После растворения карбонатного детрита, опускающегося сквозь многокилометровую толщу воды на дно абиссальных котловин, остаются аморфные субстанции и частицы, захваченные при жизни организмами. Все это вместе с компонентами пеллетного транспорта (фекалии зоопланктона) составляют осадки специфического состава — красные глубоководные глины, занимающие ныне от 30 до 55 % площади дна в различных океанах. Основная масса в глинах — это частицы коллоидных и субколлоидных размеров, среди которых преобладают оксиды металлов (главным образом железа) и глинистые минералы. Алевритовая и крупнопелитовая фракции обычно сложены материалом эолового разноса (кварц, полевые шпаты, слюды), микростяжениями железа и марганца, а также аутигенными минералами — цеолитами, феррисмектитами и др. Аутигенные минералы — новообразования, возникшие в осадке in situ за счет разложения других составляющих или поступления вещества снизу вместе с поровой водой, отжимаемой из более глубоких слоев осадка. Микростяжения тоже новообразования, включающие в основном оксиды металлов. Наконец, самые крупные компоненты представлены зубами акул, костями рыб и железомарганцевыми конкрециями. Так как скорости накопления красных глубоководных глин очень низкие, они не образуют мощных осадочных тел, не в пример глинам, песчаникам и известнякам на континентах и в переходной зоне от этих последних к океанам.
В разрезе или по простиранию красные глины часто сменяются кремнистыми осадками, особенно широко распространенными в приполярных и экваториальных широтах Мирового океана. В поле оптического и электронного сканирующего микроскопов можно увидеть частицы, которыми сложены кремнистые илы. В большинстве случаев это мелкие (0,03-0,3 мм) скорлупки и раковинки, принадлежащие планктонным организмам с так называемой кремневой функцией, т. е. они строят скелетные элементы из кремнекислоты, в форме SiO2 — рентгеноаморфной фазы, известной как опал-А. В кремнистых илах высоких широт важнейшим компонентом являются панцири диатомей, в тропических же широтах — раковинки радиолярий. И те и другие относятся к фитопланктону, т. е. живут за счет фотосинтеза там, где фотический слой океана обогащен или постоянно пополняется питательными веществами-биогенами: нитратами, нитритами, фосфатами, кислородом и кремнекислотой. При наличии всего необходимого для жизни кремнестроящие организмы способны создавать огромные популяции, которые обычно наблюдаются в районах перемешивания поверхностных вод с глубинными, богатыми биогенами. После отмирания остатки диатомей, радиолярий и силикофлагеллят опускаются на дно.
Кремнезем в отличие от карбоната кальция более устойчив к растворению в морской воде. Поэтому детрит, сложенный опалом-А, проходя водную толщу океана, почти не разрушается. Как правило, скорости аккумуляции кремнистых морских осадков значительно выше, чем карбонатных. После захоронения под плащом более молодых отложений в кремнистых илах начинаются активные процессы трансформации и перераспределения вещества, приводящие к растворению или перекристаллизации многих органических остатков. При этом аморфная фаза (опал-А) переходит в кристаллическую (опал-КТ), а затем в халцедон и кварц. Все это сопровождается резким сокращением порового пространства и образованием прочных, отвердевших разностей — кремней и порцелланитов. Это уже породы, горизонты которых отличаются большой прочностью. Кремнистые осадки, залегающие среди глин или карбонатов, зачастую окаменевают первыми. Однако даже в этих условиях в них сохраняются отдельные раковинки или панцири кремнистых организмов, свидетельствующие об их биогенной природе.
Остатки диатомей и радиолярий встречаются и в очень древних отложениях, широко распространенных в Альпийском складчатом поясе. Радиолярии гораздо более древняя группа, чем диатомеи. Сложенные ими породы, радиоляриты и яшмы, часто соседствуют в разрезах с базальтами и пестрыми или красными сильно преобразованными сланцами. Отсутствие в тех же разрезах карбонатов и терригенных отложений, типичных для континентов и их окраин, дало повод думать, что древние кремнистые породы аналогичны современным радиоляриевым илам, т. е. они возникли в центральных глубоководных частях древнего океана.
Радиоляриты занимают промежуточное место в ряду от радиоляриевых илов к яшмам. Последние нацело перекристаллизованы в недрах, в условиях воздействия высоких температур и давлений. В них очень редки идентифицируемые органические остатки. Яшмы широко используются как поделочный камень, и мало кто знает, что это всего-навсего маленький реликт дна давно исчезнувших морей. И сложен он мельчайшими остатками организмов, обитавших на Земле в палеозойскую или мезозойскую эру. Основной минеральной фазой яшмы является халцедон или скрытокристаллический β-кварц.
Другую группу кремнистых пород, или силицитов, составляют диатомиты, опоки и трепела. Эти образования характерны не только для разрезов ложа океана в высоких широтах. Еще более они распространены по периферии островных вулканических дуг в умеренном и нивальном климате, где бурному цветению диатомовых водорослей благоприятствуют частые вулканические извержения. Часть попавшего в воду пепла разлагается, что приводит к обогащению ее кремнекислотой. Так, воды Тихого океана, находящегося в кольце вулканических дуг, гораздо сильнее обогащены кремнеземом, чем воды Атлантического и Индийского океанов.
Диатомиты — светлые высокопористыс легкие породы, составленные панцирями диатомей той или иной степени сохранности. Они сцементированы микрокристаллическим кремнеземом, высвободившимся при распаде тех же скорлупок диатомей или вулканических продуктов. Содержание кремнезема в описываемых породах выше 50 %. Особо чистые разности диатомитов, а также опок и трепелов являются ценным сырьем для изготовления высококачественных керамических изделий. Прочность, легкость и устойчивость к ядовитым химическим соединениям, в том числе к кислотам и щелочам, поставили керамику на особое место. Она считается материалом будущего, который придет на смену чугуну, стали и различным сплавам. В Японии уже созданы экспериментальные автомобильные двигатели, полностью состоящие из керамических деталей.
Трепела и опоки являются во многих случаях перекристаллизованными диатомитами. В шлифах они выглядят как скопление мелких глобул различной величины, впаянных в тонкокристаллическую кремнистую массу. В трепелах в качестве примеси еще различаются отдельные спикулы губок, полураспавшиеся панцири диатомей, в опоках их практически не видно. Последние отличаются большей крепостью, тяжелее трепелов и имеют более темную окраску. Если лизнуть поверхность трепела, то язык прилипнет к нему на мгновение. Описываемые породы способны из-за своей высокой пористости впитывать различные жидкости. Поэтому их часто используют в качестве поглотителей. История изобретения динамита связана с этой их способностью. Рассказывают, что однажды в лаборатории шведского химика и изобретателя А. Нобеля один из мастеров пролил нитроглицерин на кусок кизельгура (так называли в Западной Европе в конце прошлого столетия опоки). Нитроглицерин полностью впитался в поры кизельгура. Воспользовавшись этим случаем, решили проверить взрывчатые свойства нового соединения. Удары, от которых нитроглицерин обычно взрывался, не произвели никакого эффекта. Когда же к кизельгуру пристроили взрыватель, то от детонации новый материал взорвался с оглушительной силой. Так был изобретен динамит.
К особой разновидности кремнистых пород относятся спонголиты. Они состоят из спикул — игольчатых сростков кремнезема, слагающих каркас кремневых губок. Это примитивные и очень древние животные, которые обитают на каменистом дне и фильтруют органические остатки из морской воды. В зависимости от возраста состав их может быть опаловым или халцедоновым.
К кремнистым образованиям относятся многие разновидности поделочных и ювелирных камней: опалы, в том числе и драгоценные, агаты, сердолики, оникс. Агаты встречаются в виде желваков шишковатой формы с темной поверхностью. Облик таких стяжений обычно не обещает ничего интересного. В Предуралье их нередко находят на полях после осенней или весенней вспашки. Стоит, однако, расколоть или разрезать такой камень, как перед глазами предстанет удивительная по красоте картина: матовая, полупрозрачная глубина, словно застывшее озеро нежных бежевого или голубоватого тонов, а от его центра, будто волны, разбегаются концентрические изгибы тонких полосок красного или коричневого цвета. Если желвак имеет ребристую поверхность, то на поперечном срезе агатовая пластинка напоминает причудливую звезду. Окраска халцедона, которым сложен агат, обычно плотнее к периферии стяжения. В центре часто остаются пустоты, отчасти заполненные кристаллами или натечной формы сгустками кремнезема. Это свидетельствует о том, что перед нами не конкреция, которая растет от центра к периферии, а жеода. Ее возникновение связано с заполнением пустот в толще породы: внешние оболочки сложены халцедоном ранней генерации, центральные — поздней. Агаты чаще всего встречаются среди базальтов, реже — среди изверженных пород кислого состава. Находят их и в осадочных породах кремнистого состава. Если заполнение пустот, в которых рос полосчатый халцедон, происходило не одновременно по всему периметру полости, а последовательно, снизу вверх, то возникали разновидности с прямыми субпараллельными полосками. За такими камнями закрепились специальные названия. Широко известны ониксы — агаты, в которых чередуются полоски белого и черного цвета. Образцы с красными полосками называются сардами, с белыми и красными — сардониксами. Именно такие агаты с давних пор предназначались для изготовления камей. Совершенно особым обликом отличается моховой агат, пронизанный дендровидными выделениями таких минералов, как хлорит и селадонит, или оксидов марганца. Это пейзажный камень с неповторимыми фантастическими сюжетами. Формируются агаты уже после погружения пород в недра в процессе движения отжатых седиментационных или гидротермальных растворов.
Аналогичное происхождение, вероятно, имеет и сердолик — твердый прочный камень халцедонового состава с однородной или слабополосчатой окраской красноватых или коричневых гонов. Генетически он связан с магматическими расплавами, не достигшими поверхности и раскристаллизовавшимися на глубине, иначе говоря, интрузивными образованиями. Впрочем, сердолик встречается и в метаморфических породах. Высокая прочность и устойчивость к различным агентам выветривания способствуют сохранению сердолика в различных обстановках. Недаром этот камень в качестве украшения использовался еще первобытными людьми. В отличие от агатов для него не характерны полосчатость и концентрическое строение.
Особое место среди перечисленных минералов кремнистого состава занимают благородные опалы. По редкости и красоте они сравнимы с драгоценными ювелирными камнями. Выделяются три разновидности благородного опала: огненная, белая и черная. Название «огненный» отражает оранжевый или пламенно-красный цвет камня. Он обычно прозрачен и вспыхивает на свету оранжевым пламенем. Однако эти отблески не идут из глубины, как у других благородных опалов. В белом опале игра цветовых бликов или огней происходит на молочно-белом фоне, в черном идет из темных, почти черных глубин. Преобладает «игра» красных и зеленых бликов. Родиной огненных опалов является Мексика, черных и наиболее красивых белых камней — Новый Южный Уэльс в Австралии, переживший в конце прошлого века «опаловую лихорадку». Согласно Б. Андерсону, австралийские белые опалы характеризуются флюоресценцией и способны на протяжении долгого времени фосфоресцировать. Однако бразильские камни того же типа инертны к ультрафиолету. Исследования в поле электронного микроскопа показали, что структура благородных опалов определяется плотной упаковкой сферических агрегатов из оксидов кремния. Это изотропный материал с показателем преломления 1,45. Вспышки различных цветов, наблюдаемые в благородных опалах, обусловлены интерференцией света определенной длины волны (при подавлении других световых волн), равной двум диаметрам преобладающих сфер. Красные вспышки наблюдаются в камнях, состоящих из сфер диаметром 3000 А. При меньшем их диаметре видны вспышки голубого цвета.
Помимо благородных, в ювелирном деле используются и обычные молочно-белые опалы, которые идут на изготовление брошей и кулонов. Эти камни не обладают упорядоченной упаковкой и лишены игры цветов, однако красивы сами по себе. Недостатком их считаются невысокая прочность и твердость.
Соли — свидетели зарождения древних пустынь
Довольно редко встречаются такие хемогенные образования, как соли. Они выпадают (кристаллизуются) из рассолов. Самая известная поваренная соль, или галит, неизменно присутствует на нашем обеденном столе. Накануне войн или в годы других тяжелых испытаний люди всегда запасались хлебом и солью. Хлебом и солью до сих пор принято встречать гостей в России и на Украине. Так что если бы на Земле отсутствовало это полезное ископаемое, то его пришлось бы получать промышленным путем. Издревле соль получали путем выпаривания морской воды в естественных или искусственных отстойниках в жарких странах. Этот способ используется и сейчас на побережьях с аридным климатом, например в Мексике и в Южной Аравии, где находятся солеродные лагуны или соляные ванны.
В средние века была открыта ископаемая каменная соль, и для ее добычи устраивались соляные копи и шахты. В Германии этот промысел получил развитие уже в XII–XIII вв., в России — в XIV–XV вв., когда купцы Строгановы стали разрабатывать залежи соли в районе Солигалича. Позднее выяснилось, что некоторые минеральные соли, прежде всего калийные, могут служить прекрасным удобрением, повышающим плодородие полей. Наконец, промышленная революция в XIX в. резко расширила круг необходимых народному хозяйству химических соединений, ранее считавшихся бесполезными.
Ископаемые соли, называемые галогенными отложениями, делятся на простые, двойные и сложные. К простым относятся соединения типа галита (NaCl), сильвина (KCl) и ангидрита (CaSO4), а также водные соли: гипс (CaSO4·2Н2О), сода Na2СО3·10H2O) и мирабилит (Na2SO4·10H2O). К двойным принадлежат карналлит KCl·MgCl2·6Н2О) и лангбейнит (K2SO4·2MgSO4). Из сложных солей наиболее распространен полигалит (2CaSO4· K2SO4· MgSO4·2Н2О). Помимо хлоридов и сульфатов, в природе встречаются также хемогенные карбонаты, описанные выше. Однако они обычно не создают крупных скоплений. Каждая из перечисленных выше минеральных форм способна присутствовать в виде породы или примеси к какой-либо другой, основной соли. Широта их распространения определяется растворимостью в воде. Естественно, что более редкими являются хорошо растворимые соли, в том числе калийные, сильвин и карналлит. Чаще в осадочных разрезах встречаются гипс, ангидрит и каменная соль (галит). Калийные соли считаются ценным полезным ископаемым.
В экспериментах по испарению морской воды показано, что первыми выпадают в осадок карбонаты и сульфаты кальция. Это происходит после уменьшения объема воды почти наполовину. Следующей, когда изначальный объем раствора сокращается в 10 раз, наступает очередь галита. Дальнейшее выпаривание морской воды приводит к выпадению в осадок легкорастворимых калийных солей, а также сложных по составу соединений. В реальных природных условиях эта схема в целом выдерживается, хотя нередко галит встречается вместе с ангидритом или в примеси к нему, а в ассоциации с галитом могут находиться полигалит и мирабилит, другие соли.
Помимо морских водоемов, на континентах существует множество озер, состав воды в которых сильно отличается от типично морской. Они расположены в поясах аридного и семиаридного климата и в засушливые сезоны, по существу, заполнены рапой различной концентрации. Известны соляные озера с углекислым, сернокислым и хлоридным типами рассолов. В первом случае в них содержатся NaCl, Na2СО3, Na2SO4 и NaHCO3. В озерах сульфатного типа с сернокислыми рассолами присутствуют в растворе NaCl, MgCl2, Na2SO4, MgSO4 и CaSO4. Наконец, в водоемах хлоридного типа преобладают NaCl, MgCl2, CaCl2 и CaSO4. Для каждого из перечисленных видов соляных озер характерна своя последовательность выпадения из рапы минералов, на которую влияют температура, давление, соотношение концентраций солей в рапе и другие факторы.
Состав воды определяется тем, какие соли выносятся в соляной водоем паводковыми водами в короткие дождевые сезоны. Известны случаи, когда ветер разносил мельчайшие капельки морской воды на сотни километров от побережья. В результате на суше появлялись мелкие соленые водоемы с водой, близкой по соотношению солей к морской воде. В озерах Восточно-Африканской рифтовой зоны в воде содержится много калия, что обусловлено, по-видимому, гидротермальной деятельностью. Правда, концентрация солей здесь не очень велика и выпадения их в осадок не происходит. Однако наличие калия ускоряет диагенетические процессы в глинистых илах. В результате уже у поверхности дна в глинистых илах происходит иллитизация разбухающих фаз, главным образом смектита.
Многие прибрежные соляные водоемы питаются морскими водами, поступающими в фазы максимальных приливов или в процессе ветрового нагона. Известны случаи разгрузки у поверхности подземных соляных рассолов, возникающих вследствие растворения древних соляных пород, которые залегают на глубине нескольких сот метров. Чтобы представить себе, как образуются эвапориты (соли), надо побывать на берегах Аравийского полуострова в Красном море или в Персидском заливе, где находятся многочисленные прибрежные себхи и соляные ванны. Одна из крупных соляных ванн находится у мыса Рас-Мухаммад в Красное море. Весной она заполняется морской водой и вскоре покрывается ковром синезеленых водорослей. К июлю или августу вода в значительной степени испаряется, а соленость оставшегося рассола достигает 330·103 мг/л, что приводит к выпадению гипса. К октябрю водорослевые подушки полностью освобождаются из воды. К этому времени они уже покрыты 7-8-сантиметровым слоем каменной соли. Осадок, взятый со дна соляных ванн, сложен чередованием светлых и темных слойков: первые представлены разнокалиберными кристаллами гипса, вторые — водорослевыми отложениями карбонатного состава. Карбонаты в виде доломита и высокомагнезиального кальцита встречаются и в гипсовых прослоях. Таким образом, на дне соляных ванн биогенные осадки чередуются с хемогенными.
Себха, окружающая ванну со стороны суши, покрыта песками карбонатно-терригенного состава. В процессе испарения грунтовых вод между песчинками в порах кристаллизуются гипс, ангидрит, доломит и каменная соль. В процессе роста кристаллы солей разрушают карбонатный детрит, а затем и замещают его. Образуется пласт, почти нацело сложенный эвапоритами. За длительные промежутки времени таким образом может сформироваться мощная толща солей, которая затем переходит в ископаемое состояние. А так как береговая линия постоянно перемещается во времени, низменные участки суши, называемые платформами, покрываются на огромных пространствах каменной солью (до 100 тыс. км2). Для разрезов древних соленосных формаций характерна определенная повторяемость, т. е. чередование гипсов и ангидритов с каменной солью (или доломитов с ангидритами и галитом).
В геологической истории нашей планеты были эпохи, когда высыхали целые моря. В таких случаях в осадки переходили не только гипс, ангидрит и каменная соль, но и легкорастворимые калийные и другие соли. Наблюдать за садкой редких соляных минералов еще недавно, до постройки плотины, можно было в заливе Кара-Богаз-Гол на восточном побережье Каспийского моря, глубина которого в нашем столетии менялась от 10–12 до 5–7 м. Залив сообщался с основным водоемом через узкий пролив, откуда поступала опресненная каспийская вода. Благодаря естественному порожку и сильному испарению она быстро превращалась в рапу. Концентрация солей в ней более чем в 20 раз превышала изначальную. В зимний сезон из рапы выпадал мирабилит, который летом снова частично растворялся. В особенно засушливые периоды из рапы садилась каменная соль с примесью других, более сложных по составу минералов. Несколько мощных горизонтов солей, разделенных гипсами и глинами, было пройдено буровыми скважинами.
После строительства плотины, перекрывшей доступ в залив Кара-Богаз-Гол морской воды, он совершенно высох. На его поверхности обнажились соли. Их кристаллы вздымаются в воздух ветром и разносятся на огромные площади, засолоняя земли. Соляная залежь быстро разрушается, и добыча редких солей, столь необходимых народному хозяйству, практически прекратилась. Сейчас плотину собираются перестраивать, чтобы иметь возможность пропускать каспийскую воду в залив. Таким образом, нарушив природную систему, человек вынужден к ней же вернуться, заплатив за свое легкомыслие двойную цену.
Удивительным свойством солей является их пластичность. Благодаря ей они способны течь под большим давлением. Испытывая в недрах неравномерную нагрузку, соль начинает перетекать на те участки, где последняя меньше. Это явление, называемое галокинезом, приводит к образованию соляных штоков и диапиров, протыкающих слои более молодых осадков и даже выходящих на поверхность. В районах широкого распространения ископаемых солей и активных тектонических подвижек диапиры искажают нормальное залегание пластов. Примером может служить Прикаспийская солянокупольная область. Здесь пермская соль, залегающая на глубинах 3–5 км от поверхности, в результате неравномерного прогибания земной коры прорывает мезозойские и кайнозойские отложения, что сильно затрудняет поиски залежей нефти и газа как в надсолевой, так и в подсолевой осадочной толще.
Другим районом активного развития соляных куполов является Мексиканский залив. С соляными куполами в прибрежной части Техаса связаны многочисленные залежи углеводородов. Дело в том, что соль служит прекрасным флюидоупором, т. е. способна перекрывать и изолировать залежи нефти и особенно газа, которые неминуемо рассеялись бы вследствие диффузии легкого метана и его гомологов. Самые древние (палеозойские) скопления газа эксплуатируются в районах широкого распространения древней соли (Припятский прогиб, окрестности Непского свода в Восточной Сибири).
Песчаник полимиктовый из юрских отложений Туркмении. Зерна кварца, полевых шпатов и обломков пород увеличены в 200 раз (из коллекции Е. Е. Карнюшиной)
Песчаник аркозовый (полевошпатово-кварцевый) с гематитовым цементом из нижнемеловых отложений Предкавказья. Увеличено в 160 раз (из коллекции И. А. Назаревич)
Микроагрегатная структура иллита в поле электронного сканирующего микроскопа. Увеличено в 1200 раз
Рифовый известняк из каменноугольных отложений Подмосковья. Увеличено в 24 раза
Известняк оолитовый, доломитизированный из нижнекембрийских отложений Восточной Сибири. Увеличено в 60 раз (из коллекции Л. С. Черновой)
Псевдоморфозы пирита по раковине фораминиферы из нижнемеловых отложении Восточного Предкавказья. Увеличено в 60 раз (из коллекции И. А. Назаревич)
Оолит, сложенный кальцитом и лептохлоритом. В центре — зерно кварца. Увеличено в 150 раз (из коллекции И. А. Назаревич)
Выделения кристаллов доломита в органогенном известняке. Увеличено в 100 раз
Строение арагонитовой корки, поднятой с уступа континентального склона в Красном море. Увеличено в 250 раз
Обломки панцирей диатомовых водорослей в неогеновых отложениях острова Сахалин. Увеличено в 1500 раз (из коллекции О. К. Баженовой)
Сферы кристобалита в кремнистых отложениях (опоках) неогенового возраста острова Сахалин (из коллекции Р. В. Данченко)
Кристаллы цеолитов, выросшие на частичках вулканического пепла из современных шельфовых осадков Перу. Увеличено в 300 раз
Микроглобулярное строение кремнистой породы из разреза баженовской свиты Западной Сибири. Увеличено в 800 раз (из коллекции О. К. Баженовой)
Обломки вулканических стекол в неогеновых отложениях Чукотки. Увеличено в 200 раз (из коллекции Е. Е. Карнюшиной)
Уголь и горючие сланцы — окаменевшие леса и топи
Если немыми свидетелями древних пустынь и прибрежных соляных ванн остались ископаемые соли и песчаные тела дюнного происхождения, то бурые и каменные угли хранят память об иных обстановках и климатических условиях. Говорят, что в углях запечатана энергия солнечных лучей, падавших на Землю в отдаленные эпохи. Впрочем, и соли — продукт солнечной активности, когда под действием его лучей испарялись воды древних водоемов. Однако соли уже не способны отдать энергию солнца обратно. Ценность же углей именно в этом. Они — природные аккумуляторы солнечной энергии, хранители тепла, столь расточительно расходуемого человеком с началом промышленной революции.
Угли не только запасенное тепло. Это еще и огромный резерв углерода, выведенного в свое время из круговорота в природе. В конечном итоге уникальностью нашей биосферы, ее пригодностью для обитания высокоразвитых существ, в том числе и человека, мы обязаны низшим и высшим растениям, изменившим в свое время состав атмосферы от углекислой к кислородной. Ими в остатках прижизненных клеточных структур было запасено огромное количество энергии.
Горючие сланцы стали накапливаться сначала в морских, а затем и в пресноводных бассейнах уже в среднем и позднем докембрии (от 2 до 0,6 млрд лет назад). Так как с тех пор эти древние породы сильно видоизменились и в большинстве своем были метаморфизованы, в них редко удается выделить какие-либо форменные органогенные структуры. Однако элементный и химический состав так называемых черносланцевых пород очень близок к более поздним образованиям того же состава. В них в достаточно большом количестве сохранились реликты клеточных растительных структур и даже отдельные отпечатки организмов, участвовавших в формировании этих специфических осадков. В настоящее время среди ученых нет расхождений относительно происхождения горючих сланцев. Начало им дали многие поколения водорослей — примитивных одноклеточных или более сложно устроенных с многоклеточной структурой.
Поиски современных аналогов привели исследователей в лагуну Куронг на южном побережье Австралии, где за крупным песчаным баром, защищающим лагуну от штормовых волн, в пределах литорали обитают бурые водоросли Bothr yoccocus. Они обладают удивительной способностью сохраняться в неблагоприятные засушливые сезоны, когда морская вода на приливно-отливных площадках частично или полностью испаряется под жаркими лучами солнца. Клетки этих водорослей почти на 40 % состоят из жироподобных веществ, которые не дают им высохнуть и погибнуть. Эти очень устойчивые соединения полимерного строения удается разложить на фрагменты только после обработки горючей щелочью. Лагуна Куронг стала обиталищем мириадов водорослей, тельца которых после гибели остаются на дне, образуя черную органическую массу — так называемый сапропелевый ил. Этот осадок после захоронения обезвоживается, уплотняется и дает резиноподобную темно-коричневую массу — сапропель, что в переводе с французского означает жироподобный. Действительно, в составе сапропеля главную роль играют липиды и жиры; распадающиеся на длинноцепочечные жирные кислоты. Последние имеют длинную углеродную цепь с числом атомов углерода от 20 до 40 и более. Эти соединения разлагаются с большим трудом и в конце концов минерализуются в плотную породу черного цвета, содержащую от 15 до 40 % Сорг. Образцы этих пород способны гореть, за что и получили название горючих сланцев. С помощью пиролиза из них можно получать нефтеподобные продукты, которые идут на те же цели, что и настоящая нефть. В Швеции таким образом используются горючие сланцы силурийского возраста. Получаемая из них нефть дороже природной… У нас горючие сланцы, например кукерситы из Прибалтики, применяются в качестве топлива и химического сырья. Из некоторых разностей получают асфальтовое сырье. Однако широкомасштабная разработка месторождений горючих сланцев еще не начиналась.
После того как низшие растения расселились по наземным водоемам, сапропели и горючие сланцы стали накапливаться в озерах и лиманах. Мягкие сапропелевые илы из озер средней полосы России являются прекрасным удобрением, способным резко повышать плодородие почв. В отличие от горючих сланцев каменные или гумусовые угли образованы остатками высших растений, которые сложены лигнином и целлюлозой — прочными биомолекулами на основе поликонденсированных ароматических ядер. При отсутствии доступа кислорода эти компоненты высших растений хорошо сохраняются и формируют угольные пласты. Благоприятные для аккумуляции торфа, а впоследствии и угля условия складываются в болотах, прибрежных топях и в дельте крупных рек. На пути превращения растительных остатков в каменный уголь выделяется несколько стадий: торфяная, бурых углей, длиннопламенных, жирных, коксующихся и тощих (каменных) углей, наконец, полуантрацитов и антрацитов. Процесс превращения гумусовой растительной органики в угли называется углефикацией. На первом этапе в болотах или прибрежных топях при затрудненном доступе кислорода преобладают биохимические реакции, протекающие при участии бактерий и ферментов. Растительные остатки превращаются в рыхлую, слабо дифференцированную массу — торф, в которой, однако, еще можно различить многие форменные органические структуры: корневые остатки, измененные стебли, стволы деревьев, листья, кутикулу, пыльцу. При погружении в недра под влиянием всевозрастающих температуры и давления торф постепенно обезвоживается, а входящие в его состав лигнин-целлюлозные гетерополи-конденсаты в результате отщепления многочисленных кислородных, гидроксильных, аммиачных и других групп постепенно обогащаются углеродом. Происходит все большая конденсация структуры, ее обуглероживание. На каждой последующей стадии преобразования гумусовые угли теряют определенные компоненты, выделяющиеся главным образом в форме газов. Основная масса остатков, спрессовываясь в породу, теряет свою индивидуальность. Тем не менее и на разных стадиях углефикации в углях еще различаются обуглероженные стволы деревьев, отпечатки листьев и других тканей растений. Специальные микроскопические исследования позволяют выделять несколько характерных компонентов, известных под названиями фюзена, витрена, ксилена и других, более редких.
В фюзене наиболее ясно сохраняется изначальный облик растительной ткани, прижизненных клеточных структур. Витрен и ксилен отвечают разным стадиям распада этих структур и их остудневанию. Образцы с витреновой структурой — витринит — используются для определения максимальной палеотемпературы, при которой в недрах протекали процессы углефикации. Она устанавливается по отражающей способности витринита и играет важную роль при реконструкции тех условий, при которых происходили превращения осадочных пород на больших глубинах в недрах. Как выяснилось, это необходимо для оценки масштабов нефте- и газообразования в отложениях того или иного возраста.