдельных элементов, таких как кремний, железо, сера, фосфор и др.

Так, например, фораминиферы и радиолярии (простейшие животные) в составе своих скелетов содержат углекислый кальций, кремнезем. После отмирания их скелетики в громадных количествах опускаются на дно и формируют радиоляревые илы. Часть углекислого кальция растворяется в воде (не достигая глубин 5000–6000 м) и вовлекается в планетарный обмен. Подсчитано, что реками в океаны и моря ежегодно выносится около 109 т CaCO 3 , которые затем переходят в донные осадки. Основную же массу известковых осадков дают скелетные остатки морских животных (в основном планктон). Эти осадки широко распространены в низких широтах. Далее, в процессе геологических преобразований, известковые породы попадают на сушу, где, растворяясь дождевыми, речными, подземными водами, снова вовлекаются в планетарный круговорот. Возможен еще один сценарий кругооборота веществ. В результате движения литосферных плит океаническая кора погружается в мантию. Она уносит туда и морские отложения, которые накопились на дне. Следовательно, мантия обогащается не только неорганическими элементами, но и горными породами органического происхождения. Все это оказывает влияние на ее состав до глубин в сотни и даже тысячи километров. Положение зон со временем меняется. Изменяется вещество Земли, которое находится в постоянном движении. В расщелинах на дне океана изливается не только базальтовая лава, но и горячая минерализованная вода, богатая медью, цинком и другими химическими элементами. Температура в зонах выброса воды достигает 3300 °C. Это так называемые гидротермы, способствующие в дальнейшем образованию наростов, столбов и труб высотой до 27 м. По этим трубам поднимается горячий раствор, и мелкие минеральные частицы попадают в воду. Название у труб экзотическое – курильщики. Около них кипит жизнь, состоящая из бактерий, моллюсков, крабов.

Осмысливая становление биосферы, ее эволюцию, нельзя не отметить тот факт, что в каждые исторические эпохи формировалось неравномерное распределение живого вещества по планете – его мозаичность. Данная закономерность порождалась своими центрами видообразования организмов, наличием соответствующих климатических и почвенных условий, интенсивностью круговорота веществ и другими факторами. Поэтому современный вид биосферы является отражением тех далеких геохимических и геофизических процессов, которые сформировали ее лик. Убежденность ученых в том, что в прошлом палеобиогеоценозы функционировали подобно современным, опирается на актуалистический метод. Смысл его заключается в следующем: на прошлое распространяют те закономерности, которые наблюдаются в настоящее время, или «современность – ключ к пониманию прошлого».

Например, сейчас в тропическом лесу на площади 2 га можно насчитать более 200 видов растений, тогда как в смешанном лесу умеренного пояса – только 10 видов. Значит, если в древних отложениях обнаруживаются остатки вечнозеленых растений, пальм, крупные листья и богатое биоразнообразие, – то можно утверждать, что в этот период на данной территории климат был подобен тропическому, а если попадают растения с мелкой листвой или колючками, присутствием опушения или воскообразного налета, – это зона аридного климата (современных пустынь) и т. д.

В свете вышеизложенного следует полностью согласиться с утверждением А. Н. Тюрюканова: «…биосферная концепция Докучаева – Вернадского убедительно доказала, что исторический метод – это метод активного и объективного познания окружающего нас мира; показала, как возник и как развивался лик планеты под воздействием живого вещества и почему мы застали его таким, а не иным» (1990, с. 39–40).

 

7.2. Большой и малый круговороты веществ в биосфере

Круговоротом веществ на Земле называются повторяющиеся процессы превращения и перемещения веществ в природе, имеющие более или менее выраженный циклический характер.

Поступление солнечной энергии привело к тому, что на Земле сформировались два круговорота веществ: большой (биосферный) и малый (внутриэкосистемный).

Первый круговорот имеет планетарный характер, а второй реализуется на биогеоценотическом уровне. Оба круговорота взаимосвязаны и представляют собой как бы единый процесс. Фактически, малый (биологический) круговорот веществ базируется на фоне большого – геологического. Суть биологического круговорота – создание и разрушение органического вещества. Химические элементы, в том числе все основные элементы протоплазмы, обычно циркулируют в биосфере по характерным путям из внешней среды в организмы и опять во внешнюю среду. Эти замкнутые пути называют биогеохимическими циклами. Движение необходимых для жизни элементов и неорганических соединений можно назвать круговоротом элементов питания.

Если иметь в виду биосферу в целом, то биогеохимические циклы можно подразделить на два основных типа:

1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере;

2) осадочные циклы с резервным фондом в земной коре.

Резервный фонд – это большие массы медленно движущихся веществ в основном небиологического состава. Разделение био-геохимических циклов на круговороты газообразных веществ и осадочные циклы основано на том, что некоторые круговороты, например те, в которых участвуют углерод, азот, кислород и водород, благодаря наличию крупных атмосферных или океанических фондов довольно быстро восполняют их дефицит в других системах и компенсируют различные нарушения. Например, избыток СО2, накопившийся в каком-либо месте в связи с усилением окислительных процессов или горением ждет следующая «судьба»: он быстро рассеивается воздушными массами, активно используется растениями и поглощается океаном.

Круговороты газообразных веществ с их большим атмосферным фондом можно считать в глобальном масштабе хорошо забуференными, поскольку их способность приспосабливаться к изменениям велика. Но способность к саморегуляции при таком большом резервном фонде, каким является атмосфера, имеет свои пределы.

Осадочные циклы, в которых участвуют железо, фосфор и другие вещества, обычно гораздо менее подвержены самоконтролю и легче нарушаются в результате каких-либо местных преобразований. Это обусловлено малоподвижностью и малой активностью земной коры, в которой находятся эти вещества.

Важнейшей характеристикой круговорота служат его емкость и скорость. Если понимать под скоростью данного процесса величину продукции, т. е. скорость живого вещества, образующегося в единицу времени, то с геохимической точки зрения такое представление не является полным и достаточным.

По мнению А. Н. Тюрюканова, «„мерой биогеохимической активности организма следует считать массу химических элементов, перемещаемую им в биогеоценозе или биосфере за единицу времени. Следовательно, скорость круговорота элемента нужно определять временем, затрачиваемым организмами в биогеоценозе на биогенный перенос такого количества элемента, которое равно его содержанию в этих организмах в данное время» (1990, с. 45).

Принято (в наземных экосистемах) оценивать интенсивность биологического круговорота величиной, равной отношению массы подстилки к той части опада, которая формирует подстилку (Ковда, 1971, с. 7–52). Чем выше этот показатель, тем меньше интенсивность биологического круговорота в данной экосистеме.

Проведенные учеными оценки показали следующие результаты:

Заболоченные леса, кустарниковые тундры – индекс равен, в первом случае более 50, а втором – 20–50. Эти сообщества по критерию круговорота классифицируются как застойные;

Темнохвойные таежные леса, широколиственные – соответственно, 1017 и 3–4. Здесь круговороты сильно заторможены и задерживаются; Степи – индекс 1–1,5; субтропические леса – 0,7; влажные тропические леса – 0,1. Интенсивность круговорота, соответственно, активная, интенсивная и весьма интенсивная.

Значение для биосферы биогеохимических круговоротов веществ выявило ряд важных закономерностей, не полностью согласующихся с теорией Ч. Дарвина. Речь идет не о решающей роли естественного отбора в происхождении видов растений и животных. Общеизвестно, что в основе этой теории лежит принцип отбора организмов по признаку их приспособленности к среде. Учение о биосфере выдвигает новый – геохимический критерий отбора.

«В процессе эволюции органического мира происходит отбор организмов, способных внести наиболее весомый вклад в расширение емкости и увеличение скорости биогеохимического круговорота в биосфере» (Тюрюканов, 1990, с. 46).

Концепция, выдвинутая В. И. Вернадским, по своей значимости сопоставима с теорией Ч. Дарвина. Здесь справедливо следующее:

«Геохимическая функция живого базируется на двух взаимосвязанных противоположных процессах – поглощения и выделения веществ. В учении о биосфере, характеризуя активность живого вещества, Вернадский говорил о “давлении жизни”, о “всюдности жизни”, о “растекании живого вещества по планете”. Он не употребил антропоцентристское понятие “борьба за существование”, к которому прибегнул Дарвин» (Тюрюканов, 1990, с. 47).

Действительно, борьба за пищу, за источник питательных веществ – лишь один из моментов жизнедеятельности живого вещества, связанного с его способностью к поглощению. Другая, не менее важная функция живого, – выделительная. Это все так, ибо без этой функции невозможно было бы существование цепей разложения, минерализующих органическое вещество, содержащееся в продуктах выделения тех или иных организмов. Эти организмы заняты одной единственной стратегией – извлечь остатки энергии из неусвоенной пищи вышестоящих трофических уровней. Но в силу законов термодинамики (см. формулы 8 и 11) природа не создала новых способов извлечения энергии, подобных фотосинтезу и переизлучению его результатов другим трофическим уровням. Ядерная энергетика, процессы аннигиляции и другие ее варианты воспроизводства не в счет – т. к. к процессам жизни они не имеют прямого отношения.

Таким образом, ввиду колоссальной потери энергии на каждой ступени пищевой пирамиды она редко состоит более чем из пяти трофических уровней. Это запрет природы. Однако нельзя оставить без внимания и тот факт, что потоки вещества через живые системы являются необходимым и достаточным условием их существования.

Выдвинутые В. И. Вернадским два принципа роли биогеохимических функций являются основополагающими. Это касается той роли, которую играют на каждом трофическом уровне организмы.

Первый принцип состоит в следующем: биогенная миграция химических элементов в биосфере стремится к максимальному своему проявлению. «Всюдность жизни» – яркое подтверждение этому.

Второй принцип – эволюция видов, приводящая к созданию форм жизни, устойчивых в биосфере, должна сопровождаться усилением биогенной миграции атомов в биосфере.

Нам видится, что в этих принципах имеется один пробел. Дело в том, что миграция атомов через биосистемы является следствием, а не основой существования живого вещества. Следовательно, на каждом этапе видообразования видовых популяций, в первую очередь, ставился вопрос о энергообеспеченности их существования. Если бы этого не произошло, то их ожидала бы судьба многих вымерших представителей биоты.

Мы знаем ту роль, которую сыграло в изменении мировоззренческого осмысления бытия природы понятие «скорость». Если брать во внимание законы Ньютона, то эта величина определяется просто – путь, пройденный телом, необходимо разделить на время. Если объект движется с околосветовой скоростью, то в этом случае необходимо вносить поправки в соответствии с теорией Эйнштейна. Это законы физики – праматери всех наук. А живое вещество? Что здесь является скоростью, а что статичной величиной? По-видимому, для ответа на эти вопросы необходимо руководствоваться следующими положениями:

1) выясним размерность тех величин, которые используются в продукционных исследованиях;

2) результаты физических (и биологических) явлений, с которыми мы встречаемся в повседневной жизни и в научных исследованиях, измеряются в определенных единицах.

Речь идет о размерности природных величин. Например, если в уравнении левая часть некоторого равенства имеет размерность «метр», а правая – «м/с», то можно утверждать, что это равенство неверно. Каждая физическая величина размерности имеет свое обозначение. Например, размерность объема равна L3, скорости – LT-1, ускорения – LT-2 и т. д.

 

7.3. Круговорот воды

Главным резервуаром воды на Земле является океан. Он содержит более 97 % всего запаса воды на земном шаре (примерно 1,4 1018 т). Около 2 % водных запасов находится в ледниках. Вода континентов (немногим более 0,6 %) представлена в основном грунтовыми водами; только 1/5 ее залегает так близко к поверхности, что доступна для корней растений, а все остальное угодит на глубину в сотни метров. В облаках, туманах, водяном паре содержится не более 0,001 % запасов воды на планете.

Запасы воды находятся в подвижном равновесии друг с другом. По данным ученых, с поверхности суши испаряется около 70 103 км3 влаги в год. Это составляет примерно 15 % от общей ее массы, поступающей в атмосферу. Остальное поставляет океан – 458 103 км3 воды. Всего с поверхности земли испаряется 520 103 км3

влаги (Степанов, 1970, с. 40). C поверхности океана испаряется больше воды, чем выпадает там осадков. Излишек переносится на сушу. Разность между испарением и осадками определяет основные особенности планетарного влагообмена. В экваториальной зоне осадки доминируют над испарением. На всей остальной акватории океана испарение преобладает над осадками. Огромная зона испарения ограничена широтами в южном и северном полушариях – 40–50. Выпадая в виде осадков на суше, вода снова испаряется и 7 % выносится реками в моря и океаны. Круговорот воды вследствие высокой скорости оборота – время пребывание водяного пара в атмосфере составляет 10 суток, а полное обновление воды происходит всего лишь за 12 суток, или 30 раз в год (Степанов, 1970, с. 41), – в количественном отношении самый значительный круговорот веществ на земном шаре.

Испарение с земной поверхности следует рассматривать, прежде всего, в связи с осадками. Для водного баланса какого-либо района важен не столько абсолютный уровень осадков и испарения, сколько соотношение между этими двумя величинами. Если годовые осадки превышают годовое испарение, то говорят о гумидной зоне, а в обратном случае – об аридной. Примерно 12 % поверхности Земли является крайне засушливой с годовыми осадками ниже 250 мм и испаряемостью более 1000 мм. Самые влажные районы с большим избытком осадков составляют менее 9 % поверхности суши. Обширные засушливые территории расположены главным образом между 15 и 30 северной и южной широты и за высокими горными цепями, которые задерживают ветры, приносящие дожди.

Отношение годовых осадков к годовому испарению является грубым указанием на гумидный или аридный характер обширной территории. Для растений, которые там произрастают, важно, чтобы водоснабжение было обеспечено тогда, когда в нем существует наибольшая потребность, т. е. в течение вегетационного периода. Кроме этого, малое количество осадков само по себе еще не обусловливает аридности: холодные полярные зоны тоже бедны осадками, но они не являются аридными, т. к. здесь низка испаряемость. Осадки, выпавшие в виде снега, поглощаются растениями не сразу. Зима для растений, возвышающихся над снеговым покровом, – это не только холодное, но и сухое время года. В северном полушарии в широтах выше 70 снег выпадает чаще, чем дождь, а там, где массы холодного воздуха продвигаются на юг, эта граница сдвигается до широты в 60.

Как на крайнем севере, так и в горах продолжительность снежного покрова, его высота и промерзание почвы являются главными факторами, ограничивающими рост деревьев. Там, где зимой ветер сдувает снег, подрост деревьев гибнет, а там, где снеговой покров лежит слишком долго или корнеобитаемый почвенный горизонт остается слишком долго замерзшим, вегетационный период настолько короток, что древесные растения отсутствуют вообще, лес исчезает и переходит на севере в тундру, а в горах – в кривоствольный древостой или альпийские травяные сообщества.

 

7.4. Углеродный обмен в биосфере

На всем земном шаре, по оценкам ученых (Лархер, 1978, с. 128), растения ежегодно связывают около 155 109 т углерода. Из этого количества на долю суши приходится 61 %, а гидросферы – 39 % от общего его количества. Очень высокая первичная продуктивность на суше принадлежит районам тропиков, а в океане – зонам между 40 и 60 северной и южной широты. Наибольшая продуктивность наблюдается в дождевых тропических лесах, зарослях злаков в условиях сильного увлажнения и на заболоченных территориях теплых стран, а также на границах мелководных участков с морем и коралловых рифах. И все же основная часть поверхности суши и воды на Земле не отличается высокой продуктивностью. На суше почти всегда не хватает воды, в Арктике и в высокогорьях холод укорачивает продуктивный период. В тропических морях продуктивность лимитируется недостатком питательных веществ, в приполярных морях – недостатком света. Общий запас соединений углерода на Земле оценивается в 26 1015 т. В приведенной ниже таблице показан бюджет запаса углерода на планете (млрд т С). Подавляющая масса углерода связана в неорганических веществах и лишь около 0,05 % – в органических (табл. 4).

Таблица 4

Запасы углерода на Земле (млрд т)

Органический углерод находится в биосфере и в верхних слоях литосферы: 64 % всего его запаса содержится в ископаемых отложениях (торф, уголь, нефть), 32 % – в органических остатках в почве и водоемах и около 4 % участвует в построении биомассы. Наибольшая часть биомассы приходится на долю наземных растений. Особенно это касается лесов, имеющих большие запасы древесины. Их углерод составляет более 77 % всего углерода наземных растений. На поверхности почвы и в самой почве наибольшие запасы углерода образуются в тундровой зоне и в северных лесах, где органические остатки разлагаются гораздо медленнее, чем в теплых областях.

Запасы неорганического углерода сосредоточены в основной своей массе в осадочных горных породах земной коры. Гидросфера Земли содержит 0,14 % общего углеродного резерва планеты в форме бикарбоната и карбоната или в виде растворенной СО2. Общая масса углерода в Мировом океане оценивается в 3,6 1013 т, а в атмосфере – 6,3 1011 т. Поверхностный слой, в котором происходят основные процессы фотосинтеза, содержит только 1/60 запаса неорганического углерода гидросферы. Средняя концентрация двуокиси углерода в атмосфере составляет 0,03 %. При атмосферном давлении в 1 бар этой концентрации соответствует 0,6 мг СО2 в 1 л воздуха.

Обогащение воды углекислым газом происходит в результате дыхания водных организмов, за счет инвазии из атмосферы и выделения из различных соединений, в первую очередь солей угольной кислоты. Снижение концентрации этого газа в воде в основном происходит в результате его потребления фитопланктоном и другими фотосинтезирующими растениями и связывания в соли угольной кислоты. Например, фитопланктон Мирового океана потребляет в год около 40 млрд т углерода. Коэффициент абсорбции СО2 при температуре 0 С равен 1,713. Значит, в условиях нормального содержания газа в атмосфере (0,3 мл/л) и температуре 0 С в 1 л воды может раствориться 0,514 мл СО2. Проведенные исследования показывают, что ежегодно около 100 млрд т атмосферной двуокиси углерода растворяется в Мировом океане и замещается примерно равным его количеством из океана.

 

7.5. Круговорот кислорода

Из всех газов, имеющихся в атмосфере, а также растворенных в Мировом океане, особый интерес представляет кислород, т. к. он обеспечивает высокий выход энергии при аэробной диссимиляциии практически для всех организмов Земли и по существу лежит в основе их жизни. Известно, что атмосфера содержит примерно 1,2 1015 т кислорода. Главными поставщиками кисло

рода на планете являются растения. Благодаря фотосинтезу наземных и морских растений к этому запасу ежегодно прибавляется 70 109т, а леса поставляют в течение года 55 109т кислорода.

В литосфере содержится 47 %, гидросфере 85,2 %, а в свободном состоянии в атмосфере содержится 21–23,1 % кислорода. Коэффициент абсорбции кислорода водой при 0 С равен 0,04898. При нормальном атмосферном давлении в 1 л воды растворится 210 мл/л (содержание в атмосфере), умножим на коэффициент абсорбции и получим величину, равную 10,3 мл кислорода. Следует заметить, что насыщение вод газами находится в большой зависимости от изменения температуры. Так, при 25 С в воде растворится 4,9 мл/л кислорода и 9,1 мл/л азота. При 15 С, соответственно, – 5,3 мл/л и 10,6 мл/л и т. д. При сохранении подобной зависимости в высоких широтах поглощается больше газов, чем в тропических областях.

В целом круговорот кислорода на Земле идет в направлении, обратном круговороту углерода. Время полного оборота кислорода через фотосинтез составляет для атмосферы 2000–2500 лет, а углекислого газа – 300 лет. Исследования показывают, что возмещение кислорода, непрерывно отчуждаемого из атмосферы в результате горения, возможно только благодаря активности фитопланктона. В водоемах отмершие организмы опускаются на такую глубину, где их разложение идет в основном анаэробным путем, в то время как на суше огромное количество этого газа расходуется на деятельность микроорганизмов, разлагающих опад. Анализ процессов, обусловивших круговорот кислорода, свидетельствует, что, несмотря на его избыток, в некоторых местах он все же является лимитирующим фактором в жизнедеятельности растений и животных. Например, потребление почвенными бактериями, грибами, животными и корнями растений при застое воды и в плотных или теплых почвах (тропики) иногда настолько велико, а пополнение его путем диффузии идет так медленно, что живые организмы находятся в угнетенном состоянии, или гибнут вообще. В океане, ниже эуфотической зоны с глубиной идет уменьшение кислорода настолько, что, например, в замкнутых водоемах, таких как Черное и Балтийское моря, его у дна практически нет.

 

7.6. Азотный обмен

Азот, углерод, кислород и водород являются основообразующими химическими элементами, без которых (хотя бы в пределах нашей солнечной системы) не возникла бы жизнь. Азот в свободном состоянии обладает химической инертностью и является самым распространенным элементов на Земле. Примерно, 4 1015 т

этого газа сосредоточено в атмосфере. По отношению к объему всех газов, имеющихся в атмосфере, он занимает 78,1 %. Согласно оценкам ученых, наибольшее количество связанного азота находится в каменном угле (1–2,5 %) и нефти (0,02-1,5 %), а также в водах рек, морей и океанов (Кормилицын и др., 1997, с. 102). В белке животных содержится 16–17 % азота. Вызывает удивление тот факт, что, несмотря на активный газообмен между гидросферой и атмосферой, в каждой из них сохраняется постоянное соотношение кислорода к азоту, хотя эти соотношения различны в воздухе и водах Мирового океана. Например, в атмосфере азота (по объему) в 4 раза больше, чем кислорода, а в гидросфере только в 2 раза. Следует отметить, что зеленые растения используют неорганический связанный азот. Они, оказывается, не только С-автотрофами, но и N-автотрофами.

Азот, участвующий в обменных процессах с биосферой, распределяется на Земле следующим образом: 99,4 % его содержится в атмосфере (3,8 1018 т), 0,5 % в гидросфере, 0,05 % в почве и 0,0005 % в биомассе. В отличие от углерода почти весь азот наземных экосистем находится в почве, а не в биомассе (Лархер, 1978, с. 158).

Несмотря на огромный резервный фонд азота, основной круговорот этого биогенного элемента происходит между организмами и почвой и доминирующая роль в этом принадлежит микроорганизмам. Можно полагать, что единственными организмами, способными усваивать атмосферный азот, являются азотофиксаторы. Они превращают молекулярный азот в усвояемую растениями форму. Согласно оценкам ученых, из всего ежегодно фиксируемого азота на Земле на долю микроорганизмов приходится около 59 %, а промышленной переработки – около 33 %. Именно наличие цепей разложения, входящих в состав экосистемы, обеспечивает ей замкнутый цикл. Это обусловлено процессами создания азотосодержащего органического вещества растениями и вторичными продуцентами. Важно отметить, что связь экосистемы с атмосферой происходит благодаря наличию фиксаторов и денитрифика-торов азота. По данным Ю. Одума (1986, с. 205–207), фиксировать атмосферный азот способны следующие микроорганизмы:

♦ свободноживущие бактерии – Azotobacter (аэроб) и Clostridium (анаэроб);

♦ симбиотические клубеньковые бактерии бобовых растений (Rhizobium);

♦ сине-зеленые водоросли (цианобактерии) – Anabaena, Nostoc;

♦ пурпурные бактерии (Rhodospirillum).

Близкие к Pseudomonas почвенные бактерии актиномицеты (особые примитивные грибы) в корневых клубеньках ольхи (Alnus) также эффективно фиксируют азот. К настоящему времени обнаружено на корнях клубеньки у 160 видов, относящихся к 5 родам и 8 семействам двудольных растений вызванные актиномицетами. Эти фиксаторы азота возникли в умеренной зоне и приспособлены в большинстве к бедным песчаным и болотистым почвам, где доступного для растений азота имеется мало. Важную роль в фиксации азота играют сине-зеленые водоросли, у которых этот процесс может происходить как у свободноживущих форм, так и в симбиозах с грибами, со мхами и папоротниками. Интересен тот факт, что на вайях плавающего водного папоротника Azolla имеются микроскопические поры, наполненные симбиотическими сине-зелеными водорослями Anabaena, активно фиксирующих азот. Этот папоротник многие века играл одну из главных ролей удобрении рисовых полей Востока. Основной фермент биофиксации – нитрогеназа, катализирующая расщепление молекулы азота. С энергетической точки зрения процесс фиксации азота дорогостоящий, потому, что требуется много ее затрат на разрыв тройной связи в молекуле N2 (N N), чтобы с добавлением водорода из воды превратить ее в две молекулы аммиака (NH3). Проведенные учеными обширные исследования по изучению способов фиксации азота позволили прийти к следующему важному выводу:

«Лишь прокариоты, безъядерные, самые примитивные микроорганизмы, могут превращать биологически бесполезный газообразный азот в формы, необходимые для построения и поддержания живой протоплазмы. Когда эти микроорганизмы образуют взаимно выгодные ассоциации с высшими растениями, фиксация азота значительно усиливается» (Одум, 1986, с. 208–209).

Круговорот азота (если рассматривать его в масштабах всей биосферы) сбалансирован. Наличие обратных связей обеспечивает его саморегуляцию. Часть азота из густонаселенных областей суши, пресных вод и мелководных морей уходит в глубоководные океанические отложения и таким образом выключается из круговорота на длительное время (порядка миллионы лет). Однако за счет вулканической деятельности и процессов денитрификации часть азота вновь поступает в атмосферу и происходит его компенсация.

 

7.7. Круговорот фосфора

Круговорот фосфора несколько проще, чем азота, т. к. он встречается лишь в немногих химических формах. В гидросфере фосфор встречается почти исключительно в окисленном состоянии (Константинов, 1979, с. 339). Естественный круговорот фосфора в биосфере вследствие нелетучести его соединений не сбалансирован. Резервуарами фосфора являются горные породы и другие отложения, образовавшиеся в прошлые геологические эпохи.

Этот элемент является наиболее дефицитным, определяющим развитие жизни. Его недостаток в большей степени ограничивает продуктивность в том или ином районе, чем недостаток любого другого вещества, за исключением воды. Речной сток ежегодно выносит в Мировой океан около 2 млн т фосфора. Обратное движение фосфора из Мирового океана на сушу и в наземные водоемы ограничено. Оно не компенсирует вынос элемента с суши. Там, где есть фосфор в воде, почти всегда имеется избыток восстановленного железа. При окислении они вместе выпадают в нерастворимый осадок. В анаэробных условиях может протекать обратный процесс.

Большую роль в процессах извлечения фосфора из грунта играют гидробионты. С помощью корневой системы макрофиты способны изымать фосфор из слоев грунта, удаленных от его поверхности до метра и более (Константинов, 1979, с. 339–340). Как свидетельствуют результаты исследований ученых, способность водных растений к изъятию фосфора и других биогенных элементов может быть с успехом использована при создании экосистем, улучшающих питьевые качества воды.

Какая же доля минеральных элементов содержится в растениях, почве и воде? В табл. 5 приведены сравнительные данные по набору основных биогенных элементов.

Как видно из табл. 5, практически все живые организмы накапливают биогенных элементов намного больше, чем их имеется во внешней среде. Поэтому, высокоточная биологическая регуляция обмена веществ и энергии, а следовательно, и основных параметров окружающей среды является важнейшим свойством биосферы как динамической системы, поддерживающей на протяжении многих лет свое стационарное состояние.

Таблица 5

Среднее содержание минеральных биогенов в растениях, почве (г на 1 кг сухого вещества) и морской воде (г на 1 л) (по Лархер, 1978, с. 177)

Здесь становятся понятными отрицательные последствия, оказываемые человеком на биосферу. За счет неразумного вторжения в ее законы он способен нарушить ее уникальную саморегуляцию.