Глава I. ДИАЛЕКТИКА МАТЕМАТИЧЕСКОГО ПОЗНАНИЯ
1. Объект и предмет математики
Процесс отражения действительности математикой представляет собой яркий пример диалектики познания. Пожалуй, ни в одной другой науке нет столь парадоксального сочетания взаимоисключающих характеристик процесса познания, как в математике, где уживаются рядом интуитивная очевидность и логические доказательства, наглядность и крайняя отвлеченность, независимость от опыта и многообразные практические приложения. Эти особенности математики привлекают к ней пристальное внимание философов, чьи мнения о математике варьируются от признания ее идеалом науки вообще и образцом для подражания (Р. Декарт, Т. Гоббс, И. Кант) до полного отказа признать за нею какое-либо объективное значение (Д. Юм, Л. Виттгенштейн, Б. Рассел).
Несмотря на большое число различных школ и направлений в современной буржуазной философии математики, в ней отсутствует сколько-нибудь убедительное объяснение процесса математического познания в целом. Абсолютизируя какую-либо одну из особенностей математического знания, они создают тем самым искаженное представление о целом. Лишь с позиций диалектического материализма, руководствуясь марксистско-ленинским пониманием познания как активного, творческого отражения объективного мира человеческим сознанием, можно создать целостное представление о диалектике математического познания во всей ее сложности и противоречивости и тем самым дать математике философское обоснование. Основной вопрос математики тесно связан с основным вопросом философии. Объекты исследования математики составляют определенные отношения в объективном мире, математические построения, которые могут быть очень удаленными от этого мира и создавать видимость независимости первых от второго. Этот мировоззренческий вопрос, разделяющий материализм и идеализм в философии математики, следует отличать от методологической проблемы о предмете математики, заключающейся в определении основного содержания математики как науки, т. е. системы средств, способов и результатов познания ею своего объекта.
Различение объекта и предмета математического познания носит принципиальный характер. Решение проблемы об объекте математики требует ответа на вопрос: является ли математическое знание отражением объективного мира, существующего до, вне и независимо от познающего субъекта, или же оно служит формой самопознания субъекта? Следовательно, вопрос об объекте математического познания представляет собой конкретизацию основного вопроса философии применительно к математике. Определение объекта математики должно быть дано в категориях диалектического материализма. Наоборот, решая вопрос о предмете математики, мы не выходим за пределы диалектики процесса познания, определение предмета математики дается не посредством философских категорий, а с помощью общенаучных или специальных математических понятий.
Объектом математического познания всегда были различные типы единства количественной и качественной определенности, бесконечного и конечного, непрерывного и прерывного, структурного многообразия мира и его элементов. Предмет ее меняется в зависимости от уровня развития самой математики, ее методов познания, развития смежных с математикой наук, общественно-исторической практики. Никакая система понятий, будучи исторически конкретной и вследствие этого неполной и ограниченной системой, не может абсолютно отобразить всего содержания соответствующего свойства объективного мира, хотя в процессе исторического развития науки происходит уточнение и углубление знаний, познаются все более глубокие и существенные черты этого содержания. Следовательно, на каждом данном этапе развития математики ее предмет находится в определенном соответствии с ее объектом, но не совпадает с ним.
Исторически и логически первичными свойствами объективного мира, которые стали изучаться математикой, были различные отношения меры — количественно определенного качества или качественно определенного количества, с которыми люди изначально сталкивались в практической деятельности. Математика начинала с изучения конкретных систем объектов, поэтому «качественная окраска» исследуемых количественных отношений мешала разглядеть изоморфизм отношений различных предметных областей, понять эти отношения как частные проявления некоторой абстрактной и общей структуры. Так, структура группы как математического конструкта в предельно общей форме оставалась скрытой за многими частными законами композиции, свойствами подстановок на множествах, сложением и умножением чисел, преобразованиями векторов в пространстве. В XVII–XIX вв. лишь некоторые выдающиеся мыслители видели в математике не сумму отдельных дисциплин, а общую науку об отношениях. Даже Гегель воспринимал математику как науку о величинах и числах, правда отмечая ее абстрактно-количественный характер как метафизическую ограниченность, свидетельство отрыва количества от качества. «…Математика природы, если она хочет быть достойной имени науки, по существу своему должна быть наукой о мерах», — подчеркивал он.
Таким образом, предмет математики — это теоретический образ объекта, его абстрактное и идеализированное представление. Со временем в математике все большее значение приобретают исследования, непосредственно направленные на познание не внешнего мира, а на само математическое знание и методы его получения. Происходит как бы переход от «первичного» отражения к «вторичному». Поскольку в этом случае объектом исследования становится само исследование, естественно назвать этот уровень математического познания метаисследованием, а его объект — математическое знание — метаобъектом.
Примером метаисследований являются работы по основаниям математики, но в целом область метаисследований в современной математике гораздо шире и включает в себя значительную часть таких математических исследований, которые не имеют непосредственного соприкосновения с решением каких-либо прикладных задач. Предмет математики в таком случае оказывается частью ее метаобъекта.
Важность метаисследований в математике определяется тем, что «вторичное» отражение по существу есть дополнение и продолжение «первичного» отражения. Исследование знания есть одно из средств изучения того объективного содержания, которое отражено в нем. То же можно сказать и об изучении познавательных процедур. Зная какую-либо познавательную процедуру, можно найти вид знания, которое с ее помощью было получено, и на основании последнего определить объективный аналог этого знания. Однако отметим еще раз, что метаисследование следует рассматривать как вспомогательный вид познания, подчиненный главной задаче — познанию объективного мира.
Метаисследование в таком понимании не только не совпадает, но прямо противоположно тому, что принято называть метаматематикой. Дело в том, что метаисследования относятся к идеальным, абстрактным объектам — понятиям, смыслам, суждениям, в то время как метаматематика имеет дело только с конкретными «объектами» вроде знаков какого-нибудь искусственного языка, значения которых в рамках метаматематического исследования не принимаются во внимание. Формальные системы, «представляющие» тот или иной раздел содержательной математики, изучаются в метаматематике как материальные объекты со структурой, подобно фигурам в геометрии, им можно приписывать только такие свойства и отношения, которые воспринимаются непосредственно. Объект метаматематики — это результат «двойного отрицания» первичного, объективно-реального объекта. Здесь происходит возврат к чувственному созерцанию изучаемых отношений, но уже между не «естественными», а искусственными объектами.
Однако в некоторых работах по философии математики отмечается, что основным объектом математического познания является не реальный объект, а метаобъект или даже «метаметаобъект». Гносеологическим источником этой ошибки является относительная независимость метаобъекта. Известно, что даже наиболее элементарные понятия математики абстрактны по своему содержанию. Поэтому при создании математических теорий приходится учитывать не столько содержательные, сколько формальные, логические, независимые от конкретного содержания отношения между понятиями. Известно, что уже на заре развития математики достоверность выводов определялась не содержательными, а формальными критериями, поскольку математика сама по себе не содержит критериев, позволяющих отличать утверждения, относящиеся к действительности, от утверждений, имеющих только математический смысл. Так, понятие существования в математике значительно отличается от понятия объективно-реального существования.
Эти обстоятельства и способствуют тому, что иногда в сознании некоторых математиков метаобьект получает статус самостоятельного существования, утрачивается представление о его вторичности, зависимости от объекта и субъекта, математические понятия начинают рассматриваться уже не как образ объективной реальности, а как сама эта реальность. В этом случае метаобъект вместо того, чтобы выполнять роль «оптического прибора», позволяющего лучше рассмотреть объект, становится как бы экраном, заслоняющим его от взоров исследователя. Отсюда возникает иллюзия, что метаобъект есть не только главный, но и вообще единственный объект изучения, математика превращается из науки о свойствах объективного мира в науку о математическом знании и способах его получения, что в итоге приводит к субъективно-идеалистической трактовке ее объекта. Это можно проиллюстрировать на нескольких примерах историко-философского рассмотрения этой проблемы.
Так, известно, что Платон настолько абсолютизировал понятия математики, что превращал их в самостоятельные трансцендентные «идеи», вечные идеальные формы, знание о которых душа приобретает во время пребывания в потустороннем мире. В этом случае основные понятия математики оказываются врожденными, не зависящими как от личного, так и от коллективного опыта людей, «открываются», а не «изобретаются». Последователи Платона абсолютизируют относительную независимость математического знания от эмпирического содержания. Объективность содержания понятий истолковывается в том смысле, что и они сами, а не только их прообразы существуют вне и независимо от сознания.
Математическое знание действительно обладает известной независимостью от эмпирического опыта, но эта независимость не абсолютна, она имеет свои границы. Математика не является теорией, выведенной из априорного основания. Хотя ее основные понятия и невыводимы непосредственно из эмпирического опыта, а являются результатом творческой, конструктивной деятельности мышления, но мотивы и цели этой деятельности детерминированы факторами, находящимися в объективном мире.
Для идеалистического рационализма математика была знанием автономным, независимым от эмпирии и в то же время имевшим объективное значение. При этом полагалось, что применимость математики к наукам о природе свидетельствует о гармонии разума и бытия. Новые открытия в математике заставили сторонников рационализма отказаться от первоначальных упрощенных представлений об этой гармонии и искать возможности для установления более сложных ее форм. Когда было обнаружено, что относительно некоторой «математической реальности» можно построить несколько непротиворечивых, но несовместимых теорий, стало ясно, что в данном случае выбор между ними нельзя сделать на основе «разума». Тогда пришли к выводу, что этот вопрос должен решаться в «опыте».
Если в платонизме абсолютизировалась относительная самостоятельность понятийного компонента математического познания, то в кантовской философии математики абсолютизировалась сама «математическая деятельность». Так как «мы a priori, — писал И. Кант, — познаем о вещах лишь то, что вложено в них нами самими», — объекты, познаваемые нами посредством «априорного созерцания», суть продукты нашего собственного воображения. Он считал, что в математике познание происходит путем «конструирования понятий». «…Конструировать понятие — значит показать a priori соответствующее ему созерцание», некоторый наглядный образ. Следовательно, в математическом познании мы рассматриваем не внешнюю реальность (материальную или, как считал Платон, идеальную), а результаты деятельности рассудка и воображения, раскрывающей содержание (эксплицирующей) «чистой интуиции пространства».
То, что Кант стремился показать единство образного и дискурсивного (понятийного) моментов в математическом познании, подчеркивало важную роль в нем творческой, конструктивной деятельности субъекта, имело положительное значение. Однако при этом он истолковывал неконструктивные компоненты математического знания не как отражение внешнего мира, а как данные a priori, т. е. мистически. Архаичным выглядит и его стремление уложить все многообразное содержание математики в рамки «евклидовой интуиции» пространства, ограниченность которой обнаружилась уже с открытием неевклидовых геометрий. Но это было позже. А тогда, как справедливо заметил М. Бунге, «из всего солидного вклада Канта (в философию математики. — Авт.) его идея чистой интуиции оказалась наименее ценной, но, к сожалению, не наименее влиятельной».
Действительно, попытка «вывести» математику из чистой интуиции, но уже не пространства, а времени была предпринята интуиционизмом — субъективно-идеалистическим течением современной буржуазной философии математики. Основатель его — Л. Э. П. Брауэр полагал, что в интуиции времени содержатся все элементы, необходимые и достаточные для построения натурального ряда чисел, а следовательно, и всех основных математических теорий. Но поскольку человек обладает интуицией только относительно небольших чисел, то в остальных случаях необходимо опираться не на интуитивную очевидность, а на критерий «конструктивности», согласно которому «реально существующими» в интуиционистской математике признавались только те объекты, которые можно было фактически построить.
В философском плане интуиционизм близок как к позитивизму, так и к более ранним формам субъективного и объективного идеализма: неоплатонизму, картезианству, кантианству. По существу это «математический операционализм». Абсолютизация им значения математической конструктивной (причем именно алгоритмической) деятельности приводит к недооценке объективного содержания математического знания. «С интуиционистской точки зрения математика является изучением определенных функций человеческого разума… она не выражает истину о внешнем мире», — писал А. Гейтинг.
Платонизм и интуиционизм преувеличивают относительную самостоятельность математического знания, отрывая его либо от объективного мира (интуиционизм), либо от человеческого сознания (платонизм).
В противоположную крайность впадают представители метафизического материализма, выступающие в философии математики под флагом эмпиризма или номинализма. Эмпиризм признает единственным источником знания чувственный опыт, не допускает возможности знания о ненаблюдаемом. Номинализм не признает объективность общего, существование необходимых связей между сходными объектами, принадлежащими к некоторому классу. Следовательно, как эмпирики, так и номиналисты отрицают объективность сущности, поскольку она ненаблюдаема и обладает общим и необходимым характером. На этом основании они отказываются признать объективное содержание общих терминов и принимают их только в качестве «общих имен», подчеркивая тем самым, что они происходят из «ноуменов» (языка), а не из опыта.
Таким образом, если в идеалистической философии математики метаобъект служит единственным предметом изучения для математики, то в эмпиризме и номинализме он отбрасывается как «реальность», исследуемая в математическом познании, которое связывается непосредственно с чувственным опытом. Однако если бы математическое знание было ограничено пределами непосредственно наблюдаемых, чувственно воспринимаемых объектов, их свойств и отношений, то в нем не могли бы содержаться такие математические объекты, которые в опыте вообще не встречаются, да и по своим свойствам не могут реально существовать. Вопреки эмпиризму математика не каталогизирует чувственный опыт, а ставит на место чувственно данного различия объектов многообразие абстрактных объектов, удовлетворяющее не требованиям непосредственной чувственной данности, а логической непротиворечивости и полноты.
«Математические» свойства (за редким исключением) не даны в чувственном опыте и поэтому скорее приписываются вещам, чем обнаруживаются в них. Понятия математики, даже элементарные, как правило, не могут быть получены в результате абстрагирования от конкретно данного; для их создания нужны другие познавательные приемы. К последним относятся прежде всего умозрительное конструирование, создание «конструктов», т. е. понятий, получаемых посредством замещения элементов некоторого структурного образа («гештальта»), заимствованного из имеющегося в наличии эмпирического (научного или обыденного) знания, идеализированными образами («идеалами») каких-либо эмпирических объектов или же их свойств и отношений.
Если в качестве источника «гештальтов» и «идеалов» принимают не эмпирическое знание, отражающее природные объекты, их свойства и отношения, а знание, полученное в результате исследования самого процесса познания и его результатов, выраженных на каком-либо естественном или искусственном языке, то полученные таким образом понятия будут уже не обычными конструктами, а «метаконструктами». В математическом знании имеются как конструкты, так и метаконструкты, поскольку математика занимается исследованием не только объекта, но и метаобъекта. Поскольку в силу общего характера математические понятия способны отображать не только форму объективного содержания, но и форму знания, то в математику входят и «формальные метаконструкты» — понятия, отображающие формальную общность языковых средств (математических, физических, биологических). Математика, таким образом, способна выполнить по отношению к естественнонаучному знанию функции формальной метатеории, подобно тому как теория объективной диалектики способна выполнять роль содержательной метатеории.
«Умозрительное» происхождение математических понятий не означает, что они суть «продукты чистого мышления». При создании конструктов «строительный материал» берется из уже имеющегося знания, но из него создаются новые сочетания, которых не было в наличном знании. Таковы понятия дифференциала и интеграла, мнимые и комплексные числа, бесконечно удаленные точки и прямые в проективной геометрии и т. п. Все понятия создаются людьми. Существенно, однако, то, что в содержании научных понятий определяющая роль принадлежит объективно истинному содержанию, а конструктивный элемент играет подчиненную роль. В содержании же художественных образов это соотношение может быть прямо противоположным.
Представители современного математического эмпиризма рассматривают математику уже не как эмпирическую, а как «метаэмпирическую» науку. Это позволяет существенно расширить круг математических понятий, обосновываемых «эмпирически» в этом смысле слова. Они утверждают, например, что «математика есть наука о формальных методах», т. е. исследует не содержание, а только форму математического знания, законы построения искусственного языка. Но такой подход не позволяет решить вопроса об объективных основаниях математики, так как хотя язык и состоит из материальных элементов, но они созданы людьми и не существуют независимо от них. Современный эмпиризм игнорирует интерпретации формальных систем, т. е. абстрактные объекты.
Такой подход способствует распространению мнения об «информационной пустоте математики», о «конвенциональном характере» ее положений. В русле неоэмпиризма (или формализма) предпринимались попытки формального обоснования математики, которое должно было быть достигнуто без обращения к смысловой стороне математических выражений. Таким образом, «живая» математика здесь подменялась мертвой схемой. Между тем математическому мышлению свойственна диалектика, ему в высшей степени присуща всесторонняя, универсальная гибкость понятий, гибкость, доходящая до тождества противоположностей, проистекающая из связи абстрактного понятийного и конкретно-образного содержания. Искусственные языки с их жестко фиксированной семантикой не в состоянии отразить это богатое содержание. Поэтому формальными средствами нельзя решить проблему обоснования математики. Математическому мышлению недостаточно логики формальной, ему нужна логика диалектическая.
2. Диалектика количественных и качественных отношений и математическое познание
На каждом историческом этапе развития математика, как и любая другая наука, представляет собой определенный конкретный и в известной степени фиксированный способ и результат познания своего объекта. Однако содержание знания об объекте определяется не только им самим, но и особенностями методов познания. Последние же зависят от целого ряда факторов — социальных, экономических, технических, от уровня развития смежных наук, от мировоззрения. Нередко изменение содержания математического знания и способов его получения истолковывается как изменение самого объекта науки. В этом случае объект отождествляется с метаобъектом и оказывается проекцией сложившихся к данному моменту представлений об объекте (как правило, неполных, относительных, ограниченных). «Недостатком такого принципа, — подчеркивает Г. Г. Шляхин, — является подмена реальной действительности ее теоретизированной частью». Между тем ни в какой момент развития математического познания его объект не исчерпывается имеющимися в наличии знаниями о нем. Абсолютизация познанного, как и абсолютизация еще не познанного, одинаково неприемлемы для диалектического мышления. Обе точки зрения неспособны объяснить процесс непрестанного развития математики, расширения математического знания.
В связи с тем, что на роль основного понятия математики в настоящее время выдвигается понятие структуры, некоторые авторы говорят об изменении не предмета, а объекта математического познания. Этот факт истолковывается иногда также в том смысле, что современная математика исследует уже не количественную определенность материального мира, а его «структурный аспект». Так, И. Г. Федоров пишет: «Единственным объектом современной математики является структурный аспект материи…» Другие авторы, желая сохранить понимание математики как науки о количественных отношениях и вместе с тем как-то учесть роль структуры в современном математическом познании, пытаются расширить содержание философской категории «количество», включив в нее понятие структуры. Количественные связи при этом определяют не как отношения между величинами, а как любые структуры, которые сравнительно независимы от конкретного содержания соотносящихся сторон. Утверждают даже, что «изучаемые математикой отношения всегда являются количественными». в связи с этим принятое в диалектическом материализме понимание категории количества как единства числа и величины объявляется узким и устаревшим. Между тем в основе концепции, определяющей количество как единство числа и величины, лежит обобщение всего научного и практического опыта людей, и никакого другого научного смысла, на наш взгляд, эта категория не имеет.
Структура как философская категория имеет собственное содержание, в котором признак «безразличия» к природе элементов не является определяющим, о чем часто пишут сторонники «широкого» понимания категории количества.
На тесную связь категории структуры с категорией качества указывают авторы, специально исследовавшие категорию структуры в онтологическом плане. Так, В. И. Свидерский писал: «При анализе того, что является внутренним содержанием качества, легко убедиться, что последним должно выступать определенное единство соответствующих элементов и соответствующей структуры, создающих определенность, специфичность, целостность и устойчивость любого явления». Качество, будучи единством элементов и структуры, не тождественно ни структуре, ни элементам, взятым порознь. Структуре присущи и количественные и качественные характеристики, что, конечно, не может служить основанием для отождествления структуры с качественной или количественной определенностью. Существуют структуры различных качественных типов. Среди них особый тип представляют собой пространственные отношения.
Математика как наука об отношениях в объективном мире всегда исследовала не некое неопределенное «количество вообще», «чистое количество», а различные виды количественной определенности конкретного качественного типа. Ее объектом являются различные отношения меры, материал для которых математики черпают из природы, дополняя его «умственными конструкциями», предназначенными в конечном счете для раскрытия того содержания, которое заложено в исходных понятиях. Поскольку нет таких качеств, которые не имели бы количественной характеристики, и таких явлений, которые не подчинялись бы закону меры, постольку область применения математических методов к познанию природы принципиально не ограничена. Конечно, применение любого конкретного метода имеет границы. На каждом данном этапе развития научного знания существуют такие его виды, которые не поддаются исследованию средствами математики.
Математическое знание, как и всякое научное знание, глубоко диалектично, однако его диалектическая природа не всегда очевидна. Сам способ представления результатов математического познания, принятый в этой науке, в немалой степени способствовал распространению взгляда на математику как на «формальное», «внешнее» знание, не имеющее объективных оснований.
Пренебрежительное, а подчас и отрицательное отношение Гегеля к математике основывалось на господствовавшем в то время понимании математики как науки о величинах, о количестве вне связи с качеством, а также на отождествлении способа изложения математического содержания с действительным процессом его движения. Процессом доказывания в ней, отмечал Гегель, управляет как будто бы какая-то внешняя самому содержанию сила; исходный пункт доказательства никак не связывается при его выборе с искомым результатом. В процессе доказывания якобы совершенно произвольно принимаются одни и игнорируются другие допущения, причем невозможно установить, в силу какой необходимости все это делается. Высокая оценка математики И. Кантом основана опять-таки на ошибочном понимании им природы математического знания, которое он считал примером «синтетического априорного знания» — единственного вида знания, которое, согласно Канту, сочетает объективную значимость с безусловной достоверностью, обладает общим и необходимым характером.
Характерные для современного позитивизма оценки математики как «информационно пустой», «онтологически нейтральной», «тавтологичной», «чисто вербального знания» также основаны на абсолютизации действительно присущего этой науке момента — неопределенности смыслового (семантического) содержания ряда ее фундаментальных терминов. Между тем законы математики совместимы не с любой онтологической конструкцией. Ведь даже логика содержит некоторые «онтологические обязательства», т. е. предполагает существование объектов с определенными свойствами.
В еще большей степени это присуще математике. Конечно, известная неопределенность в отношении конкретного вида объектов всегда остается, поскольку математика не различает между «фактическим» положением дел и возможными, но неосуществленными ситуациями. Она отвлекается от того обстоятельства, что возможности, совместимые логически, могут быть несовместимыми «физически», от того, что все возможности вообще не могут осуществиться. Если физика различает реальные и абстрактные возможности, то для математики в области возможного нет качественных градаций.
Эта особенность математики позволяет ей быть «наукой о бесконечном». Способность ее отображать, хотя и в абстрактной и односторонней форме, количественный аспект бесконечности как атрибута объективного мира заслуживает специального анализа в плане выявления диалектики математического познания. В диалектическом материализме бесконечное есть противоположность конечного и вместе с тем его момент. Значение идеи бесконечности для научного познания определяется тем, что без нее невозможно познание конечного. «…По существу, — говорит Ф. Энгельс, — мы можем познавать только бесконечное». Действительно, всякое общее утверждение ориентировано на потенциально бесконечный ряд явлений.
В математике понятие бесконечности изучается главным образом теорией множеств. Начало этим исследованиям было положено Г. Кантором, которому удалось объединить понятия актуальной и потенциальной бесконечности в едином понятии предела бесконечной последовательности, рассматриваемого как начало новой последовательности так называемых «трансфинитных» чисел.
Современная математика исследует преимущественно лишь количественный аспект реальной бесконечности. Встречающиеся на этом пути трудности показывают, что «бесконечное количество» качественно отличается от конечного количества. «Бесконечное количество» в отличие от конечного не может быть ни увеличено, ни уменьшено, для него не выполняется принцип «целое больше части». Как показал Т. Сколем, «кардинальное число» бесконечного множества (характеризующее «число элементов» множества) не является абсолютной характеристикой для конечного множества, а зависит от способа рассмотрения. В этом отражается сложная количественно-качественная природа бесконечности, для адекватного отображения которой в современной математике, по-видимому, еще не разработана подходящая система понятий. Тем не менее исследование понятия бесконечности в математике, особенно в связи с обнаружением парадоксов теории множеств, привело к значительным результатам научного и методологического характера.
Таким образом, анализ некоторых диалектико-материалистических проблем математического познания свидетельствует о том, что для его понимания необходимо опираться на основные принципы теории отражения: принцип активности субъекта, принцип иерархичности процесса и результата отражения, принцип единства онтологии, гносеологии и методологии. Активный характер отражения в математическом познании проявляется во взаимодействии конструктивных и неконструктивных элементов знания, иерархичность отражения — в использовании метаобъекта и метаисследования как средств познания объективной реальности, единство объективной и субъективной диалектики — в том, что познание объекта математики осуществляется посредством исследования не только его самого, но и форм деятельности математиков в процессе исследования.
Глава II ДИАЛЕКТИКА РАЗВИТИЯ ФИЗИКИ
1. Философия и физическая картина мира
Физика возникла как наука о природе. Известно, что развитие материального производства связано с поисками в природе новых источников энергии и с совершенствованием средств труда (по выражению К. Маркса, «костной и мускульной системы производства»). Существует неразрывная взаимосвязь между средствами труда и развитием соответствующих разделов физики. Потребности совершенствования орудий труда в XVII в. непосредственно вели к разработке таких понятий, как масса, сила, скорость, ускорение и др., а установление связи между ними привело к открытию законов механики. В свою очередь развитие механики способствовало прогрессу техники, материального производства.
Взаимосвязь физики и производства можно проследить на примере не только механики, но и других разделов физики. Например, в ходе изучения тепловых явлений в середине XIX в. были созданы тепловые двигатели, а в процессе их усовершенствования появился особый раздел физики — учение о теплоте, термодинамика. В результате формирования учения об электричестве и магнетизме возникли и развивались электротехника и радиотехника. Таков же путь развития современной атомной физики: в процессе изучения атомных явлений создавались и развивались средства производства ядерной энергетики, а развитие атомной техники открывало новые возможности для развития современной физики.
Таким образом, удовлетворение потребностей развития материального производства было возможно лишь при углублении знаний о природе, а последнее, как показано ранее, невозможно без философии. Основные понятия физики возникли в процессе обобщения опытных данных под непосредственным воздействием тех или иных философских взглядов на природу. Поскольку представления о материи и ее атрибутах в физике являются главными, все понятия физики складывались главным образом под влиянием философских, и в частности материалистических, представлений о природе.
Если в развитии эмпирических знаний в физике главная роль принадлежит опытам и тем самым приборам (орудиям эксперимента), то в развитии теоретических знаний в физике ведущую роль играют материалистические представления о природе, на основе которых возникают общие понятия, принципы и гипотезы, служащие исходным пунктом при построении физических теорий. Данные эксперимента и исходные основы для построения теорий в системе физического знания существенно отличаются друг от друга. Первые просты в том смысле, что отражают отдельные стороны явлений. Их систематизация и обобщение в виде эмпирических законов представляют уже более сложное эмпирическое знание, поскольку оно относится не только к этим явлениям, но и к совокупностям, составляющим отдельную группу взаимосвязанных явлений. Исходные предпосылки построения теории — система общих понятий, принципов и гипотез — являются наиболее общим физическим знанием, поскольку на их основе строятся все теории, существующие на данном этапе развития физики.
Каждая теория отражает закономерность какой-либо области явлений, которая состоит из нескольких групп, служащих объектом непосредственного эмпирического исследования. В системе теоретического знания физическая теория играет главную роль в познании объективных законов и в объяснении наблюдаемых групп физических явлений. Но очевидно, что та исходная основа, на которой строятся физические теории, является более общим знанием по сравнению с отдельными физическими теориями. Любая теория охватывает лишь одну область явлений, а ее базис включает все их области, отражая наиболее общие стороны изучаемой физической реальности в целом и давая тем самым общую физическую картину мира.
Следовательно, в системе физического знания данные эксперимента, как наиболее частный вид знания, и физическая картина мира, как наиболее общий вид знания, являются такими противоположностями, отношение между которыми выступает движущей силой, источником развития физики.
Понятие «физическая картина мира» употребляется давно, однако лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как особый самостоятельный вид знания, который может возникнуть на основе философских обобщений даже до построения теорий и который, давая самое общее теоретическое знание в физике (система общих понятий, принципов и гипотез), служит исходной основой для построения теорий. Современная физическая картина мира, с одной стороны, обобщает все ранее полученные данные об этой части природы, а с другой — вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы, которых до этого в физике не было и которые коренным образом меняют основы физического теоретического знания: старые физические понятия и принципы, как отмечал В. И. Ленин, ломаются, новые возникают, картина мира меняется.
Законы развития физики тесно связаны с физической картиной мира. Если количество опытных данных постоянно возрастает, то картина мира некоторое, подчас длительное время остается относительно неизменной. Вследствие этого она становится основной характеристикой определенного этапа в развитии физики, что и определяет ее фундаментальную роль в построении физических теорий. С изменением физической картины мира начинается новый этап в развитии физики с иной системой исходных понятий, принципов, гипотез и стиля мышления.
В этом состоит первая закономерность истории развития физики: она делится на ряд качественно различных этапов, обусловленных прежде всего представлениями и понятиями о материи и движении. Переход от одного этапа к другому знаменует качественный скачок, революцию в физике, состоящую в крушении старой картины мира и в появлении новой.
В пределах данного этапа развитие физики идет эволюционным путем, без изменения основ картины мира. Оно состоит в реализации возможностей построения новых теорий, которые заложены в данной картине мира. Однако сама она при этом может эволюционировать, достраиваться, оставаясь в рамках определенных конкретно-физических представлений о материи. В новой картине мира в начальный период ее развития наряду с новыми представлениями о материи могут сохраняться старые идеи о ее атрибутах, вследствие чего в картине мира могут возникнуть внутренние противоречия, побуждающие ее к развитию, к выработке таких представлений о коренных свойствах материи, которые находились бы в соответствии с пониманием самой материи. Таким образом, в постепенной достройке физической картины мира состоит вторая закономерность развития физики. Если первая закономерность определяет переход от одного периода развития физики к другому — революцию в развитии физики, то вторая — эволюционный ход развития физики в пределах данного периода.
В истории физики конкретные физические представления о материи менялись два раза. Сначала был совершен переход от атомистических, корпускулярных представлений о материи (материя абсолютно прерывна) к полевым — континуальным представлениям (материя абсолютно непрерывна). Затем континуальные представления о материи были заменены современными квантовыми представлениями (материя и прерывна и непрерывна).
Следовательно, в ходе развития физики можно говорить лишь о трех физических картинах мира и соответственно о трех исторических этапах развития физики. Первый характеризуется корпускулярными, атомистическими представлениями о материи и построенной на их основе механической картиной мира. Второй этап опирается на континуальные представления о материи. Такому ее пониманию соответствует электродинамическая картина мира. Третий этап характеризуется современными квантово-полевыми представлениями о материи, в соответствии с чем строится квантово-полевая картина мира. Разберем подробнее диалектику формирования и смены этих физических картин мира.
2. Механическая картина мира
Полноценной наукой физика стала в XVII в., когда появилась общественная необходимость в более глубоком изучении природы. До этого понимание природы основывалось на обыденных знаниях и натурфилософии. Дальнейшее развитие общественного производства было невозможным без более глубокого понимания явлений природы.
При переходе от обыденного к научному пониманию природы большую роль сыграли материалистические идеи. В трудах П. Гассенди и Г. Галилея был восстановлен атомизм древнегреческих философов. При этом на первое место выдвигалось понятие движения. Р. Декарт считал, что оно обусловливает все явления природы. Подлинно революционной была гипотеза Галилея о возможности движения без двигателя (закон инерции). Наконец, И. Ньютон завершил построение новой, революционной для того времени картины природы, сформулировав основные идеи, понятия и принципы, составившие механическую картину мира.
И. Ньютон начинает свой основной трактат («Математические начала натуральной философии») с изложения основных понятий картины мира. Исходя из атомистических представлений о материи, он вводит понятие массы как количества материи, наделяет тела «внутренним врожденным свойством двигаться равномерно и прямолинейно», а отклонение от этого состояния движения связывает с действием на тело «внешней силы». При этом И. Ньютон выдвигает «гипотезу о тяготении» как универсальном свойстве всех тел «тяготеть друг к другу». Поставив перед собой задачу объяснить все явления по наблюдаемым движениям, И. Ньютон дополняет картину мира своим пониманием времени, пространства и движения, которые существуют абсолютно, т. е. независимо от материи.
Как видно, формулируя общие исходные начала своего труда, И. Ньютон изложил определенные физические представления о материи и движении, пространстве и времени, взаимодействии и закономерности в соответствии с философскими идеями Г. Галилея и П. Гассенди (атомистические представления о материи), Р. Декарта, придававшего первостепенное значение движению, и Т. Гоббса, доказывавшего объективность протяженности. При этом одной из ведущих философских идей, которой руководствовался И. Ньютон в своих исследованиях, была идея единства и универсальной взаимосвязи явлений.
На основе механической картины мира Ньютон сформулировал законы движения, которые он считал фундаментальными законами мироздания. Создание механики способствовало ускоренному развитию теоретических методов исследования природы. Как отмечают историки физики, с 1690 по 1750 г. особенно быстрыми темпами развивается математическая физика.
В теоретическом базисе механики И. Ньютона находилась система материальных точек. Исходя из ньютоновских представлений о природе, механической картины мира, Л. Эйлер и Я. Бернулли разработали ряд новых физических теорий — теорию движения твердого тела, теорию упругости и гидродинамику. Ж. Л. Лагранж систематизировал механику и поставил перед собой задачу объяснения всех явлений мироздания чисто аналитическим путем, руководствуясь механикой и механической картиной мира. В конце XVIII и начале XIX в. П. С. Лаплас, реализуя программу Лагранжа в объяснении мироздания, разработал «земную», «небесную» и «молекулярную» механику.
Успехи механической теории в объяснении явлений природы, а также их большое значение для развития техники, для конструирования различных машин и двигателей привели к абсолютизации механической картины мира. Она стала рассматриваться в качестве универсальной научной картины мироздания. Весь мир (включая и человека) понимался как совокупность огромного числа неделимых частиц, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающимися от тела к телу через пустоту (ньютоновский принцип дальнодействия). Согласно этому принципу, любые события жестко предопределены законами механики, так что если бы существовал, по выражению П. Лапласа, «всеобъемлющий ум», то он мог бы их однозначно предсказывать и предвычислять.
В то же время в конце XVIII — начале XIX в. в физике накапливались эмпирические данные, противоречащие механической картине мира. Так, наряду с рассмотрением системы материальных точек (что полностью соответствовало корпускулярным представлениям о материи) пришлось ввести понятие сплошной среды, связанное по сути дела уже не с корпускулярными, а с континуальными представлениями о материи. Тем самым обнаружилось противоречие между механической картиной мира и некоторыми фактами опыта. Для объяснения световых явлений вводилось понятие эфира — особой тонкой и абсолютно непрерывной «световой материи». Однако уже Ньютон пытался показать, что эти явления можно объяснить, исходя из тех принципов, которые находились в основе созданной им механики. Он разработал корпускулярную теорию света, расширив тем самым содержание механической картины мира.
В XIX в. методы механики были распространены на область тепловых явлений, электричества и магнетизма. Казалось бы, все это свидетельствовало о больших успехах механического понимания мира в качестве общей исходной основы науки. Однако при попытке выйти за пределы механики системы точек приходилось вводить все новые и новые искусственные допущения, которые постепенно готовили крушение механической картины мира. Так, для объяснения теплоты было введено понятие «теплорода», т. е. особой тонкой сплошной материи, для объяснения электричества и магнетизма предположили существование особых непрерывных видов материи — «электрической» и «магнитной» жидкости. Ф. Энгельс критиковал эмпириков, которые думали, что объяснили все явления, подведя под них какое-нибудь неизвестное вещество: световое, тепловое или электрическое. Эти «воображаемые вещества теперь можно считать устраненными», — писал он. И действительно, позднее на основе механической картины мира была построена кинетическая теория тепла, сформулирован закон сохранения и превращения энергии, и таким образом «теплород» был отброшен.
Но механический подход к таким явлениям, как свет, электричество и магнетизм, оказался неприемлемым. Опытные факты искусственно подгонялись под механическую картину мира. Несмотря на множество попыток, механическую модель эфира как материального носителя света, электричества и магнетизма так и не удалось построить. Однако в рамках этой картины мира данному обстоятельству не придавалось принципиального значения, и попытки построить атомистическую модель эфира продолжались даже в XX в. Считая, что такая модель все же в принципе возможна, и ссылаясь на успехи механической картины мира, в частности кинетической теории тепла и статистической механики, многие крупнейшие физики второй половины XIX и даже начала XX в. полагали, что механистическое миропонимание является единственно научным и универсальным. Так, по свидетельству М. Планка, его учитель Ф. Жолли заявлял:
«Конечно, в том или ином уголке можно еще заметить или удалить пылинку или пузырек, но система, как целое, стоит довольно прочно, и теоретическая физика заметно приближается к той степени совершенства, какою уже столетия обладает геометрия».
Не увенчавшиеся успехом попытки объяснить на основе механической картины мира явления света, электричества и магнетизма свидетельствовали о том, что противоречия между общим физическим знанием и частным — данными опыта — фактически оказались непримиримыми. Физика нуждалась в существенном изменении представлений о материи, в смене физической картины мира. Но приверженность физиков к старым догмам мешала пониманию этого принципиально важного обстоятельства.
3. Электромагнитная картина мира
В процессе длительных размышлений о сущности электрических и магнитных явлений М. Фарадей пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными (от лат, continuum — непрерывность). Он писал: «Я чувствую большое затруднение в представлении атомов материи с промежуточным пространством, не занятым атомами…» Он сделал вывод о том, что электромагнитное поле сплошь непрерывно, заряды в нем являются точечными силовыми центрами. Тем самым отпадал вопрос о построении механической модели эфира, о непримиримости механических представлений об эфире с реальными опытными данными о свойствах света, электричества и магнетизма. Основная трудность в объяснении света с помощью предполагаемого эфира состояла в следующем: если эфир — сплошная среда, то он не должен препятствовать движению в нем тел и, следовательно, должен быть подобен очень легкому газу. В опытах же со светом были установлены два фундаментальных факта: во-первых, световые и электромагнитные колебания являются не продольными, а поперечными и, во-вторых, скорость распространения этих колебаний очень велика — порядка 3 х 105 км/сек. В механике же было показано, что поперечные колебания возможны лишь в твердых телах, причем скорость их зависит от плотности этих тел.
Для такой большой скорости, как скорость света, плотность эфира во много раз должна превосходить плотность стали. Но тогда непонятно, как же такой сверхплотный эфир не препятствует движению в нем тел? На протяжении всего XIX и частично XX в. продолжались упорные попытки разрешить эти трудности в представлениях об эфире, хотя фактически еще М. Фарадей в 1844 г. нашел правильное решение проблемы. Чтобы принять это решение, надо было совершить революцию в представлениях о материи и движении.
Д. К. Максвелл был одним из первых, кто должным образом оценил значение взглядов Фарадея на природу. При этом он подчеркивал, что Фарадей выдвинул новые философские взгляды на материю, пространство, время и силы. Согласно взглядам Фарадея, электромагнитное поле — тонкая невещественная материя, первичная по отношению к атомам и телам; движение — распространение колебаний в поле — первично по отношению к перемещению тел. Пустого пространства нет, так как поле является абсолютно непрерывной материей; время неразрывно связано с процессами, происходящими в поле; не соответствует действительности и ньютоновский принцип дальнодействия: любые взаимодействия передаются полем от точки к точке непрерывно и с конечной скоростью (фарадеевский принцип близкодействия).
Руководствуясь этими представлениями о физической реальности, Дж. Максвелл в 1867 г. построил теорию электромагнетизма. Вследствие своего революционного характера она долгое время казалась трудной и непонятной для тех физиков, в умах которых продолжала господствовать механическая картина природы. Трудности усвоения теории электромагнетизма усугублялись еще и тем, что она выражалась при помощи более сложных, чем в механике, математических уравнений. Но они удивительно хорошо объясняли все известные факты.
Тем не менее физикам, не владевшим диалектикой, казалось, что если эфир отброшен, то отброшена и материя; признать же поле за материю они не могли. В физике начались «шатания мысли». Как отмечал В. И. Ленин:
«„Материя исчезает“, остаются одни уравнения… получается старая кантианская идея: разум предписывает законы природе». «Такова первая причина „физического“ идеализма. Реакционные поползновения порождаются самим прогрессом науки», — делает вывод В. И. Ленин.
Объективный ход развития физики неизбежно привел к ломке старых фундаментальных понятий и принципов, к формированию новых. Непримиримое противоречие между механической картиной мира и опытными данными разрешилось крушением первой. Вместо нее возникло новое миропонимание — электромагнитная картина мира, и начался новый период в развитии физики.
Ученые занялись математической разработкой теории Дж. Максвелла, как это имело место и после создания механики Ньютона. Вернее сказать, с появлением электромагнитной картины мира начался этап интенсивного эволюционного развития физики на новой основе. Взгляды М. Фарадея и Дж. Максвелла произвели подлинную революцию в представлениях о природе. В качестве исходной материи здесь оказалась не совокупность неделимых атомов, перемещающихся в пустоте, а единое абсолютно непрерывное бесконечное поле с силовыми точечными центрами — электрическими зарядами и с волновыми движениями в нем. Основными законами мироздания оказались не законы механики, а законы электродинамики. В связи с этим менялись и методы научного исследования.
Теория электромагнетизма Максвелла объяснила большой круг явлений, не понятых с точки зрения прежней механической картины мира. Кроме того, она глубже вскрывала материальное единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов. Последние послужили базой для электромагнитной теории света. При этом была построена единая шкала электромагнитных колебаний от самых длинных радиоволн до коротких рентгеновских и гамма-излучений. На первых порах успешно разрабатывалась и электронная теория строения вещества. Ученые пытались и механические движения объяснить с помощью электродинамики. Строились доказательства электромагнитного происхождения массы, была найдена формула зависимости массы от скорости (М. Абрагам).
Однако на этом пути вскоре стали возникать непреодолимые трудности. Так, согласно электромагнитной картине мира, заряд считался точечным центром, а факты свидетельствовали о конечной протяженности частицы-заряда. Поэтому уже в электронной теории Г. А. Лоренца частица-заряд вопреки новой картине мира рассматривалась в виде твердого заряженного шарика, обладающего массой. Однако это допущение не снимало трудностей. Полученная опытным путем формула зависимости массы от скорости не совпадала с рассчитанной на основе теории. Вскоре появились и другие расхождения теории и опыта. Непонятным оказался результат опытов, проведенных в 1881–1887 гг. Майкельсоном. В этом опыте он пытался обнаружить движение тела по инерции при помощи приборов, находящихся на этом же теле. По теории Максвелла, такое движение можно обнаружить, но опыт не подтверждал этого.
В конце XIX — начале XX в. исследования показали, что взгляды Максвелла на физическую реальность были внутренне противоречивы. Приняв новые взгляды на материю и движение, заменив механические законы природы на электродинамические, он сохранил ньютоновские представления об абсолютности пространства и времени. Но в самих уравнениях электродинамики неявно содержалось предположение об относительности пространства и времени, чего сам Максвелл, как и другие физики того времени, не заметил.
Электродинамический этап развития физики делится на два периода: от Фарадея и Максвелла до Эйнштейна и после Эйнштейна по настоящее время. В первый период в результате некоторой недостроенности новой картины мира (сохранение ньютоновских представлений о пространстве и времени) в построении электродинамических теорий имелись внутренние противоречия, о которых мы говорили ранее. Однако этому не придавалось принципиального значения. Более того, выводы теории Максвелла были абсолютизированы, так что даже такой крупный физик, как Г. Кирхгоф, восклицал: «Разве осталось что-либо еще открывать?»
Однако к концу XIX в. все больше накапливалось необъяснимых несоответствий теории и опыта. Последние следует разделить на две группы. Одни были обусловлены указанной выше недостроенностью электромагнитной картины мира. Другие вообще не согласовывались с континуальными представлениями о материи, т. е. выходили за пределы этой картины. К последним следует отнести трудности в объяснении фотоэффекта, открытого в 1887 г., линейчатых спектров атомов, но особенно большие трудности возникали при попытках построить теорию теплового излучения. Эмпирические законы, установленные в этой области, не согласовывались с новой картиной мира.
Последовательное применение теории Максвелла к другим движущимся средам приводило к выводам о неабсолютности пространства и времени. Однако убежденность в их абсолютности была так велика, что ученые удивлялись своим выводам, называли их странными и фактически отказывались от них. Работами этих ученых, прежде всего Г. Лоренца и А. Пуанкаре, завершается доэйнштейновский период развития электродинамической физики.
Однако концепция абсолютности пространства и времени И. Ньютона, базировавшаяся на их независимости от характера и природы движущихся тел, не была отброшена сразу. Открытия А. Эйнштейна, теоретически обосновавшие тезис единства материи, движения, пространства и времени, победили тогда, когда была доказана диалектическая связь пространства и времени как форм движения материи с природой движущихся систем. Принимая законы электродинамики в качестве основных законов физической реальности, Эйнштейн ввел в электромагнитную картину мира идею относительности пространства и времени и тем самым устранил противоречие между пониманием материи как определенного вида поля и ньютоновскими представлениями о пространстве и времени. Взгляды Эйнштейна опирались на более правильное и глубокое философское понимание сущности электродинамической физики, что дало ему возможность устранить из электромагнитной картины мира ньютоновское понимание пространства и времени, заменив их такими, которые соответствовали полевым континуальным представлениям о материи и движении. Тем самым новая картина мира была создана в виде системы согласованных между собой понятий, принципов и гипотез.
С появлением теории относительности Эйнштейна (1905 г.) начинается второй период в развитии физики. Введение в электромагнитную картину мира релятивистских представлений о пространстве и времени открыло новые возможности для ее развития. Прежде всего были разработаны новые специальные теории: релятивистская «динамическая» механика, релятивистская «феноменологическая» термодинамика, релятивистская статистическая механика. Что касается электродинамики Максвелла, то она была дополнена электродинамикой движущихся тел.
Первой качественно новой теорией этого периода стала общая теория относительности (1916 г.), которая фактически является теорией тяготения. Чтобы ее построить, в электромагнитную картину мира А. Эйнштейном было введено понятие о кривизне пространства-времени, что расширяло конкретные представления о пространстве и времени. Как известно, по Ньютону, тяготение определялось как особая способность тел мгновенно притягивать друг друга при любых расстояниях между ними. Такое понимание тяготения является поверхностным, однако оно просуществовало в физике более 200 лет. Эйнштейн впервые дал глубокое объяснение природы тяготения. При этом большое философское значение имеет введенная Эйнштейном зависимость кривизны пространства-времени от распределения масс, т. е. от таких видов материи, как вещество и поле. Тем самым получило подтверждение известное положение материалистической диалектики о взаимосвязи пространства, времени и движущейся материи.
К тому же в результате новых экспериментальных открытий в области строения вещества в конце XIX — начале XX в. все больше обнаруживалось непримиримых противоречий между электромагнитной картиной мира и опытными фактами. В 1897 г. было открыто явление радиоактивности и было установлено, что оно связано с превращением одних химических элементов в другие, которое сопровождается испусканием α-лучей (ионов гелия) и β-лучей (электронов). Изучение этих явлений создало основу для построения эмпирических моделей атома. Такого рода модели, построенные на основе опытных данных, противоречили электромагнитной картине мира.
В 1900 г. М. Планк в процессе многочисленных попыток построить теорию излучения был вынужден высказать предположение о прерывности (квантовом характере) процессов излучения. Сам Планк, в то время приверженец электромагнитной картины мира, отмечал, что он испытывает отвращение к такой странной гипотезе, разрушающей стройное здание электродинамики Максвелла. Однако гипотеза Планка о квантах излучения оказалась очень плодотворной.
Противоречия между электромагнитной картиной мира и новыми открытиями в области строения атома и законов излучения становились все более непримиримыми. Назревала новая революция в физике, связанная с заменой существующей картины мира квантово-полевой.
4. Становление квантово-полевой картины мира
В начале XX в. эмпирически полученные данные о строении атома и о законах излучения оказались в противоречии с теорией электродинамики Максвелла, и это вело к принципиально новым представлениям о материи и движении. С одной стороны, представления о материи как о непрерывном бесконечном электромагнитном поле подтверждались огромным количеством экспериментальных данных, с другой — факты прерывности излучения и факты, свидетельствующие о сложном строении атома, нельзя было игнорировать. Таким образом, возникли два несовместимых представления о материи: или она абсолютно непрерывна, или она состоит из дискретных частиц. В начале XX в. предпринимались многочисленные попытки совместить эти две точки зрения на материю (и на весь мир). При этом возникло множество предположений и гипотез, но все они, как правило, не могли объяснить, как могут существовать взаимоисключающие представления о материи. Многим казалось, что физика зашла в тупик, из которого нет выхода. Как выразился один из крупных физиков, П. Иордан, в этой науке воцарилось «беспокойство и смятение».
Это смятение усугубилось, когда в 1913 г. Н. Бор предложил свою модель атома. Он предполагал, что электрон, вращающийся вокруг ядра, вопреки законам электродинамики не излучает энергии. Он излучает ее порциями лишь при перескакивании с одной орбиты на другую. Данное предположение первоначально казалось странным и непонятным даже таким физикам, как Э. Резерфорд, который является одним из авторов планетарной модели атома.
Однако именно модель атома Бора в значительной степени способствовала формированию новых физических представлений о материи и движении. В 1924 г. Луи де Бройль, используя аналогию между принципами наименьшего действия в механике и оптике, высказал гипотезу о соответствии каждой частице определенной волны. Иными словами, каждой частице материи присущи и свойство волны (непрерывность) и дискретность (квантовость). Тогда, отмечал де Бройль, становилась понятной теория Бора.
Эти физические представления нашли подтверждение в работах, выполненных в 1925–1927 гг. Э. Шредингером и В. Гейзенбергом. Первый на основе гипотезы де Бройля нашел волновое уравнение для частиц, а второй, развивая идеи Бора, дал основное уравнение квантовой механики в матричной форме. Вскоре М. Борном была показана тождественность волновой механики Шредингера и квантовой механики Гейзенберга.
В формировании квантово-полевой картины природы большую роль сыграла диалектическая идея о единстве прерывного и непрерывного. Тот, кто принимал эту идею, легко воспринял корпускулярно-волновой дуализм в представлениях о материи и движении. При построении первой квантовой теории поля — электродинамики Дирака — оно рассматривалось как совокупность частиц, а квантовые частицы — как возбуждение поля. Тем самым устанавливалась неразрывная взаимосвязь элементарных частиц и квантовых полей.
В настоящее время открыто несколько сот элементарных частиц. По массе они делятся на две группы: тяжелые (адроны) и легкие частицы (лептоны). При этом сначала было теоретически предсказано, а затем экспериментально подтверждено, что каждой элементарной частице соответствует античастица, обладающая противоположным знаком заряда и некоторыми другими квантовыми характеристиками. Одна из основных особенностей элементарных частиц — их универсальная взаимозависимость и взаимопревращаемость. Каждому виду элементарных частиц соответствуют свои формы взаимодействия. Кроме ранее известных электромагнитных (в которых участвуют частицы, обладающие электрическим зарядом) и гравитационных взаимодействий (в которых участвуют вообще все частицы) были открыты два новых вида взаимодействий: сильные, в которых участвуют адроны, и слабые, в которых участвуют лептоны. При этом происходит обмен виртуальными (короткоживущими) частицами, различными для разных видов взаимодействия. Это расширило представления о самом механизме взаимодействия. В современной физике основным материальным объектом является квантовое поле. Оно может находиться в возбужденном состоянии. При переходе поля из одного состояния в другое число частиц меняется.
Несмотря на тесную взаимосвязь понятий поля и частицы, понятие поля как совокупности частиц не исчерпывает его содержания. Специфика квантово-полевого понимания материи выражается и в том, что поле сохраняется даже тогда, когда частицы в нем отсутствуют. Такое состояние поля называется невозбужденным («нулевым»). Его не совсем точно называют вакуумом: в таком поле отсутствуют лишь частицы, но само поле остается протяженной материальной физической реальностью. Это подтверждено экспериментально. Представление о невозбужденных полях играет все более важную роль в квантово-полевой картине мира.
Ее особенность состоит в том, что в характеристике взаимопревращения частиц не действует закон сохранения их числа, т. е. частицы могут возникать, уничтожаться и превращаться в строгом соответствии с определенными законами сохранения (энергии, импульса, заряда и некоторых других специфически-квантовых величин). Совокупность этих законов в конечном счете является формой выражения всеобщего закона сохранения материи и движения.
Современные квантово-полевые представления о материи и движении не получили еще своей окончательной формулировки. Во-первых, в процессе развития атомной техники и эксперимента открываются все новые и новые разновидности микрообъектов. Во-вторых, в последние годы были сначала предсказаны теоретически, а затем зафиксированы экспериментально составные части квантовых частиц — так называемые кварки. Из них состоят все элементарные частицы, кроме лептонов. Поэтому стали говорить о кварках и лептонах как о фундаментальных частицах, из которых состоят все элементарные частицы. Однако в последнее время появились гипотезы о существовании еще более «элементарных» частиц, структурных элементов, из которых состоят кварки и лептоны. Эти гипотетические частицы названы «перонами». Как видно, в развитии квантово-полевых представлений подтверждается ленинское положение о неисчерпаемости материи вглубь.
Спецификой квантово-полевых представлений о закономерности и причинности является то, что они выступают в вероятностной форме. Уравнения поля, выражающие объективные связи и законы, отражают и возможности тех или иных квантовых процессов, которые могут произойти в данной квантовой системе. В частности, вероятностная обусловленность тех или иных ее свойств выражена в соотношениях неопределенностей сопряженных пар физических величин: координаты и импульса, времени и энергии и некоторых других. Вследствие этих неопределенностей об элементарной частице нельзя говорить как о частице в обыденном понимании.
По мере того, как складывались квантово-полевые представления о материи и движении, о взаимосвязи и взаимодействии, о причинности и закономерности, строились различные общие теории. Сначала они охватывали лишь отдельные виды взаимодействий. Так, вслед за квантовой электродинамикой (теорией электромагнитных взаимодействий) была разработана теория слабых взаимодействий. Затем предпринимались многочисленные, но малоплодотворные попытки теоретического описания сильных взаимодействий. Но вскоре вследствие ряда возникших трудностей построение новых теорий затормозилось. Ученые пришли к выводу, что для дальнейшего развития физики необходимы принципиально новые идеи. В. Гейзенберг, например, указывал, что надо отказаться от ряда устаревших понятий и по-новому сформулировать такие понятия, как «состояние», «часть» и «целое», «пространственная протяженность» и некоторые другие.
Это свидетельствовало о том, что квантово-полевая картина мира была недостаточно разработана в качестве исходной основы для построения этих теорий. Поэтому такие теории неизбежно были ограниченными; в них необходимо было вносить поправки и дополнения, с тем чтобы согласовать теоретические выводы с данными эксперимента. В результате они переставали быть подлинными теориями и превращались в свод полуэмпирических правил и закономерностей.
Однако за последние годы содержание квантово-полевой картины мира значительно расширилось. Прежде всего в соответствии с новыми экспериментами углублялись квантово-полевые представления о материи и движении, что оказывало влияние на картину мира в целом. В процессе более обстоятельного изучения взаимодействий между частицами было установлено, что понятие «состоять из» приобретает особый смысл. Оказалось возможным образовывать частицы с малой массой из частиц с большой массой. Таким образом, понятия «часть» и «целое» становились относительными, поскольку «часть» могла быть больше «целого». На этой основе сложились представления о том, что различия между микромиром и макромиром также относительны. Возникла гипотеза о «фридмонах» как о таких объектах, которые обладают космическими масштабами, но для внешнего наблюдателя проявляются как частицы сколь угодно малых размеров.
С открытием кварков и с разработкой гипотезы о «перонах» более глубокими стали и представления о материи и движении. Так, обнаружилось, что кварки и антикварки, составляющие протон и другие сложные частицы, связаны посредством особых виртуальных частиц — глюонов, взаимодействие которых тем слабее, чем ближе кварки находятся друг к другу. Создается представление, что внутри сложных частиц кварки относительно независимы друг от друга, обладают значительными «степенями свободы». Но при их удалении друг от друга взаимосвязь кварков становится столь большой, что «выбить» кварк из частицы оказывается практически невозможным. По всей вероятности, вне составленных из них частиц кварки и антикварки вообще не существуют. При таком углублении и расширении представлений о частицах и их взаимодействиях открываются новые возможности для построения квантовых теорий.
Перед современной физикой поставлена задача «великого объединения» — построения единой теории, охватывающей все виды взаимодействий элементарных частиц. Только такая теория могла бы рассматриваться в рамках достаточно разработанной картины мира в качестве фундаментальной квантово-полевой теории. Вместе с тем с ее появлением можно было бы считать завершенным формирование основ квантово-полевой картины мира. Отдельные элементы такого «великого объединения» уже созданы. Так, в 1967 г. С. Вейбергом и А. Саламом была разработана теория, объединяющая электромагнитные и слабые взаимодействия. Вслед за этим возникла задача объединения в одной теории этих взаимодействий с сильными взаимодействиями.
Однако в поисках такой единой теории физики натолкнулись на трудности, что свидетельствует о недостаточной разработанности ее основ. По-видимому, нужны качественно новые идеи и гипотезы. В этом плане плодотворным оказалось предположение о спонтанном нарушении симметрии вакуума, что связано с расширением представлений о вакууме как особом виде квантово-полевой материи: хотя вакуум является нулевым (основным) состоянием квантовой системы, он тем не менее обладает не нулевой энергией. Для дальнейшего успешного развития физики необходимо прежде всего углубление философских основ современной научной картины мира.
Таким образом, изучение особенностей современной революции в физике позволяет сделать ряд важных методологических выводов. Прежде всего необходима доработка квантово-полевой картины мира в соответствии с положениями о неисчерпаемости материи и многообразии ее видов, разнообразии взаимодействий, присущих квантовым объектам, объективности законов квантовой физики. Только на этом пути возможно правильное понимание необычных экспериментально установленных особенностей квантовых объектов.
Учитывая закономерности развития предыдущих физических картин мира, можно сделать вывод о том, что ключевой проблемой современной картины мира является, с одной стороны, углубление квантово-полевых представлений о материи и движении и, с другой — разработка таких представлений о пространстве и времени, которые полностью соответствовали бы квантово-полевому пониманию материи и движения.
В существующей картине мира наряду с новым, квантово-полевым пониманием материи и движения сохранились старые, электродинамические (релятивистские) представления о пространстве и времени. На этом основании некоторые физики пришли даже к выводу о неприменимости понятий пространства и времени в микромире, о том, что эти понятия якобы устарели и от них надо отказаться. На самом же деле устарели не понятия пространства и времени, а представления о них. В этом плане заслуживают внимания идеи квантования пространства и времени, идеи связи пространства и времени с внутренней симметрией элементарных частиц. Возможны и иные гипотезы об особенностях квантово-полевых объектов и форм их существования.
Качественные изменения представлений о пространстве и времени непосредственно связаны с разработкой нового математического аппарата, соответствующего квантово-полевой картине мира.
Таким образом, современная революция в физике открыла новые пути для развития этой науки. Однако новая физическая картина мира, пришедшая на смену старой, сложилась не сразу. Более того, до сих пор углубляются и расширяются основные для нее квантово-полевые представления о материи и движении, о взаимосвязи и взаимодействии; совершенствуются представления о причинности и закономерности. Главная задача в завершении квантово-полевой картины мира состоит в том, чтобы разработать такие квантово-полевые представления о пространстве и времени, которые качественно отличались бы от релятивистских и находились бы в полном соответствии с квантово-полевыми представлениями о материи и движении.
5. Диалектика объективного и субъективного в современной физике
Революция в физике в начале XX в. привела к созданию новых фундаментальных теорий, которые легли в основу современной физической науки. В течение первых двух десятилетий были разработаны специальная и общая теория относительности, а в 20-х годах — квантовая механика. Появление теории относительности и квантовой механики означало ломку старых, классических понятий и выработку новых, более адекватно описывающих явления, с которыми столкнулась наука, вскрыло несостоятельность метафизических взглядов на природу. Однако в этой ситуации оживились надежды некоторых зарубежных ученых на возможность обоснования идеалистических воззрений.
Дело в том, что теория относительности показала ограниченность господствовавших ранее в науке метафизических представлений об абсолютном пространстве и абсолютном времени. Согласно теории относительности, величина расстояния между какими-то точками или временного интервала между двумя событиями не абсолютна, а зависит от системы отсчета. Отсюда «физические» идеалисты сделали вывод, будто пространство и время вообще существуют не объективно, а лишь в нашем восприятии, лишь постольку, поскольку мы их измеряем, наблюдаем.
Далее, в квантовой механике была вскрыта ограниченность метафизических представлений о структуре материи, а также односторонность и недостаточность механистических представлений о причинности. Оказалось, что традиционные взгляды на динамическую обусловленность явлений нельзя совместить с новыми представлениями о микрообъектах, вытекающими из соотношения неопределенностей Гейзенберга. На этом основании «физические» идеалисты делали вывод о том, что якобы вообще нельзя дать полного описания реальности с точки зрения принципа причинности, и заявляли, что материализм устарел и его надо отбросить. Так, известный физик А. Эддингтон писал, что данные теории относительности и квантовой механики будто бы подтверждают основные философские принципы Дж. Беркли и И. Канта, а Джине утверждал даже, что они доказывают правильность философии Платона.
Таким образом, отказ от старых метафизических, механических представлений «физические» идеалисты попытались выдать за крах материализма вообще. Между тем В. И. Ленин указывал, что «изменчивость человеческих представлений о пространстве и времени так же мало опровергает объективную реальность того и другого, как изменчивость научных знаний о строении и формах движения материи не опровергает объективной реальности внешнего мира».
Теория относительности и квантовая механика не дают оснований для отхода от материализма, если иметь в виду диалектический материализм. Теория относительности, вскрывшая ограниченность ньютоновских представлений об абсолютном пространстве и абсолютном времени, вполне согласуется с диалектико-материалистическим учением о пространстве и времени как формах существования материи. Установив, что для тел, движущихся друг относительно друга, величина пространственных промежутков и темп течения времени оказываются различными, она наполнила конкретным физическим содержанием тезис материалистической диалектики о зависимости свойств пространства и времени от движения материи. В ней выражена физическая форма диалектической взаимосвязи пространства и времени — четырехмерный пространственно-временной мир. Неотделимость пространства и времени от движения материи находит физическое обоснование в открытой связи особенностей этого четырехмерного мира с полем тяготения.
Квантовая механика, показав неприменимость к микроявлениям механистического понимания причинности как однозначной динамической предопределенности последующих состояний предыдущими, не отвергает причинность вообще, а лишь выявляет ее новые формы. В причинности диалектически сочетаются необходимые и случайные связи, устанавливаются вероятностно-статистические закономерности, несводимые к механистически понимаемой причинности. При этом соотношение неопределенностей лишь устанавливает границы применимости к элементарным частицам обычного представления о частицах, свойственного классической механике, но не ставит под сомнение применимость к ним принципа причинности, если понимать его не в механическом (лапласовском), а в более широком, вероятностно-статистическом смысле.
Важно, однако, не просто показать, что теория относительности и квантовая механика подтверждают научность материалистической диалектики, а раскрыть, что нового фундаментальные физические теории, рожденные научной революцией XX в., привнесли в материалистическую диалектику. Постановка такой проблемы связана с осмыслением изменений, которые претерпело соотношение объективного и субъективного в научном познании.
В XX в. наука вышла за пределы мира макроскопических явлений, доступных человеку в его житейском опыте. Релятивистская и квантовая физика столкнули человечество с кругом объектов, во многом отличающихся от объектов привычного, «земного» мира. Это значительно расширило сферу человеческих знаний, но вместе с тем существенным образом изменило гносеологическую ситуацию, в которой развертывается процесс научного познания.
Идеалом научного познания действительности в XVIII–XIX вв. было полное устранение познающего субъекта из научной картины мира, изображение мира «самого по себе», независимо от средств и способов, которые применялись при получении необходимых для его описания сведений. Этот идеал, казалось, был близок к осуществлению в классической физике. Тогда представлялись обоснованными надежды на то, что с углублением научного исследования мира создаваемая наукой картина природы будет все более независимой от используемых приемов познания. Однако физика XX в. столкнулась с непредвиденными обстоятельствами, которые дали о себе знать прежде всего при изучении микромира.
Во-первых, новая, более мощная экспериментальная техника, использование которой служило необходимым условием для вторжения в области природы, далекие от обыденных условий жизни человека, становится настолько существенным посредническим звеном между исследователем и изучаемыми явлениями, что последние предстают перед исследователем не в их «натуральном» виде, а в форме, существенно измененной условиями эксперимента. Конечно, применение мощной экспериментальной техники позволяет устранить многие субъективные моменты, связанные с индивидуальными особенностями исследователя. Но в то же время оно неизбежно ведет к вмешательству в состояние наблюдаемых явлений, к познанию их в возмущенном этим вмешательством виде, к описанию их в неразрывном единстве с условиями, при которых возможна их фиксация. Таким образом, методы и средства деятельности субъекта накладывают столь глубокий отпечаток на описание исследуемых явлений, что он оказывается сам существенной и неотъемлемой частью этого описания. Следовательно, сложившееся в предшествующий период развития науки соотношение объективного и субъективного в научном познании претерпевает качественное изменение. Прежний идеал научного познания рушится.
Во-вторых, привычные наглядные образы и ассоциации, порождаемые условиями, непосредственно окружающими человека («здравый смысл»), становятся часто бесполезными при исследовании областей, где эти условия отсутствуют. Микрообъекты обладают такими особенностями, воспроизведение которых в наглядных моделях, построенных на макроуровне, сопряжено с непреодолимыми трудностями. Это обстоятельство существенно увеличивает роль абстрактных понятий, логико-математического аппарата в науке. Субъективизм при получении научного знания существенно ограничивается, поскольку оно освобождается от нестрогих интуитивных представлений. Но в то же время научное описание оказывается зависящим от применяемых средств и методов построения теоретического знания, а следовательно, в конечном счете — от общих философских представлений о том, что и как должно познаваться наукой. При этом оказывается, чем больше роль абстрактного теоретического мышления в науке, тем сильнее эта зависимость. В результате описанная наукой реальность предстает не только такой, какой она является «сама по себе», но и такой, какой она может быть изображена с помощью используемого концептуального аппарата. Иначе говоря, получаемая картина объективного мира определяется не только свойствами самого мира, но и характером теоретической обработки имеющегося эмпирического материала.
Зависимость знания от методов его получения в силу принципа отражения предполагает, что это знание имеет объективное содержание, т. е. отражает материю, как она существует до, вне и независимо от какого бы то ни было знания и какой бы то ни было деятельности. Средства, методы исследования не выбираются произвольно. Они формулируются на базе определенного опытного материала, добытого человечеством на предшествующих стадиях познания, и имеют свои границы применимости. Но новый опытный материал, даже если он лежит за этими границами, приходится осмысливать с их помощью, по крайней мере до тех пор, пока на его основе не появятся другие.
Выход физики за пределы макромира выявил ограниченность понятий, используемых в классической физике. Обнаружилось, что описание микрообъектов с помощью макроскопических понятий пространственно-временного континуума и причинное объяснение не корректно.
Боровский принцип дополнительности позволяет использовать классические понятия для описания и объяснения явлений, имеющих неклассический, немакроскопический характер. Но, выражая микроскопические явления с помощью макроскопических понятий, мы вносим тем самым в картину материального мира субъективный элемент.
Таким образом, указанные обстоятельства, уменьшая роль субъективных элементов, связанных с индивидуальными особенностями исследователя, в то же время существенно увеличивают в научном познании объективного мира удельный вес факторов, порожденных макроскопической природой человека. В квантовой физике подчас невозможно с той же четкостью, что и в XIX в., отделить свойственное самой природе от того, что присуще нашему способу познания, характеру действий, обусловленному биологической организацией человека, уровнем развития социальной практики в данный период развития науки, арсеналом средств эмпирического исследования и теоретического мышления.
Это своеобразное взаимопроникновение противоположностей объективного и субъективного при поверхностном подходе к вопросу истолковывалось как своего рода «принципиальная координация» (Мах, Авенариус) между объектом и субъектом, и складывалось впечатление, будто физика XX в. вообще отказывается от первичности объекта относительно субъекта.
Конечно, познание любого материального объекта невозможно без прямого или косвенного воздействия субъекта на объект. Но воздействие на объект ведет к более или менее значительному изменению его состояния, т. е., вообще говоря, к некоторому «преобразованию» объекта. При этом оказывается: чем более сложным и «тонким» по своей природе является объект, чем он более удален от непосредственного чувственного восприятия, тем более значительно воздействие на него со стороны субъекта. Однако то обстоятельство, что для познания более сложных и «тонких» объектов требуется большая активность со стороны субъекта, не означает, что объект произведен от субъекта.
Так как «преобразование» объекта представляет собой материальный процесс, то в объекте проявляются и такие черты, которые были присущи ему еще до воздействия на него. Дело в том, что разные материальные системы по-разному реагируют на одно и то же воздействие. Это обстоятельство нельзя объяснить, отрицая первичность объекта относительно субъекта. Таким образом, действительный смысл парадоксального взаимопроникновения объективного и субъективного в современной физике заключается не в возникновении «принципиальной координации» между объектом и субъектом, а в активизации преобразующей деятельности субъекта. По мере того, как объект становится более «диковинным», познание его без указанной активизации деятельности субъекта оказывается невозможным.
С точки зрения метафизического материализма состояние физики на нынешнем этапе ее развития выглядит, по-видимому, неблагополучно. Идеалы классической науки, к которым, казалось, была близка физика XIX в., остались неосуществленными. Не удивительно, что это порождает у некоторых ученых скептицизм, сомнения в прогрессе физической науки, в объективном значении ее результатов. Сомнения эти неосновательны. Объективная ценность содержания современной физики, как и ранее, обосновывается тем, что оно проверяется опытом, практикой, будучи в конечном счете не зависящим от воли и желания ученого.
Материализм исходит из объективного существования природы до человека и независимо от него. Но из этого не следует, что научное описание природы также может не зависеть от субъекта, от применения человеком средств и способов описания. Метафизическим материалистам было свойственно убеждение, что научная теория имеет объективную ценность только в том случае, если описание объективного мира не содержит моментов, зависящих от способов его изучения. Такой подход был связан с метафизическим пониманием познания как фотографического отражения «неизменным субъектом» «неизменного субстрата». Как указывал В. И. Ленин, в этой концепции не хватало понимания того, что «истина есть процесс». Поэтому, согласно этой концепции, для познания сущности материи было необходимо абстрагироваться от всех взаимодействий, в том числе и от взаимодействия субъекта с объектом, поскольку всякое взаимодействие мешает познать такой субстрат.
Материалистическая диалектика решает этот вопрос иначе. К. Маркс указывал, что в отличие от старого материализма, для которого познаваемая действительность выступала только в форме объекта, диалектический материализм требует учитывать то влияние, которое оказывает на нее человеческая деятельность. Развитие физики в XX в. показало, что это требование соответствует фактическому положению дел.
Здесь может возникнуть вопрос: а существует ли принципиальная возможность восстановить четкую границу между тем, что в научном описании реальности обусловлено свойствами самой реальности, и тем, что в ней обусловлено свойствами применяемых человеком средств познания и описания ее? Как уже было отмечено, субъективный элемент в научном описании мира появляется тогда, когда средства теоретического мышления, представления и понятия, с помощью которых описывается объект познания, оказываются непригодными для его адекватного отображения. В современной физике этот элемент связан с попыткой описать микромир с помощью представлений и понятий, сложившихся при исследовании макромира. Очевидно, если бы было возможно построить новые, неклассические, немакроскопические представления и понятия для описания микромира, т. е. привести средства теоретического мышления в соответствие с изучаемым объектом, то эффекты, порожденные в описании микроявлений особенностями применяемого ныне познавательного аппарата, исчезли бы. Но квантовая механика и теория относительности показали, что не только прежние физические представления и понятия о конкретных свойствах материи, но и прежние метафизические представления и понятия об атрибутах материи становятся недостаточными для описания явлений, которые выступают предметом исследования в современной физике. Поэтому решение поставленного вопроса зависит от того, насколько осуществима задача создания более глубоких представлений о содержании атрибутов материи, соответствующих новому опытному материалу, даваемому современной физикой.
Это подводит нас к другой важной проблеме, требующей диалектического осмысления результатов революции в физике XX в., — проблеме расширения конкретно-научного содержания атрибутов материи, или, иными словами, проблеме взаимоотношения абсолютного и относительного аспектов в представлениях об атрибутах материи.
Абсолютное содержание атрибутов материи, на наш взгляд, — это такие их свойства, которые присущи всем материальным объектам. Например, такому ее атрибуту, как время, возможно, присуще свойство необратимости. Конечно, наши знания о содержании этих атрибутов не априорны — они взяты из практики и являются обобщением накопленного человеческого опыта. Поэтому есть основания полагать, что представления о пространстве и времени, качестве и количестве, законе и причинности, сложившиеся у человечества в течение многих тысячелетий, содержат моменты, которые связаны с конкретными физическими условиями, существующими на Земле, и кажутся нам всеобщими лишь потому, что мы игнорируем их геоцентрическое происхождение и распространяем на все материальные объекты. Иначе говоря, макроскопический характер человеческих знаний накладывает отпечаток на представления о содержании атрибутов материи.
Физика XX в., прорвав горизонт геоцентрического мира, выяснила неправомерность прежних представлений о всеобщем содержании некоторых атрибутов материи. Так, теория относительности доказала, что такое свойство пространства, как его «плоский» (евклидов) характер, и такое свойство времени, как постоянство его «темпа», которые раньше казались универсальными, на самом деле не являются таковыми. Квантовая механика обнаружила, что в понятие движения (пространственного изменения) нельзя включать такие моменты, как существование траектории или непрерывность основных динамических характеристик (энергия, импульс, момент импульса), без которых в XIX в. движение и не мыслилось. Разработка теории элементарных частиц, по-видимому, требует пересмотра и нынешних представлений о содержании категорий «качество» и «причинность». А поскольку все атрибуты взаимосвязаны, можно полагать, что то же самое рано или поздно произойдет и в отношении содержания других атрибутов материи.
Таким образом, постепенно становится ясным, что наши конкретные представления о содержании атрибутов материи не являются всеобщими в полном смысле этого слова («абсолютно всеобщими»). Они всеобщи лишь для того круга условий, с которыми человечество имело дело до нынешней эпохи. Современные представления об атрибутах материи являются не абсолютными, а относительными истинами, содержащими, как подчеркивал В. И. Ленин, элементы абсолютной истины. Нынешние концепции о времени и пространстве отражают «наше видение» пространства и времени, соответствующее современному этапу развития науки. На основании обобщения результатов современной физики можно предположить, что существуют и иные, отличные от известных человечеству формы атрибутов материи. Вероятно, формы пространства, движения, качества, количества, возможности, случайности, необходимости столь же неисчерпаемы, как неисчерпаемы атом и электрон.
ГЛАВА III. ДИАЛЕКТИКА И ПРОБЛЕМЫ РАЗВИТИЯ ХИМИЧЕСКОЙ ФОРМЫ ДВИЖЕНИЯ МАТЕРИИ
1. Объект химии. Основные внутренние противоречия развития химии
Химия — одна из фундаментальных отраслей знаний. Ее развитию и структуре присущ ряд специфических особенностей. Прежде всего следует отметить тесную связь химии с практикой и производством на всех ступенях ее развития. Способность химиков как бы «самим создавать себе объект» — синтезировать вещества с безграничным разнообразием свойств — обусловила возрастающую роль химии в прогрессе человеческой цивилизации. Во многих случаях современные химические производства достигли такого совершенства, а получаемые вещества — такой сложности, что между наукой и промышленностью в значительной мере стирается существенное различие. Это отражается в современном языке: слово «химия» выражает не только отрасль знания, но и весь комплекс химических производств.
Потребности производства и практики были определяющими в формировании объекта химии и во все периоды развития влияли на ее структуру. Химия издавна была тесно связана, с одной стороны, с медициной через фармацевтическое производство, с другой — с металлургией и горным делом. Однако относительная простота превращений неорганических веществ привела к тому, что первоначальные понятия химической науки были сформулированы на основе изучения превращения соединений металлов, их восстановления из руд, окисления при нагреве и образования сплавов.
Исходным понятием химии является «химический элемент». Первое научное определение его было дано в эпоху формирования основ современного естествознания — в середине XVII в. Р. Бойлем. Формирование понятия о химическом элементе проходило под непосредственным влиянием той эпохи, в которую складывалась основная концепция физической картины мира в целом. «Бойль делает из химии науку», — отмечал Ф. Энгельс.
В дальнейшем в связи с общим развитием материального производства особенно сильно возрастал интерес к исследованию превращений органических веществ. Однако окончательное формирование органической химии как самостоятельной отрасли науки произошло лишь в первой половине XIX в. Бурное развитие капиталистической промышленности потребовало усовершенствования ряда производств, в которых использовались органические вещества (бродильные производства, изготовление красителей). Это подтверждает тезис материалистической диалектики о решающем влиянии производства на развитие науки. К возникновению органической химии как науки вполне приложимо высказывание Ф. Энгельса по поводу других отраслей знания. Об электричестве он писал, что о нем «мы узнали кое-что разумное только с тех пор, как была открыта его техническая применимость».
Дальнейшее развитие отраслей химической промышленности еще более усилило воздействие проблем превращения веществ органической природы на формирование объекта химии. Хотя прогресс промышленности значительно продвинул развитие химии в целом, органические производства имели явный приоритет. В результате процесс дальнейшей дифференциации объекта химии пошел по пути выделения таких важных областей органической химии, как химия высокомолекулярных соединений и биоорганическая химия.
Наряду с этим происходили и интегративные процессы. Отдельные отрасли органической химии начали сливаться с неорганикой — появились такие направления, как элементоорганическая химия и химия координационных соединений. В двух последних отраслях химической науки проблематика, свойственная неорганической и органической химии, слилась. Присоединение сложных органических радикалов к различным элементам позволило выявить неизвестные ранее тончайшие особенности поведения многих элементов системы Менделеева, создать вещества, обладающие рядом уникальных свойств (катализаторы, лекарственные препараты).
Наряду с прогрессом указанных отраслей химии (в особенности химии высокомолекулярных соединений, во многом определившей направление развития материального производства) во второй половине XX в. особое значение приобрели материалы, способные функционировать в экстремальных условиях (при высоких температурах и давлениях, мощных излучениях, в космическом вакууме). Эти обстоятельства стимулировали прогресс химии неорганических соединений. В связи с этим возникли новые отрасли химической науки, изучающие свойства особых систем, такие, как химия плазмы, исследующая состояния вещества при высоких температурах, химия огнеупорных материалов, специальных сплавов. Эти системы, как правило, включают в себя неорганические вещества, однако чаще всего они не являются индивидуальными соединениями, а представляют собой сложные смеси или композиции. Исследование таких систем как новых объектов химии составляет важное направление современной химической науки.
Рассмотренные выше причины, вызвавшие развитие и дифференциацию объекта химии, не исчерпывают всех факторов, определяющих структуру этой науки. Последняя обусловливается воздействием наук о жизни и наук о Земле как непосредственно, так и через практические или промышленные запросы, сочетающиеся с влиянием внутренних факторов.
Внутренние факторы, стимулирующие процесс формирования химии, достаточно сложны. Они начали обнаруживаться тогда, когда химия достигла высокого уровня развития и накопила большой фактический материал. В их основе лежит взаимодействие химии с другими отраслями естествознания, прежде всего с физикой. Хотя исторически химия долгое время считалась отраслью, близкой к биологии, тем не менее именно введение физических понятий и исследование физических параметров формировало теорию химии.
В первую очередь это относится к исследованию двух основных механических параметров вещества — веса и объема. Исследование веса привело к формулировке и экспериментальному обоснованию понятия химического элемента. Действительно, после разработки основ механической картины мира понятие массы и веса открыло возможности для количественного изучения химических превращений. Исследования веса как меры количества материи позволяли прямо устанавливать факт протекания процесса разложения вещества. На основе этого и в результате открытия возможности экспериментального обнаружения газообразных состояний удалось проследить процесс разложения на составные части важнейших веществ природы. При этом были установлены реальные пределы такого разложения — химические элементы или «начала». К концу XVIII в. благодаря трудам М. В. Ломоносова, А. Лавуазье, Дж. Пристли был составлен список этих элементов, включавший несколько десятков наименований.
Химический элемент как эмпирический предел анализа получил теоретическое обоснование в атомистике Дж. Дальтона. Хотя атомистические представления появились в науке еще в эпоху античности, тем не менее только атомистика начала XIX в. позволила подойти к конкретной числовой характеристике веса атома. Он определялся экспериментально на основе химического анализа.
В отличие от веса другой важнейший физический параметр — объем был введен в химию позднее. Это связано со спецификой взаимодействия ньютонианской и картезианской традиций в естествознании. Атомистика Дальтона, построенная на использовании веса и массы, представляла собой продолжение ньютонианской традиции, оставляя в стороне факторы, связанные с объемными или вообще пространственными характеристиками вещества. Такое ограничение было исторически необходимым. Однако уже в первой половине XIX в. открылась возможность использования данных об объеме прежде всего для изучения газообразных тел. Эти данные оказались важными для формирования второго (после атома) фундаментального микроскопического понятия химии — понятия о молекуле.
Атомно-молекулярная теория составила базис теоретической концепции химии. На ее основе происходило дальнейшее развитие теоретических основ химии. Понятие о молекуле связано с пониманием природы химического взаимодействия. Подход к молекуле как системе взаимодействующих атомов, образующих единство, позволил точнее сформулировать еще одно важное понятие — химическое соединение. Дальнейшее развитие внутренней логики химии шло по пути выяснения соотношений между отдельными химическими соединениями и элементами. На этом пути обнаружилась особенность объекта химии, отличающая его от объекта других наук о природе, в том числе и биологии.
В первую очередь это удалось выяснить на примере органических соединений. Успехи органического синтеза, в том числе получение тех веществ, которые возникли в процессе жизнедеятельности организмов, поставили вопрос о классификации химических соединений. Действительно, если органические вещества могут быть синтезированы искусственно из неорганических, то принципы биологической классификации к ним неприменимы (например, нельзя делить вещества на растительные и животные). В частности, детальный анализ взаимных переходов и состава большого числа органических соединений показал, что система их отношений коренным образом отличается от таковой в живой природе.
Уже со времен К. Линнея между видами животных и растений обнаруживались упорядоченные иерархические связи. Объекты живой природы группировались в виды, роды, семейства, классы, типы, которые в той или иной степени отражали генезис живых организмов. Попытка же нахождения такого генетического порядка среди объектов химии — химических соединений — не давала конструктивных результатов. Хотя между химическими соединениями существовали тесные взаимосвязи, они не образовывали последовательные иерархические ступени, отношения между ними были иные. Эти отношения представляли собой более или менее развитые выражения сходства. При этом сходные соединения образовывали ряды, в которых соседние члены были очень близки друг другу, тогда как крайние могли сильно отличаться. Более того, каждый член ряда находился на пересечении нескольких рядов, построенных по разному принципу сходства.
Первоначально считали, что отношения, известные в биологии как гомологические, не имеют прямой связи с происхождением органических соединений, но в середине XIX в. примеры таких гомологических рядов химических структур были описаны в работах многих химиков-органиков. При этом члены гомологического ряда были связаны не только между собой, но обнаруживали параллелизм с аналогичными представителями других соседних рядов (например, ряду углеводородов соответствовали ряды спиртов, кислот). Таким образом, совокупности химических соединений образовывали не генеалогические древа, а скорее систему пересекающихся рядов, своеобразную сетку или таблицу. Эта особенность объекта химии требовала развития совершенно иного теоретического аппарата, отличного от того, которым пользовалась биология. Принцип развития (генетической таксономии) здесь был неприменим или по крайней мере преждевременен.
Для дальнейшего продвижения в области познания объекта химии необходимо было выработать новый концептуальный аппарат. Этим аппаратом стала структурная теория. Современное содержание понятия «структурная теория» (или «теория строения») многопланово. Оно включает широкий круг теоретических концепций и эмпирических описаний структурных особенностей вещества. Структурная теория охватывает проблемы многообразия химических превращений, тесного единства структуры и процесса, взаимосвязи данного вещества с исходными веществами и продуктами разложения и др.
Следует отметить, что решение этих проблем с помощью фундаментальных принципов строгой теории пока невозможно. Хотя в этой области, особенно в связи с применением электронно-вычислительной техники, достигнут большой прогресс, химикам в практической работе приходится часто прибегать к эмпирическим методам. Область эмпирических исследований в химии очень широка и по существу в настоящее время составляет основу теоретических концепций этой науки. Исследование природы эмпирических объектов в химии тесно связано с проблемой моделирования. Можно даже говорить в какой-то степени о единстве эмпирических соотношений и моделей в химии.
Рассмотрим кратко некоторые важнейшие типы эмпирических методов и моделей. Исходным моментом эмпирических классификаций является отмеченная ранее особенность химии — наличие сети пересекающихся рядов сходных объектов. На эти ряды опирается большинство эмпирически найденных соединений, которые не являются универсальными, а существуют в пределах группы соединений. Первоначальным эмпирическим описанием, которое можно рассматривать и как математическую модель, является эмпирическое уравнение, связывающее несколько разных свойств или одно и то же свойство в двух сходных рядах. Такие эмпирически открытые соотношения часто объясняются на основе периодической системы элементов (например, связываются температуры разложения и теплоты образования в ряду сульфатов в группе металлов или, наоборот, сравниваются теплоты образования ряда сульфатов и селенатов одних и тех же металлов).
Такое соотношение задается в виде математической функции, в которой в качестве аргумента выступает одно свойство, а функции — другое. Подобное уравнение аналогично математической модели какой-либо системы типа «черного ящика», где в качестве «входа» используется одно свойство, в качестве «выхода» — другое. Часто такие соотношения носят название корреляций. Они широко применяются для оценки свойств неизвестных соединений путем интерполяции в ряду сходных веществ. Фактически на этом же принципе были основаны известные предсказания Д. И. Менделеева о существовании нескольких не открытых еще элементов (галлий, скандий, германий). В этом смысле периодическая система химических элементов может рассматриваться как своего рода модель химических взаимосвязей.
Очень важное место среди методов моделирования занимают аддитивные модели. Хотя химическое соединение нельзя представить как сумму составляющих его элементов, тем не менее при выполнении определенных условий вполне можно составить схему расчета, согласно которой свойства сложного вещества составляются из вкладов входящих в него частей. Такие схемы с успехом используются для расчета рефракции (функции коэффициента преломления), диамагнетизма, энтропии и других явлений. Существуют и широко применяются на практике таблицы инкрементов — вкладов, которые вносят в общее свойство соединений определенные атомы или их группы. По существу перечисленные модели в значительной степени являются эмпирическими. Они лишь отчасти опираются на какие-нибудь теоретические соображения и сводятся к предположению о наличии простейших связей между свойствами химических соединений.
Наряду с этим широко используются модели, которые прямо строятся на основе определенных теоретических положений. Поскольку, однако, реальные химические системы очень далеки от идеальных объектов, которые описываются теорией, в теоретические уравнения вводятся поправки. Последние носят эмпирический характер, в результате чего вместо теоретического уравнения появляется другое, полуэмпирическое, связанное с первым по принципу подобия. Именно так используются, например, уравнения газов и растворов, в которые вместо реальной концентрации вещества вводится активность (концентрация умноженная на поправочный множитель). Аналогичным образом во многих формулах для расчета энергии связи электрона с ядрами используются «эффективные заряды» вместо их точного значения.
В целом совокупность этих методов, сводящаяся к составлению эмпирических уравнений, подобных теоретическим, может быть названа моделированием по методу подобия. К последнему типу моделей непосредственно примыкают чисто теоретические уравнения, опирающиеся на фундаментальную теорию Перечисленные методы могут рассматриваться как случаи системного моделирования. Здесь химические особенности системы задаются ее составом и положением в ряду сходных объектов. Структурные особенности каждой системы принимаются во внимание лишь частично.
Другую группу моделей составляют структурные модели. Их простейшими представителями являются знаковые модели типа химических формул. Кроме обычных строчных формул, отражающих состав и группировку атомов, в последнее время в связи с развитием методов автоматического накопления и поиска информации важное значение приобрело кодирование химических систем. Разнообразные методы кодирования, приспособленные для ввода данных о структуре веществ в электронно-вычислительную машину, могут рассматриваться как важное направление знакового моделирования в химических системах. Многие из существующих в настоящее время систем кодирования хорошо отражают отдельные детали структуры и функции химических соединений.
Вариантом знакового моделирования структуры являются структурные формулы. Ими могут быть и упомянутые выше графические изображения связей атомов (классические структурные формулы), и разнообразные варианты чертежей, отражающих пространственное расположение атомов или ионов. По существу такую же роль могут выполнять и пространственные модели сложных химических соединений (крупные молекулы белка, сложные кристаллы). Такие модели используются в настоящее время не только для демонстрации (в дидактических целях), но и для проверки отдельных возможных вариантов взаимного расположения частиц сложной конфигурации.
Геометрически подобные модели представляют собой варианты физического моделирования, которое не ограничивается отражением только пространственных отношений. Большое место в современных моделях химических систем принадлежит другим типам физического моделирования. Например, можно назвать электростатические модели. Хотя электростатическое взаимодействие нельзя полностью отождествлять с силами, вызывающими химическую связь, тем не менее во многих случаях химические соединения можно с успехом моделировать в виде системы тел с различными зарядами. Принимая во внимание размеры, силы взаимодействия, а также деформацию молекул, можно построить совершенные модели сложных химических объектов и рассчитать с большой точностью энергию связи и частоты колебаний молекул. Такие расчеты широко используются в настоящее время для оценки параметров малоизученных веществ.
Структурное моделирование непосредственно примыкает к фундаментальным теоретическим моделям, в которые вносятся эмпирические параметры. Такой эмпирический метод может рассматриваться как вариант моделирования.
2. Диалектика химических процессов и периодический закон
Понятие структуры существовало давно. Уже корпускулярные представления базировались на структурных концепциях. Плодотворным оказалось применение этого понятия к изучению кристаллов. По существу пространственная структура кристаллической решетки была правильно угадана в трудах кристаллографов задолго до того, как была доказана реальность самих атомов. Однако все эти представления опирались на геометрические соображения и не давали экспериментального обоснования химическим превращениям.
Концепция химического строения возникла в результате изучения химических реакций и может рассматриваться как дальнейшее обобщение понятия об элементе и составе. Это теоретически более высокий уровень познания химических систем. В таком плане следует понимать и известное определение химии, данное Энгельсом:
«Химию можно назвать наукой о качественных изменениях тел, происходящих под влиянием изменения количественного состава».
Если в основе понятия химического состава лежит элемент и реакция соединения-разложения, то понятие о структуре опирается на идею химической связи и на реакцию замещения. Химическая связь представляет собой отношение между атомами в молекуле, которое может выражать прямую или опосредованную связь.
Установление химического строения в классической теории производится с помощью изучения реакций последовательного замещения одних атомов другими. Если в молекуле ряд одинаковых атомов занимают аналогичное структурное положение, их замещение приводит к образованию одного и того же вещества. Если их структурные положения различны, то при замещении образуется столько веществ, сколько различных положений имеют эти атомы. Такой путь является чисто химическим. Поэтому характер отношений атомов, их связи следует рассматривать как химическое строение. Вопрос о том, в какой степени это химическое строение отвечает пространственному расположению, решается с помощью дополнительных средств.
Теория химического строения, созданная А. М. Бутлеровым, Ф. Кекуле, А. Кольбе и др., лежит в основе современной химии. С помощью этой теории можно понять и объяснить взаимные переходы между отдельными веществами, их сходство и различие в рядах. По существу весь комплекс свойств, которыми обладает данное вещество, определяется его химическим строением. При этом учитывается как прямая связь, так и взаимное влияние опосредованно связанных между собой атомов.
Идея химического строения дополняется идеей пространственного строения (стереохимия). Последнее выясняется с помощью исследований отдельных химических реакций, а чаще различных физических свойств вещества. Так, классическая стереохимия органических соединений опирается на данные по изучению вращения плоскости поляризации света. Более детальные сведения о пространственной структуре получают при изучении поглощения рентгеновских лучей (рентгенография кристаллов), с помощью пучков электронов (электронография молекул) и рядом других оптических и магнитных методов.
Однако классическое учение о химическом строении не исчерпывало всего объема взаимодействия атомов. Химическая связь обладает большим разнообразием. Образно говоря, ребра графа структуры как бы окрашены. Кроме того, в большинстве случаев связи носят подвижный характер, перемещаются в молекуле (например, осциллируют двойные связи в бензольном кольце). Эти особенности уже не могут быть выражены классическими представлениями о химическом строении. Для этого необходимо использовать представление об электронном строении. Последнее было введено в результате разработки электронной теории строения атомов, опирающейся на физические принципы квантовой механики.
Введение электронных представлений тесно связано с развитием другой важной концепции химии — периодической системы химических элементов. Разработка этой системы Д. И. Менделеевым по времени почти совпадает с возникновением теории химического строения. Периодическую систему можно рассматривать как следствие изучения той особенности сходства химических систем, которая выражается в пересекающихся рядах.
Периодическая система химических элементов Менделеева переносит идею о сходстве ряда объектов со сложных химических соединений на элементы. Как известно, в таблице Менделеева каждый элемент занимает свое место в системе. Оно определяет его отношение ко всем остальным элементам, а следовательно, все его химические свойства и свойства образуемых им соединений. В конечном счете периодическая система отражает те аналогии, которые существуют в природе между элементами. В основе периодической системы Менделеева и периодического закона лежит представление о единстве всех элементов. В таблице каждый элемент расположен так, что находится в точке пересечения большого числа рядов элементов — аналогов. Это могут быть аналоги по вертикали (главные и дополнительные подгруппы), по горизонтали (ряды), по нескольким диагоналям. Вся система аналогий тесно связана, что позволяет объединить в непрерывную цепь закономерностей любую пару элементов. Таким образом, периодическая система есть реальное отражение идеи единства материального мира [88]См. Кедров Б. М. Три аспекта атомистики, т. 3. Закон Менделеева. Логико-исторический аспект. М., 1969.
.
Другой важной диалектической идеей является тесная связь количественных изменений по рядам и группам системы. В зависимости от направления (или сечения) их рассмотрения в таблице характер накопления количественных изменений, приводящий к качественному скачку, будет различен. Однако во всех случаях закон перехода количественных изменений в качественные проявляется со всей определенностью.
Система элементов Менделеева позволила не только предсказать новые элементы и соединения, но и, главное, поставила вопрос о строении самих атомов. Действительно, если положение сложных соединений (например, гомологов) в ряду определяется химическим строением их молекул, то естественно предположить, что место элемента в системе также должно определяться строением атома. Однако знание тех физических свойств веществ, на которые опирается атомно-молекулярная теория, т. е. объема и веса, недостаточно для установления внутреннего строения атома. Здесь теоретическая картина, основывающаяся на механических параметрах, должна быть дополнена данными, заимствованными из других областей физики — электродинамики и квантовой механики.
Сказанное подтверждает известное положение диалектического материализма о разнообразии форм движущейся материи. Возражая против упрощенного, метафизического понимания материализма, В. И. Ленин отмечал: «Это, конечно, сплошной вздор, будто материализм утверждал… обязательно „механическую“, а не электромагнитную, не какую-нибудь еще неизмеримо более сложную картину мира, как движущейся материи».
Как известно, первоначально место элемента в системе Менделеева определялось атомным весом. Однако связь этой величины со всем комплексом химических свойств была не ясна, и сам Менделеев, а также его последователи продолжали искать более глубокие свойства атомов, непосредственно определяющие его химические параметры. Эти свойства были найдены при анализе атомных спектров. В начале XX в. частоты колебаний в спектрах атомов были сопоставлены с орбитами электронов, вращающихся вокруг ядра атома. Так возникла первая модель структуры атома Н. Бора, причем заряд ядра был отождествлен с порядковым номером элемента в системе. В дальнейшем квантовая механика позволила уточнить и дополнить теорию строения атома. В результате многообразные отношения, существующие между элементами в системе Менделеева, получили теоретическое обоснование. Сходство или различие свойств удалось связать с числом электронов на определенных орбитах, симметрией орбит, их удаленностью от ядра и энергией связи с ядром. В результате возникла электронная теория строения материи, представляющая собой основу не только учения о строении атомов и молекул, но и теории химических превращений.
3. Единство структуры и процессов в химии. Проблема эволюции вещества в природе
Анализ эволюции развития химической формы движения материи предполагает предварительное рассмотрение ее функционирования и строения, т. е. исследование системно-структурных отношений. В современной химии теория строения вещества опирается на квантовую механику, химический аспект которой называется квантовой химией. Последняя обладает развитым логическим аппаратом, в принципе способным охватить и качественно, а отчасти и количественно описать свойства всех химических систем. Электронное строение как способ описания химических соединений средствами квантовой механики, не отрицая данных классической теории, существенно дополняет их. Кроме возможности описать разнообразие химических связей электронное строение позволяет понять и предвидеть свойства и структуру большого числа систем, которые вообще нельзя описать при помощи классической теории. Это относится к системе с делокализацией электронов в пространстве как одной молекулы, так и целого кристалла.
Квантовая химия является теоретическим ядром современной химии. Однако серьезные математические трудности, связанные с расчетом сложных соединений, не позволяют распространить ее на весь материал химии. Построение количественной теории химических связей кажется пока делом отдаленного будущего. Тем не менее качественное описание химических систем, которое дает квантовая механика, оказывается вполне адекватным. В основе его лежит диалектическая идея динамизма, подвижности, свойственной химическим системам. К пониманию динамизма интуитивно химики подходили еще в XIX в., когда стремились связать данное вещество с исходными веществами и продуктами его распада, т. е. изучить вещество не изолированно, а в системе реагирующих тел, диалектически, во взаимосвязи и развитии. Методику такого подхода прежде всего давала термодинамика и кинетическая теория материи.
Взаимосвязь химии с физическими концепциями не ограничивается квантовой теорией и электродинамикой, но осуществляется и через статистическую теорию строения материи. Особенно важна связь химии со статистической теорией равновесных систем. Эта теория тесно смыкается с химическим аспектом учения о макроскопическом равновесии — химической термодинамикой. Термодинамика дает метод описания химических соединений в системе реагирующих веществ, где каждое тело тесно связано с исходными веществами и продуктами своего распада. Такой подход позволяет ввести понятие о фазе как форме существования химического соединения.
Понятие о химическом соединении, находящемся в фазе, выступает как некоторая форма реальной фазы. Термодинамика требует также, чтобы внутри фазы существовало равновесие, которое должно иметь место со всеми веществами и вне фазы. Только в этом случае к описанию фазы можно применить аппарат термодинамики и записать ее уравнение. Исследование систем сводится, таким образом, к исследованию превращений между ними. Это важный вывод, поскольку он позволяет провести аналогию между классическими физическими процессами (например, плавление, испарение) и превращениями, сопровождающимися химическими реакциями. Так, переход жидкости в пар описывается термодинамическим уравнением такого же вида, как и химические процессы, например разложение известняка с образованием углекислого газа или восстановление окислов железа углеродом. Все это имеет большое значение, поскольку вскрывает новые стороны в познании природы превращения веществ.
Действительно, химические превращения, если смотреть на них с позиции взаимодействия атомов, универсальны. Невозможно представить себе никаких изменений в веществе без разрыва или образования каких-то химических связей. Любое испарение, хотя и считается физическим процессом, тем не менее включает в себя разрыв связей в жидкости при переходе в пар. Если при испарении воды это слабые связи между молекулами, то при испарении солей — прочные связи в кристаллах. Даже простое нагревание вещества (той же воды) в определенный момент сопровождается перестройкой ее внутренней структуры, которая приводит к разрыву связей.
Термодинамический анализ дает четкие границы понятию о химическом превращении. Он фиксирует как химические лишь те из них, которые сопровождаются образованием новых фаз, отличающихся составом и описывающихся новым уравнением. Поэтому переход воды из жидкости в пар термодинамика не позволяет рассматривать как химическую реакцию, хотя детальный анализ молекулярного механизма перехода воды в пар объясняет процессы образования сложных молекулярных агрегатов и их распад.
Подход к химическим превращениям с точки зрения термодинамики позволил рассматривать химический процесс не как изолированное превращение отдельных молекул. а как изменения в системе в целом. При этом не закрывается путь и к более детальному анализу данной системы и установлению в ней химических превращений. Этот анализ будет отвечать более глубокому познанию структуры системы. Иными словами, выделение индивидуального соединения в виде отдельной новой фазы выступает как первичный подход. Применяя более тонкие методы (исследование оптических свойств, плотностей, рентгеновский анализ), можно перейти на более глубокие уровни познания структуры и обнаружить изменения, сопровождающиеся образованием новых и разрушением прежних молекулярных образований или изменением порядков связей симметрии атомов.
Так обнаруживается глубокая диалектичность процесса познания химических превращений: многоуровневый подход, бесконечность процесса проникновения в природу реагирующих систем. Здесь наглядно видна истинность положения В. И. Ленина об углублении мысли человека от явления к сущности, от сущности первого порядка к сущности второго порядка и т. д.
Подход к химическим соединениям как системам важен и потому, что позволяет выявить единство структуры и процесса. Образование нового вещества в общем представляет собой определенные изменения структуры системы. На этом основан метод физико-химического анализа, в котором соединение, образующееся в системе, обнаруживается в результате исследования процессов и изменения свойств при вариации состава.
Представление о единстве процесса и структуры получает дальнейшее развитие при исследовании неравновесных систем. Здесь наряду с температурой, давлением и другими внешними условиями выступает время. Эта область химии названа химической кинетикой. Она также тесно связана со статистической теорией строения материи. В основе химической кинетики лежит представление о механизме процесса, который описывается с помощью переходных состояний вещества, возникающих в момент превращения. В частности, в молекулярных системах это будут так называемые переходные комплексы — неустойчивые образования, появляющиеся в момент встречи молекул и существующие очень короткое время. Природа этих специфических форм интенсивно изучается. По существу переходные комплексы можно назвать особым состоянием материи. Современная теория опирается на методы квантовой химии и позволяет рассчитывать структуры многих переходных комплексов, что имеет большое значение для предсказания хода химических реакций.
В состав переходного комплекса входят не только реагирующие вещества, но и среда превращения (растворитель) и те, порой очень незначительные, примеси, которые ускоряют или замедляют процесс (ингибиторы и катализаторы). Структура переходного комплекса во многом отличается от структуры обычных молекул, поскольку здесь атомы проявляют необычные валентности. В переходном комплексе могут находиться также ненасыщенные связи и заряды. В целом в переходном комплексе осуществляется высшее единство структуры и процесса как в пространственном, так и во временном планах.
Рассмотрим теперь вопрос о месте химической формы движения материи среди других ее форм. Как известно, Ф. Энгельс генетически связывал химическую форму движения материи с физической. На уровне движения атомных и субатомных частиц появляются первые признаки химического взаимодействия, которое, развиваясь далее, создает макроскопические тела. Здесь физическая форма движения не исчезает, поскольку между макроскопическими телами происходят и физические взаимодействия (например, трение, удар, гравитационное воздействие). Таким образом, на этой стадии химическая форма движения сосуществует с физической. Наконец, на определенном этапе развития химическое движение порождает новую форму движения материи — жизнь.
Проследим более подробно ступени эволюции материи, связанные с появлением химизма, или «химической формы организации вещества». Эволюция вещества начинается в момент начала расширения Вселенной со стадии элементарных частиц. Химическая организация вещества появляется лишь после того, как плазма атомных ядер и электронов попадает в такие условия, при которых кинетическая энергия сталкивающихся ядер уже не способна преодолеть барьер отталкивания. В этом случае при столкновении ядер происходит не их слияние, а возникновение многоядерной системы, окруженной электронной оболочкой. Такая система при отсутствии сильно ускоряющихся магнитных полей и излучений становится устойчивой при температуре около 10 тыс. градусов. Она является верхней температурной границей химизма. Возникающие при этом двухъядерные, а частично и многоядерные молекулы образуют первые химические соединения (СО, СН, НО, SiO), присутствующие в периферийных частях звезд, туманностях и других космических объектах.
Следующей стадией эволюции вещества считается образование твердых тел, которое происходит при понижении температуры ниже 3–4 тыс. градусов. Образующиеся мелкие твердые частицы космической пыли постепенно объединяются в крупные тела, создавая объекты типа протопланет. Вещество этих тел еще не обладает свойствами веществ известных нам планет и содержит в себе ряд соединений, способных вступать в химическое взаимодействие. На этой стадии происходит своеобразное расхождение путей развития вещества. В тяжелых планетах, удаленных от Солнца, происходит образование форм вещества особой природы, которая пока еще мало изучена. Речь идет о специфических и сильно реагирующих химических системах, которые существуют сейчас на таких планетах, как Юпитер или Сатурн. Возможно, что наличие на этих планетах большого количества газов при низких температурах вызывает образование разнообразных форм взаимодействия свободных радикалов, несвойственных земным условиям.
По-иному развивается вещество в планетах земной группы. Здесь происходит формирование центрального тяжелого ядра, состоящего из металлов и их карбидов, и мощной мантии из силикатов и окислов легких металлов. В этой верхней зоне и локализуются дальнейшие процессы, связанные с эволюцией вещества. Решающую роль при этом играет процесс выделения газов, образующих атмосферу. При относительно высокой температуре (условия Венеры) газы (углекислота, аммиак, серный ангидрид) целиком переходят в атмосферу, обусловливая очень большую ее плотность. При низких температурах создаются условия для значительного поглощения газов твердой поверхностью, что приводит к сильно разреженной атмосфере (таковы условия на Марсе).
Оба эти направления эволюции вещества являются, по-видимому, относительно тупиковыми. Только на Земле возникают такие оптимальные условия, когда в атмосферу переходит некоторое количество газов и, что особенно важно, вода частично находится в воздухе, а частично в жидком состоянии — в гидросфере (Мировой океан). Здесь получает развитие новая, биогенная стадия эволюции вещества.
Растворенные в воде вещества сочетают в себе в оптимальном варианте структурное разнообразие твердого вещества с активностью газов. Действительно, газы обладают реакционноспособными частицами, поскольку двигаются и взаимно сталкиваются. Вместе с тем в газах благодаря их реакционной способности не могут сохраняться образования сколько-нибудь сложной структуры. Последние легко образуются в твердых телах, однако здесь их реакционная способность сравнительно мала. Водные же растворы за счет образования оболочек из молекул воды как бы стабилизируют достаточно сложные структуры. Вместе с тем, находясь в воде в виде раствора, они приобретают достаточную подвижность, а следовательно, и реакционную способность. С этим связана исключительная роль гидросферы (или Мирового океана) в эволюции вещества. Только в водных растворах подвижные небольшие молекулы атмосферного углекислого газа, аммиака, циана могли объединиться и дать частицы аминокислот, которые в свою очередь образовали цепочку белковых молекул.
Возможно, что окончательное формирование длинных цепей молекул проходило не в жидкой среде, а в адсорбированных слоях на поверхности, омываемой водой (отмели, неглубокие водоемы). В этих условиях могли образоваться вещества, способные в дальнейшем послужить материальной основой для возникновения жизни, которая образует верхнюю структурную границу химической формы организации вещества. Такой в самых общих чертах можно представить эволюцию вещества от ионизированной плазмы до первых организмов. Продолжая существовать и далее, она вместе с тем служит основой следующей форме движения материи — жизни. Из сказанного следует, что данный путь эволюции не единственный. Он тесно связан с условиями, возникшими на Земле, и в конечном счете приводит к образованию биосферы, которая в свою очередь служит материальной основой для возникновения человека.
Условия развития человеческой цивилизации, как это стало очевидно сейчас, сильно влияют на эволюцию вещества на Земле. Это сказывается не только на биосфере, но и на составе гидроатмосферы. Например, процесс загрязнения Мирового океана и изменение состава атмосферы путем увеличения количества углекислого газа являются естественными следствиями развития человеческой цивилизации, могут рассматриваться и как продолжение химической эволюции Земли. Современная химия обладает достаточными знаниями для того, чтобы противопоставить стихийному процессу такой эволюции сознательную деятельность человека по сохранению окружающей среды.
Глава IV. ДИАЛЕКТИКА РАЗВИТИЯ АСТРОНОМИИ
1. Эволюция астрономических объектов
Астрономия была одной из тех наук о природе, которые в период возникновения диалектического материализма подтвердили его выводы о характере развития природы во времени. В связи с этим Ф. Энгельс отмечал, что после появления космогонической гипотезы Канта «Земля и вся солнечная система предстали как нечто ставшее во времени» и начало зарождаться понимание того, что «природа не просто существует, а находится в процессе становления и исчезновения» [93]Маркс К, Энгельс Ф. Соч., т. 20, с. 351
. Однако показать диалектику развития астрономических объектов во Вселенной даже в астрономии XX в. — задача не из легких: многие особенности в развитии объектов во Вселенной еще не выяснены наукой.
Вместе с тем наблюдательная и теоретическая астрономия XX в. уже располагают обширным материалом, относящимся к образованию, структуре и эволюции отдельных ее объектов; опираясь на диалектику, можно вскрыть некоторые основные черты, моменты, заметить тенденции и определенные закономерности в образовании и эволюции планетной системы, а также в возникновении и развитии галактик.
В процессе астрономического познания человек никогда не имеет дела со всей бесконечной Вселенной, а лишь с более или менее ограниченной ее частью — астрономическим объектом (объектами). Материальный объект здесь является «клеточкой», исходным пунктом астрономического и философского исследования. Философия исследует астрономические объекты в их развитии с целью выделения в них универсальных характеристик, в то время как астрономия рассматривает с точки зрения особенного содержания, их специфических черт. В этом состоит объективная основа взаимосвязи философии и астрономии, хотя конкретный механизм их взаимодействия нуждается в дальнейшем анализе.
Раскрытие законов развития астрономических объектов представляет собой главную трудность этой науки. Современная астрономия рассматривает свои объекты не только в их стационарном, но и в нестационарном состояниях, в развитии. Поэтому, рассматривая эволюцию материи, необходимо анализировать как законы функционирования, так и законы развития. Законы строения и функционирования позволяют отражать моменты покоя и устойчивости в движении астрономических объектов, а законы развития выражают изменчивость их, необратимость, направленность происходящих в космосе изменений.
Принцип развития в астрономии мы рассмотрим в двух планах: а) в плане диалектики развития астрономических объектов и б) в плане диалектики развития астрономического знания. Каждой стадии развития объектов соответствует своя теория, а последовательности усложняющихся объектов (звезды и их системы — галактики и их системы) соответствует последовательность усложняющихся теорий, развитию астрономических объектов соответствует развитие астрономического знания. Но вследствие относительной самостоятельности развития познания и знания (они обусловлены предыдущим знанием, а также уровнем развития практики соответствующей эпохи, характером деятельности отдельных исследователей) астрономическое знание развивалось не всегда соответственно этапам развития астрономических объектов.
С XVI по начало XX в. ученые изучали местонахождение и происхождение звезд, в том числе и Солнца, оперируя масштабами расстояний в миллиарды световых лет. Они наблюдали космос далеко за пределами орбит планет и обнаружили множество звезд и галактик, сосредоточенных во Вселенной. Новые открытия в современной астрономии дополнили эту картину представлениями о взрывающихся галактиках и квазарах, черных и белых «дырах» эволюционирующей Вселенной.
Прежняя упорядоченная Вселенная, представлявшаяся древним и средневековым наблюдателям планетной системой, в центре которой находится Земля, а в послекоперниковский период — Солнце, превратилась в полный динамизма мир различных эволюционных процессов, а также продуктов дезинтеграции и распада больших космических систем. Современную астрономию интересует в первую очередь эволюция окружающего нас мира — от Вселенной в целом до отдельных звезд, которые входят в состав еще более крупных образований — галактик, образующих скопления. В 80-е годы XX в. все более отчетливо стали вырисовываться две концепции — «горячей» и «холодной» Вселенной. В первой развитие Вселенной связывается со взрывами, очень высокими температурами, космическими лучами больших энергий, необычными турбулентными взрывчатыми лавами в галактиках, новыми типами горячих (молодых) галактик. Основные достижения в астрономии XX в. связаны с теорией «горячей» Вселенной.
Рассмотрение диалектики становления Вселенной, вопроса об основных стадиях развивающихся астрономических объектов необходимо начать с исследования наиболее общего космологического объекта — Вселенной в целом, поскольку эволюция и звезд и галактик определяется в конечном счете эволюцией Вселенной. Астрофизики наблюдаемую с помощью приборов область Вселенной называют метагалактикой, а физики — мегамиром, подчеркивая тем самым ее качественное отличие от тех областей природы, которые изучаются различными разделами современной физики, от макро- и микромира. Нестационарность метагалактики, ее расширение свидетельствует об определенной эволюции наблюдаемой области Вселенной.
Результаты исследования метагалактики, ее пространственно-временных (хроногеометрических) и причинностных (импульсно-энергетических) аспектов в рамках однородной модели Вселенной показывают:
1. Космическая материя в пространстве метагалактики распределена по различным структурным образованиям: звездам, галактикам и скоплениям галактик — «сверхгалактикам».
2. В больших масштабах плотность галактик и сверхгалактик, а следовательно, усредненная по всему объему метагалактики плотность вещества везде одинакова: метагалактика в среднем однородна.
3. Метагалактика не только однородна, но и изотропна, т. е. свойства ее объектов не зависят от направления в пространстве. На это указывает однородность реликтового излучения.
4. Метагалактика нестационарна: скопления галактик «разбегаются». При этом скорости «разбегания» пропорциональны расстояниям между галактиками, и это соотношение носит линейный характер (закон Хаббла).
5. «Искривленный» характер пространственно-временной структуры метагалактики выявляется не только в отдельных частях вблизи тяготеющих масс звезд или галактик (локальные искривления), но и в глобальном масштабе мегамира.
6. В далеком прошлом метагалактика представляла собой образование огромной плотности и в результате «большого взрыва» разогрелась до очень высокой температуры (сингулярность). В этом, в частности, убеждает реликтовое излучение, представляющее собой остаток от очень «горячей» и мощной радиации, характерной для метагалактики на начальных этапах ее возникновения и эволюции.
Причины расширения наблюдаемой части Вселенной не выяснены. Существует мнение, что раз в современной метагалактике отсутствуют значительные концентрации массы материи в каком-нибудь выделенном участке, то метагалактика в целом находится в настоящее время в состоянии инерционного расширения.
Исходя из этой концепции, а также опираясь на диалектический принцип развития в исследованиях проблем астрономии, можно теоретически выделить несколько последовательных стадий развития Вселенной: а) досингулярная Вселенная; б) сингулярная Вселенная; в) расширяющаяся или сжимающаяся Вселенная; г) коллапсирующая Вселенная.
Конкретное изучение определенных стадий в эволюции Вселенной ведется в релятивистской космологии, общей теории относительности, в различных вариантах и подходах ныне создающейся квантовой теории гравитации и квантовой космологии. Достаточно полный учет разнообразных астрофизических процессов, протекающих на всех стадиях развития Вселенной, возможен в так называемой квантово-релятивистской космологии, основные принципы и физико-математический аппарат которой создаются в настоящее время.
Выяснение прошлого Вселенной не на каком-то отрезке времени, а в целом составляет «вопрос вопросов» современной космологии и внегалактической астрономии. Выявление эвристического значения важнейшего принципа диалектики — принципа развития позволяет в наиболее полном виде понять диалектику эволюции астрономических объектов. Разработка с помощью общей теории относительности концепции расширяющейся, эволюционирующей Вселенной Фридмана — Леметра еще раз показала действенность этого принципа.
Первой космологической моделью, которая возникла в рамках общей теории относительности, была стационарная модель Вселенной, разработанная в 1917 г. А. Эйнштейном. В этой модели метрика пространства-времени рассматривалась как не зависящая от времени, и теория не учитывала эволюцию материи. В 1922 г. советский физик А. Фридман предложил нестационарную модель, в которой метрика пространства-времени изменялась. Так возникла теория нестационарной вселенной, которая была подтверждена экспериментально американским астрономом Хабблом. В 1929 г. он открыл явление «красного смещения», которое означало, что скорость движения удаленных галактик прямо пропорциональна расстоянию до них. Согласно теории расширяющейся однородной модели, на первых этапах после «большого взрыва» в развитии Вселенной образовались атомы легких элементов (водород и гелий), затем — звезды и галактики с атомами более тяжелых элементов, планетные системы и, наконец, на некоторых из них создались условия для возникновения живых организмов. Число таких сверхплотных участков (особых точек) в эволюции Вселенной может быть бесконечно велико. В этом случае периоды ее расширения от некоторого сверхплотного вещества (протоатома) сменяются периодами сжатия («красное смещение» сменяется «фиолетовым») — так возникает пульсирующая модель Вселенной.
Что касается вопроса о том, конечна или бесконечна Вселенная, то в рамках теории А. А. Фридмана возможны два варианта его решения: а) открытая модель с отрицательной кривизной и б) закрытая модель с положительное кривизной. Причем выбор между открытой и закрытой моделью в рамках космологии в принципе можно сделать на основе учета средней плотности вещества и полей во Вселенной. Если средняя плотность окажется больше некоторой критической плотности Ркр, то реализуется закрытая (пульсирующая) модель Вселенной. При средней плотности материи меньше критической получается открытая модель Вселенной (расширяющаяся Вселенная). Существуют различные оценки средней плотности материи. По данным Оорта, она в 30 раз меньше критической, согласно данным Я. Б. Зельдовича с учетом нейтрино и квантов, средняя плотность Рср = (0,2–0,1) Ркр, т. е. в 10–20 раз ниже критической. Однако эти данные также нельзя считать окончательными, поскольку горизонты астрономических наблюдений постоянно расширяются.
В последнее время А. Л. Зельманов разрабатывает теорию анизотропной (неоднородной) Вселенной. В ней Вселенная рассматривается как имеющая абсолютное вращение. При подобном подходе модель Вселенной не имеет единого пространства-времени, и в разных точках этой системы темп времени различный. Не существует в подобной системе и единой одновременности. Впрочем, ее не существует и на Земле — как вращающейся системе, но неопределенность одновременности в земных условиях составляет всего одну пятимиллионную долю секунды, и ею можно пренебречь. В условиях же космологических масштабов эта неопределенность достигает многих лет.
Таким образом, классификацию основных современных космологических моделей Вселенной можно представить в следующем виде:
Модели Вселенной:
1) нестационарные 2) стационарные
1а) однородные 1б) неоднородные
1а1) открытые 1а2) закрытые
Стационарная модель Вселенной не может считаться адекватной космологической моделью. Таковыми могут быть лишь различные варианты нестационарных моделей, рассматривающие Вселенную как эволюционирующую. В этих моделях реализуется диалектический принцип развития.
С представлением об эволюции Вселенной тесно связан вопрос о происхождении и развитии галактик. Согласно общим космогоническим гипотезам — так называемой классической (небулярной) и неклассической (бюраканской), образование галактик возможно двумя различными путями: а) путем расширения, дезинтеграции и распада некоторого первоначального сверхплотного тела (некоего нестационарного астрономического объекта — протогалактики, обладающей собственной активностью); б) путем сжатия первоначально однородной и разреженной протогалактики. Первую концепцию разрабатывает В. А. Амбарцумян, вторую — Дж. Джине.
Согласно первой гипотезе, галактики образуются из сверхплотных тел неизвестной природы путем их расширения. Согласно второй гипотезе, вещество протогалактики (в общем случае — протовселенной, или протомета-галактики) вначале принимает участие в общем космологическом расширении Вселенной, но после достижения метагалактикой некоторого максимального расширения начинает сжиматься под действием гравитации. Физическая эволюция галактик, а также вопросы об эволюции галактик с химической и динамической точек зрения в настоящее время усиленно изучаются.
Классификацию галактик в разное время предлагали многие астрофизики. Так, согласно Э. Хабблу, галактики делятся на спиральные, эллиптические и неправильные (иррегулярные). В указанной последовательности представляется и путь эволюции галактик. Когда господствовала концепция «холодной» Вселенной, астрономы, исследуя строение галактик, часто ограничивались их классификацией на основе лишь внешних морфологических особенностей и почти не обращали внимания на строение центральных областей галактик. В настоящее время высказывается точка зрения о том, что фундаментальную роль в эволюции галактик играют их ядра. Эта концепция опирается на следующие данные: 1) отождествление одного из мощных радиоисточников Лебедь А со слабой галактикой, имеющей два ядра; 2) двойственную структуру и у радиоисточника Персей А; 3) голубые спутники у эллиптических галактик, связанные с их ядрами тонкими струями; 4) истечение вещества из центра нашей Галактики; 5) открытие сейфертовских галактик, в ядрах которых обнаружены турбулентные движения газовых облаков с огромными скоростями.
Дальнейшее изучение распределения галактик показало, что тенденция к группированию выражена у них намного сильнее. В частности, наша Галактика (со своими спутниками — Магеллановыми облаками) вместе с туманностью Андромеды и ее четырьмя спутниками и рядом карликовых галактик входит в местную систему галактик, содержащую почти все типы галактик по классификации Хаббла.
Говоря о двух космогонических концепциях — классической и бюраканской, необходимо отметить, что с философской точки зрения обе они связаны с идеей конечности развития космической материи, с представлением об одностороннем пути ее развития. Источник дозвездной материи должен быть либо конечным, а следовательно, исчерпаемым, либо — бесконечным, что являлось бы «дурной» бесконечностью.
Следовательно, основное противоречие современной космогонической теории заключается в том, что в ней учитываются два противоположных момента в развитии материи: концентрация и рассеивание вещества во Вселенной. Эти противоположные моменты учитываются в двух различных концепциях. Взятые отдельно, абстрактно, они отражают одну из сторон развития материи, а вместе — процесс развития космической материи в целом, в его конкретности. Синтез этих концепций возможен лишь в рамках релятивистской картины мира и при создании релятивистской космогонии. Попытку синтезировать эти концепции предпринял К. X. Рахматуллин, выдвинувший гипотезу о двусторонней генетической связи между сверхплотным и диффузным веществом.
Основы такого рода фундаментальной теории, в полном объеме отражающей противоречие движущейся материи, в настоящее время уже разрабатываются. Основная идея ее состоит в том, что исключение сингулярностей из теории, требуемое первой концепцией, должно означать тем самым создание модели сверхплотного тела, необходимой для бюраканской концепции.
Итак, происходит коренная ломка астрономических представлений, которые в целом имеют громадное мировоззренческое значение. И можно согласиться с мнением В. А. Амбарцумяна и В. В. Казютинского, предполагающих, что революция в современной астрономии в конечном счете, возможно, «не уступит великому коперниканскому перевороту».
Рассмотрим теперь вопрос о происхождении и развитии звезд и планетарных систем. Современное состояние исследования системы планет основано на выявлении общих закономерностей их движения, закона планетных расстояний, особенностей распределения момента количества движения между планетами и Солнцем.
Как целостное образование. Солнце не является изолированным астрономическим объектом, а образует сложную систему. В нее входят 9 больших планет с 32 спутниками, около 1700 малых планет (астероидов), 1011 — 1012 комет, метеорная материя, межзвездный газ, космическая пыль и различные физические поля.
Среди проблем эволюции планет необходимо выделить следующие: 1) химической конденсации вещества в околосолнечной туманности; 2) аккумуляции твердого вещества вследствие гравитационной неустойчивости и 3) динамики «слипания» вещества в планету. Строго определенные закономерности в распределении планет приводят к выводу, что вся планетная система образовалась, по-видимому, в результате какого-то единого и мощного эволюционного процесса, который привел к современному состоянию планетных объектов. В целом космогония планет определяется космогонией Солнечной системы, а последняя — единым процессом формирования и развития звезд и галактик.
Наиболее известные концепции (космогонические гипотезы) происхождения и развития Солнечной системы, главными элементами которой являются планеты, можно разделить на два типа: 1) классические (небулярные) концепции и их современные модификации; 2) «наблюдательная» (или бюраканская) концепция.
К классическим относятся известные небулярные гипотезы и концепции Р. Декарта (1637), И. Канта (1755), П. Лапласа (1796). Согласно им, Солнечная планетная система образовалась из газовой туманности в результате превращения космического газа и пыли в твердые массивные небесные тела. Наиболее известной из современных небулярных эволюционных концепций является гипотеза Вейцзеккера (1943–1947). В дальнейшем она была видоизменена Г. Гамовым, Э. Эпиком, Тер-Хааром и Дж. Койпером (1949), Ф. Уипплом (1948), а также Я. Оортом, М. Шварцшильдом и Л. Спицером. В СССР ее развивали О. Ю. Шмидт, В. Г. Фесенков, Б. А. Воронцов-Вельяминов и др.
В 1942–1946 гг. выдвигались идеи, основанные на электромагнитной концепции образования космических систем (К. Биркеланд, Г. Берлаге, X. Альфвен, Ф. Хойл). «Катастрофические» концепции возникновения планетной системы (Дж. Джине, Г. Джеффрис, В. Литтлтон) основаны на теории встречных взаимосвязей звезд с Солнцем в результате захвата, поглощения материи массивным небесным телом из окружающего пространства.
Неклассическая (бюраканская) концепция объясняет происхождение и развитие объектов во Вселенной как результат взрывных процессов. Основным ее положением является идея о том, что звезды (а в их системе и планеты) и галактики образовались из распадающегося сверхплотного тела.
В основу планетарной и звездной космогонии в ней положена концепция протозвезд: звезды возникают группами путем распада некоторых сверхплотных тел. Проблема заключается в конкретном поиске того материала, из которого формируются звезды, а затем планеты. Согласно концепции протозвезд, планеты образуются в ходе процесса звездообразования. Идея о том, что вещество планет — это звездное вещество, еще сохраняющее запасы и источники звездной энергии, должна быть подтверждена наблюдательными данными. В таком случае фаза планет может оказаться фазой распада и дезинтеграции звездного вещества. Эволюцию его необходимо рассматривать как нестационарность объектов, проходящих ряд этапов развития: 1) протозвезды, т. е. космические объекты, из которых в дальнейшем образуются звезды; 2) сами звезды; 3) постзвезды, т. е. конечные продукты эволюции звезд.
Образование протозвезды может быть объяснено с помощью классической или бюраканской космогонической теории. Каков будет «исход» жизни звезды, зависит главным образом от ее массы, которой она обладает на том этапе, когда ядерное горючее почти выгорело и звезда сбросила свою оболочку. В результате она переходит в свою противоположность — постзвезду. Если звезда на этом предконечном этапе имеет массу меньшую, чем 1,2 солнечной массы, то она превращается в «белый карлик». При массе от 1,2 до 2 солнечных масс образуется нейтронная звезда. При еще большей массе возникает «черная дыра». Таким образом, в эволюции звездного объекта обнаруживается своеобразная цикличность. Ветвь «протозвезда — звезда» является восходящей линией развития, поскольку она связана с усложнением структуры материи, ветвь же «звезда — постзвезда» образует нисходящую ветвь.
Каковы же основные источники развития астрономических объектов? Как известно, источником развития любого материального объекта являются диалектические противоречия; в познании этих противоречий, их составных частей есть суть диалектики [109]См. Ленин В. И. Полн. собр. соч., т. 29, с. 316.
. Поэтому при рассмотрении проблемы развития в современной астрономии необходимо выделить эти противоречивые стороны и проанализировать основные противоречия, определяющие развитие мегаматерии на различных уровнях ее организации. Наиболее общим будет уровень Вселенной в целом, следующим будет уровень метагалактики, затем уровень галактик, потом уровень звезд и, наконец, уровень планет.
На каждом из этих уровней существуют свои противоречия, стороны, свои источники развития. Образование планет, и в частности Земли, вызвано распадом газопылевого облака на отдельные туманности. При сжатии туманности ее твердые частицы опускаются к центральной плоскости. Появляющийся пылевой слой оказывается неустойчивым и распадается на сгустки, которые объединяются и сжимаются, образуя тела в десятки километров в диаметре. Они притягивают друг друга, сталкиваются и образуют планеты. На уровне звезд основным противоречием, определяющим их развитие, является притяжение и отталкивание. Это диалектическое противоречие отражается основными космогоническими теориями. Анализ возникновения, функционирования и распада звезд показывает, что существует определенная взаимосвязь между звездами и окружающими их галактиками. В последнее время было установлено, что ядра галактик являются центрами динамической активности и из них происходит мощное истечение вещества, которое приводит к образованию звездных систем. В свою очередь наиболее мощные метагалактики порождают небольшие галактики путем эволюции космической материи. Развитие метагалактик определяется эволюцией и движением Вселенной в целом. Развитие звезд влияет на развитие галактик, а последние — на эволюцию метагалактик. Таким образом, существует определенная взаимосвязь различных уровней организации мегаматерии.
Для развития любой материальной системы по «восходящей» линии (прогрессивная стадия развития) необходим приток энергии извне. По отношению к космогоническим объектам приток ее, необходимый для прогрессивного развития систем меньшей степени общности, возможен за счет более общей системы. Так, прогрессивное развитие звезд связано с притоком энергии из галактик, а эволюция галактик — за счет энергии метагалактик.
Кроме внутренних противоречий значительное место занимают внешние противоречия между космогоническими объектами различной степени общности. При этом данные противоречия являются внешними лишь по отношению к системам меньшей степени общности, но по отношению к более широким космогоническим системам они становятся внутренними. В связи с этим можно указать и на более конкретный критерий, определяющий развитие метасистемы по прогрессивной и регрессивной линиям. Если взять максимальное значение энтропии для определенной метасистемы Smax, (звезды, галактики, метагалактики), подчиняющейся законам термодинамики, вычесть из него энтропию в каждый конкретный момент времени t (Smax — So) и рассмотреть полученный остаток, то при возрастании разности энтропии с течением времени наблюдается прогрессивное развитие, при уменьшении — ее развитие идет по регрессивной линии.
Как видно, звезды, галактики и метагалактики в процессе своего развития проходят стадии прогрессивного и регрессивного развития. Существуют некоторые критерии, позволяющие отделять эти стадии. Более сложное положение складывается с понятием Вселенной в целом. Дело в том, что для определения различных этапов ее развития необходимо единое пространство-время (для сравнения этих этапов). Но если даже исходить из концепции однородной нестационарной Вселенной, то возникают сомнения в возможности единого времени, поскольку расширение ее происходит в таком замедленном темпе, что, пока взаимодействие будет распространяться из одного конца Вселенной в другой вследствие конечности скорости его распространения, пройдет несколько миллиардов лет. Поэтому очень трудно рассматривать эту систему с единым пространством-временем.
При допущении неоднородной анизотропной модели Вселенной введение единого пространства-времени вообще невозможно. В силу этого применение категорий развития к Вселенной в целом связано с определенной спецификой. В любой момент времени в ней происходит прогрессивное развитие ее элементов, и в этом смысле оно является атрибутом материи.
2. Диалектика конечного и бесконечного в астрономии
Революция в астрономии в XX в., породив представления о «расширяющейся» и «взрывающейся» Вселенной, вместе с тем привела к новой постановке проблемы соотношения конечного и бесконечного. Многообразие моделей Вселенной в релятивистской и квантовой космологиях выявило несостоятельность метафизического понимания конечного и бесконечного в астрономии. Этим воспользовались как объективные идеалисты, объявившие «начало» Вселенной Фридмана — Леметра доказательством сверхъестественного происхождения материи (неотомизм), так и субъективные, делающие вывод о существовании пространства и времени лишь в восприятии человека (неопозитивизм). Одну из причин подобного скатывания в идеализм В. И. Ленин видел в релятивизме, абсолютизирующем относительность научных понятий, законов и принципов.
Диалектическое понимание материи как объективной реальности, существующей независимо от сознания, предохраняет науку от метафизической абсолютизации определенного уровня знания. Современная астрономия не только подтверждает материалистическую диалектику, но и стимулирует ее дальнейшее развитие. Одним из таких стимулов является проблема конечного и бесконечного.
Рассмотрение вопроса о взаимообогащении теории объективной диалектики и теории астрономии предполагает анализ соотношения объектов этих наук, иными словами, соотношения модели Вселенной и диалектической модели материального мира. Решение этой задачи показывает как отличие диалектического понимания конечного и бесконечного от метафизического, так и методологическую функцию диалектико-материалистической философии в построении физико-космологической теории. Поскольку понятия конечного и бесконечного в космологии реализуются в соответствующих моделях Вселенной, эти модели должны быть рассмотрены специально.
Согласно методологии К. Маркса, анализ должен идти от эмпирически конкретного к абстрактному и от абстрактного к теоретически конкретному. Тем самым исследование диалектики конечного и бесконечного в астрономии будет осуществлено на нескольких различных по степени общности уровнях методологического анализа, а именно на уровне: 1) одной теории, 2) нескольких конкурирующих теорий, 3) синтезированных теорий (квантовой космологии), 4) общенаучного знания и 5) теории объективной диалектики. Последовательный переход от одного уровня к другому соответствует восхождению от конкретного к абстрактному. На последнем уровне анализа реализуется восхождение от абстрактного к конкретному.
На первом уровне в качестве примера рассмотрим ньютоновскую космологию, использующую и абсолютизирующую понятия евклидова пространства и ньютонова времени. Конечное и бесконечное в ней приобретает сугубо метрический смысл (основываются на понятии расстояния и совпадают с ограниченностью и безграничностью). В ньютоновской космологии проблема многообразия миров решается натурфилософски: философское понимание бесконечности ошибочно сводится к метрическому, а единство мира — к единству физико-химического состава вещества в плоском пространстве и времени.
Критику ньютонова понимания пространства и времени с позиций диалектики впервые дал Гегель. Отвергая ньютоновскую бесконечность образа прямой линии как метафизическую, оторванную от конечного, он противопоставил ей образ круга. Рациональным моментом здесь выступает идея диалектического единства конечного и бесконечного. Ф. Энгельс отмечал: «Бесконечность есть противоречие, и она полна противоречий».
Параллельно с этим критика ньютонова пространства и времени велась с точки зрения неевклидовой геометрии и теории относительности. Тем самым практика научного познания стихийно перешла ко второму уровню методологического анализа космологических моделей.
С появлением общей теории относительности с ньютоновской космологией стала конкурировать релятивистская космологическая теория. Возникновение последней связано с приложением уравнений тяготения А. Эйнштейна к космологии. Математическое решение уравнений общей теории относительности сводится к нахождению геометрии пространств Эйнштейна, представляющих собой римановы многообразия любого числа измерений и любой сигнатуры. Множество предложенных решений этих уравнений порождает миры открытые и замкнутые, конечные и бесконечные в метрическом отношении. Первая релятивистская космологическая модель была выдвинута Эйнштейном еще в 1917 г. Это была модель стационарной Вселенной, конечной, с положительной кривизной пространства. Ее аналогом является гиперцилиндр с бесконечной осью времени.
Предпринимавшиеся попытки критики такой модели с философской точки зрения основывались на мнении о том, что конечность Вселенной якобы противоречит материализму. Однако в действительности пространство Вселенной Эйнштейна и любых других конечных моделей релятивистской космологии безгранично. Следовательно, оно является всеобъемлющим пространством и не допускает возможности существования какого-либо «внешнего» по отношению к нему пространства. Тем самым и конечные модели Вселенной не противоречат материализму.
Для наглядности можно воспользоваться известным примером, приведенным Эйнштейном в беседе с сыном. Он сказал, что когда слепой жук ползет по кривой ветке, то не замечает, что она кривая. Продолжим этот образ. Представим ветку, изогнутую так, что ее конец смыкается с основанием. В таком случае мы получим конечное, но безграничное пространство, служащее одномерным аналогом пространству модели Эйнштейна. Ее недостаток заключается не в конечности, а в статичности.
В 1922 г. А. А. Фридман исправил этот недостаток, построив нестационарную модель Вселенной, подтвержденную впоследствии наблюдениями. В зависимости от плотности вещества она могла быть как открытой, так и замкнутой, как конечной, так и бесконечной. При расширении Вселенной плотность вещества может стать меньше критической, а положительная кривизна пространства сменится на отрицательную. В последнем случае пространство Вселенной будет бесконечным и подобным псевдосфере Лобачевского. В настоящее время показано, что конечность и бесконечность модели Вселенной в структуре космологической теории имеют характер постулатов. Следовательно, для выбора ее модели недостаточно лишь эмпирических критериев, необходимы еще философско-методологические критерии. Таким образом, на втором уровне анализа возникает проблема критериев выбора адекватной модели.
В множестве римановых многообразий конечное и бесконечное не совпадают с ограниченным и безграничным. Если бесконечность является метрическим свойством, то безграничность — топологическим. Проблема многообразия миров на этом уровне анализа рассматривается как множество миров с различными не только метрическими (расстояние, кривизна, темп «течения» времени), но и топологическими свойствами (размерность, связность, гомогенность, направленность времени). Например, в квантово-динамической топологии, разработанной Д. А. Уилером и его сотрудниками, мировое пространство и время представляют собой пенообразную структуру с неодносвязной (нетривиальной) топологией. Однако диалектическое понимание конечного и бесконечного не сводится к метрическому и топологическому разнообразию пространственно-временных отношений.
А. Л. Зельманов высказал методологическое предположение о том, что во Вселенной реализуется все многообразие миров (явлений, условий, законов), допускаемое как старыми, так и новыми фундаментальными физическими теориями. Такое расширение концептуальной основы астрономии достигается, например, в квантовой космологии М. А. Маркова. В ее основе лежит гипотетическая микрочастица «фридмон», представляющая собой целую Вселенную. Она «разомкнута» лишь на массу элементарной частицы и поэтому «внешним наблюдателем» воспринимается в качестве одного микрообъекта. В этом случае бесконечность приобретает теоретико-множественный смысл. Конечный объект становится бесконечной Вселенной, а Вселенная — микрообъектом, что и приводит к тезису: «Все состоит из всего», а часть и целое выступают как «равномощные».
Таким образом, на данном уровне синтезируются представления об экстенсивном и интенсивном аспектах бесконечности. Выдвигается идея многообразия природы не только на уровне явлений, но и сущности. Это означает, что содержание физических законов изменяется иногда в такой степени, что приходится говорить о разных типах закономерностей.
Понятие, Вселенной как множества возможных физических миров также не охватывает всего материального мира, оно ограничено спецификой самого физико-космологического познания. Преодоление этой ограниченности возможно на пути использования понятий, общих с другими науками, т. е. общенаучных понятий. Тем самым мы переходим на четвертый уровень методологического анализа Вселенной (системно-структурных образов). Для этого экстенсивный аспект неисчерпаемости материи должен «быть уточнен и конкретизирован, если его дополнить некоторыми элементами системного подхода». Он объясняет связь между различными фрагментами реальности с принципиально отличными свойствами.
Подобным объяснением качественного многообразия законов природы служит концепция структурных уровней материи. Согласно ей, мир представляет собой бесконечную иерархию подсистем, в каждой из которых действует своя совокупность специфических закономерностей. Эта концепция в известной мере объясняет связь между такими, например, областями, как микромир, макромир и мегамир. Однако обнаруживается и ограниченность данного уровня анализа. Поскольку в системно-структурной схеме строения материи абсолютизируется лейбницево качество (часть меньше целого), то она не позволяет объяснить целый ряд естественнонаучных теорий. К ним относятся концепции фридмонов и кварков, в которых реализуется нелейбницево качество (часть больше или равна целому). Едва ли объяснима с точки зрения этой концепции и модель Вселенной, строящаяся с использованием гипотетических тахионов (частиц, движущихся со сверхсветовой скоростью и образующих «отдаленные» районы Вселенной). В ней также возникает необычное соотношение «части» и «целого» у длительности времени, поскольку направленность времени меняется при движении со сверхсветовой скоростью. Все это свидетельствует об ограниченности данного уровня анализа.
Таким образом, бесконечная линейная упорядоченность иерархии структурных уровней материи отражает определенный тип материальной организации. Однако ее универсализация метафизична, она противоречит современным, астрономическим знаниям и принципу неисчерпаемости материи. Принцип неисчерпаемости не сводится ни к концепции структурных уровней, ни к какой-либо другой завершенной схеме материи.
Очевидно, общенаучные понятия отражают относительно всеобщие признаки атрибутов единого материального мира, а не абсолютно всеобщие. Развитие научной практики выявляет релятивность научного знания, вскрывает его ограниченность в попытках «связать» воедино разные типы объективной реальности. Преодоление этой ограниченности возможно на базе признания этой реальности и критики метафизики как антидиалектики.
Для этого необходим переход к следующему уровню методологического анализа Вселенной, к ее пониманию как экстенсивной бесконечности материи. Понятие конечного при этом играет роль «системы координат», на которую «проецируется» реальная бесконечность, поляризующаяся на экстенсивный и интенсивный аспекты. И наоборот, единство этих аспектов лежит в основе диалектики конечного и бесконечного, выраженной в концепции неисчерпаемости материи. Материальность и неисчерпаемость выступают единственными абсолютно универсальными характеристиками объективного мира. Они объясняют с позиций материалистического монизма единство и взаимосвязь различных фрагментов объективного мира с различными относительно-универсальными свойствами. Если бесконечная материя характеризуется лишь объективностью и неисчерпаемостью, то любая ее конечная часть — системой диалектико-материалистических принципов и категорий. Такое представление объясняет органическую целостность принципов: материального единства мира, неисчерпаемости, универсальной взаимосвязи и развития. Оно несовместимо с идеализмом и метафизикой. Например, отношение различных типов организации материи объясняется взаимосвязью относительно-универсального содержания атрибутов, развитие — направленным изменением содержания атрибутов не только на уровне единичного, особенного, общего, но и всеобщего. При этом сама система атрибутов остается неизменной.
Дальнейший прогресс познания диалектики конечного и бесконечного в астрономии состоит в восхождении от абстрактного к конкретному. Задача исследования заключается в том, чтобы средствами теоретического описания единого материального мира отразить его конкретные типы и виды, иначе говоря, посредством всеобщих характеристик бытия в теоретической форме воспроизвести особенные характеристики бытия.
Диалектический синтез моментов категорий представляет собой схему построения моделей в общенаучном и конкретно-научном знании. Например, синтезируя моменты — элементная и структурная устойчивость (абстракция от изменчивости) с определенностью величины, места, границы (абстракция от неопределенности), получим философское обоснование «системности» как принципа строения одного из типов объективной реальности с лейбницевым качеством и свойством аддитивности. Всеобщее содержание атрибутов материи составляет диалектически-противоречивое единство однородности и неоднородности. Поэтому для обоснования целостности как признака системного мира следует абстрагироваться от неоднородности всеобщего содержания. И наоборот, абстрагируясь от однородности, мы получим теоретический «мир» типа квантово-космологической модели М. А. Маркова. В ней реализуется «несистемность», вызванная нелейбницевым качеством и неаддитивностью частей целого.
Диалектический анализ категорий конечного и бесконечного, а затем синтез их моментов приводят к выделению моментов конечного: ограниченности, качественной и количественной определенности; соответственно — бесконечного: неопределенности, неограниченной устойчивости и изменчивости. Синтез таких моментов, как качественная устойчивость, определенность места и границы, равенство места, направлений и мгновений, соответствует пространству и времени ньютоновской космологии. Если же исходить из неравенства мгновений и места, конечности протяженности и бесконечности длительности, то получается схема модели Вселенной Эйнштейна. Конкретно-научным проявлением взаимосвязи признаков атрибутов здесь служит взаимообусловленность неевклидовости пространства и «неньютоновости» времени, конечности и безграничности. Если в этом представлении качественную «устойчивость» заменить на «изменчивость» и допустить возможность бесконечной протяженности, то оно будет соответствовать фридмановской космологической модели.
Если же учесть неравенство направлений и места, относительность конечного и бесконечного, то мы получим неоднородные и анизотропные модели А. Л. Зельманова. Они вплотную подводят к идее относительной универсальности не только метрических, но и топологических свойств пространства и времени. Дело в том, что модели А. Л. Зельманова необычным образом соотносятся друг с другом. Например, модель, обладающая бесконечным пространством, занимает ограниченную область в другой — с конечным пространством. Пространство модели, будучи бесконечным в одной системе отсчета, становится конечным в другой системе. Следовательно, метрическая бесконечность не имеет глобального характера. Она скорее носит локальный характер, обусловленный нетривиальной топологией пространства.
Ярким подтверждением такого вывода служит рассмотрение вопроса о конечности и бесконечности времени. Известно, что, согласно «горячей» модели, Вселенная в прошлом имела «начало» во времени (состояние космологической сингулярности). Время ее существования конечно и насчитывает около 18 млрд. лет. Однако в другой системе координат, вблизи сингулярной точки пространство так сжато, что преобразуются все основные параметры и время становится бесконечным. Очевидно, противоречия здесь возникают от неправомерной экстраполяции координатного времени. К характеристике области сингулярности, видимо, неприменимо не только метрическое пространство — время, но и привычное временное топологическое отношение «до — после». Не случайно А. Эйнштейн предупреждал, что при больших плотностях поля и вещества уравнения поля и даже входящие в них переменные должны терять смысл. Как отмечал Э. М. Чудинов, с точки зрения философа-материалиста, оперирующего более общим понятием времени, «начало» времени «может рассматриваться как результат попыток осмыслить развитие Вселенной в рамках какого-либо специального типа времени, например координатного времени».
Для такого более общего подхода важны особые топологические структуры с «размытыми» гранями топологически различных многообразий, в которых устраняются «барьеры» между конечными и бесконечными величинами (неопределенность границы). Таким образом, современные тенденции развития физики и астрономии, вскрывая диалектическое единство конечного и бесконечного, подтверждают, что «они — едино суть».
Исследование понятий конечного и бесконечного показало, что их содержание также диалектически противоречиво. Это противоречие состоит в отношении между относительным и абсолютным моментами универсального содержания конечного и бесконечного. Обогащая диалектико-материалистическую концепцию неисчерпаемости материи, это положение выполняет методологическую функцию в объяснении старых и построении новых астрономических теорий.
3. Диалектика развития астрономического знания
Вопрос о развитии астрономического знания имеет важное философское значение. Он предполагает анализ того, «каким образом из незнания является знание, каким образом неполное, неточное знание становится более полным и более точным».
Позитивисты трактуют рост астрономического знания метафизически. Они абсолютизируют или количественный, непрерывный аспект его (кумулятивные концепции), или качественные изменения, моменты прерывности в его развитии (некумулятивные концепции). Марксизм-ленинизм исходит из того, что прогресс любой науки, в том числе и астрономии, происходит на основе единства количественных и качественных, прерывных и непрерывных изменений. Развитие форм астрономического знания характеризуется переходом от низшего к высшему, от простого к сложному, от старого к новому [127]О развитии астрономического знания см. Бойчент В. С., Минин В. А. Характерные особенности развития современной астрономии. — Научные информации, вып. 36, 1975; Минин В. А. Классификация астрономии как основа «модели внутренних связей астрономического исследования». — Там же; Амбарцумян В. А. Особенности развития современной астрофизики. — Октябрь и наука. М., 1977; Гинзбург В. Я. О физике и астрофизике.
. Оно представляет собой единство эволюционных и революционных изменений, смены исторических форм знания. Остановимся вкратце на основных этапах развития астрономического знания.
Античные мыслители разрабатывали математическую теорию видимого с Земли движения планет и Солнца. Так, Птолемей, размышляя над природой созданной им геоцентрической системы, указывал на исходные положения философского порядка. Они были заимствованы из трудов Аристотеля как космолого-астрономические принципы строения мира. Вместе с тем Птолемей опирался на астрономические опытные данные, которые, по его мнению, подтверждали центральное положение Земли. Ему пришлось конструировать геометрические модели мира и выбирать из них те, которые соответствовали приведенным соображениям. В конечном счете ими оказались круговые орбиты с эпициклами движения планет. Такие представления о строении Солнечной системы оказались громоздкими и внутренне противоречивыми.
В трудах античных мыслителей приводились также доказательства того, что размеры Солнца больше по величине не только Луны, но и Земли (А. Самосский), выдвигались отдельные догадки о движении Земли вокруг «центрального огня» (Филолай), видимое движение небосвода объяснялось вращением Земли (X. Сиракузский), высказывались соображения об обращении Меркурия и Венеры вокруг Солнца (Гераклит и Экфант).
Эти догадки древних послужили исходными элементами для создания Коперником гелиоцентрической теории. В обосновании системы мира Н. Коперника значительную роль сыграли эмпирические наблюдения Г. Галилея, математические вычисления И. Кеплера и философские принципы Дж. Бруно. Как видно, создатели этой теории не ограничивались использованием эмпирических знаний, они опирались и на другие предпосылки, в том числе, мировоззренческого порядка.
В новое время ограниченность системы Коперника была преодолена, что знаменовало выход исследования за пределы Солнечной системы. В этот период было установлено собственное (пекулярное) движение звезд (Галилей, Брадлей, Майер). Затем были открыты кратные (двойные) звезды, представляющие собой целостную гравитационную систему, определены яркости звезд. После этого В. Гершелем была поставлена эпохальная для астрономии задача: провести обзор всех объектов звездной Вселенной и выяснить ее строение и функционирование.
В основе решения данной задачи в ньютоновской космологии лежали определенные идеализации (космологические постулаты): предполагалось, что средняя плотность распределения звезд и их светимость постоянны (однородность); Вселенная стационарна, т. е. в однородной Вселенной не происходит изменений в распределении объектов и их светимости; метрически бесконечное пространство изотропно (равноправно по всем направлениям); законы физики, открытые на Земле, действуют повсеместно.
Однако ньютоновская космология оказалась не в состоянии решить ряд возникших в ней противоречий. Например, по данным фотометрии, свечение ночного неба от звезд должно быть столь же ярким, как и от Солнца, а на самом деле это не так. По данным термодинамики, вся Вселенная должна приближаться к тепловому равновесию, в результате которого она пришла бы к состоянию «тепловой смерти». Это тоже не подтверждалось.
Современная астрономия разрешила отмеченные выше противоречия и создала новые представления о Вселенной. «Горячая» модель Фридмана — Леметра — Гамова с нестационарной метрикой пространства-времени была подтверждена открытием явления разбегания галактик и реликтового теплового излучения. Это вызвало революцию в астрономии XX в. В ее основе лежит релятивистская (эйнштейновская) космология, базирующаяся на следующих положениях: 1) гравитационное поле выступает универсальным взаимодействием в мегамире; 2) оно описывается в уравнениях Эйнштейна геометрическими характеристиками; 3) «материальное» содержание Вселенной выражается тензором энергии-импульса. Релятивистские теории в астрономии можно разделить на пять основных типов: 1) однородная и изотропная (т. е. свойства ее объектов не зависят от направления и места) статическая Вселенная; 2) однородная и изотропная эволюционирующая Вселенная; 3) однородная анизотропная Вселенная; 4) Вселенная, в которой мировое пространство-время приобретает «необычные» топологии; 5) неоднородная анизотропная Вселенная.
В настоящее время существуют и такие модели Вселенной, которые не основаны на общей теории относительности или основаны на ней лишь частично. Это модели: 1) кинематической относительности Э. Милна; 2) стационарной Вселенной Бонди — Голда — Хойла; 3) электрической Вселенной Бонди — Боннора — Литтлтона — Уитроу; 4) модель с изменяющимися мировыми константами Иордана — Дирака, К. Станюковича, Хойта — Нарликара.
Развитие космологического знания в XX в. происходит в борьбе различных теорий. По своему содержанию они составляют диалектически противоречивое единство конечных и бесконечных, открытых и замкнутых, стационарных и нестационарных, «холодных» и «горячих» моделей Вселенной. Значительная часть этих моделей остается умозрительной, поскольку их эмпирическая проверка затруднена. В рамках классической концепции астрономии определяющее значение в наше время имеет «горячая» модель эволюционирующей Вселенной.
Диалектические идеи проникли в астрономию не только с понятием эволюционирующей Вселенной, но и с разработкой теорий нестационарных космических объектов. В этих теориях используются как релятивистская, так и квантово-полевая физика. Построение теоретических моделей развивающихся объектов, таких, как активные ядра галактик, вспышечная активность звезд, квазары, нейтронные звезды, «черные дыры», связано с определенными трудностями. Например, еще в 30-е годы была высказана Л. Д. Ландау в СССР, Р. Оппенгеймером в США гипотеза о том, что жизненный цикл звезд заканчивается переходом в сверхплотное состояние. Однако решающие результаты в наблюдении сверхплотных космических объектов получены лишь в конце 60-х годов. Теоретические расчеты были подтверждены наблюдениями за рентгеновским излучением, проводившимися с околоземных орбит. Важным теоретическим открытием последнего десятилетия стал также вывод о рождении частиц из вакуума вблизи «черных дыр». «В результате черная дыра постепенно теряет массу, уменьшается в размере — „испаряется“». В зависимости от массы время жизни «черной дыры» соизмеримо с возрастом «Вселенной».
Большое значение для диалектико-материалистического мировоззрения имеет открытие направленных изменений таких объектов, как «черные дыры» или ядра галактик. Они свидетельствуют о саморазвитии космических систем и тем самым подтверждают диалектическую концепцию развития, о которой В. И. Ленин писал, что она «дает ключ к „самодвижению“ всего сущего; только она дает ключ к „скачкам“, к „перерыву постепенности“, к „превращению в противоположность“, к уничтожению старого и возникновению нового». Однако проблемы образования и эволюции галактик с точки зрения происходящих в них физических процессов пока еще раскрыты далеко не полностью.
Существующие гипотезы в этой области можно разделить на два типа: «классические», согласно которым известных физических законов достаточно для понимания явлений, происходивших вплоть до «начала» расширения Вселенной, и «неклассические», предполагающие, что для объяснения ряда астрономических явлений необходимы «радикально новые физические концепции». Последнюю точку зрения разделяют те физики и философы, которые считают, что для понимания строения Вселенной целесообразно использовать принципиально новую топологию пространства.
Следует иметь в виду, что пока в рамках классической концепции объясняются и даже предсказываются многие астрономические явления, такие, как протозвезды, сжимающиеся облака газа, «черные дыры». Нужна ли для понимания галактик «новая физика», покажет ближайшее будущее. Возможно, что вклад астрофизики в отдельные разделы современной физики в целом будет большим, чем ее вклад в построение будущей физической теории. Формирование последней в основном определено ее собственным развитием, внутренними парадоксами и антиномиями.
Таким образом, революция в астрономии XX в. сформировала эволюционный стиль мышления, вызвала значительные изменения в объекте, субъекте исследования и в условиях и средствах познания Вселенной. Это оказывает значительное влияние и на формирование нового физического знания. Если революция в физике в конце XIX — начале XX в. породила в ней диалектические представления, выраженные в корпускулярно-волновом дуализме, принципе дополнительности координатного и импульсного, временного и энергетического, физического и геометрического, логического и топологического описаний объектов, то революция в астрономии значительно расширила и обогатила их.
В. А. Амбарцумян и В. В. Казютинский отмечают следующие общие признаки любой научной революции: во-первых, «радикальные изменения в самом субъекте деятельности», связанные в конечном счете с общественно-исторической практикой в целом. Во-вторых, «открытие принципиально новых классов природных объектов или явлений», например открытие микромира и мегамира. В-третьих, «появление принципиально новых средств познания». К ним относятся методы «всеволнового» исследования Вселенной, выход человека в космос. В-четвертых, «подобные же изменения условий познания». Они охватывают все средства эмпирического и теоретического уровней науки. В-пятых, «изменение в характере познавательных действий», включающее изменения в познавательных операциях и процедурах. В-шестых, «радикальная перестройка системы знания», охватывающая сами основы, фундаментальные законы и принципы.
Отмеченные черты характерны и для революции в астрономии XX в. Ее главным итогом И. С. Шкловский считает то, что «был доказан наблюдениями факт, что Вселенная и составляющие ее объекты непрерывно меняются» [138]Шкловский И. С. Вторая революция в астрономии подходит к концу. — Вопросы философии, 1979, № 9, с. 65.
.
Эволюционный стиль мышления современной астрономии ускоряет в ней внутренние интегративные процессы. На общей концептуальной основе объединяются астрофизика и космогония, поскольку та и другая изучают объекты со сходными законами эволюции. Вместе с тем космогония интегрируется с космологией, так как Вселенную после начала ее расширения можно рассматривать в качестве одной из метагалактик, подчиняющейся общим законам образования галактик. Подобная интеграция оказалась возможной лишь после предварительной дифференциации и специализации астрономии на основе эволюционных представлений. В этой особенности астрономического знания своеобразно проявляется синтез принципа развития с принципом материального единства мира.
В целом механизм функционирования и развития Вселенной в настоящее время изучен лишь в общих чертах, а многие проблемы остаются пока открытыми. Кроме уже отмеченных, к ним относится природа начальной космологической сингулярности. С ней И. С. Шкловский предположительно связывает содержание следующей революции в астрономии. Рассмотрим этот вопрос более подробно.
В эволюции начальных моментов образования Вселенной в результате «большого взрыва» можно выделить пять гипотетических этапов. Первый начинается от времени 10-43 сек. после этого события и длится до 10-35 сек. Он характеризуется рождением нетепловых реликтовых гравитонов. Последние экспериментально пока не обнаружены, однако в принципе это не исключено в будущем. Второй этап длится от 10-35 сек. до 10-9 сек. В это время возникает зарядовая несимметрия: избыток барионов над антибарионами. Объяснение этого процесса возможно в строящейся сейчас теории, которая объединяет электромагнитные, слабые и сильные взаимодействия. На третьем этапе — от 10-9 сек. до 10-7 сек. рождается множество промежуточных бозонов. Они являются основой для объединения электромагнитного и слабого взаимодействия. На четвертом этапе, длящемся от 10-7 сек. до 10-2 сек., возникают кварки, находящиеся в тепловом равновесии. На пятом — от 10-2 сек. и далее образуется первичный гелий. Наблюдения процентного состава его во Вселенной подтверждают предположение о том, что он возник в этот период.
В настоящее время теоретическое исследование околосингулярных этапов «рождения» Вселенной ведется с позиции квантовой космологии. Оно показывает, что интенсивное рождение частиц вблизи сингулярности происходит лишь при резком анизотропном расширении Вселенной. Затем под влиянием тяготения родившихся частиц в очень короткое время расширение становится изотропным.
Вместе с тем о процессах, происходящих в первые моменты времени (до 10-44 сек.), наука не может судить с достоверностью. Предполагается, что здесь образуются квантово-гравитационные эффекты в сверхсильных полях. От уяснения роли этих эффектов зависит представление о строении Вселенной в целом. Их пока не может описать ни классическая, ни квантовая физика, использующие обычные пространственно-временные многообразия. Как отмечают Я. Б. Зельдович и И. Д. Новиков, «в квантово-гравитационной области сами пространство и время, возможно, приобретают вероятностные недетерминированные свойства».
Сингулярность объясняется пока лишь гипотетично в рамках «неклассической» концепции. При этом важную роль играют представления о пространствах, меняющих с течением времени свои топологические свойства. Примером использования таких представлений служит понятие суперпространства, являющегося абстрактным пространством, каждая точка которого есть трехмерный пространственный срез через всю возможную Вселенную. В нем сингулярность представляет собой как бы особую точку, в которой сопрягаются области с различными топологиями. Что же происходит со Вселенной, когда она проходит через эту точку? Н. В. Мицкевич так отвечает на этот вопрос: «В эти периоды мир, подобно взбесившейся стиральной машине, дочиста уничтожает всю информацию, всякий порядок в себе самом и после выхода на спокойную „орбиту“ вынужден спонтанно генерировать законы своей эволюции — законы природы». В таком «метакосмологическом» представлении сами физические законы и константы сменяются на новые, одни конкретные формы бытия сменяются другими.
Если анализ явлений сингулярности приведет к построению новой фундаментальной физической теории, то революция в астрономии XX в. из «локальной» (по оценке В. А. Амбарцумяна и В. В. Казютинского) перерастет в «глобальную». И хотя развитие физики при этом будет следовать своей внутренней логике, на нее значительное влияние окажут эволюционные астрономические представления. В «новой» физике нынешняя физика может оказаться лишь одним из вариантов реализации принципов и законов, констант, пространственно-временной структуры, причинной связи на определенном этапе развития Вселенной. Философско-методологическим вопросам формирования новой теории «неклассического» типа (бюраканской) до сих пор уделялось недостаточное внимание. Однако от них зависит мировоззренческая и методологическая ориентация естествоиспытателей, готовность их к генерированию «безумных» идей.
Что можно сказать о прогнозе будущего развития теории? Приведенный выше подход к проблеме космологической сингулярности основывается главным образом на идеях квантово-динамической топологии, разрабатываемых группой Дж. А. Уилера. Эти концепции относятся к «нелокальному» подходу в построении физической теории. Такая программа построения новой теории в философском отношении является наиболее перспективной, хотя в физическом — менее результативна.
В основе различных вариантов «нелокального» подхода лежат модели пространства и времени с изменяющимися топологическими свойствами. Можно выделить четыре вида концепций, использующих различные исходные модели: а) с необычной размерностью пространства-времени (Р. О. Бартани, Г. Венециано); б) с неархимедовой топологией, т. е. дискретностью (Д. Д. Иваненко, В. А. Амбарцумян, В. П. Кадышевский); в) с неевклидовой топологией (Дж. А. Уилер, И. Г. Иван-тер); г) с обратимым временем (Р. Фейнман, Г. В. Рязанов). В них одно из топологических свойств пространства или времени принимается как необычное, в то время как другие сохраняют старую топологию. Каждая из этих теорий, добиваясь успеха в одном отношении, не может удовлетворительно объяснить других фактов. Так, выше была показана ограниченность концепции Уилера в объяснении космологической сингулярности. Однако на основе положения о взаимосвязи относительно-универсальных признаков атрибутов материи можно выбрать принцип взаимосвязи топологических свойств пространства и времени.
Современная физика и астрономия не только подтверждают этот принцип, но и дают богатый материал для понимания взаимосвязи топологических свойств. Так, Г. Рейхенбахом была показана связь между дискретностью и размерностью пространства и нарушением предела скорости света. Последнее же вызывает изменение топологического свойства времени — его направленности. Чтобы понять подобные «метаморфозы» содержания атрибутов материи в их взаимосвязи, необходимо допустить и многообразие типов взаимодействия, детерминации, учесть изменчивость самой взаимосвязи.
Иллюстрацией такого представления может служить теорема Р. Герока, согласно которой изменение топологии в физических процессах воспринимается с точки зрения старой топологии как «резкое нарушение причинности». Эта теорема объясняет не только процессы, происходящие в квазарах и «черных дырах», но и мысленный эксперимент Эйнштейна — Подольского — Розена, которые показали, что «разъединенные» квантовые системы способны оказывать взаимную детерминацию без причинной передачи взаимодействия, через разделяющее их пространство.
Приведенные факты, революционизирующие представления о формах и свойствах существования материи, едва ли могут быть поняты без представлений об изменчивости и взаимосвязи относительно-универсальных ее признаков. Так современные диалектико-материалистические положения объясняют возможность изменчивости и предсказывают возможность взаимосвязи топологических свойств пространства и времени. Наиболее перспективным в формировании новой теории, на наш взгляд, является выбор в различных способах теоретического исследования программы использования пространств с переменной топологией.
В методологическом отношении нельзя однозначно предсказать характер взаимосвязи топологических свойств — это задача конкретных исследований. Однако можно судить о формальных трудностях в построении физико-космологической теории. Они вызваны отсутствием математического аппарата преобразования пространств одной топологии в пространство другой.
Для описания физического пространства новой теории недостаточно имеющихся математических структур, даже таких, как «суперпространство» Уилера. Следует отметить, что аналогичное положение создалось и в квантовой физике, где также показана недостаточность современных математических средств для описания физических объектов. Хотя топологические свойства пространства-времени в них и принимаются необычными, но изменение их происходит вне взаимосвязи этих свойств.
Взаимосвязь метрических свойств с законами сохранения выражена в теореме Нетер, а с зарядовой симметрией — в СРТ-теореме. В указанных теоремах в конкретно-научной форме выражены связи относительно-универсальных признаков, а эффективность их использования доказана в построении квантовой теории поля. В новой теории неклассического типа подобную роль может сыграть теорема Герока. Как уже отмечалось, в ней вскрывается взаимосвязь топологических свойств пространства и времени с причинностью протекания физических процессов. В свою очередь теорема Белла, доказывая невозможность совмещения принципа причинности с принципом локальности в описании квантовых объектов, находится в отношении дополнительности к теореме Герока.
Эти факты свидетельствуют о правомерности вывода о взаимосвязи топологических свойств пространства и времени друг с другом и с причинными связями физических процессов. Здесь возникают вопросы о направленности этих изменений, о том, каким образом индуцируется топология и какими физическими свойствами мира она детерминирована? Ответы на них, очевидно, даст новая теория. Она будет свидетельствовать о том, что «исчезают такие свойства материи, которые казались раньше абсолютными, неизменными, первоначальными… и которые теперь обнаруживаются, как относительные, присущие только некоторым состояниям материи».
Глава V. ДИАЛЕКТИКА ГЕОЛОГИЧЕСКИХ ПРОЦЕССОВ В ЕСТЕСТВЕННОНАУЧНОЙ КАРТИНЕ МИРА
1. Объект и предмет геологии. Основные этапы развития научного знания в геологии
Взаимоотношение диалектики природы и познавательного процесса обусловлено внутренними связями, определяющими исторический процесс развития научного знания. Это доказал Ф. Энгельс, опираясь на глубокий анализ развития естествознания своего времени. Он пришел к выводу, что материалистическая диалектика «является для современного естествознания наиболее важной формой мышления, ибо только она представляет аналог и тем самым метод объяснения для происходящих в природе процессов развития, для всеобщих связей природы, для переходов от одной области исследования к другой».
Важная роль принадлежит диалектике в становлении теоретического естествознания. Это подтверждается развитием фундаментальных областей естествознания, в которых процесс теоретизации развивается давно и успешно. Следует отметить, что в геологии процесс теоретизации только начался. Это обусловлено прежде всего тем, что эта наука выделилась в качестве самостоятельной отрасли естествознания поздно. Однако интенсивное ее развитие за последние десятилетия позволило ей накопить значительный теоретический и практический запас знаний. Расширение фактической базы геологии, проникновение в нее методов физики, химии и математики, процесс дифференциации геологических дисциплин обусловили огромные успехи в познании истории развития и строения Земли. «Однако общей теории Земли пока нет, хотя неоднократно высказывались пожелания об ее создании». В настоящее время объем новой информации в геологии удваивается в среднем через каждые 8 — 10 лет. В значительной степени этому способствует внедрение новых методов изучения геологических объектов.
Бурное развитие геологии намного усложнило познавательные средства этой науки и выдвинуло много новых теоретических проблем и практических задач, решение которых требует правильного методологического подхода. Поэтому в последнее время исследователи все чаще обращаются к философским и методологическим проблемам геологической науки. В современной геологии уровень теоретических исследований непрерывно повышается. Накопление фактического материала без теоретического осмысления не может долго продолжаться, так как это приводит науку к узкому эмпиризму и ограничивает теоретико-познавательное значение ее выводов. Эмпирический материал требует теоретического освоения с целью создания обобщающей теории.
Несмотря на крупные достижения современной геологии, она отстает еще в области развития теории от других естественных наук. Ее представления об основных закономерностях строения и развития земной коры часто не выходят за рамки гипотез и схематических построений. Соответственно оказались недостаточно разработанными философские и методологические вопросы геологии. В последние годы эти упущения устраняются. В работах советских философов и геологов анализируются такие актуальные проблемы, как диалектическая природа объекта и предмета исследования в геологии, геологическая форма движения материи, классификация и взаимодействие наук о Земле, проблема научного метода геологии, характер процессов формализации и математизации геологического знания и ряд других. Раскрывая содержание этих вопросов, ученые получают возможность понять диалектически сложный и противоречивый процесс формирования геологических знаний, выявить направленность и перспективы развития всего комплекса наук о Земле.
В условиях развития естествознания, непрерывного возникновения новых научных дисциплин вопрос об определении предмета той или иной области знания приобретает не только теоретическое, но и важное практическое значение, так как от четкого понимания предмета науки во многом зависит постановка основных задач ее развития. Эта проблема очень актуальна и для геологии.
Процессы дифференциации и интеграции, проникшие в геологию, использование современных методов физики, химии, математики и других наук в познании Земли привели к тому, что эта отрасль знания как бы утратила свои четкие границы. Некоторые исследователи определяли геологию как науку о строении и развитии всей Земли, другие — только земной коры, высказывались мнения о том, что геология лишь часть более общей науки — планетологии, что она уже не является ведущей наукой в изучении Земли, что эта роль перешла к геофизике и геохимии и т. п.
Предмет исследования науки формируется в процессе познавательной деятельности, отражая отдельные стороны объекта исследования. Характер предмета определяется не только спецификой объекта исследования, но и направленностью и задачами познавательного процесса. Поскольку наши знания непрерывно развиваются, то и предмет науки не остается неизменным. Чем выше уровень развития данной науки, тем глубже и полнее наши знания о предмете ее исследования. Одна и та же материальная система может служить объектом исследования различных наук, а в предмете выражается специфика данной науки, которая изучает лишь отдельные стороны или свойства объекта. Объектом геологии являются Земля, различные ее сферы, и прежде всего земная кора. Предметом исследования служит структура, закономерности формирования геологического объекта.
В истории развития геологии долгое время непосредственным объектом ее изучения выступала земная кора. Качественно-описательные геологические методы могли иметь дело только с теми явлениями и процессами, которые можно было наблюдать в природе. Попытки «проникнуть» во внутренние части земного шара с помощью этих методов, как правило, сводились к построению гипотетических дедуктивных схем. Чтобы вскрыть действительные закономерности строения и развития Земли, необходимо было обратиться к новым методам исследования, дающим возможность выяснить структуру внутренних ее сфер в их взаимосвязи и развитии. Решение этой задачи стало возможным лишь при использовании количественных методов и эффективных приемов физико-химического исследования. Это привело к тому, что к середине XX в. наметилась тенденция комплексного изучения Земли в целом.
С чем же тогда связано определение некоторыми исследователями современной геологии как науки о земной коре? По-видимому, это обусловлено тем, что успехи в познании внутренних сфер Земли не ослабили внимания геологов к изучению такой сложной и важной части нашей планеты, как литосфера. Здесь обнаруживается взаимосвязь геологических сил, устанавливаются важные закономерности и характер их проявления. В этом отношении процессы, протекающие во внутренних сферах Земли, более однообразны и подчинены строгим закономерностям. Вот почему земная кора продолжает оставаться пока наиболее важным и основным источником, из которого ученые черпают сведения о строении и истории развития Земли. Предмет геологии изменялся в зависимости от уровня развития теоретической мысли, потребностей производства и совершенствования методологической оснащенности науки. Это можно показать на основе анализа важнейших этапов научного мышления в геологии.
История науки показывает, что познание какого-либо объекта начинается, как правило, с охвата его в целом, с изучения более простых и доступных связей и отношений. Прежде чем перейти от познания явлений к сущности предмета, необходимо получить о нем самые общие представления и наметить пути к его дальнейшему исследованию. «Надо было исследовать предметы, — замечает Ф. Энгельс, — прежде чем можно было приступить к исследованию процессов. Надо сначала знать, что такое данный предмет, чтобы можно было заняться теми изменениями, которые с ним происходят».
Начальный этап познания Земли ярко выражен в представлениях древних греков. Их стихийно-диалектический подход опирался не на конкретные знания естественных наук, которые тогда отсутствовали, а на поверхностный, непосредственно-созерцательный взгляд на окружающий мир. Идеи о развитии и строении Земли, возникшие в это время, оказывали существенное влияние на последующие этапы истории геологии. Более того, многие идеи и проблемы далекого прошлого находят отражение в специфической форме в современных теоретических представлениях о развитии Земли.
Дальнейший прогресс науки требовал познания сущности явлений и процессов материального мира, а это было невозможно без детального изучения всех сторон окружающей человека природы. Начался процесс дифференциации знания, накопления научного материала и фактов, послуживших предпосылкой возникновения естествознания. Построение науки на данном этапе происходило аналитическим путем, т. е. предмет исследования расчленялся на составные части и элементы, которые подвергались изучению зачастую в отрыве от самого предмета.
На начальном этапе познания в геологии преобладали исследования описательного характера. Логическое познание выступало здесь лишь в форме анализа, ибо для воссоздания истории Земли необходимо было получить данные о геологическом строении ее отдельных участков, т. е. о вещественном составе и формах залегания. Это был так называемый собирательный этап, связанный с появлением качественных характеристик отдельных объектов внешнего мира. Геология в это время еще не выделилась в самостоятельную науку и не имела своего метода исследования. В то же время накопление эмпирического материала требовало его теоретического осмысления, использования для практики и расширения поисков руд.
Элементы геологического знания представлены в возникшем в этот период сравнительном методе исследования. Он позволял выяснить наиболее важные свойства и особенности природных явлений путем установления их сходства и различия, а также вскрыть простейшие связи между ними. Это было необходимой предпосылкой для генетического исследования и отражало историческую закономерность всякого научного познания.
В процессе аналитической познавательной деятельности происходит выделение предмета формирующейся науки и разработка адекватного ему метода исследования. Геология как наука возникла в Новое время. Будучи по природе своей наукой глубоко исторической, она не могла успешно развиваться в рамках метафизического способа мышления. Накопившиеся в XVII в. факты и материалы по изучению Земли требовали объяснения и увязки во времени. Объективное содержание фактов подводило к их историческому объяснению. Но для этого, как указывал Ф. Энгельс, «надо было решиться признать, что историю во времени имеет не только Земля, взятая в общем и целом, но и ее теперешняя поверхность и живущие на ней растения и животные».
Однако такой взгляд на природу с трудом пробивал себе дорогу. В естествознании почти всюду господствовал метафизический метод мышления, который не позволял вскрывать глубокие связи между природными процессами и явлениями. Элементы диалектики, идеи о всеобщей связи и развитии хотя и встречались, но лишь в зачаточной форме в работах великих мыслителей того времени (Ж. Бюффон, Г. Лейбниц, М. В. Ломоносов). Высказывая прогрессивные мысли и правильно решая некоторые частные вопросы науки, они в целом еще стояли на метафизических позициях. Их труды подготовили почву для восприятия передовых материалистических идей и подорвали позиции метафизики, которая стала превращаться в это время в серьезный тормоз развития науки. «Метафизический способ понимания, — подчеркивал Энгельс, — хотя и является правомерным и даже необходимым в известных областях, более или менее обширных, смотря по характеру предмета, рано или поздно достигает каждый раз того предела, за которым он становится односторонним, ограниченным, абстрактным и запутывается в неразрешимых противоречиях, потому что за отдельными вещами он не видит их взаимной связи, за их бытием — их возникновения и исчезновения, из-за их покоя забывает их движение, за деревьями не видит леса».
С середины XVIII в. идеи развития и исторического подхода к исследованию явлений окружающего мира начинают пробивать себе дорогу и проникать в различные отрасли естествознания, характеризуя становление нового этапа в развитии науки. Первая брешь в метафизическом воззрении на природу была пробита И. Кантом, который представил Землю и Солнечную систему как ставшие во времени. Но отсюда вытекал вывод о том, что «если Земля была чем-то ставшим, то чем-то ставшим должны были быть также ее теперешнее геологическое, географическое, климатическое состояние, ее растения и животные, и она должна была иметь историю не только в пространстве — в форме расположения одного подле другого, но и во времени — в форме последовательности одного после другого». Следующий удар по метафизике был нанесен Ч. Лайелем, который ввел в геологию идею постепенного, медленного и длительного изменения Земли. Все последующее развитие естествознания подтверждало, что «в природе все совершается в конечном счете диалектически, а не метафизически».
С проникновением идеи историзма в естествознание геология, как и многие другие естественные науки, вступила в новый этап развития. Разрозненные знания и представления о различных сторонах строения Земли необходимо было связать в единое целое. Предмет геологии стал выступать в виде геологического процесса, в котором необходимо вскрыть генетические связи и отношения различных явлений, до этого рассматривавшихся, как правило, изолированно друг от друга. В отличие от предыдущего этапа, на котором доминировал аналитический подход, на новом этапе преобладала тенденция к синтезу имеющихся знаний. Оба подхода к изучению действительности неразрывно связаны и как различные ступени единого познавательного процесса позволяют раскрыть сущность предмета. «…Мышление, — указывал Ф. Энгельс, — состоит столько же в разложении предметов сознания на их элементы, сколько в объединении обязанных друг с другом элементов в некоторое единство. Без анализа нет синтеза».
Интенсивное развитие естествознания в XVIII — начале XIX в., возрастающие требования материального производства и, наконец, социально-экономические условия капиталистической эпохи меняют предмет и метод этой науки. От собирательного этапа она переходит к упорядочению накопленных знаний. «…Если до конца прошлого столетия естествознание было преимущественно собирающей наукой, наукой о законченных предметах, то в нашем веке оно стало в сущности упорядочивающей наукой, наукой о процессах, о происхождении и развитии этих предметов и о связи, соединяющей эти процессы природы в одно великое целое». Этот переход сопровождался как изменением содержания многих наук, так и качественным изменением методов исследования.
Геология нуждалась в изучении не только изменений в строении Земли, но и развития ее во времени. Логика фактов, полученных в результате исследования многообразия природных явлений, приводила ученых к идее о длительном и постепенном развитии земной коры. Эта идея способствовала возникновению в геологии актуалистического метода исследования, согласно которому на основании изучения современных геологических процессов можно судить об аналогичных процессах прошлого, а позднее — более развитого сравнительно-исторического метода. Указанные методы позволяли рассматривать историю Земли как непрерывно развивающегося тела и тем самым подрывали устои метафизического способа мышления. Великие открытия в естествознании XIX в. прочно утвердили новый, диалектический способ мышления.
В свое время униформистская теория (исходившая из того, что в геологическом прошлом Земли действовали те же силы и с той же интенсивностью, как и в настоящее время) сыграла важную роль в развитии естествознания. В 60 — 70-х годах XIX в. идея постепенного, чисто количественного изменения поверхности Земли пришла в противоречие с диалектической в своей основе мыслью о поступательном, необратимом развитии Земли. В силу этого концепция униформизма была отброшена и стала разрабатываться более прогрессивная теория циклически-необратимого поступательного развития Земли. В соответствии с изменившейся теорией претерпел изменение и актуалистический метод, который стал применяться с учетом необратимости процесса развития.
Таким образом, естественнонаучные теории, метафизические в своей основе, стали уступать место идеям, пронизанным диалектикой. В конце XIX — начале XX в. находит широкое применение синтетический подход к изучению истории нашей планеты. Работы И. Вальтера, А. П. Карпинского, Э. Зюсса, В. А. Обручева, А. Д. Архангельского, В. И. Вернадского явились итогом огромной обобщающей деятельности в различных областях геологического знания. Так, в трудах Э. Зюсса был подведен итог всему развитию геологии вплоть до XX в., особенно в области тектоники. Они оказали большое влияние на последующее развитие геологической науки. Выдающиеся исследователи, в том числе В. А. Обручев, развили метод систематических обобщений Э. Зюсса, обогатив тем самым геологию новыми перспективными идеями.
На современном этапе тенденция к синтетическим обобщениям научного знания выражается в усиливающемся процессе интеграции наук. На грани смежных наук возникают новые направления. Они меняют облик науки и приближают нас к наиболее полному и целостному представлению об окружающем материальном мире. В геологическом цикле наук появляются такие дисциплины, как геофизика, геобиохимия, радиогеология, астрогеология. Им присущи свои конкретные методы исследования, рассматривающие объект геологического изучения с различных сторон, поэтому они выступают как бы предпосылкой общей теории развития Земли.
Таким образом, в развитии геологической науки в самом общем виде можно выделить три ступени: стихийно-диалектическую, аналитическую и синтетическую. Они в абстрактно-логической форме сжато отражают исторический процесс развития всякого научного знания, характеризуя его как непрерывный поступательный ход движения человеческого знания от простого к сложному, от части к целому и от единичного к общему. На каждом этапе происходит коренное изменение теоретических представлений, основывающихся на качественно новом способе мышления.
Первый, созерцательный этап развития геологии не был еще в строгом смысле научным, но он явился необходимой предпосылкой для того, чтобы начался собственно научный этап. Вот как характеризует это начальное состояние геологии В. А. Обручев: «История геологии… показывает, что разработкой теоретических вопросов ученые занимаются сначала в младенческий период науки, когда эта разработка является плодом одних только размышлений, возникающих при первом знакомстве с практическими данными, вызывающими стремление человеческого ума так или иначе объяснить их. Результатом этой разработки являются гипотезы спекулятивного характера, в которых зерно истины обволакивается громадной оболочкой разнообразных измышлений, обычно совершенно фантастических. Борьба этих гипотез друг с другом приводит, наконец, к убеждению, что такая наука является бесплодной и что прежде всего необходимо собирать фактический материал наблюдений и изучать его».
В смене этих этапов проявляется диалектическое отрицание. Первоначальное целостное представление о предмете исследования отрицается путем разложения его на многочисленные составные элементы и стороны. Далее в процессе синтетического исследования вновь происходит отрицание: возвращение к исходному моменту и получение целостного образа исследуемого предмета, но уже на качественно новой основе. Перед современной геологией стоит задача, которую в общем виде уже поставили древнегреческие мыслители, — выяснить, что представляет собой наша Земля, мир в целом и как он изменяется. В то время эта задача не могла быть решена, она не выяснена окончательно и в настоящее время, но современная наука, руководствующаяся принципами марксистской диалектики, уверенно движется к ее решению.
Выделение указанных этапов отражает общую направленность исторического процесса познания, находящего свое выражение в диалектике движения от конкретного к абстрактному и от него вновь к конкретному. «Мышление, восходя от конкретного к абстрактному, — отмечал В. И. Ленин, — не отходит — если оно правильное… от истины, а подходит к ней».
Еще в начале XIX в. Земля как объект геологического исследования изучалась лишь со стороны отдельных свойств и явлений такими науками, как минералогия, петрография, физическая геология и др. Общие взгляды о Земле носили натурфилософский характер и были далеки еще от строго научных представлений. Однако объективная необходимость развития науки требовала создания научной системы знаний о Земле, что стало возможным лишь на следующем этапе — восхождения от абстрактного к конкретному. Тот же объект исследования начинают изучать такие науки, как геофизика, геохимия, биогеохимия и др., что приближает нас к целостному представлению об этом объекте. Не случайно теперь некоторые геологи высказывают мысль о создании науки о Земле, соединяющей методы классической геологии и физико-химического исследования, и предлагают назвать ее геономией.
Итак, выделение этапов в общем процессе геологического познания отражает лишь наиболее общие тенденции развития этой науки. В действительности же он более сложен и противоречив. Это объясняется и многообразием самого объекта геологии. Восстанавливая картину исторического прошлого Земли, ученый обычно не имеет полных сведений об ее строении и развитии. Это связано как с неполнотой геологической летописи, так и с невозможностью для человека проникнуть достаточно глубоко в недра Земли. К тому же следует учитывать тот факт, что поверхность материков еще недостаточно полно изучена в геологическом отношении, не говоря уже о том, что представления о геологическом строении земной коры под морями и океанами, занимающими более 70 % всей поверхности планеты, пока очень неточны и отрывочны. Подобные обстоятельства побуждают геологов широко пользоваться логическими построениями, экстраполировать известные геологические факты на другие явления и на их основе воссоздавать историю развития Земли. В связи с этим возникает вопрос о связи структурного и генетического исследования в процессе познания.
2. О геологической форме движения материи
Структурный подход к изучению Земли был необходим на первоначальном этапе ее изучения, когда нужно было узнать, что она собой представляет. Не имея достаточного знания о строении нашей планеты, геологи были лишены возможности перейти к выяснению генетических связей и отношений объекта исследования. Собственно говоря, геология как самостоятельная наука сложилась тогда, когда в нее проник исторический взгляд на развитие Земли. Это стало возможным только после выяснения структуры земной коры, изучения вещественного состава и окаменелостей животных и растительных организмов геологического прошлого. При этом отсутствие диалектического понимания процесса исторического развития приводило многих естествоиспытателей к метафизической оценке генезиса структуры земной коры и характера ее развития. Так, геологи, пришедшие к идее о существовании в прошлом всеобщих катаклизмов, изменявших облик Земли, отрицали тем самым историческое развитие и преемственность в нем. Концепция Лайеля о медленном и постепенном развитии поверхности Земли также не могла служить основой для исторического подхода к изучению процесса развития нашей планеты.
В отличие от структурных связей, которые в известной мере могут быть обнаружены исследователем непосредственно в объекте, генетические связи не лежат на поверхности, а выявляются только в процессе теоретического анализа. При этом в геологии этот процесс усложняется еще тем, что одна из сторон выясняемых отношений может отсутствовать, и геолог вынужден прибегать к вероятностным дедуктивным построениям. Правда, в геологии часто бывают известны некоторые промежуточные состояния, через которые прошла Земля в своем развитии. Это облегчает исследование генезиса современных структур, и познавательный процесс протекает тогда следующим образом: от выяснения генезиса современной структуры через реликты структур прошлого к неизвестному начальному состоянию объекта.
Современное состояние Земли представляет собой один из моментов в общем процессе ее развития. Изучение специфики развития каждого из этапов позволяет выявить общие тенденции и закономерности для Земли в целом и логически восстановить картину первоначальной ее структуры, во многом уже утраченную. Сравнительное сопоставление этих этапов позволяет полнее представить характер генетических отношений и тем самым облегчает и делает более достоверным решение основной задачи — восстановления исторического пути развития изучаемого объекта. Таким образом, выяснилось, что в геологии в процессе исторического развития изменяется не только предмет, но и объект исследования.
Переход в процессе познания к выяснению генетических отношений не означает, что ранее уже были получены полные знания о структуре объекта исследования. На современном этапе развития в геологии преобладает исторический подход к изучению объекта, но в то же время продолжается углубленное изучение структурных связей объекта исследования. Особую ценность в связи с этим представляют геофизические методы познания, моделирование, сверхглубокое бурение, исследование Земли с космических спутников, позволяющие изучать структурные элементы и связи земной коры и планеты в целом, которые раньше были недоступными.
Ряд разделов в геологии, возникших некогда с целью изучения структуры объекта, его элементов, не только не утратили своего значения с проникновением в геологию генетического способа исследования, но и получили дальнейшее развитие. «Этап, неизменно предваряющий стратиграфические исследования, — указывает французский геолог М. Жинью, — познание этих пород как таковых, с содержащимися в них минералами и окаменелостями. Такое изучение до определенного предела может производиться вне времени и пространства, так сказать, в коллекционных ящиках; этим занимаются петрографы и палеонтологи». Такие науки, как описательная минералогия, петрография, некоторые разделы палеонтологии, изучают не только структуру объекта, но и вопросы, не имеющие непосредственного отношения к процессам его развития. Они в первую очередь используют методы смежных наук — физики, химии, биологии.
Совокупность методов геологии дает возможность исследовать структуру различных геосфер и их развитие во времени и подводит нас к пониманию Земли как целостной материально-энергетической системы. Это позволяет определить геологию как комплексную науку, раскрывающую структуру и генетические отношения отдельных исторических этапов развития Земли и их взаимосвязи.
Процессы дифференциации и интеграции геологического знания породили очень важную проблему, связанную с выяснением характера взаимодействия наук при изучении Земли и места геологии среди других отраслей естествознания. Мы имеем в виду вопрос о существовании геологической формы движения материи. Рассмотрим этот вопрос подробнее. Как известно, диалектико-материалистические основы учения о формах движения материи были разработаны Ф. Энгельсом. Выделение самостоятельно геологической формы движения оказалось при этом связано с рядом трудностей. Ф. Энгельс отмечал, что геология изучает особый, высший комплекс форм движения в неорганической природе в его историческом развитии.
Классифицируя науки по формам движения на две группы, он выделил науки, исследующие отдельную форму движения, и науки, изучающие совокупность связанных между собой и переходящих друг в друга форм движения. Геология относится ко второй группе, т. е. изучает комплекс более простых форм движения материи, которые взаимосвязаны и обусловлены спецификой геологических закономерностей. В работах Ф. Энгельса геологическая форма движения не выделена в качестве самостоятельной. Однако в наше время ряд исследователей (Б. Кедров, Е. Куражковская, Г. Горшков) на основе детального анализа работ Ф. Энгельса пришли к выводу о том, что необходимость выделения такой формы логически вытекает из его учения о формах движения материи.
Форма движения отражает внутреннюю структуру своего материального носителя, взаимосвязь его элементов, специфику законов, по которым этот объект развивается. Объективно существующий материальный мир делится на живую и неживую природу, между которыми существует тесная взаимосвязь. Живая природа охватывается биологической формой движения. При этом Ф. Энгельс исходил из того, что биологическая форма движения представляет собой высший синтез механической, физической и химической форм движения на основе органического вещества. Если это так, то почему, спрашивает Б. М. Кедров, нельзя выделить геологическую форму движения, которая могла бы быть определена как способ существования неорганических (минеральных) веществ в пределах отдельного космического тела. Правда, здесь обнаруживается специфика функционирования биологической и геологической форм движения. В последней механическое, физическое и химическое движение проявляют больше самостоятельности и действуют более изолированно по сравнению с биологическими процессами. Этот факт приводит некоторых исследователей к мысли о том, что геологическое движение есть лишь сумма более простых форм движения и не обладает особенностями, позволяющими говорить о его самостоятельности.
Какие условия являются обязательными для выделения самостоятельной формы движения материи? Прежде всего для каждой формы движения должен существовать свой материальный объект — носитель этой формы движения. В геологии, как уже указывалось, этот вопрос не решен однозначно. Многие исследователи считают, что таким носителем выступает Земля в целом. Она расчленена на ряд геосфер, находящихся в тесном взаимодействии.
Наиболее развитой из них является земная кора. Именно в ней совершаются сложные типы взаимодействия ее структур и протекают процессы дифференциации вещества. В связи с такой исключительной ролью земной коры она принимается многими в качестве материального носителя геологической формы движения материи. Ф. Энгельс связывал этап непосредственного геологического развития Земли с тем временем, «когда планета приобретает твердую кору и скопления воды на своей поверхности… Ее атмосфера, — пишет он, — становится ареной метеорологических явлений в современном смысле этого слова, ее поверхность — ареной геологических изменений».
Однако развитие геологического объекта в определенной степени обязано процессам, протекающим в подкоровой части планеты, хотя по своей природе они являются не геологическими, а физическими и химическими. Нельзя игнорировать также и роль биосферы и деятельности человека. Б. М. Кедров, выделяя геологическую форму движения материи, отмечал, что специфика последней состоит в наличии определенного рода взаимодействия между тремя сферами нашей планеты, а также внутри их. Генетически эти взаимодействия возникают из более низких и простых форм движения материи (механического, физического, химического), являясь их особым синтезом.
Геологические изменения присущи не только нашей планете, но и ряду других небесных тел, подобных Земле. Это позволяет говорить о широком распространении и в какой-то степени общем характере этой формы движения материи. По мнению М. М. Одинцова, она «представляет собой общий способ существования материи любых планет, подобных Земле, как в нашей Солнечной системе, так и в Галактике и в космосе вообще». Такое понимание геологической формы движения подводит к мысли о возможности выделения более общей формы движения — планетарной (Г. Поспелов, Е. Шанцер, Г. Горшков, Е. Куражковская).
Необходимым условием существования самостоятельной геологической формы движения материи является также наличие специфического противоречия, которое было бы характерным для данного движения и отличало бы его от других форм. Ф. Энгельс указывал, что всякое движение состоит во взаимодействии притяжения и отталкивания. В геологических процессах притяжение выступает в виде действия гравитационного поля Земли, а отталкивание — в форме теплоты, источником которой является радиоактивный распад, энергия химических процессов и кристаллизации. Это противоречие обусловливает все многообразие геологических процессов. С ним тесно связано другое специфическое противоречие — между эндогенными и экзогенными процессами.
Эндогенные процессы, происходящие внутри Земли, проявляются в виде колебательных движений, магматизма и метаморфизма. В результате этих процессов формируются различные глубинные породы, усложняется структура земной коры и происходит перераспределение вещества внутри планеты. Эти внутренние процессы оказывают существенное влияние на формирование поверхностных форм Земли.
Экзогенные геологические процессы представляют собой результат взаимодействия литосферы с атмосферой, гидросферой и биосферой, т. е. выступают внешними по отношению к эндогенным процессам. Действие этих противоположных, но неразрывно связанных процессов особенно ярко проявляется в литосфере, где указанное противоречие разрешается.
Природа материального носителя и внутренние противоречия геологической формы движения обусловливают специфику законов, присущих этой форме. Последние, отражая физико-химические процессы, протекающие в Земле, обладают специфическими особенностями в отличие от законов физического движения или химических реакций. К числу наиболее общих законов, определяющих специфическую особенность историко-геологического процесса, относится закон необратимого развития земной коры и Земли в целом. Общей закономерностью является также ускорение геологического развития Земли, которое может быть выражено количественно коэффициентом ускорения развития. Геологическим процессам, протекающим в пределах земной коры, присущ и закон парагенетических ассоциаций, согласно которому все минералы, участвующие в формировании горных пород, образуют типичные парагенетические ассоциации, связанные с определенными типами горных пород и с конкретными геологическими условиями образования минералов.
Можно назвать и целый ряд менее общих законов, которые отражают разнообразные особенности геологических явлений и процессов в их взаимодействии. Правда, многие из этих законов носят эмпирический характер. Это связано с тем, что геология находится на пути к созданию единой геологической теории. Но по мере движения вперед геологической практики, дальнейшей разработки теории эмпирические законы поднимаются на уровень обобщений теоретического характера. Таким образом, приведенные выше необходимые условия существования геологической формы движения материи позволяют говорить о ее самостоятельности.
Следует отметить, что ряд философов и естествоиспытателей отрицают возможность выделения такой формы движения или включения ее в число основных форм движения материи. Например, Е. К. Федоров считает, что в стихийных процессах можно найти только те формы движения, которые исследуют физика, химия и биология. В. М. Букановский утверждает, что геологические законы связаны с особым геологическим комплексом форм движения, в котором ведущую роль играют химические процессы. Ученые, не признающие геологической формы движения, считают недостаточными и те условия, на основании которых выделяется эта форма. В частности, они считают, что невозможно выявить основное противоречие геологических процессов, которое являлось бы универсальным. Они отмечают, что некоторые геологические явления происходят вне рамок взаимодействия эндогенных и экзогенных сил. То же самое наблюдается при рассмотрении в качестве основного противоречия сжатия и расширения. Если одни исследователи (Е. К. Федоров) отрицают специфику геологической формы движения, сводя последнее к простой сумме механической, физической и химической форм движения материи, и поэтому отвергают ее как самостоятельную, то другие (И. В. Назаров) утверждают, что наличие материального носителя и специфических законов его развитая позволяет выделять только частную форму движения.
Выделение геологической формы движения требует определения ее места в системе классификации форм движения материи. В решении этого вопроса также нет единого мнения. В классификации основных форм движения, предложенной Б. М. Кедровым, особое место занимает химическая форма движения, начиная с которой процесс развития природы поляризуется на две основные ветви: органической и неорганической природы. Одна ветвь, выйдя за пределы химии, вступает в область биологии, другая — в область геологии. Это позволяет говорить о том, что геология имеет в качестве объекта изучения свою собственную форму движения точно так же, как биология. Е. А. Куражковская, исходя из того, что геологическая форма движения возникает на основе планетарной и включает в себя механические, физические, химические, биологические и другие формы движения, считает выведение ее из химической формы неправомерным. Она предлагает такую схему классификации форм движения материи, где в восходящем общем ряду, следуя друг за другом, займут свое место комплексные формы движения материи: планетная, химическая и биологическая формы.
С нашей точки зрения, геологическая форма движения является более общей по отношению к другим основным формам движения: физической, химической и биологической, которые в совокупности составляют основу геологических процессов. Поэтому геология при изучении столь сложного объекта, каким является Земля, широко использует методы других наук, что приводит к возникновению новых научных дисциплин, специфической особенностью которых является то, что они вскрывают различные стороны геологического объекта, недоступные традиционным геологическим методам.
3. Диалектика геологического знания
В настоящее время Землю и ее структурные элементы изучает целый комплекс наук (более сотни). Процесс дифференциации, охвативший естествознание, глубоко проник и в геологию, способствуя детальному изучению геологических явлений и процессов. Одновременно происходит и процесс интеграции, выражаясь во все более тесных контактах, взаимодействии ее с другими науками, и в первую очередь фундаментальными. В этих условиях возникла проблема взаимодействия наук, изучающих Землю, и их классификации.
Очень плодотворными оказались контакты геологии с такими фундаментальными областями научного знания, как физика, химия и математика. Проникновение идей и методов этих наук в геологические дисциплины оказало революционизирующее влияние, позволило вскрыть внутреннюю сущность геологических процессов, способствовало теоретизации геологии и большим успехам в познании Земли. Этот процесс привел к возникновению важных «пограничных» дисциплин: геофизики, геохимии, биогеохимии, кристаллофизики. В задачу этих дисциплин входит исследование различных сторон строения и развития Земли. Многие из них оказались настолько тесно взаимосвязанными, что ни одну из них нельзя отделить от геологии. роль некоторых из них в изучении геологических объектов оказалась столь существенной, что это позволило некоторым исследователям крайне сузить предмет геологии и даже говорить об утрате самостоятельности геологии как науки.
В условиях развития современного естествознания, когда границы между отраслями науки все более сглаживаются, становится трудно находить соответствующее место для возникающих областей знания и новых методов исследования. Сближение наук взаимно обогащает их, и при этом возникают не только новые методы исследования, но и совершенствуются старые, качественно меняется их роль в процессе познания.
В связи с этими процессами высказывается идея о создании новой науки о Земле, объединяющей традиционный подход к изучению геологических процессов с физико-химическим и математическим. Предполагается, что эта наука будет разрабатывать общую теорию строения и развития Земли на основе синтеза генетических методов и количественного подхода. Все это свидетельствует о том, что геология переживает сложный и закономерный этап развития. Влияние физико-химических, математических наук и современной техники на геологию настолько велико, что ее дальнейший прогресс во многом будет зависеть от того, насколько быстро и эффективно удастся внедрить средства этих наук.
Использование новых методов в науке о Земле тесно связано с развитием современной научно-технической революции, одной из особенностей которой является глубокое проникновение во все сферы человеческого знания и практической деятельности. Революционные преобразования охватили прежде всего фундаментальные науки: физику, химию, биологию. Крупнейшие достижения этих наук не могли не оказать благотворного влияния на геологию. Действительно, в последние годы существенно обогатились знания о строении и составе глубинных зон Земли. Это стало возможным благодаря использованию сейсмического зондирования, гравиметрических и магнитометрических методов. Метод изотопного анализа, в основе которого лежит явление радиоактивности, позволил преодолеть ограниченность стратиграфического метода и уверенно датировать все отложения, в том числе магматические и метаморфические толщи.
Большие успехи достигнуты в изучении вещественного состава горных пород и минералов. Для этого используются новейшие достижения электроники, лазерная техника, явление магнитно-ядерного резонанса, газожидкостная хроматография. Широко используются в геологии разнообразные методы количественного спектрального анализа. Они дали возможность оперативно определять состав огромного количества проб и делать прогнозы для поисков скрытых рудных тел, а также редких и рассеянных элементов. Началось использование электронно-вычислительных машин для обработки обширной геологической, геофизической и геохимической информации, очень трудоемкого подсчета запасов нефти, газа и руд, залегающих в сложных геологических условиях.
Таким образом, появление в геологии мощного арсенала новых методов и средств исследования, благотворное влияние новейших достижений фундаментальных наук способствовали развитию теоретической мысли. За последние десятилетия произошел пересмотр ряда теоретических положений в различных областях геологии и высказаны новые идеи, что позволяет утверждать, что научно-техническая революция оказала существенное влияние на теоретическую и прикладную геологию.
В настоящее время непрерывно повышается уровень теоретических исследований в естествознании. Однако процесс теоретизации его различных областей происходит неравномерно. Несмотря на крупные практические достижения современной геологии, в этом плане она значительно отстает от других естественных наук, что особенно четко проявляется в области развития геологической теории. Здесь представления об основных закономерностях строения и развития земной коры не выходят за рамки гипотез и недостаточно обоснованных схематических конструкций. Характер и направленность процесса ее теоретизации, пути и методы построения общей теории мало исследованы и не позволяют обрисовать четкую перспективу развития наук о Земле в этом плане.
Вопрос о теоретизации науки является одним из наиболее сложных в методологии научного познания. Это обусловлено рядом причин, из которых наиболее важными являются высокая абстрактность теоретического знания, его сложная внутренняя структура и взаимосвязи с эмпирическим знанием. В теоретических работах выделяются три основные стадии, характеризующие уровень развития науки. Первая связана с созданием теоретического базиса, который представляет систему исходных понятий, принципов и гипотез, являющихся основой для дедуктивного построения научных теорий. Решающую роль при этом играет философское знание. На этой стадии изменяется существующая научная картина мира или создается новая. Следующая стадия охватывает непосредственное построение научной теории. Третья стадия включает применение теории для объяснения явлений. Таким образом, построение теории возможно лишь при наличии выработанного теоретического базиса и соответствующей научной картины мира.
В настоящее время выдвигается задача создания «теоретической геологии», включающей некоторые теоретические концепции таких геологических дисциплин, как геотектоника, стратиграфия, литография. Однако содержащиеся в этих науках знания представляют в основном результат эмпирических обобщений, а не строгой научной теории. Подобное положение можно объяснить следующим образом. В разработке теоретического базиса большую роль играют философские идеи и принципы, непосредственно связанные с конкретной областью знания. В геологии же философские и методологические проблемы разработаны пока недостаточно.
Важной предпосылкой построения теоретического знания является разработка естественнонаучной картины мира. В ее создании участвуют все области знания о природе, но особую роль играют фундаментальные науки, прежде всего физика. Определенный вклад в ее развитие вносит и геология. На различных этапах научного познания геологические воззрения формировались в тесной связи с философскими идеями, достижениями и выводами других естественных наук.
4. Эволюция геологической теории: прогностический очерк
Развитие геологической теории осуществлялось в связи с общим прогрессом естественнонаучного знания и философских представлений. Ж. Кювье и его последователи, опираясь на метафизическое понимание развития, разработали теорию катастроф, явившуюся теоретической концепцией развития Земли и отражавшую определенный уровень знания той эпохи. Позднее Ч. Лайель показал несостоятельность таких представлений и создал новую научную картину развития Земли. Его идеи базировались на ряде общих принципов: однообразии природных сил, непрерывности, постепенности, длительности геологического времени. В униформизме Лайеля получили теоретическое обоснование многие важные проблемы геологии.
Дальнейшее развитие геологии показало неполноту и односторонность униформистских взглядов. В связи с этим начали формироваться представления о развитии Земли, базирующиеся на диалектических принципах всеобщей связи и развития. Эти идеи легли в основу современных геологических представлений, на которых и построена геологическая теория. Однако до сих пор существует немало спорных вопросов, нерешенных проблем, отсутствует единство взглядов в объяснении многих геологических фактов. Все это обусловливает относительный характер геологической теории, а подчас вызывает сомнения в возможности ее создания.
Таким образом, построение общей геологической теории находится пока еще на первой ступени. В настоящее время идет разработка философских и методологических проблем наук о Земле и геологической теории в целом, что позволит построить теоретический базис геологии и от него перейти к следующей ступени — построению общей научной теории геологических процессов.
Существенную роль в разработке научной теории играют логико-математические методы. В последние годы идет процесс математизации геологической науки. Эта важнейшая тенденция современной науки приводит к изменению не только многих представлений о природных процессах, но и характера самой науки. Одним из условий успешной математизации геологии является формализация ее понятийного аппарата и разработка новых методологических принципов, отличных от традиционных, характерных для классической геологии.
Теоретизация современной науки тесно связана также с проникновением в нее системных методов исследования. Общая теория систем в своей основе опирается на диалектический принцип системной целостности. В свете этого принципа Земля рассматривается как сложная, саморазвивающаяся динамическая система. Введено даже понятие геологической материальной системы, характеризующейся определенным типом взаимосвязи и взаимодействия образующих ее компонентов, динамической структурой, получающей свое функциональное выражение в специфических процессах, с которыми связано ее развитие. Эта система является результатом исторического развития и подвержена непрерывным изменениям. На современном этапе она представлена земной корой и взаимодействующими в ней сферами: мантией, атмосферой, гидросферой, биосферой, ноосферой. Представляя собой органичное целое, они образуют объект системного исследования. Однако гносеологически это было осознано лишь тогда, когда внутренней потребностью геологии стал синтез накопленного знания и переход ее к созданию обобщающей теории.
Мнение о большой эффективности системного мышления является ныне общепризнанным. Однако по отношению к конкретным наукам оно справедливо лишь при условии широкого использования развитого формально-математического аппарата. В геологии же делаются лишь первые шаги в этом направлении. Существует даже определенный скептицизм в отношении возможностей формализации геологических понятий и представлений. По-видимому, к решению вопроса об их формализации необходим дифференцированный подход.
Обычно выделяются три основных направления геологического исследования. К первому, статическому, относятся задачи изучения строения Земли, ее структуры, взаимоотношения геологических тел, т. е. пространственное расположение геологических объектов. Второе направление — динамическое, связано с изучением современных геологических процессов. И третье, ретроспективное, включает историко-генетические исследования, т. е. реконструкции геологического прошлого Земли.
Задачи этих направлений столь различны, что требуют разработки самостоятельных методологических подходов. Именно в статических и динамических системах потенциально заложены возможности формализации основных теоретических построений и последующее развитие системных представлений. Сочетание последних с историко-генетическими исследованиями явится важным вкладом в разработку общей геологической теории.
Вступление человека в космическую эру наложило отпечаток на современную науку, в том числе и на геологию. Последняя долгое время развивалась в рамках геоцентризма. Это была исторически ограниченная система взглядов на геологические процессы и явления, рассматриваемые в отрыве от других природных процессов, в частности от космических факторов.
Выход человека в космос заставил пересмотреть многие проблемы геологии. Открылись новые возможности для изучения как Земли в целом, так и земной коры. Ракетно-космическая техника и искусственные спутники позволили вести глобальное изучение нашей планеты из космоса, что способствовало разработке более совершенных методов ее изучения. Стало возможным создание новых теоретических концепций, а также проверка некоторых классических представлений в геологии. Например, лазерная локация, осуществленная с помощью «Лунохода-2», позволила определить с ранее недоступной точностью параметры системы Земля — Луна. Полученные данные подтвердили известную в геологии гипотезу дрейфа континентов, выявили более точные изменения скорости вращения Земли. Американские космонавты, побывавшие на поверхности Луны, получили интересные научные материалы, касающиеся химического состава и физических свойств лунных пород, строения поверхности Луны и ее возраста. Ценные данные доставлены с поверхности Луны советскими космическими кораблями. Важные сведения поступают с космических кораблей, исследующих планеты Марс, Венеру, Юпитер, Сатурн. Все это приближает науку к решению сложнейших задач — выяснению происхождения Земли, нашей Солнечной системы и строения Вселенной — и дает основания говорить о возникновении нового научного направления — космической геологии. Космические исследования не только углубляют знания об отдельных геологических явлениях, но и способствуют их интеграции и могут способствовать созданию единой космической науки.
Наметившиеся в последнее время тенденции в развитии геологической науки позволяют судить о важных изменениях «геологического» мышления. По мере нарастания темпов развития науки все отчетливее проявляется ее рефлексирующий характер. Во второй половине XX в. эта тенденция оформилась в виде самостоятельной дисциплины — науковедения. Задачи этой науки сложны и многообразны. Она тесно связана с такими разделами человеческого знания, как история естествознания и техники, философия и методология науки.
Применение науковедения к геологии позволяет решать задачу о ее представлении не только как совокупности знаний, но и как структурной организации. Одной из наиболее важных задач этого направления является исследование общих закономерностей становления и темпов ее развития. Указанная проблема еще мало исследована, хотя и представляет собой практическую ценность, так как является предпосылкой для долгосрочного планирования прикладных и теоретических исследований в геологии. Большой интерес вызывают вопросы организации геологической науки, ее материально-финансового обеспечения, подготовки кадров, обмена научной информацией.
Важное место занимает проблема научного прогнозирования в геологии. Эта наука, как и любая другая, не может обойтись без прогнозов ее развития в будущем. Современная наука располагает целым комплексом методов, различных видов прогнозов, которые могут быть использованы и в геологии. Однако эти возможности еще полностью не реализованы. К тому же геологический прогноз обладает спецификой, обусловленной природой геологического знания, и прежде всего его историчностью.
Во второй половине XX в. актуальной стала проблема взаимодействия природы и общества. В той или иной форме люди давно сталкивались с ней в своей практической деятельности и пытались ее разрешить. Характеризуя взаимоотношения человека с природой в ходе исторического процесса, Ф. Энгельс указывал на негативные последствия, выражающиеся в разрушении естественной природы. Задача человека состоит в том, чтобы понять свою связь с природой, познать ее законы, правильно их применять, предвидеть и регулировать последствия своей деятельности.
В условиях научно-технической революции взаимосвязи человека и природы еще более усложнились. Масштабы деятельности общества настолько возросли, что нынче уже выходят за пределы нашей планеты. «Человечество, взятое в целом, — отмечал В. И. Вернадский, — становится мощной геологической силой». Человек уже не может рассматривать природу как нечто чужое и противостоящее ему, подходить к ней с позиций потребителя. В условиях бурного роста промышленности, преобразования природы в крупных масштабах и возрастающего управления природными процессами необходим научный подход к геологии, характеризующийся комплексностью и позволяющий предвидеть ближайшие и отдаленные последствия воздействия общества на окружающую среду.
Глава VI. ДИАЛЕКТИЧЕСКИЙ СИНТЕЗ ЗНАНИЙ В КИБЕРНЕТИКЕ
1. Кибернетика — наука о сложных самоорганизующихся системах
Философские вопросы кибернетики активно обсуждаются в отечественной и зарубежной литературе. При этом философская интерпретация ее результатов ведется с разных, нередко противоположных позиций. Идеи и принципы этой науки используются буржуазной философией (неотомизмом, позитивизмом, операционализмом), представители которой пытаются противопоставить кибернетику диалектическому материализму. Однако реальное развитие кибернетики в нашей стране и та значительная работа по выявлению ее научного и философского статуса, которую ведут советские философы и специалисты в области естественных наук, выявляют действительные взаимосвязи философских идей кибернетики и материалистической диалектики, показывают методологическую роль диалектико-материалистической трактовки основных принципов кибернетики.
Философско-методологический анализ кибернетики имеет важное мировоззренческое значение, поскольку ее принципы, понятия и методы обладают глубоким диалектико-материалистическим содержанием. Так, принципы самоорганизации, выражая существенные задачи кибернетического исследования, конкретизируют диалектический принцип самодвижения и саморазвития материи через ее внутренние противоречия, взаимосвязи и взаимообусловленности. Вместе с тем принципы и понятия кибернетики, приобретая в силу синтетического характера этой науки общенаучное содержание, способствуют проникновению принципов материалистической диалектики в новые области научного исследования.
Основные идеи кибернетики, преломляясь через призму философских категорий, вносят элементы диалектико-материалистического мышления в технические, биологические и социальные науки. Например, понятия информации, самоорганизации системы и соответствующие им методы исследования нашли широкое применение в биологических науках, способствуя становлению и развитию биофизики, молекулярной биологии, теории эволюции. Механизмы саморегуляции и самоорганизации общества, его информационных процессов становятся предметом изучения социальной и экономической кибернетики.
Широкий диапазон применения идей и методов кибернетики выражает определенные синтетические тенденции научно-технической революции. В этом плане непреходящее значение для разработки философских проблем современной науки имеет анализ революции в естествознании на рубеже XIX–XX вв., осуществленный В. И. Лениным в работе «Материализм и эмпириокритицизм». В этом труде дано глубокое истолкование новых для того времени научных данных в период крутой «ломки принципов» в ведущих отраслях естествознания. Содержащийся в нем анализ революции в физике служит образцом для философского рассмотрения достижений современной научно-технической революции. Ленинские методологические принципы служат философскому обоснованию идей и методов кибернетики. Без глубокого теоретического осмысления достижений современного естествознания социалистическая идеология будет неполной и, говоря словами В. И. Ленина, может оказаться «не столько сражающимся, сколько сражаемым».
Важная методологическая роль философских категорий и принципов для развития современного естествознания вытекает из выдвинутого Ф. Энгельсом тезиса об объективной и субъективной диалектике. «Так называемая объективная диалектика, — писал он, — царит во всей природе, а так называемая субъективная диалектика, диалектическое мышление, есть только отражение господствующего во всей природе движения путем противоположностей, которые и обусловливают жизнь природы своей постоянной борьбой и своим конечным переходом друг в друга, resp. (соответственно. — Ред.) в более высокие формы». Положение об объективной и субъективной диалектике получило развитие в ленинском принципе единства диалектики, логики и теории познания. Развивая мысль об объективном значении категорий и соответствующих им принципов мышления, В. И. Ленин писал: «…если все развивается, то относится ли сие к самым общим понятиям и категориям мышления? Если нет, значит, мышление не связано с бытием. Если да, значит, есть диалектика понятий и диалектика познания, имеющая объективное значение».
В философии диалектического материализма в отличие от прежних философских систем онтология и гносеология не существуют обособленно, вне связи друг с другом. Диалектический материализм считает, что рассуждение о бытии вообще, о сущем как таковом беспредметно и что философия начинается с того момента, когда ставится вопрос об отношении мышления к бытию. Вместе с тем гносеологическая проблематика как выражение субъективной диалектики ориентирована в целом на исследование всеобщих логико-познавательных форм в их, так сказать, чистом виде. В объективной диалектике рассматривается реальная действительность с использованием логики исследования объекта, которую К. Маркс называл «специфической логикой специфического предмета». Диалектическое осмысление кибернетической проблематики, формирование диалектико-материалистической концепции кибернетики включает выявление объективной и субъективной диалектики в ее предмете и методе.
Одним из важнейших достижений науки в середине XX в. явилось возникновение кибернетики, ознаменовавшей собой становление новых методов познания и вызвавшей тем самым переосмысление некоторых принципов и понятий, сложившихся в классической науке. Кибернетика представляет собой синтез ряда относительно удаленных друг от друга специальных дисциплин, чем объясняется широта приложения основных ее принципов. Причем кибернетические идеи приобретают важное значение и для традиционных (физических, биохимических, химических, а также математических) фундаментальных наук.
Кибернетика по существу продолжает линию развития экспериментально-математического естествознания. Современная наука (и прежде всего кибернетика) ставит ряд таких методологических вопросов, рассмотрение которых вносит новые аспекты в философское мышление.
Сочетая широкий синтез с детальным анализом, содержательные интерпретации с логико-математической формализацией, кибернетика позволяет на новом уровне решать определенные проблемы философии и науки.
Успехи в разработке философских проблем кибернетики как науки об управлении сложными динамическими системами различной природы находят свое выражение в исследованиях советских и зарубежных ученых-марксистов. Только за последние годы вышло значительное число монографических работ, посвященных методологическим вопросам кибернетики и ее роли в развитии современного общества. Наряду с исследованием предмета кибернетики, ее философского и научного статуса важной задачей является обоснование некоторых центральных идей и принципов кибернетики, ориентированных на решение кардинальных естественнонаучных, технических и социологических проблем, связанных с управлением, регулированием, информацией, коммуникацией.
Кибернетика впервые в истории науки вступила на путь объективного естественнонаучного и математически точного изучения процессов управления и переработки информации в природе, технике и обществе. Она имеет дело с процессами в динамических системах, с управлением и регулированием в таких системах. Как пишут Г. Клаус и Г. Либшер, «тщательное исследование современного состояния кибернетики, включая философский и логический анализ различных дефиниций ее предмета, показывает, что основополагающим ее понятием является кибернетическое понятие о системе. Все другие основные понятия кибернетики, такие, как информация, регулирование, алгоритм и другие, которые неотделимы от кибернетического способа мышления, связаны с этим понятием о системе — раскрывают свойства и отношения, проявляющиеся в функционировании кибернетических систем. Поэтому соответствующее понятие системы естественно рассматривать в качестве центрального пункта дефиниции предмета кибернетики».
Сложные кибернетические системы обладают такими общими свойствами, как регулирование, переработка и передача информации, адаптация, самоорганизация, стратегическое поведение и ряд других. При этом структуру и функцию динамических систем кибернетики стремятся описывать математически и рассматривать с помощью моделей. На их основе открываются системные закономерности организации, управления и информационных процессов, которые включаются во все формы движения материи, начиная с перехода от неживого к живому.
При рассмотрении структуры систем кибернетика выясняет сходство и различие законов их организации. Объективной основой такого подхода служит материальное единство качественно разнородных явлений, выражающееся в аналогии и изоморфизме (гомоморфизме, модельном отношении) их структуры и функционирования, в сходстве (или прямом совпадении) описывающего их математического аппарата.
Кибернетика выступает как наука о сложных системах управления и связи. Управление и связь наблюдаются на разных уровных движения, в том числе и на уровне общественных отношений. Поэтому многие науки, а не только кибернетика так пли иначе имеют отношение к процессам управления, но лишь кибернетика рассматривает их с точки зрения единства поведения (функционирования) живого организма и работы машины. Кибернетика изучает законы управления и связи, причем в отличие от других наук преимущественно в том плане, в каком она обусловливает единство динамики функционирования и развития машины, живого организма и социальной структуры. Иными словами, кибернетика оперирует законами управления и информационного взаимодействия одновременно на нескольких, а не на одном, как это свойственно многим другим конкретным наукам, уровне структурной организации материи и рассматривает объекты как системы, обладающие определенной совокупностью общих структурных и функциональных свойств.
Предмет этой науки не остается неизменным, ибо круг вопросов, интересующих кибернетику, с годами неизбежно расширяется. Так, комплекс вопросов, которые рассматривает современная кибернетика, свидетельствует о том, что ее предмет шире закономерностей управления; последние к тому же находятся на втором плане по сравнению с вопросами системной организации и самоорганизации. Понятия конечного автомата, алгоритма, логической сети, машины Тьюринга, самоорганизующейся системы, «искусственного интеллекта» непосредственно не отражают процессов управления.
Таким образом, кибернетика — это наука о сложных, самоорганизующихся системах. Ее теоретические (математические) модели, исходные свойства которых задаются аксиоматически, отражают структуры не только одного какого-то типа. «…Нам представляется совершенно неправильным, — замечает И. А. Акчурин, — на все времена связывать наиболее фундаментальные понятия теоретической кибернетики, такие, как информация, программа (алгоритм), автомат, игра, обратная связь и т. д., обязательно и только с проблемой управления». В условиях возросшего значения организационного фактора в системах управления кибернетика становится по существу теорией системной организации. Материальная база этой науки (кибернетическая техника, ЭВМ, бионические и биокибернетические системы) также не сводится к системам управления. Поэтому ограничение предмета кибернетики только проблемами управления (и информации) не выражает всего ее содержания.
В настоящее время еще нет единого представления об общей системе этой науки. В нее входит ряд дисциплин: теория регулирования и управления, теория автоматов, нервных сетей, надежности, больших систем, информации, теория игр. Так же как система понятий кибернетики развивается во взаимосвязи с понятийными системами традиционных наук, кибернетические методы в известном смысле дополняют методы других научных дисциплин. В таком отношении находятся метод моделирования и аналогии, метод «черного ящика», проб и ошибок и др. В кибернетике они модифицированы и им придана математическая ориентация.
Основные понятия и принципы кибернетики связаны с категориями диалектики. В кибернетическом и в философском плане очевидна необходимость синтеза содержательных (качественных) и формальных математических (количественных) методов научного исследования сложных самоорганизующихся систем. Кибернетика, опирающаяся на математическое моделирование и общие эвристические принципы и законы управления сложными, саморазвивающимися системами, являет собой пример диалектического синтеза. В его рамках качественные методы используются наряду с количественными и осуществляется прямая и обратная связь между анализом содержания проблемы и ее формализацией.
В кибернетике внимание концентрируется на вопросах системной динамики, организации, структуры, языка, информации и управления. Абстрагирование, идеализация, формализация — отличительные особенности кибернетики как науки. Правда, это лишь одно, наиболее «наглядное» ее измерение. Некоторые авторы отмечают, что задача кибернетики состоит скорее в поисках объяснений, чем описаний сложных систем, что описания без теоретических заключений не приведут к объяснениям. С этим нельзя не согласиться. Таким образом, рассмотрение обоих аспектов кибернетических методов в диалектическом единстве формирует представление о формально-содержательной природе кибернетики, имеющей важный философский смысл.
Отношение между философией и кибернетикой иногда рассматривают как отношение общего и особенного, т. е. предмет первой представляют более общим, чем второй. Для характеристики отношения между философией и системной наукой этого, на наш взгляд, недостаточно. Кибернетика и философия различаются не столько степенью общности их высказываний, сколько целью совершаемых в них обобщений.
Существенной особенностью кибернетики является функциональный подход, служащий основным способом изучения сложных систем. Последние нередко задаются человеком, который реализует себя в мире науки, техники и социального управления. Исследование социальных процессов включено в кибернетическую проблематику. Для примера можно указать на работы по проблеме «искусственного интеллекта». Кроме того, в современных социальных структурах возрастает значение организационного фактора, поэтому роль кибернетических методов, изучающих его, повышается.
Все это подчеркивает актуальность кибернетической проблематики, ориентированной на изучение законов функционирования и развития сложных самоорганизующихся систем. Диалектическое осмысление предмета кибернетики и особенностей ее метода приводит к постановке вопроса о взаимосвязи кибернетической концепции самоорганизации с диалектическим принципом развития материи.
2. Диалектический принцип развития и кибернетическая концепция самоорганизации
Как известно, движение и развитие являются неотъемлемыми качествами материи. Каково же содержание движения, развития природы, чем обусловлена ее внутренняя активность? Конкретизация этой проблемы предполагает объяснение самодвижения различных материальных систем, ибо абсолютный характер самодвижения материи реализуется в самодвижении конкретных систем. Всякая материальная система находится во взаимодействии с другими материальными системами, которые выступают по отношению к данной системе как условия ее самодвижения. Источником самодвижения являются внутренние связи и противоречия в материальных системах, внешние связи выступают как условие реализации самодвижения.
Философский анализ данной проблемы предполагает вычленение диалектического содержания категории самодвижения, установление связи с другими, философскими и общенаучными, понятиями. Методологической основой такого исследования служит положение В. И. Ленина о диалектическом объединении принципа единства мира и принципа самодвижения, саморазвития. Следует отметить, что с каждым значительным этапом в развитии естествознания проблема самодвижения материи наполняется новым содержанием; в рамках самого естествознания вырабатываются принципы и понятия, эвристический смысл которых позволяет уточнить существующие взгляды на природу движения материи.
В современном естествознании все большую роль приобретают функционально-структурные методы, что является следствием проникновения науки в сложно организованный мир. В связи с этим возникает необходимость в конкретизации и дальнейшем развитии идеи самодвижения применительно к «высшим» уровням организации материи. При анализе проблемы самодвижения под таким углом зрения большую помощь могут оказать кибернетика и общая теория систем. Кибернетические и общесистемные принципы позволяют вычленить из общей идеи самодвижения организационные аспекты, прежде всего самоорганизацию. Философская трактовка самоорганизации включает в себя определение основных понятий теории самоорганизующихся систем, соотнесение их философского содержания с диалектическими принципами материального единства мира, саморазвития, причинности, единства внутреннего и внешнего и др. Вопрос о философском статусе принципов самоорганизации тесно связан с методологическими проблемами теории самодвижения и саморазвития материи. Поэтому важное значение приобретает вопрос о соотношении естественнонаучных (в частности, биокибернетических) принципов самоорганизации с диалектическим принципом саморазвития. При анализе вопроса о естественнонаучных механизмах перехода от одного уровня организации материи к другому (в особенности от неживой материи к живой) необходимо опираться на современные диалектико-материалистические представления.
Вместе с тем важно выяснить, в каких формах выражается диалектический принцип саморазвития на высших уровнях организации материи, т. е. каковы специфические механизмы самоорганизации. В этом отношении самоорганизация может рассматриваться в качестве общенаучной конкретизации философского принципа саморазвития.
Понятие самоорганизации используется в различных смыслах. Так, о самоорганизации говорят, когда повышение организации в большей или меньшей мере происходит само собой, спонтанно. Далее, самоорганизацию также связывают с автономным развитием, которое управляется изнутри, а не извне; под самоорганизующейся системой понимается система, способная изменять внутреннюю структуру и способы поведения. В последнем случае понятие самоорганизации оказывается связанным с понятием обучения. Однако такие (однофакторные) характеристики самоорганизации недостаточны для раскрытия содержания этого интегрального принципа.
При выяснении философского статуса самоорганизующейся системы ее целесообразно рассмотреть на основе четырех системных принципов: активности, целенаправленности, надежности функционирования и вероятностно-стохастической детерминации. Такое понимание самоорганизации, выражающее ее системный характер, используется в различных областях естественнонаучного, технического и социального познания. Концепция самоорганизации вытекает из философского принципа о внутренних источниках развития материи, который позволяет показать доминирующую роль внутренних противоречий, находящихся в соответствии с внешними закономерностями. Иначе говоря, такое понимание самоорганизации раскрывает внутренние механизмы и внутренние причины самодвижения материальных объектов, которые относятся к самоорганизующимся системам. Как бы качественно ни различались такого рода объекты, они обладают общими характеристиками самодвижения, которые выражены в принципах самоорганизации. В этом отношении самоорганизация представляет собой высшую форму развития динамических систем и может рассматриваться как одна из специфических форм самодвижения материи.
Понятие самоорганизации включает в основном те формы организации, которые воплощены в сложных саморазвивающихся (относительно автономных) системах. Поэтому под самоорганизацией понимается способность системы к стабилизации некоторых параметров посредством направленного упорядочения ее структурных и функциональных отношений, с тем чтобы противостоять энтропийным факторам среды. Процессы самоорганизации характеризуются возрастанием упорядоченности системы, энергоинформационным взаимодействием со средой и процессами самоуправления. Исходя из необходимости взаимодействия системы с окружающей средой и тезиса о том, что наличие подходящего окружения есть необходимое условия самоорганизации, важно раскрыть определяющую роль внутренних факторов в организации системы. В этом плане большой интерес представляет диалектический подход к пониманию самоорганизации.
По-новому поставив проблему самоорганизации, кибернетика внесла важный вклад в решение вопроса о том, «каким образом связывается материя, якобы не ощущающая вовсе, с материей, из тех же атомов (или электронов) составленной и в то же время обладающей ясно выраженной способностью ощущения». Достигнутые ею результаты подтверждают положение В.И.Ленина о генезисе психического из физического, его гипотезу об отражении как всеобщем свойстве материи. Они дают ключ к теоретическому осмыслению моделирования особенностей высших форм нервной деятельности на качественно ином субстрате.
Идеи современной кибернетики позволяют детально анализировать и облекать в конкретную форму философский принцип об активности высокоорганизованной материи. Концепция активности кибернетических систем основывается на диалектических принципах, вскрывающих источники развития. Признание активности свойством развивающейся материи помогает глубже понять законы материального мира, и в частности переход от неживой материи к живой. Анализ активности кибернетических систем вносит новый аспект в общую концепцию активности. В результате установления обратных связей возможности реализации активности резко возрастают; обеспечивается избирательность взаимодействия, обусловливающая устойчивость систем и приводящая их к упорядоченному состоянию.
Активность самоорганизующихся кибернетических систем не тождественна гомеостатическим формам стабилизации системы, которые являются ответом на воздействие внешней среды. Активность таких систем, будучи одним из факторов прогрессивного развития (саморазвитие), базируется на оптимальном сочетании стабилизирующих форм самоорганизации (с преобладанием отрицательных обратных связей) с целенаправленной трансформацией систем (на основе положительной обратной связи). Поэтому такая активность выступает как необходимое и существенное внутреннее свойство самоуправляемой и саморегулируемой системы, которое проявляется не только в относительной самостоятельности, независимости от изменения внешних условий, но и в преодолении возмущающих воздействий среды и в подчинении ее своим внутренним целям.
Проблема активности связана с проблемой внутренней целесообразности (целенаправленности) больших систем, ее решение предполагает знание внутренних механизмов технической и биологической целесообразности, а также целесообразности, присущей общественным системам. Источник активности и целенаправленности кибернетических систем заключен в их внутренней организованности. Важнейшим фактором целенаправленного поведения таких систем служит надежность структурно-информационных отношений, позволяющая системе успешно функционировать, соблюдать достоверность информации в процессах ее приема, переработки и накопления, что в свою очередь служит необходимым условием эффективного решения стоящих перед системой задач.
В теории самоорганизующихся систем важное значение имеет понятие «сложность». Само понятие системы включает аспект сложности: система объектов, имеющая структуру, и есть нечто сложное по отношению к объектам, являющимся ее элементами. Нередко сложность понимается только в структурном смысле, как показатель количества элементов и разнообразия связей между ними. При этом обычно не учитывается целостность системы в ее функциональном выражении на макроуровне. Такой односторонний подход порождает трудности методологического характера (возникающие, например, при сравнительном анализе мозга и машины). Эти трудности преодолеваются введением дополнительного критерия сложности — по степени функциональной эффективности систем. В этом случае сложность системы ставится в зависимость от сложности (трудности) решаемых ею задач.
Такой подход продуктивен и в общефилософском плане. Так, рассмотрение критериев прогресса функциональной сложности позволяет истолковать прогрессивное развитие той или иной системы с привлечением понятия активности.
На значение понятия сложности в кибернетических системах указывал еще Н. Винер «…Действительно существенные и активные явления жизни и обучения, — писал он, — начинаются лишь после того, как организм достигнет некоторой критической ступени сложности». Понятие сложности характеризует не только количественный аспект системы; оно выражает ее качественные особенности Кибернетическая система, достигшая некоторого критического уровня сложности, приобретает качественно новые черты, такие, как способность к самоорганизации, самообучению и самовоспроизведению.
При исследовании самоорганизации используются вероятностные представления, которые являются исходными в кибернетике. Основные идеи в теории автоматов были выдвинуты и обоснованы исходя из принципов вероятностной логики. В высокоорганизованных системах (биологических, социальных) оптимальное соотношение однозначно детерминированных и вероятностных процессов находит воплощение в сочетании, единстве централизованного управления и самоуправления частей, единстве иерархичности и автономности.
Недостаточность системного принципа при объяснении функциональных структур мозга ныне не вызывает сомнений Мозг характеризуется сочетанием упорядоченности (на уровне поведения) с определенным (функциональным) беспорядком при общей инвариантности структуры. Статистическая организация является существенным элементом самоорганизации функциональных структур мозга. Более того, это свойство характеризует любую самоорганизующуюся систему.
Широкое использование понятия самоорганизации в современной науке требует выяснения его статуса:
является оно общенаучной или философской категорией. В более общем плане это связано с проблемой общенаучных понятий вообще, критериев их выделения. Важную роль играет понятие самоорганизации в молекулярной и эволюционной биологии. В ней широко используются методы, развитые в формализованных теориях самоорганизации. Принцип самоорганизации, получив глубокое общенаучное содержание в частных теориях и конкретных науках, оказывается тесно связанным с философским принципом самодвижения, саморазвития применительно к высшим уровням организации материи.
Итак, принцип самоорганизации конкретизирует, уточняет на определенных уровнях методологии — логико-математическом, техническом, теоретико-биологическом и социологическом — диалектико-материалистический принцип самодвижения и саморазвития материи. Этим обусловливается не только научно-методологическое значение понятия самоорганизации в различных областях естествознания и техники, но и его философский смысл. Последний содержится, в частности, в понятии «самоорганизующаяся система», которое характеризует определенный класс объектов, представляющих интерес на разных уровнях познания и практики. Философский смысл понятия «самоорганизующаяся система» определяется его связью с диалектическим принципом самодвижения и системно-кибернетическим подходом, оказывающим существенное влияние на формирование научной картины мира.
Диалектический подход необходим и при рассмотрении проблемы «искусственного интеллекта», которая является одной из центральных в кибернетике.
3. Диалектика естественного и искусственного в проблеме интеллекта
В понятии «искусственный интеллект» выражается попытка осмыслить проблему интеллекта с разных сторон — естественнонаучной, психологической и философской. И это вполне правомерно. Человеческий разум представляет собой уникальное явление на нашей планете. Науки о человеке (физиология, психология, социология) рассматривают человеческое сознание как природное и социальное явление, однако они не затрагивают вопроса о его искусственном воспроизведении. Кибернетика же ставит эту проблему. И это имеет важное значение для познания конкретных механизмов естественного (человеческого) разума.
Следует отметить, что термин «естественный интеллект» неточно выражает смысл понятия человеческого интеллекта. Последний, если рассматривать не материальный субстрат (мозг), а способность его отражать внешний мир, выступает в значительной мере не природным, а социальным, т. е. формируется в результате человеческой деятельности.
Это свидетельствует о том, что понятие «естественный интеллект», так же как и «искусственный интеллект», характеризует только один аспект категории «интеллект». Последняя становится основанием для рассмотрения диалектической взаимосвязи естественного и искусственного в интеллекте.
Наряду с понятием «искусственный интеллект» употребляется термин «машинный интеллект». В литературе нет единого мнения о специфическом содержании этих понятий. Одни считают, что «машинный интеллект» — это показатель того, насколько кибернетическая машина приспособлена к решению разнообразных задач и к эффективному взаимодействию с человеком, а «искусственный интеллект» — это модель мозга и высших форм психической деятельности. Другие трактуют эти термины иначе и даже противопоставляют их.
На наш взгляд, несовпадение трактовок в данном случае не является принципиальным, так как общим для «машинного» и «искусственного» интеллекта (на современном этапе развития наук об искусственном интеллекте) является то, что интеллект «принадлежит» машине и различаются они главным образом по способу задания (построения) интеллекта. Последний может быть ориентирован на моделирование особенностей человеческого интеллекта или может развивать алгоритмические структуры ЭВМ без непосредственной связи их со структурами человеческого мышления. «Машинное мышление», полученное путем кибернетического моделирования естественного интеллекта, больше соответствует понятию искусственного интеллекта. Итак, методологически важным становится определение понятий «интеллект», «естественный интеллект» и «искусственный интеллект».
В литературе нет четкого определения понятия «интеллект». Нам представляется, что в выработке такого определения известную помощь может дать сравнительный анализ свойств «искусственного» и «естественного», т. е. человеческого, интеллекта. Для выявления инвариантного содержания этих систем важно провести их сопоставление по структурно-функциональным свойствам, так как субстратные характеристики (у человека и ЭВМ) заведомо различны. Онтологическим основанием для такого сопоставления процессов, характеризующих качественно различные формы движения материи, служит всеобщее свойство отражения, структурно-функциональная «родственность» уровней которого доказана развитием философии и естествознания. Принцип отражения позволяет решать проблему взаимоотношения человека и машины («одну из великих проблем», как назвал ее Н. Винер) не только философски, но и с позиций естествознания и математики, т. е. не только с качественной, но и с количественной стороны. Успехи количественного познания сложных явлений зависят от того, насколько удается их формализовать.
Формализация предполагает анализ структуры интеллекта. Следует иметь в виду, что попытки вычленения в интеллекте различных структурных элементов предпринимались неоднократно. Так, еще Аристотель различал «пассивный» и «активный» разум, Н. Кузанский — рассудок и интеллект, Д. Бруно — разум и интеллект. Дальнейшее обоснование деления мышления на рассудочное и разумное нашло в философских системах Канта и Гегеля. Правомерность такого различения, как это известно, признавал Ф. Энгельс. Этот подход к мышлению приобретает эвристическое значение в свете кибернетических теорий «искусственного интеллекта». Если разум представляет собой высшую форму теоретического освоения действительности, для которой характерно осознанное оперирование понятиями, исследование их природы, творчески активное, целенаправленное отражение действительности, то рассудок, также оперируя абстракциями, не вникает в их содержание и природу. Ему присущ известный автоматизм. «…Рассудочная деятельность, — писал П. В. Копнин, — имеет как бы три слоя: ее элементы у высших животных, рассудок человека и замена рассудочной деятельности человека машиной. В последнем случае рассудок выступает в чистом виде, он не за-гемнен никакими другими моментами и поражает человека точностью, быстротой в выполнении определенных операций мышления. В этом отношении машина как рассудок превосходит рассудок индивидуума».
При диалектическом подходе к этому явлению необходимо иметь в виду взаимосвязь и взаимопереходы рассудочного и разумного. То, что на данном уровне развитая мышления выступает разумным, со временем может стать рассудочным, в свою очередь рассудочное было когда-то разумным. Разум переходит в рассудок путем формализации. Это превращение происходит в каждом случае передачи функции человеческого мышления машине посредством создания алгоритма.
Таким образом, в структуре интеллекта наряду с искусственным и естественным необходимо различать рассудочное и разумное. Природу интеллекта можно рассматривать и в плане различных уровней его структуры. Основная задача познания «искусственного интеллекта» выглядит в таком случае как переход от поверхностных структур, которые им моделируются, к глубинной структуре, представленной в естественном интеллекте, и как «идентификация» структур машинного и человеческого мышления.
Классический вопрос «может ли машина мыслить?» необходимо обсуждать как в философском, так и в естественнонаучном и математическом аспектах. Полезность сопоставлений того и другого подхода способствует уточнению определений основных понятий. Некоторые ученые, возражая против правомерности расчленения интеллекта на его структурные элементы, обосновывают это тем, что разум не расчленяется на отдельные уровни. С этим вряд ли можно согласиться. Дело в том, что моделировать интеллект вообще, как таковой, не выделяя его конкретных качеств, нельзя. Поэтому специалисты в области «искусственного интеллекта» при выработке исходных принципов определяют интеллект с помощью операциональных критериев. Чтобы быть «разумной», машина должна обладать многими функциональными способностями человека. Но при этом едва ли необходимо, чтобы она была похожа на человека.
В теоретических работах по «искусственному интеллекту» такие понятия, как «интеллект», обычно относимые к человеку, употребляются в специально-научном смысле. И это согласуется с исторической практикой формирования научных (физических, математических) понятий, таких, как тело, энергия и т. п. Метафорические (основанные на переносе значения) и операциональные характеристики понятия «искусственный интеллект» служат отправным моментом в разработке этого вопроса теории. Сравнивая человеческий интеллект с «машинным мышлением», метафорическое употребление понятия «искусственный интеллект» вместе с тем облегчает понимание человеческого разума, хотя у этих образований помимо общих свойств имеется множество других, по которым они совершенно различны.
Эта метафора помогает строить гипотезы относительно системы оригинала, но при формировании понятий необходимо помнить об их метафорическом характере. Метафорические аналогии между искусственным и естественным интеллектом оправданы тогда, когда они понимаются не очень буквально. Такие аналогии имеют значение для гипотетико-дедуктивных построений теорий «искусственного интеллекта»; аксиоматическое изложение предполагает использование неопределяемых понятий.
Понятие «искусственный интеллект», возникшее в кибернетике, позволяет классифицировать сложные кибернетические системы по функциональному критерию. Оно удачно объединяет целый ряд эффективных свойств специальных программ для ЭВМ, которые аналогичны (гомоморфны) качествам человеческого интеллекта. Оно показывает также, что многие различия между интеллектуальными программами ЭВМ и человека, которые казались существенными, по сути являются количественными. Однако поведение человека, его память, восприятие, способность к обучению и самоорганизации, несомненно, богаче, чем у эвристических программ ЭВМ. Необходимо иметь в виду ограниченные возможности современных автоматов, являющихся «эмбриональными» кибернетическими системами, в силу чего многие из интеллектуальных функций в настоящее время могут выполняться лишь в принципе. Это означает, что, хотя в существенных частях эти функции могут быть реализованы, осуществление их в целом остается под вопросом из-за больших материальных затрат.
При сравнении человеческого интеллекта с машинным важно четко различать, на каком уровне проводится аналогия — принципиальном или фактическом. Ясно, что фактическое сравнение не всегда оправдано, так как эти объекты существенно различны. С точки зрения учения об «искусственном интеллекте», видимо, нежелательно обыденные представления об интеллекте возводить в ранг серьезных аргументов. Сравнение мозга и машины может оказаться неадекватным в оценке либо мозга, либо вычислительной машины. Дело в том, что последние создаются преимущественно для решения задач, которые человек сам решить не в состоянии. Лишь творческая мысль и интуиция человека, дополненная кибернетической машиной, способны выполнять трудные задачи. Взаимодействие человека и вычислительной машины основано на том, что последняя — это не просто сверхмощный и быстродействующий арифмометр; в определенных отношениях она усиливает интеллектуальные способности человека. Это значит, что вычислительные машины создаются для усиления, а не для замены человеческого интеллекта.
Для выявления особенностей структуры человеческого интеллекта нужны соответствующие понятия. Ее нельзя вывести из понятийной структуры, описывающей менее глубокие уровни действительности. Первая должна интегрироваться в самоорганизующую систему, подчиняющуюся имманентным закономерностям. Это означает, что такая система располагает внутренними механизмами саморазвития, которые позволяют ей обучаться, совершенствоваться, самовоспроизводиться. Последнее обстоятельство нередко расценивается как аргумент против признания любой формы «машинного интеллекта». При этом отмечают, что машина получает способности от своего создателя. С этим, разумеется, нельзя не согласиться, но следует иметь в виду, что и человеческий интеллект развивается аналогично. Предпосылкой интеллекта служит его связь с внешним миром.
Подчинение самоорганизующихся систем имманентным законам развития относительно. Иерархический принцип самоорганизации действует и за пределами системы, поскольку последняя является составной частью вышестоящих материальных структур. Следовательно, при изучении интеллекта как самоорганизующейся системы важно выявить диалектику внутреннего и внешнего, которая выражается во взаимодействии моделей двух типов — модели системы самой себя и модели внешнего мира (человеческий разум моделирует сам себя в ЭВМ, и он же создает модели внешнего мира). В таком взаимодействии выделяется уровень информационных отношений, на котором система переводит и интегрирует внешнее во внутреннее. Существенную роль в такого рода отношении играет обратная связь, ее значение существенно в человеческом поведении. Использование обратной связи плодотворно в исследовании работы мозга и машины. Особенно полезна отрицательная обратная связь, уменьшающая рассогласование между действительным и желаемым поведением.
При сравнительном анализе мозга и машины возникают некоторые трудности, связанные с их сложностью. Существует точка зрения, согласно которой, пока структурная сложность машин не достигла уровня сложности мозга, до тех пор не может быть и речи об «искусственном интеллекте», поскольку сложности одной и другой систем несопоставимы. С этим мнением нельзя согласиться. Дело в том, что кибернетика позволяет перевести проблему структурной сложности «на язык» сложности функционального порядка. Если сложность функций различных систем сопоставима, то можно сделать вывод и о сопоставимости сложности самих систем. Здесь происходит своего рода оборачивание метода: то, что исторически было первичным, на логическом уровне анализа оказывается вторичным. Структура и функция объективно находятся в неразрывном единстве, хотя функция системы определяется ее структурой. Однако в научном исследовании в различные периоды может становиться существенным или тот, или другой аспект. В данном случае функциональный аспект для познания имеет большее значение, чем субстратно-структурный подход. В самоорганизующихся системах функциональное сходство приобретает решающее значение: в том случае, когда вычислительная машина может самоорганизоваться, способ первоначального соединения элементов, если он не обеспечивает эффективного решения стоящих перед системой задач, подвергается «пересмотру». Вообще принципы самоорганизации (в особенности эвристической самоорганизации — на основе «отсечения» плохих вариантов поведения) служат базой для конкретной разработки задач «искусственного интеллекта».
Весомый вклад в понимание особенностей интеллекта и выделение его характеристик можно ожидать на пути создания «машинного мышления». В связи с этим (даже при допущении того, что практически не удастся создать «машинный интеллект») большой интерес представляет анализ и выделение логических, гносеологических и эвристических принципов разума. Разумное поведение система будет иметь только тогда, когда она будет в состоянии создавать оптимальную модель среды. И наоборот, разум будет ограничен, если эта модель слишком груба и не дает достаточного описания среды или если она неполно отражает взаимодействие между ее элементами. Интеллект присущ системам, которые осуществляют целенаправленное поведение, обладают необходимой информационно-логической структурой, обеспечивающей продуктивное мышление.
Междисциплинарный характер кибернетического подхода вызывает определенные трудности и в сопоставлении порождаемых им общенаучных понятий с традиционными философскими категориями. Это объясняется известной специфичностью кибернетики как науки. Кибернетический подход к познанию мира, с одной стороны, предполагает создание систем логико-математических абстракций и упрощающих идеализации, а с другой — позволяет создавать устройства, функционирующие в реальном масштабе времени.
Исследование философских аспектов проблемы «искусственного интеллекта» требует глубокого анализа и уточнения самих понятий «интеллект», «разум», «мышление» в плане сопоставления особенностей человеческого мышления с возможностями его кибернетических аналогов. Такое исследование должно опираться на диалектика-материалистические методологические основы понимания сущности мышления. На этом пути представляет большой интерес анализ логических, гносеологических и эвристических принципов разума. Выделить структуру и понять принципы организации интеллекта — это значит вскрыть реальные основания проблемы, показать ее глубокую специфичность. Иначе говоря, необходимо изучить. исторические, научно-технические и гносеологические аспекты проблемы «искусственного интеллекта», непосредственно опираясь на диалектико-материалистическую философию. Философское осмысление научной проблемы должно помогать исследователям в ее разрешении, направлять научный поиск. В этом проявляется эвристическая роль философии.
Таким образом, стремление моделировать «духовные процессы» в системе «искусственного интеллекта» заслуживает поощрения. В этом плане важно создание машин, обладающих функциями мышления. В частности, рассмотрение некоторых аспектов «искусственного интеллекта» свидетельствует о том, что на путях создания «машинного мышления» наука может продвинуться и в понимании человеческого интеллекта. В свою очередь тот факт, что проявления «человеческого духа» могут быть воспроизведены, служит новым аргументом в борьбе против философского идеализма и агностицизма.
Таким образом, рассмотрение предмета и метода кибернетики, ее центральных принципов и идей позволяет раскрыть диалектические аспекты этой науки, установить ее закономерные взаимосвязи с материалистической диалектикой. Ее развитие идет в русле синтетических тенденций, выражающих необходимость взаимосвязи общественных, естественных и технических наук.