Автор: Юрий Романов

Мне давно хотелось рассказать о работе космических баллистиков, однако это сделать оказалось непросто. Люди этой профессии — большие скромники, что не удивительно — ведь именно они всегда, точно и заранее знают, куда и какой «дорогой» полетит ракета и ее полезный груз — космический аппарат или — увы! — термоядерная боеголовка. Поэтому и раньше, и даже теперь их работа окружена неким «флером» режимности. Во всяком случае, когда речь заходит о конкретных пусках и «изделиях», они весьма сдержаны в словах и прогнозах.

Эту статью, строго говоря, нельзя назвать интервью, поскольку она содержит ответы на вопросы, которые я задал сразу нескольким специалистам-баллистикам [Хочу поблагодарить И. Д. Карамышева, В. С. Таничева, Л. С. Остроумову и И. А. Васильева за помощь в работе над статьей, за их терпение и доброжелательность], с которыми много лет назад работал в одном из ведущих ракетно-космических НПО тогда еще СССР, тем не менее я решил сохранить форму «вопрос-ответ», чтобы в какой-то мере передать ощущение живого общения.

Помните слова песенки: «где водятся волшебники?» Так, где же сегодня «водятся баллистики»? Какие задачи перед собой ставят? В каких проектах участвуют? Существует ли международная кооперация в области космической баллистики?

ИСТОРИЯ

Еще в 1945 году М. К. Тихонравов в РНИИ разработал проект высотной ракеты ВР-190 для подъема двух человек на высоту до 200 км. Доклад об этом состоялся на научно-технической конференции НИИ-4 в марте 1950 года. Аудитория, в которой присутствовали специалисты ведомств, причастных к созданию ракетной техники, ответила настороженным шумом и бурным негодованием на заключительные слова докладчика о возможности полета человека в космос.

Обсуждение доклада один из руководителей закончил словами: «Думаю, что все это фантастика! Никому не нужная затея!» Эти слова были встречены аплодисментами.

Баллистики «водятся» везде понемножку… Там, где в них есть необходимость. Как правило, в составе каждой организации, имеющей отношение к запускам ракет или спутников, есть специализированные подразделения, занимающиеся баллистическими расчетами. Дело в том, что понятие «космическая баллистика» весьма условно. Следует знать, что траектории последних ступеней межконтинентальных баллистических ракет и отделяемых боевых блоков пролегают в околоземном космическом пространстве и зачастую оказываются значительно «выше» обычных орбит спутников. Для определенности будем считать, что «космическая баллистика» занимается расчетами движения орбитальных аппаратов и межпланетных станций.

Применительно к спутникам, вероятно, первые баллистические расчеты проводились в НИИ-4 Министерства обороны СССР Г. Ю. Максимовым, который создал математическую модель процесса выведения пассивного спутника на круговую орбиту. Эта модель позволила находить оптимальные значения импульса для перевода третьей ступени ракеты-носителя с эллиптической траектории вывода на круговую орбиту. Одновременно решалась задача расчета импульса торможения для «попадания» в заданную точку приземления при баллистическом спуске (без использования аэродинамических свойств корпуса). Именно эти работы, по мнению доктора технических наук, профессора А. В. Брыкова, положили начало развитию космической баллистики в СССР [А. В. Брыков, «Пятьдесят лет в космической баллистике». — М.: Изд-во СИП РИА, 2002]. В дальнейшем в этом военном учреждении успешно выполнялись работы по баллистическому сопровождению запусков первых спутников Земли, лунных станций (включая те, которые осуществляли мягкую посадку на Луну) и многие другие.

И сегодня в распоряжении военных находятся структуры, активно ведущие исследования и практические разработки в области баллистики, траекторных измерений, поддержания баз данных орбитальных аппаратов и параметров траекторий других космических объектов. С недавних пор рассекречен объект «Голицыно-2», представляющий собой мощнейший центр слежения за космическими объектами, траекторных измерений и баллистических расчетов.

Большой объем работ выполняет Баллистический центр Института прикладной математики им. М. В. Келдыша под руководством доктора физико-математических наук, профессора Э. Л. Акима (www.kiam1.rssi.ru/PHOBOS/kiamworks.html). Специалисты центра ведут прием и обработку данных траекторных измерений, поступающих от наземных измерительных пунктов, определяют текущие и прогнозируемые параметры движения космических аппаратов, рассчитывают параметры маневров и коррекции траекторий межпланетных станций, траекторий спуска и координаты точек посадки — то есть весь комплекс баллистического сопровождения пуска.

Сильная школа наведенцев-баллистиков сохранилась в Харькове. В свое время именно благодаря коллективу НПО «Электроприбор» ракета КБ «Южное» Р-36М2 (15А18М) получила те возможности по выведению управляемых боевых блоков [Это уникальное изделие выпускалось в Днепропетровске. Позднее техническая документация на управляемый боевой блок и его производство были переданы в ПО «Стрела» (Оренбург), www.peoples.ru/technics/rocket/stanislav_koniuhov], которые сделали ее самой совершенной стратегической ракетой своего времени. Название «Сатана» (SS-18 mod 5 «Satan»), данное ей американцами, говорит о многом…

Международное сотрудничество космических баллистиков имеет место при совместных пусках интернациональных аппаратов, запуски коммерческих спутников обязательно сопровождаются баллистиками «с обеих сторон», существует ряд международных космических проектов: «Радиоастрон» и перспективный «Миллиметрон», успех которых в огромной степени зависит от качества баллистического сопровождения экспериментов. Все такие программы не перечислить… Их довольно много.

Космическая баллистика, как область прикладной математики и механики, наверняка сильно прогрессировала за годы «космической эры». В чем заключается этот прогресс? Что такое космическая баллистика сегодня?

Можно сказать, что главное достижение — точность. Мы сегодня способны обеспечить реализацию заданных баллистических параметров движения космических аппаратов гораздо точнее, чем во времена первых спутников, — в этом огромная заслуга прибористов. Кроме того, использование вычислительных машин позволило значительно сократить время расчетов и, что очень важно, сделать их многовариантными даже в условиях жесткого лимита времени на подготовку баллистических уставок для коррекций.

Вообще говоря, точность вычисления параметров движения космического объекта напрямую связана с точностью измерения координат и характеристик его движения. А при измерениях и передаче данных всегда присутствуют ошибки, сбои и т. п. Алгоритмы обработки данных измерения должны учитывать это обстоятельство. Отсюда — необходимость применения разных, иногда довольно сложных и трудоемких в реализации математических методов — Калмановской фильтрации, например, и др.

С чего начинается разработка траектории полета межпланетного автомата? Как выбирается «маршрут»? Как все «это» вообще происходит?

ТЕОРИЯ

Математическая модель движения больших планет Солнечной системы основана на современных высокоточных аналитических теориях движения. Для планет от Меркурия до Нептуна используется теория П. Бретаньона VSOP82 (Bretagnon P. Theory for the motion of all the planets: The VSOP82 Solution, 1982). Для Плутона — теория Х. Накаи (Nakai H. Mean elements of Pluto, 1985).

Везде по-разному… Вообще-то, это чрезвычайно «нервный» этап работы. Дело в том, что космический аппарат, особенно если это межпланетная исследовательская станция, несет на борту море оборудования для проведения многочисленных измерений и экспериментов. Практически каждый такой эксперимент требует, чтобы космический аппарат оказался в определенной точке пространства в соответствующей ориентации. Зачастую сама программа эксперимента требует многочисленных переориентаций исследовательской станции и вдобавок включает в себя сеансы измерений в нескольких точках траектории — в открытом космосе, на подлете к планете, при пролете через верхние слои атмосферы и т. д.

Каждый комплекс аппаратуры имеет своего «хозяина» — организацию, планирующую эксперимент. Все такие организации выдают требования, касающиеся баллистических параметров в точках измерений (баллистики, разрабатывающие траекторию движения и программу коррекций, должны учесть в своих расчетах все нюансы). Это не всегда легко сделать, тогда начинается более или менее длительный процесс согласований, совещаний, поиска компромиссов…

При разработке траекторий приходится учитывать множество факторов как «внешнего» (пространственное положение небесных тел, гравитация, предположения о распределении плотности атмосфер и т. п.), так и «внутреннего» свойства (например, запасы топлива или рабочего тела двигателей космического аппарата, накладывающие ограничения на возможные значения импульсов коррекции и смены ориентаций). В частности, существуют временные «окна», когда целесообразно отправлять космическую станцию по некоторому конкретному маршруту. Эти «окна» определяются исходя из возможности минимизировать затраты энергии, времени полета и, как правило, известны заранее, однако вписаться в них не всегда удается по техническим или экономическим причинам.

Практически программа полета разбивается на этапы — например, этап выведения на промежуточную орбиту вокруг Земли, этап доразгона с выведением на траекторию движения к выбранной планете, этап движения по траектории с необходимым числом коррекций, этап подлета, этап перехода на орбиту спутника планеты или торможения и спуска в атмосфере. Если аппарат должен вернуться к Земле, траектория возврата строится сходным образом.

Баллистическое сопровождение полета осуществляется на каждом из этих этапов. К примеру, на этапе выведения используются данные, получаемые сетью наземных измерительных пунктов, которые непрерывно измеряют дальность, азимут и угол места выводимого аппарата. В результате вычислений мы получаем значения отклонений реальной траектории движения от программной и оценку ее допустимости. В конце этапа выведения мы имеем параметры орбиты, на которую выведен аппарат, что в дальнейшем позволяет рассчитать необходимый импульс доразгона и уставки для его выдачи (время, ориентация аппарата).

Довести космическую станцию до цели, лишь единожды рассчитав все параметры траектории, конечно же, нереально. Практически всегда есть расхождения в величинах действительных и теоретически необходимых импульсов двигателей коррекции и ориентации, что вносит своеобразную «помеху». Поэтому на трассе движения выполняются сеансы определения положения аппарата и уточняется его ориентация (знать ее очень важно, так как сопла двигателей, при помощи которых осуществляются коррекции траектории и ориентации, конструктивно «привязаны» к корпусу космического аппарата). Эта работа ведется в течение всего полета. Конечно же, наиболее точно определить расхождение действительной и программной траекторий можно «в конце пути», у цели, но в этом случае может оказаться, что промах так велик, что для коррекции не хватит ни энергетики космического аппарата, ни времени. Поэтому приходится многократно корректировать траекторию, не забывая об экономии топлива.

Отдельная «головная боль» — солнечные элементы (если они есть на борту и имеют плоскостную конструкцию). Дело в том, что для подзарядки бортовых аккумуляторов их время от времени необходимо разворачивать к Солнцу, а это не всегда, но частенько означает, что необходимо определенным образом сориентировать весь космический аппарат. При этом часть научной аппаратуры не может продолжать работу, и после сеанса подзарядки станцию необходимо вновь сориентировать должным образом.

Как это начиналось…

Завершилось признание космической баллистики как одного из научных направлений НИИ-4 созданием в институте (май 1956 года) специализированной лаборатории с задачами: организация баллистического обеспечения управления полётом ИСЗ и определение перспектив использования спутников в интересах Министерства обороны. Начальником первой лаборатории космической баллистики был назначен опытный ракетный баллистик, доктор технических наук Павел Ефимович Эльясберг…

Наша космическая лаборатория при этом оказалась в сложнейшем положении. Из-за отсутствия ЭВМ пришлось искать «ручные способы» решения баллистических задач. А эти способы должны были решить задачу определения орбиты по данным измерений, прогнозирование движения спутника, расчет целеуказаний всем средствам наблюдений и измерений. Была создана графоаналитическая методика, основу которой составляло определение по данным измерений на специальных планшетах периода обращения спутника. Сравнением периодов обращения, вычисленных на нескольких соседних витках, можно было определить «падение» периода в функции времени, что давало возможность спрогнозировать движение спутника на несколько витков, а затем и рассчитать целеуказания всем средствам наблюдения и измерения.

В дальнейшем обстоятельства сложились так, что нашему институту была поручена разработка проектов командно-измерительных комплексов (КИК): полигонного КИК в районе старта ракеты, КИК в районе падения боевых частей, КИК для обеспечения пусков ИСЗ и космических аппаратов различного назначения, корабельного КИК. Для выполнения этих работ потребовалась разработка новых методов, которые пополнили методологию космической баллистики. В части баллистического обеспечения управления полетом КА при подготовке каждого пуска основная нагрузка ложилась на наш институт, так как он исполнял роль головного центра по баллистическому обеспечению пуска.

А. В. Брыков — лауреат Ленинской премии, доктор технических наук, профессор, ведущий научный сотрудник 4-го Центрального научно-исследовательского института Министерства обороны Российской Федерации.

Существует ли математическая модель солнечной системы, позволяющая в любой момент времени знать местоположение и параметры движения всех ее тел?

Параметры движения планет и большого числа астероидов Солнечной системы хорошо известны. Космические баллистики пользуются этими астрономическими данными, однако в расчет, конечно, принимается лишь движение тел, существенно влияющих на полет космического аппарата. Чем более сложной и «многозаходной» является программа полета станции, тем больше влияющих факторов учитывается.

Математическая модель солнечной системы?.. Похоже, мы никогда ею не пользовались, если даже она существует. Зато имеются многочисленные программы-визуализаторы астрономической обстановки, например Planet’s orbits 1.41 [На www.astrogalaxy.ru/095.html есть эта программа и много похожих] — бесплатная программа для домашнего компьютера, позволяющая промоделировать и, главное, увидеть «со стороны» орбиты и текущее положение на них всех планет солнечной системы, и большинства известных астероидов. Это, конечно же, не профессиональный инструмент, хотя позволяет получить множество числовых параметров. Но очень забавный…

В последние несколько месяцев средства массовой информации все чаще трубят об угрозе Земле со стороны астероидов. Понятно, что самыми компетентными экспертами в этом вопросе могут быть не столько астрономы, сколько космические баллистики. Можем ли мы расчетным путем определить моменты критической близости траекторий Земли и известных нам астероидов? Что мы знаем об их движении в Солнечной системе? Готовы ли мы оперативно рассчитывать полетные задания для ракет-перехватчиков, если это понадобится? И вообще, насколько серьезна эта угроза?

ТЕОРИЯ

Элементы орбиты представляются в виде рядов по степеням времени. Применяемые варианты теорий позволяют изучать возмущенное движение больших планет Солнечной системы на интервале времени в десятки тысяч лет (50 тысяч лет для планет от Меркурия до Нептуна; 10 тысяч лет для Плутона).

Если говорить о траекториях известных астероидов, конечно, можно рассчитать моменты опасного сближения, но что понимать под этим? Опасность представляет, по сути дела, прямое попадание… Чрезвычайно маловероятное событие. А если допустить, что не все малые объекты солнечной системы нами обнаружены, то становится ясно, что дело не в баллистике, а в астрономии.

Готовы ли мы рассчитать полетное задание? — Лишь при условии, что нам известны параметры движения опасного небесного тела. Исследование его траектории — дело не одного дня. Вопрос в том отрезке времени, которым мы будем располагать для подготовки носителя, вывода «перехватчика» в межпланетное пространство, перелета в точку перехвата… Собственно, и «перехватчика»-то у нас нет даже в проекте… А ведь это довольно сложный космический аппарат. Короче говоря, все возможно, если о предполагаемом столкновении с Землей мы будем знать где-то за год-полтора, а то и раньше. Много вопросов вызывает и сама «технология» перехвата. Предлагают взорвать на поверхности астероида ядерный заряд, дабы таким образом «скорректировать» его траекторию… С учетом масс космических тел даже ядерный взрыв на поверхности не сможет сильно повлиять на их движение, если астероид окажется уже «рядом». Насколько серьезна эта угроза? Думаем, гораздо менее серьезна, чем любая из наших внутренних — социальных, политических или экологических.

Известно, что любая наука движется вперед поставленными, но пока не решенными задачами. Какие научные задачи ставят перед собой космические баллистики?

Так хотелось бы, чтобы все баллистические задачи решались автоматически на борту космического аппарата… А если серьезно, то вскоре — через год — предстоит решить невероятно красивую задачу — добыть образцы грунта с Фобоса (спутник Марса) и доставить их на Землю в ходе выполнения программы «Фобос-грунт» Российской Академии наук и Федерального космического агентства. Запуск планируется с космодрома Байконур в октябре 2009 года. Попробуем кратко рассказать об этом проекте, рассматривая в основном задачи, которые встанут перед космическими баллистиками ИПМ им. М. В. Келдыша (головная организация по разработке баллистической схемы и сопровождению этого эксперимента (www.kiam1.rssi.ru/PHOBOS).

Итак, первый этап — запуск космического аппарата, вывод его на околоземную промежуточную орбиту с последующей перестройкой этой орбиты для выведения аппарата на траекторию к Марсу. Перелет Земля-Марс займет примерно одиннадцать месяцев.

Следующий этап — формирование орбиты космического аппарата для сближения с Фобосом. Этот этап планируется выполнить с помощью так называемой трехимпульсной схемы торможения: первый импульс торможения при подлете по параболической траектории к Марсу выводит космический аппарат на промежуточную эллиптическую орбиту вокруг Марса с периодом обращения около трех суток. Второй импульс увеличит перицентр орбиты до высоты орбиты Фобоса. Третий импульс в перицентре сформирует круговую орбиту с радиусом приблизительно на 500 км выше орбиты Фобоса и лежащую в ее плоскости. Работа на этой «орбите наблюдения» необходима для проведения точных измерений взаимного движения исследовательского аппарата и Фобоса. Затем следует этап перехода на еще более близкую к Фобосу «квазисинхронную» орбиту. Двигаясь по такой орбите, космический аппарат будет постоянно находиться вблизи Фобоса на расстоянии около 50 км. Затем — автоматическая посадка… Ближайшее после прилета к Марсу стартовое «окно» для возврата на Землю приходится на август 2011 года. И снова — трехимпульсная схема, но теперь уже — схема разгона для выведения аппарата на траекторию, ведущую домой.

«Мозговой штурм» Луны

Один из принципов, на которых базировалось конструирование Е-6 (аппарат для осуществления мягкой посадки на Луну), состоял в обеспечении «вертикального» прилунения аппарата. В этом случае траектория полета к Луне в идеале должна была совпадать с вертикалью к местному горизонту в точке посадки аппарата на поверхность Луны. Тогда при торможении аппарата перед посадкой полностью бы отсутствовала боковая составляющая скорости и обеспечивалась надежная посадка.

Однако в действительности реализованная орбита будет представлять собой лишь одну из «пучка» возможных, обусловленного наличием ряда объективно существующих погрешностей, возникающих при старте с промежуточной орбиты и при реализации коррекции движения в полете. Так вот, анализ, проведенный в процессе проектирования, показал, что в «пучке» возможных траекторий очень велика вероятность реализации такой траектории, у которой боковая составляющая скорости торможения будет гораздо больше допустимой и надежности посадки автоматической лунной станции говорить не придется. Выход из создавшегося положения искали как конструкторы (за счет создания новых устройств для погашения боковой скорости), так и баллистики (изыскание путей уменьшения размеров «пучка» орбит). При этом требовалось найти решения при очень и очень ограниченных возможностях увеличения веса аппарата. У баллистиков был ясный и реалистичный путь решения проблемы: «уменьшить» размеры «пучка» за счет перенесения коррекции движения КА на более позднее время. Тогда, вследствие уменьшения влияния ошибок исполнения «корректирующего импульса» на рассеивание точек прилунения, проблема была бы решена. Однако расчеты показали, что потребное увеличение импульса коррекции, а следовательно, и запаса топлива приведет к недопустимому увеличению веса аппарата.

И здесь космические баллистики блеснули смекалкой. Методом «мозгового штурма» им удалось установить, что на номинальной траектории движения к Луне в пределах «пучка» траекторий, обусловленных наличием погрешностей, существует точка, в которой направление на центр Луны (вертикальное направление) совпадает с направлением скорости на участке торможения у Луны. Следовательно, если найти положение этой точки и «запомнить» относительно абсолютного пространства направление из этой точки на центр Луны, то независимо от того, как будет дальше двигаться объект, включение тормозного двигателя, выставленного по «запомненному» направлению, обеспечит вертикальную посадку. Но самое главное, что за счет использования приборов, которые имелись на борту аппарата, баллистики нашли способ отыскания такой точки без увеличения веса объекта. Весь этот процесс подготовки торможения у Луны получил название «момент фиксации лунной вертикали».

А. В. Брыков