Красное море — океан будущего

Океаны, как и все на Земле, рождаются, живут и умирают. Благодаря теории литосферных плит мы знаем, что еще 180—150 млн лет назад многие современные океаны не существовали. Они возникли один за другим в процессе раскола древних континентальных мегаблоков и образования между их фрагментами новой океанической коры. Новая теория позволяет найти на геологической карте мира те районы, где эти процессы протекают буквально на наших глазах, т. е. указать возможные места рождения океанов будущего. Таких районов в наше время два. Это Красное море и Калифорнийский залив, хотя последний представляет собой скорее обособленный анклав, принадлежащий Тихому океану, нежели самостоятельное образование.

Красное море — прямолинейный глубокий рубец протяженностью более 2900 км — на карте выглядит нешироким шнурком воды, почти связавшим северо-западную периферию Индийского океана с Ионической впадиной Средиземного моря. По существу, это гигантская трещина, отделившая Африку от Аравии. Возраст ее не более 5 млн лет. Таким образом, еще 5 млн лет назад эти два огромных континетальных блока были единым целым. Об этом свидетельствуют результаты глубоководного бурения с борта «Гломара Челленджера»: на континентальных склонах моря были вскрыты миоценовые соли прибрежно-морского происхождения, ниже которых местами залегают базальты (там, где соли образуют оползни) или древние континентальные образования.

Геологи чаще употребляют термин «Красноморский рифт», когда говорят о Красном море. Дело в том, что море стало в наше время слишком расхожим словом. Оно во многом утратило геологический смысл. Термин же «рифт» вполне отражает особенности строения и происхождения Красноморской структуры.

Выше мы говорили о континентальных и океанических рифтах — трещинах, возникающих над выступами мантии, которые как бы проплавляют земную кору. Красноморский рифт представляет собой особый тип рифтовых структур, промежуточный между континентальными и океаническими. От первых его отличает наличие молодого базальтового ложа, свидетельствующего о полном разрыве континентальной коры и залегающего на глубинах 1500—1900 м от поверхности моря, от вторых — то важное обстоятельство, что естественным обрамлением рифта служат блоки континентальной коры. К тому же в Красноморском рифте отсутствует срединное вулканическое поднятие, столь характерное для океанических рифтовых хребтов.

Со стороны суши Красное море окружено системой довольно высоких хребтов, крутые, обрывистые склоны которых обращены в сторону рифта, тогда как пологие опускаются в направлении окружающих платформ. Вследствие этого водный сток устремляется не к морю, а в противоположные стороны. Не в последнюю очередь это определяет аридный климат всего региона.

Море, проникшее в эту некогда внутреннюю область континента, успело отвоевать у суши узкую полоску шельфа, шириной 5—10 км, лишь на юге превышающую 20—30 км. Естественным продолжением шельфа является прибрежная равнина, простирающаяся до склонов береговых поднятий. Из-за засушливого климата она покрыта полями дюн и барханами. В побережье редкими пятнами вдаются мелководные лагуны, окруженные так называемой сабкхой. Это солеродные участки лагун, затопляемые приливом и осушающиеся в отлив. Испарение под жарким солнцем морской воды, оставшейся в норовом пространстве песков, приводит к появлению концентрированных рассолов, из которых выделяются кристаллы солей, в основном доломита и гипса. Именно в таких условиях сформировалась значительная часть солей миоценового возраста, вскрывающихся сейчас в низах континентальных склонов.

Последние представляют собой систему разновысотных уступов сбросового происхождения вроде тех, что обрамляют рифт Таджура. В верхней части это блоки континентальной коры, внизу — базальты океанического происхождения с оползшими массами миоценовых солей. Вершины уступов наклонены в сторону суши, поэтому их края выступают в виде протяженных гребней. Понижения между гребнем и следующим уступом заполнены тонкими карбонатными осадками и осыпью коренных пород.

Основание наиболее погруженного уступа служит естественным обрамлением краевых депрессий, граничащих в центре моря с экструзивной зоной. Здесь происходит рождение океанической коры. Геофизические исследования и наблюдения с подводных обитаемых аппаратов, выполненные советскими учеными в экспедиции, которая работала в 1980 г. на полигоне в Красном море, позволили выявить особенности строения дна и формирования осадочного чехла в молодом Красноморском рифте [Подводные..., 1985]. В частности, были получены прямые свидетельства раздвига земной коры, который сопровождался излияниями базальтовых магм.

Распределение базальтов и осадков разного возраста подтверждает представления о постепенном расширении глубоководной впадины Красного моря и формировании нормальной океанической коры. Этот процесс сопровождается землетрясениями и обрушением блоков в пределах континентального склона. Таким образом, и в настоящее время район Красного моря остается сейсмически опасным. В недавнем же прошлом здесь находились цепочки наземных вулканов. Об их активности говорят прослои вулканического пепла в керне из скважин глубоководного бурения. Остатки подобных сооружений и сегодня можно видеть в районе города Адена по другую сторону от Баб-эль-Мандебского пролива, отделяющего Красное море от Аденского залива. Это мощные полуразрушенные конусы, сложенные агломератами, туфами, игнимбритами. Черные стенки из этих пород окружают древнюю кальдеру, в которой расположен Аден.

Молодое океанское дно как бы расталкивает Африканский и Аравийский мегаблоки, что со временем приведет к раскрытию Баб-эль-Мандебского пролива — структурного порога между Красиоморским рифтом и рифтом Таджура. Если не произойдет крупной перестройки структурного плана на стыке Африканской, Аравийской и Евразиатской литосферных плит, то спустя несколько миллионов лет этот стиль развития неминуемо приведет к появлению на поверхности нашей планеты еще одного, молодого океана.

В настоящее время глубоководные котловины Красного моря изолированы от других крупных океанических водоемов. Поэтому здесь сложились весьма необычные условия. Пожалуй, самым интересным можно считать высокотемпературные рассолы, обнаруженные в нескольких полуизолированных глубоководных впадинах моря —

Дискавери, Атлантис II, Нереус и др. Температура рассолов достигает в отдельных случаях 50—60° С, а соленость 270‰. В глубоководных впадинах граница [...] исхождение рассолов связывают с действием подводных гидротермальных источников, горячая вода которых растворила часть миоценовой соли и нагрела образовавшийся рассол. Действительно, присутствие рассолов установлено в тех впадинах Красноморского рифта, где в строении континентального склона участвуют соли.

Важнейшим следствием описываемых процессов является возникновение металлоносных илов, встречающихся на дне рассольных впадин. Поднимаемые со дна колонки осадки поражают своим необычным обликом, и прежде всего окраской. Это фиолетовые, оранжевые, коричневые, красные илы, слагающие отдельные прослои толщиной 2—15 см, очень мягкие и влагонасыщенные. Однако между ними залегают пропластки очень плотных корок. Исследование под электронным сканирующим микроскопом показало, что они сложены игольчатыми кристаллами и агрегатами арагонита — карбонатного минерала, широко распространенного в различных структурно-тектонических зонах Красного моря. Арагонитовыми корками покрыты коренные породы, слагающие сбросовые уступы и даже выступы молодых базальтов в экструзивной зоне.

Металлоносные илы содержат высокие концентрации цинка, свинца, меди и других металлов, заключенных в слойках экзотических цветов. Эти концентрации имеют диагенетическое происхождение, т. е. большая часть металлов осаждалась из рассольных седиментационных вод, захороненных в осадках. В рассолы же они перешли из солей миоценового возраста после их растворения. Впрочем, нельзя исключать, что значительные количества металлов поступали в наддонные воды в составе гидротермальных растворов. Выходы гидротерм были обнаружены советскими гидронавтами при погружениях на подводном аппарате «Пайсис» во впадине Атлантис II.

Металлоносные илы представляют собой полезное ископаемое, могущее иметь практическое значение. Все вышесказанное убеждает в том, что Красноморский рифт — уникальное образование с характерными только для него седиментационными обстановками. Как увидим ниже, аналогичные условия могли существовать в различные эпохи мезозоя и кайнозоя, когда зарождались современные континентальные окраины в Атлантическом и Индийском океанах при распаде древних суперконтинентов — Пангеи и Гондваны.

Распад Пангеи в Гондваны

В середине палеозойской эры поверхность Земли была совершенно непохожа на современную. К этому времени сложились два континентальных конгломерата: один — лавразийский, другой — гондванский. Каждый из них состоял из нескольких древних материковых глыб, спаянных между собой, словно сварными швами, горно-складчатыми поясами: Урало-Пайхойским, Уачита-Аппалачским, Вариско-Кавказским и др. Гондванский конгломерат располагался преимущественно в южном полушарии и стал ареной мощного позднепалеозойского оледенения. Лавразийская глыба простиралась через тропики и субтропики. Однако на значительной ее площади господствовали аридные условия. К середине каменноугольного периода эти суперконтиненты сначала сблизились, а затем сомкнулись в полосе современного Западного Средиземноморья и Мексиканского залива. Возникло новое образование, которое геологи нарекли Пангеей (рис. 15). В долгой истории Земли было не так много эпох, когда практически все материковые глыбы соединялись вместе, в одну или две группы. Вокруг Пангеи простирался безбрежный океан. Ряд заливов, словно клинья, вдавались в глубь этого суперконтинента. Самый крупный из них отделял Азиатский выступ Пангеи от Индостанско-Австралийского. Этот океан получил название «Тетис». Внутренние области суперматерика стали пустынями. Их поверхность покрывали поля дюн и усыхающие эпиконтинентальные моря, на дне которых отлагались толщи солей.

В южной части Пангеи еще сползали с возвышенностей ледники, когда проявились первые признаки неустойчивого состояния, в котором оказалась тектоносфера на рубеже палеозоя и мезозоя.

В конце перми и начале триаса произошли расколы земной коры. Гигантские разломы рассекли земную кору в основном на стыке Лавразийского и Гондванского мегаблоков. Вдоль этих провалов, заполнившихся вскоре водой, изливались базальтовые лавы, а кое-где случались и вулканические извержения. С течением времени рельеф суши становился все более изрезанным и контрастным. Наконец отдельные трещины стали сливаться вместе, образовав единую разветвленную систему прогибов, которые были обрамлены глыбовыми хребтами. Ландшафт ряда внутренних областей Пангеи, видимо, стал напоминать современную Восточную Африку. Сложилась протяженная система континентальных рифтов, где возникли крупные и мелкие озерные водоемы.

Рис. 15. Глобальная палеогеографическая схема для позднекаменноугольной эпохи [Morel, Irving, 1978]

Одна система континентальных рифтов, огибая Багамский выступ, из района современного Мексиканского залива простиралась вдоль Аппалачских гор, к тому времени уже в значительной степени срезанных эрозией. Рифты развивались навстречу Тетису, глубоко вклинившемуся в Пангею на востоке. Другая цепочка рифтов образовалась в южной, гондванской части суперконтинента. Рифты, словно трещины на расколотой тарелке, избороздили ее от края до края. Тем самым наметились направления основных расколов, которые вскоре привели к разделению Пангеи на Лавразийский и Гондванский континентальные блоки, а потом и на более мелкие фрагменты. Развитие континентальных рифтов продолжалось несколько десятков миллионов лет. За это время в рифтовых прогибах и грабенах сформировались мощные толщи весьма однообразных отложений. В северной цепочке прогибов накапливались конгломераты, красноцветные песчаники и глины с горизонтами ангидритов, доломитов и галита, в южных прогибах — те же терригенные красноцветы. Здесь, однако, распространены толщи сероцветных песчаников и глин. Они включают угли и углистые глины, а иногда и соли. Триасовый период стал временем широкого распространения глинистых минералов с четко упорядоченной структурой — корренситов, в дальнейшем почти не встречавшихся в осадочных разрезах. Но самое главное, он ознаменовался началом распада гигантского суперконтинента — процесса, в конечном итоге приведшего к формированию современного лика нашей планеты.

Сейчас еще трудно определить, когда произошло полное расщепление континентальной коры и на месте наземных рифтов возникли первые участки с океанической корой. Глубоководным бурением в Северной Атлантике был доказан оксфорд-кимериджский возраст коры в пределах материкового подножия США. Однако нельзя исключать, что более древние ее блоки находятся под самим континентальным склоном, где они перекрыты мощными комплексами отложений и потому не могут быть вскрыты при нынешних возможностях бурения. Косвенные же данные свидетельствуют о том, что возраст самых древних участков коры с типично океанической структурой не превышает 180—160 млн лет, т. е. является средне-позднеюрским. Таким образом, процесс раскола континентального субстрата Пангеи протекал чрезвычайно долго, примерно 80—100 млн лет. Однако это был только первый акт драмы. Он завершился возникновением протоокеанической впадины Центральной Атлантики, отделившей Африкано-Южноамериканский выступ Гондваны от Северо-Американской глыбы, которая в полосе от Гренландии до Британских островов еще соединялась с Евразией.

Судя по отложениям, вскрываемым в прогибах Марокканской Месеты, в Новошотландском и Лабрадорском бассейнах Канады и в Западном шельфовом бассейне Англии, на первых этапах раскрытия эта впадина очень напоминала современный Красноморский рифт. Упомянем хотя бы о широком распространении на окраинах Центральной Атлантики триасовых и нижнеюрских солей, которые обнаруживаются ныне в полосе от банки Роккол (к западу от Ирландии) через район Гибралтара до Сенегала, а на западе — от Лабрадора до района банки Джорджес (атлантическая окраина США). Эти соли занимают здесь примерно то же место, что и миоценовые в Красном море. К концу юры оба залива — древний на востоке и вновь сформировавшийся на западе — образовали единый океан Тетис с общей системой водной циркуляции. С этого момента на огромных пространствах от Мексиканского залива до Памира формировались практически идентичные комплексы отложений: в титоне — рифовые и лагунные известняки, в раннем мелу — карбонатные банки, разделенные языками дельтовых и прибрежношельфовых песков и глин, в альбе и сеномане — «черные» глины и известняки, сменившиеся выше мелами и мелоподобными известняками. В палеоцене и эоцене на обширных пространствах отлагались зеленые глины и фораминиферовые известняки.

Таким образом, уже на рубеже юрского и мелового периодов Лавразийский и Гондванский блоки разошлись и Пангея перестала существовать. Гондванский блок, сохранявший относительную целостность, в меловой период распался на несколько крупных фрагментов. Уже в неокомское время между Африкой и Южной Америкой, составлявшими до того единое целое, сформировалась сложная система континентальных рифтов, отдельные отрезки которой уходили далеко в сторону от основного направления расколов. Как и в ряде других случаев, последним предшествовал эпизод (в позднем апте) интенсивного накопления солей. В настоящее время соленосные толщи, некогда накапливавшиеся в единых бассейнах, оказались по разные стороны Южной Атлантики. Одинаковые по составу комплексы позднеаптского возраста вскрыты бурением в окраинных впадинах Анголы и Бразилии. Полностью разделение Африканского и Южно-Американского континентов произошло на рубеже раннего и позднего мела (рис. 16), точнее, в среднем—позднем альбе. Это событие ознаменовалось мощными подводными вулканическими излияниями и извержениями вулканов на тихоокеанской окраине Южной Америки, где только в Перуанском троге в это время образовались толщи вулканитов, лав и осадочных пород общей мощностью свыше 6000 м (группа Касма). В раннем мелу от Африки откололись Индостанский, Мадагаскарский и Австрало-Антарктический блоки. Распад Гондваны завершился в кайнозое отделением Антарктиды от Австралии [Ушаков, Ясаманов, 1984].

Рис. 16. Положение материков в западном полушарии в конце аптского — начале альбского века (примерно 110 млн. лет назад)

1 — крупные рифтовые грабены; 2,3 — краевые части континентальных рифтов: 2 — в областях накопления карбонатных осадков, 3 — в областях терригенной седиментации; 4 — окраины орогенных (горных) массивов; 5 — окраины стабилизированных областей кратонов; 6 — районы континентов, захваченные трансгрессиями моря; 7 — срединно-океаническое поднятие; 8 — точки глубоководного бурения, где встречены отложения апт-альбского возраста; 9 — положение современной береговой линии и изобаты 2000 м

Там, где был океан Тетис

Расширение ложа Атлантики в позднеюрскую и особенно в раннемеловую эпохи сопровождалось не только расколами континентальных мегаблоков, но и их взаимными перемещениями. Так, Гондванский блок после зарождения Центральноатлантической впадины стал быстро смещаться на восток по отношению к Лавразии. Подобные перемещения имели далеко идущие последствия для океана Тетис, южные окраины которого «поплыли» на восток относительно северных. Затем, после раскрытия Южной Атлантики и распада Гондваны на несколько континентальных глыб, Афро-Аравийский блок стал прижиматься к северным окраинам океана Тетис. Началось его захлопывание.

В период раскрытия Атлантики Африканский континент сместился более чем на 1500 км. Скорость его движения в интервале 180—100 млн лет составляла 2—3 см/год. За это время он развернулся по отношению к Евразии на 40°. В том же направлении, что и Африканский континент, начал мигрировать и Иберийский континентальный блок, слегка разворачиваясь на юг. В результате образовался Пиренейский трог — глубоководный прогиб, в котором накапливались турбидиты раннемелового возраста. Одновременно на его западном продолжении раскрывался Бискайский залив, в его окрестностях отлагались «черные» глины — осадки, обогащенные органическим веществом.

Континентальная окраина Гондваны, обращенная к океану Тетис, почти 140 млн лет испытывала устойчивое погружение, что привело к формированию мощной линзы мезозойских и кайнозойских пород. В начале кампанского века северо-восточной выступ Афро-Аравийской глыбы стал сближаться с противолежащей экранной Евразии. Это сопровождалось мощнейшими сжатиями, расколами континентальной коры и опусканием краевых ее блоков. Оказавшееся между континентами ложе Тетис было взломано, отдельные его фрагменты в буквальном смысле выдавились на край Нубийского щита в районе Омана. В настоящее время породы, совершенно нехарактерные для континентов, возвышаются в глубине побережья Омана в виде невысоких гор. Эти аллохтонные массивы сложены офиолитовой ассоциацией, в составе которой находятся породы явно океанического генезиса.

Закрытие восточного рукава Тетис сопровождалось обрушениями ложа молодых океанов, что вызвало падение уровня морских вод в маастрихтском веке. Оживились поверхностные течения, в том числе холодные пограничные, благодаря которым на многих участках окраин Африки — от Камеруна, Сенегала и Марокко в Центральной Атлантике до Алжира, Туниса и Сирии в океане Тетис — происходил интенсивный подъем глубинных вод. С ним было связано формирование фосфоритов, кремнистых пород и палыгорскит-сепиолитовых глин.

Блокировка, возникшая в результате схождения Афро-Аравийского и Евразийского континентальных блоков в полосе Омана, продолжалась с кампана до среднего эоцена, т. е. 72—48 млн лет назад. На северных окраинах в океане Тетис коллизия привела к осушению многих областей, до того покрытых морем. На Северном Кавказе, в районе Дагестанского клина, в Маастрихте произошли многочисленные оползни, продолжавшиеся в дании и эоцене. Во всей полосе океана Тетис встречаются следы обмеления и осушения части континентальных шельфов.

В эоцене завершился распад Лавразийского континентального мегаблока. Отделившись от Северной Америки, Евразия стала смещаться на восток со скоростью, превышавшей скорость перемещения Афро-Аравийской глыбы. Это выразилось в сдвиговых дислокациях и расколах континентальной коры, характерных в основном для Западной Европы. Однако Тетис еще был напрямую связан с океаническими впадинами Атлантики. Они были объединены системой циркуляции, а на огромных пространствах континентальных окраин этого региона накапливались очень близкие по составу отложения. Они были характерны для обширных мелководных морей, приуроченных к шельфам Африки и Евразии. Над многими участками окраин продолжался начавшийся еще в Маастрихте (а кое-где еще в туроне) подъем глубинных вод, с которым в ипрское и лютетское время было связано распространение палыгорскитов, сепиолитов, кремней и известняков с фосфоритами. Именно в палеоценовых и эоценовых толщах пассивных окраин заключены крупнейшие месторождения фосфоритов, которые разрабатываются в настоящее время в Мавритании, Западной Сахаре, Марокко и в других регионах.

Примерно 48 млн лет назад Африканский континент столкнулся с Иберийской глыбой в полосе северной окраины Марокко. Это привело к медленному развороту Африки на север, в результате западный рукав океана Тетис вскоре захлопнулся. Началась глобальная перестройка системы океанической циркуляции. Вдоль окраин Северо- и Южно-Американского континентов к экватору устремились придонные контурные течения, а из низких широт к полюсу потекли теплые воды Гольфстрима. На окраины Марокко и Южной Испании выдавились породы океанского ложа, образовавшие здесь горный массив Рифа и Бетскую Кордильеру. За этим последовала тектоническая активизация, захватившая почти весь Африканский континент и Иберийский полуостров. Пиренейский трог окончательно захлопнулся, а на его месте поднялись Пиренеи.

С этого времени начинается сложная и во многом еще не раскрытая история Мезогеи. Древний океан Тетис постепенно замкнулся, а на его месте вырос Альпийско-Гималайский складчатый пояс. Гималайская его ветвь возникла в позднем миоцене, после того как Индостанский материковый блок, отколовшийся от Гондваны еще в среднемеловое время, столкнулся с южными окраинами Евразии. Примерно в то же время Аравийский полуостров также сблизился с окраиной этого континента, на этот раз в широкой полосе от Турции до Ормузского пролива. В процессе сближения обоих мегаблоков океаническая кора Тетис постепенно ассимилировалась под северной его окраиной, исчезая в зонах Беньофа. Одна из них находилась в районе горного массива Загрос (юго-западные районы Ирана). Последний представляет собой часть древнего аккреционного хребта, некогда окаймлявшего активную континентальную окраину Евразии.

Надо сказать, что в мезозое и кайнозое Тетис, по-видимому, был не очень широким, поэтому любая перестройка в системе движения литосферных плит приводила к столкновению северных и южных континентальных блоков. При этом от них часто отрывались более мелкие массивы, впоследствии перемещавшиеся уже самостоятельно. Каждое столкновение сопровождалось сминанием осадков, накопившихся на сходившихся континентальных окраинах. Осадки образовывали нередко мощные складки, которые поднимались со дна морского в виде горных стран, из пределов которых уходило море. Подобные события в геологии определяются как фазы складчатости. Каждой из них дается название по тому региону, где она проявилась наиболее отчетливо. Так, известны пиренейская и альпийская фазы складчатости. Первая относится к среднему и позднему олигоцену, вторая — к миоцену, когда стали формироваться складчатые системы Альп, Карпат и Кавказа, входящих в единый Альпийский складчатый пояс.

Как полагают, Альпы, Динариды и другие горные цепи Южной Европы возникли в результате внедрения в Евразийский блок Адриатического выступа Африки. Сейчас этот выступ является ложем Адриатического и отчасти Ионического морей. Зато породы, слагавшие некогда дно океана Тетис и Мезогеи, ныне смяты в складки или собраны в серии покровов. Ими сложены Апеннинский полуостров, отдельные районы островов Корсика и Сардиния. В полосе столкновения Африканской и Евразийской плит, к югу от острова Крит и полуострова Пелопоннес, вырастает Восточно-Средиземноморский вал — система подводных хребтов, разделенных мелкими впадинами. Со временем вершины этих хребтов поднимутся над уровнем моря и в конечном итоге превратятся в крупный горно-складчатый пояс, близкий по строению к Альпийскому. Так как воздымание горной страны сопровождается прогибанием коры в прилегающих частях платформ и срединных массивов, этот процесс уже сейчас привел к погружению отдельных блоков Африки. Возникшая здесь Левантийская впадина представляет собой передовой прогиб, где уже сформировался довольно мощный чехол континентальных, в том числе соленосных, и морских осадков. Подобные прогибы в позднем кайнозое существовали на краю Европейской платформы, на стыке с растущими горными системами Кавказа, Карпат, Альп.

Куда девается океаническая кора

Процесс исчезновения океана заключается не просто в осушении и воздымании океанского дна. Прежде всего уменьшается пространство, занимаемое океаном. На него давят сходящиеся континентальные глыбы, позади которых происходит зарождение и раскрытие молодых океанических впадин. Под нажимом соседних литосферных плит площадь старого океана начинает сокращаться, как шагреневая кожа. Куда же девается при этом древняя океаническая кора?

Исследование районов, некогда входивших в состав мезозойского Тетиса или составлявших его окраины, позволяет говорить о трех возможных вариантах трансформации коры океана. Наиболее универсальный и в то же время загадочный — это погружение в мантию вдоль зоны Беньофа, в процессе которого кора расплавляется и теряет свою индивидуальность. Этот компенсационный механизм в настоящее время работает в пределах активных континентальных окраин и островных вулканических дуг.

В современную эпоху уничтожается в основном кора самого древнего, Тихого океана, хотя в районах дуги моря Скоша, Малой Антильской дуги, а также Зондской и Никобарской дуг уничтожаются блоки коры Атлантического и Индийского океанов. Таким образом, речь идет о перманентном процессе, а не о механизме, который включался бы только на этапе замыкания и исчезновения океана.

Свидетельством поглощения океанической коры в зоне субдукции, происходившего многие миллионы лет назад, являются цепочки гранитоидных плутонов. Они образуются на месте вулканов, некогда поднимавшихся над зоной Беньофа. Так, на тихоокеанской окраине Южной Америки в составе Береговой Кордильеры находятся огромные по протяженности гранитные батолиты, самый крупный из них — Андийский. Установив положение и возраст подобных батолитов, отмечающих древнюю окраину океана, мы можем с уверенностью говорить о существовании здесь зоны Беньофа, в которой происходило поглощение океанической коры.

Другим свидетельством этого может служить обилие вулканических продуктов в осадочных толщах, сформировавшихся в период активной деятельности вулканов, в системе краевой дуги — островной или на континентальном субстрате. Однако все это лишь косвенные следы существования древнего океанского дна. Прямым доказательством могут считаться лишь реликты самой океанической коры — породы офиолитовой ассоциации, т. е. толеитовые базальты, гипербазиты, дайковый комплекс, отложения глубоководного генезиса.

Известно, что многие современные активные окраины осложнены асейсмичными хребтами, в составе которых находятся породы, содранные с погружающейся в зону Беньофа океанской плиты. Этот аккреционный комплекс нередко сохраняется при закрытии древнего океана, хотя в процессе воздымания и эрозии значительная часть этих образований может быть размыта. Правда, геологи еще не всегда способны идентифицировать породы аккреционного комплекса в разрезах древних пород. А ведь в аккреционном комплексе встречаются и фрагменты нижних слоев океанической коры. Так, на островах Калифорнийского бордерленда обнаружены крупные пластины гипербазитов и базальтов, измененных до различных ступеней метаморфизма. Подобные включения известны и на тихоокеанской окраине Камчатки. Здесь они создают бескорневые комплексы, обнажающиеся в районах камчатских мысов. Как правило, офиолиты, находящиеся в составе аккреционных поднятий, особенно древних, сильно деформированы. Многие породы могут быть изменены практически до неузнаваемости. Нередко они присутствуют лишь в виде меланжа — мелкого крошева из разнокалиберных обломков. Первичные структурные и текстурные признаки в них с трудом поддаются распознаванию.

Другой механизм перемещения океанической коры получил название обдукции. Обдуцированные пластины офиолитов мы находим преимущественно на пассивных окраинах материков. В отличие от субдукции, заключающейся в погружении океанической коры под континентальную, при обдукции фрагменты ложа океана помещаются на окраину континента. Наиболее известным примером обдукционного комплекса является Оманский офиолит — мощный комплекс глубоководных отложений, надвинутых на мелководные образования типично шельфового облика. Подобные чужеродные по отношению ко всему окружающему толщи определяются как аллохтоны. В состав Оманского аллохтона входят преимущественно турбидиты и радиоляриевые кремнистые отложения мезозойского возраста. Турбидиты имеют в основном карбонатный состав и образованы скелетными остатками организмов, обитавших на шельфе. Впрочем, в турбидитных разрезах встречаются и кварцевые песчаники. Все это — отложения континентального подножия, типичные для подводных конусов выноса.

В аллохтонной толще Хавасина выделяются турбидиты, отложенные вблизи и на удалении от континентального склона. Контакты между ними тектонические, т. е. они находятся в различных надвиговых пластинах и когда-то располагались на значительном расстоянии друг от друга. Дистальные турбидиты, накапливавшиеся на удалении от древнего континентального склона, переслаиваются с красными радиоляриевыми кремнями или аргиллитами. Это образования, типичные для глубоководных областей океана.

В западных отрогах Оманских гор комплексы турбидитов и кремней перекрыты серией окремнелых известняков и красных кремней с горизонтами подушечных лав, а на востоке Омана — красными и зелеными радиоляриевыми кремнями и кремнистыми аргиллитами. Все это — образования древней абиссали, входившие в состав верхних слоев океанической коры. Их возраст меняется в широких пределах — от позднетриасового до раннемелового, т. е. соответствует предполагаемому возрасту океанского дна Тетис. Важным компонентом Оманского офиолита являются экзотические блоки мелководных пород, в основном триасовых рифовых известняков. Считается, что это обрушенные участки шельфовой карбонатной платформы, перемещенные к основанию древнего континентального склона.

Таким образом, породы Оманского офиолита, несомненно, представляют собой реликты первого и второго слоев океанической коры Тетис, надвинувшейся на край Афро-Аравийского континентального блока. Время обдукции определено достаточно четко — маастрихтский век. Предполагают, что обдукция фрагментов ложа океана Тетис была вызвана столкновением Оманского выступа этого блока с островной вулканической дугой, которая находилась на северной, активной окраине океана. Этому предположению, однако, противоречит состав пород в аллохтонном комплексе Оманских гор. Как можно было убедиться, в них отсутствуют вулканогенные образования, а также полевошпатовые граувакки, столь характерные для современных вулканических дуг. Напротив, немногочисленные песчаники в турбидитах представлены кварцевыми разностями, которые типичны для пассивных окраин континентов.

Аллохтоны, подобные Оманскому, встречаются по северному обрамлению Афро-Аравийской глыбы. Это Рифский массив на северной окраине Марокко и массив Троодос на Кипре. Подобные же обдукционные комплексы описаны на островах Куба, Новая Каледония, Ньюфаундленд и в других районах. Обдукция океанической коры на пассивную континентальную окраину или островной архипелаг обусловлена мощнейшими сжатиями в полосе схождения противолежащих континентальных окраин или островных дуг. Почему в данном случае происходит выдавливание океанической коры на Континент, а не ее поглощение в зоне субдукции? Ответ на этот вопрос пока не ясен.

Можно предположить, что поглощение океанической коры в зоне Беньофа протекает лишь при наличии перед фронтом активной континентальной окраины (или островной дуги) спредингового хребта, где продолжается воспроизводство коры океана. Другими словами, для субдукции необходимо встречное движение: с одной стороны, коры океана, выдвигающейся в спрединговом конвейере, с другой — континента, находящегося на краю более молодой литосферной плиты. Встречное движение приводит к появлению гигантской структуры скола: более пластичная и менее мощная пластина (океаническая) погружается под более массивную и жесткую (континентальную).

Если же в океане отсутствует срединно-океанический рифт, иначе говоря, останавливается спрединговый конвейер, то сжатия на границе континентального и океанического блоков способствуют взламыванию хрупкой коры океана и ее выдавливанию в виде нескольких чешуй на континентальную окраину или островную дугу. Таким образом, обдукция имеет место лишь на этапе исчезновения, захлопывания древнего океана, когда он уже, по существу, «мертв», так как воспроизводство океанической коры в нем прекратилось.

Если эти рассуждения правильны, то в восточном рукаве океана Тетис в период схождения Афро-Аравийского и Евразийского континентальных блоков уже прекратился спрединг океанского дна. Однако за обдукцией Оманского офиолита последовало вскоре новое раскрытие океана и, видимо, снова возник рифт, где начала формироваться молодая океаническая кора. Этот рифт, вероятно, существовал до последних дней океана Тетис, кора которого погружалась и расплавлялась в субдукционных зонах Загроса, Малого Кавказа и других районов между Евразией и Африкой.

Реликты древнего дна океана могут сохраниться и в виде так называемых мантийных окон. Под ними понимаются участки, целиком сложенные офиолитами. И хотя они находятся в аллохтонном залегании, т. е. были сорваны со своего первоначального места, тем не менее образуют единый блок. По существу, в этих окнах на поверхность выступают породы мантии, некогда прикрытые тонкой пленкой океанической коры. Речь идет о дислоцированном и смятом дне океанических впадин, зажатом между реликтами вулканических островных дуг и древним краем континента.

Мантийные окна, таким образом, характерны для сложнопостроенных зон перехода от материка к океану и обычно являются рудиментами исчезнувших окраинных морей. Участки подобного строения были описаны С. М. Тильманом на северо-востоке СССР. По-видимому, это наименее измененные блоки коры океанического типа, которые мы находим на континенте после исчезновения окраинных котловинных морей. Подобные же «окна» обнаруживаются и на месте древних океанов в тех зонах, где по каким-либо причинам напряжения, вызванные всеобщим сжатием, на ряде участков оказались рассеянными. Поэтому коровые и подкоровые массы вещества, слагавшие дно океана, не были выдавлены и перемяты, а лишь сорваны со своих мантийных корней.

Становится очевидным, что, несмотря на хрупкость и неустойчивость во времени океанической коры, ее фрагменты удается обнаружить в пределах древних континентальных окраин, ныне впаянных в материковые мегаблоки. Следами существования океана являются реликты его древнего ложа, а также парагенезы пород, выделяемые в качестве геологических формаций. Среди них лучше сохраняются осадочные формации древних окраин континентов. Изучая их, можно узнать об этапах развития океанов, давно исчезнувших с лица Земли.

Колебания уровня океана: их причины и следствия

Вдоль многих побережий видны выровненные площадки, которые, как показывают палеогеографические исследования, сложены морскими рыхлыми осадками с возрастом от нескольких тысяч до нескольких сот тысяч лет. Это так называемые морские террасы — неразмытые участки древней литорали и сублиторали. Они остались от эпох более высокого в сравнении с современным уровня стояния океанских вод. Наиболее широко распространены площадки, сформировавшиеся во время последней, фландрской трансгрессии моря, начавшейся 6—7 тыс. лет и завершившейся около 3 тыс. лет назад. Уровень океана в это время был на 3—6 м выше нынешнего.

Соответственно при исследованиях дна в прибрежной части шельфа нередко обнаруживаются подводные террасы или уступы, сложенные выходами коренных пород. И те и другие обозначают положение древней береговой линии в эпохи понижений уровня океана. При бурении в мелководной части Атлантического шельфа США на глубинах 50—60 м под слоем голоценовых осадков были выявлены пласты торфа и бурых углей, а в диапазоне глубин 60—100 м в районе мыса Хаттерас зафиксированы остатки древних бичроков и пляжей, которые возникли в этой части шельфа в различные эпохи плейстоцена.

Чем же были вызваны в плейстоцене столь значительные колебания уровня океана? Ответ на этот вопрос знают, пожалуй, сейчас даже школьники старших классов. Резкое падение уровня океана было связано с широким развитием материкового оледенения, когда огромные массы воды оказались изъятыми из океана и сконцентрировались в виде льда в высоких широтах планеты. Отсюда ледники медленно расползались в направлении средних широт в северном полушарии по суше, в южном — по морю в форме ледовых полей, перекрывавших шельф Антарктиды.

Известно, что в плейстоцене, продолжительность которого исчисляется в 1 млн лет, выделяются три фазы оледенения, называемые в Европе миндельской, рисской и вюрмской. Каждая из них длилась от 40—50 тыс. до 100—200 тыс. лет. Они были разделены межледниковыми эпохами, когда климат на Земле заметно теплел, приближаясь к современному. В отдельные эпизоды он становился даже на 2—3° теплее, что приводило к быстрому таянию льдов и освобождению от них огромных пространств на суше и в океане. Подобные резкие изменения климата сопровождались не менее резкими колебаниями уровня океана. В эпохи максимального оледенения он понижался, как уже говорилось, на 90—110 м, а в межледниковья повышался до отметки +10...+20 м к нынешнему.

Осознание чисто геологических последствий этого стало возможным лишь тогда, когда началось активное изучение дна океанов и континентальных окраин. Выяснилось, например, что выдвижение берега к кромке шельфа при снижении уровня круто меняло характер осадконакопления не только на самом шельфе, но и в прилегающих глубоководных районах, прежде всего за счет оживления гравитационных процессов на континентальном и островных склонах. Действительно, дельты и эстуарии рек оказывались в непосредственной близости от края шельфа. Нефелоидные потоки эродировали дно в направлении склона и в его верхней половине, создавая систему подводных русел и ложбин. Значительная часть терригенного материала, который в настоящее время аккумулируется в речных дельтах или разносится течениями и волнами вдоль берегов, при низком уровне океана сгружалась непосредственно на континентальный склон или накапливалась близ кромки шельфа. Огромные скорости седиментации в этой части окраин порождали гравитационную нестабильность: оползание огромных масс неуплотненных осадков, течение полужидких илов, но главное — сход мощных подводных лавин, переносивших на континентальное подножие избыточные массы материала. Эти лавины, двигавшиеся по естественным углублениям дна, эродировали его, прорывая подводные каньоны. В высоких широтах по некоторым из них спускались подводные языки ледников, которые выпахивали широкие троги. Вершины каньонов быстро приближались к устьям рек или проток, связывавших береговые лагуны и приливно-отливные равнины с морем. Осадочный материал теперь уже вообще не задерживался на шельфе и сбрасывался по каньонам вниз, где быстро разрастались подводные конусы выноса.

Как показали исследования донных осадков на континентальных окраинах и в абиссальных котловинах, с длительными понижениями уровня океана было связано оживление придонной и поверхностной циркуляции, а значит, и таких процессов, как подъем глубинных вод и эрозия дна на обширных участках. Плейстоцен оказался временем обширных перерывов в осадконакоплении, причем эрозия на одних участках дна сочеталась с аккумуляцией осадочного материала на других. Помимо глубоководных конусов, формировались другие насыпные образования, например валы, сложенные контуритами.

Значительные перемещения границ климатических зон в плейстоцене нашли отражение в широкой фациальной изменчивости осадков. Действительно, в разрезах континентальных окраин терригенные отложения часто сменяются карбонатными и кремнистыми, а во внутренних морях — сапропелями и даже солями. В открытых областях океана менялись скорости роста железомарганцевых конкреций.

Плейстоцен — не единственный период, на протяжении которого происходили значительные колебания уровня океана. По существу, ими отмечены почти все геологические эпохи в истории Земли. Уровень океана был одним из самых нестабильных геологических факторов. Причем об этом было известно довольно давно. Ведь представления о трансгрессиях и регрессиях моря разработаны еще в XIX в. Да и как могло быть иначе, если во многих разрезах осадочных пород на платформах и в горно-складчатых областях явно континентальные осадки сменяются морскими и наоборот. О трансгрессии моря судили по появлению остатков морских организмов в породах, а о регрессии — по их исчезновению или появлению углей, солей или красноцветов. Изучая состав фаунистических и флористических комплексов, определяли (и определяют до сих пор), откуда приходило море. Обилие теплолюбивых форм указывало на вторжение вод из низких широт, преобладание бореальных организмов говорило о трансгрессии из высоких широт.

В истории каждого конкретного региона выделялся свой ряд трансгрессий и регрессий моря, так как считалось, что они обусловлены местными тектоническими событиями: вторжение морских вод связывали с опусканиями земной коры, их уход — с ее воздыманием. В применении к платформенным областям континентов на этом основании была даже создана теория колебательных движений: кратоны то опускались, то воздымались в соответствии с каким-то таинственным внутренним механизмом. Причем каждый кратон подчинялся собственному ритму колебательных движений.

Постепенно выяснилось, что трансгрессии и регрессии во многих случаях проявлялись практически одновременно в разных геологических регионах Земли. Однако неточности в палеонтологических датировках тех или иных групп слоев не позволяли ученым прийти к выводу о глобальном характере большинства этих явлений. Это неожиданное для многих геологов заключение было сделано американскими геофизиками П. Вейлом, Р. Митчемом и С. Томпсоном [1982], изучавшими сейсмические разрезы осадочного чехла в пределах континентальных окраин. Сопоставление разрезов из разных регионов, зачастую весьма удаленных один от другого, помогло выявить приуроченность многих несогласий, перерывов, аккумулятивных или эрозионных форм к нескольким временным диапазонам в мезозое и кайнозое. По мысли этих исследователей, они отражали глобальный характер колебаний уровня океана. Кривая таких изменений, построенная П. Вейлом и др., позволяет не только выделить эпохи высокого или низкого его стояния, но и оценить, конечно в первом приближении, их масштабы (рис. 17). Собственно говоря, в этой кривой обобщен опыт работы геологов многих поколений. Действительно, о позднеюрской и позднемеловой трансгрессиях моря или о его отступании на рубеже юры и мела, в олигоцене, позднем миоцене можно узнать из любого учебника по исторической геологии. Новым явилось, пожалуй, то, что теперь эти явления связывались с изменениями уровня океанских вод.

Рис. 17. Связь колебаний уровня Мирового океана с распределением запасов нефтяных и газообразных углеводородов в мезозое и кайнозое [Геодекян, Забанбарк, Конюхов, 1987]

Запасы: 1 — нефти, 2 — газа

Удивительными оказались масштабы этих изменений. Так, самая значительная морская трансгрессия, затопившая в сеноманское и туронское время большую часть континентов, была, как полагают, обусловлена подъемом уровня океанских вод более чем на 200—300 м выше современного. С самой же значительной регрессией, происшедшей в среднем олигоцене, связано падение этого уровня на 150—180 м ниже современного. Таким образом, суммарная амплитуда таких колебаний составляла в мезозое и кайнозое почти 400—500 м! Чем же были вызваны столь грандиозные колебания? На оледенения их не спишешь, так как на протяжении позднего мезозоя и первой половины кайнозоя климат на нашей планете был исключительно теплым. Впрочем, среднеолигоценовый минимум многие исследователи все же связывают с начавшимся резким похолоданием в высоких широтах и с развитием ледникового панциря Антарктиды. Однако одного этого, пожалуй, было недостаточно для снижения уровня океана сразу на 150 м.

Причиной подобных изменений явились тектонические перестройки, повлекшие за собой глобальное перераспределение водных масс в океане. Сейчас можно предложить лишь более или менее правдоподобные версии для объяснения колебаний его уровня в мезозое и раннем кайнозое. Так, анализируя важнейшие тектонические события, происшедшие на рубеже средней и поздней юры, а также раннего и позднего мела (с которыми связан длительный подъем уровня вод), мы обнаруживаем, что именно эти интервалы были отмечены раскрытием крупных океанических впадин. В поздней юре зародился и быстро расширялся западный рукав океана, Тетис (район Мексиканского залива и Центральной Атлантики), а конец раннемеловой и большая часть позднемеловой эпох ознаменовались раскрытием южной части Атлантики и многих впадин Индийского океана.

Как же заложение и спрединг дна в молодых океанических впадинах могли повлиять на положение уровня вод в океане? Дело в том, что глубина дна в них на первых этапах развития весьма незначительна, не более 1,5—2 тыс. м. Расширение же их площади происходит за счет соответствующего сокращения площади древних океанических водоемов, для которых характерна глубина 5—6 тыс. м, причем в зоне Беньофа поглощаются участки ложа глубоководных абиссальных котловин. Вытесняемая из исчезающих древних котловин вода поднимает общий уровень океана, что фиксируется в наземных разрезах континентов как трансгрессия моря.

Таким образом, распад континентальных мегаблоков должен сопровождаться постепенным повышением уровня океана. Именно это и происходило в мезозое, на протяжении которого уровень поднялся на 200—300 м, а может быть, и более, хотя этот подъем и прерывался эпохами краткосрочных регрессий.

С течением времени дно молодых океанов в процессе остывания новой коры и увеличения ее площади (закон Слейтера—Сорохтина) становилось все более глубоким. Поэтому последующее их раскрытие влияло уже гораздо меньше на положение уровня океанских вод. Однако оно неминуемо должно было привести к сокращению площади древних океанов и даже к полному исчезновению некоторых из них с лица Земли. В геологии это явление получило название «захлопывание» океанов. Оно реализуется в процессе сближения материков и их последующего столкновения. Казалось бы, захлопывание океанических впадин должно вызвать новый подъём уровня вод. На самом же деле происходит обратное. Дело здесь в мощной тектонической активизации, которая охватывает сходящиеся континенты. Горообразовательные процессы в полосе их столкновения сопровождаются общим воздыманием поверхности. В краевых же частях континентов тектоническая активизация проявляется в обрушении блоков шельфа и склона и в их опускании до уровня континентального подножия. По-видимому, эти опускания охватывают и прилегающие участки ложа океанов, в результате чего оно становится значительно более глубоким. Общий уровень океанских вод опускается.

Так как тектоническая активизация — событие одноактное и охватывает небольшой отрезок времени, то и падение уровня происходит значительно быстрее, чем его повышение при спрединге молодой океанической коры. Именно этим можно объяснить тот факт, что трансгрессии моря на континенте развиваются относительно медленно, тогда как регрессии наступают обычно резко.

Сколько было Атлантических океанов?

История современной Атлантики укладывается в последние 160—150 млн лет. Самые древние породы, которые были вскрыты бурением с «Гломара Челленджера» на дне этого океана, имеют оксфорд-кимериджский возраст. Это известняки и доломиты типа Аммонитико Россо, которые широко распространены в области мезозойского океана Тетис. Они, скорее всего, имеют гемицелагическое происхождение, т. е. формировались в обстановках, соответствующих современному континентальному склону или верхней часта подножия, на глубинах до 2000—2500 м. На шельфах, окружавших единственную существовавшую тогда Центральноатлантическую впадину, обширные пространства были заняты барьерными рифами и мелководными карбонатными банками, со временем превратившимися в мощные карбонатные платформы. Скелетные остатки карбонатстроящих морских организмов, живших в юрское и раннемеловое время, слагают ныне толщи рифовых и других известняков мощностью 2—3 км. Эти толщи прослеживаются бурением и геофизикой под внешним краем шельфа и континентальным склоном атлантических окраин Северной Америки, Северо-Западной Африки и Западной Европы.

В начале неокома расколы в западной части Гондваны привели к обособлению впадины Южной Атлантики. Однако океаническая кора здесь сформировалась только в промежутке между Фолклендским (Мальвинским) плато и поднятиями Китовый—Рио-Гранде, которые отделяют Капскую и Аргентинскую котловины от более северных, Бразильской и Ангольской. Накапливавшиеся в апте и альбе в этих разобщенных океанических водоемах осадки поэтому имели разный составив северных (Иберийской, Северо-Американской и Канарской) котловинах преобладали темноцветные глинистые и карбонатные отложения («черные глины»), в южных (Капской и Аргентинской) впадинах — песчано-алевритовые подводнодельтовые и морские образования с горизонтами углистых глин. Оба водоема оставались разобщенными вплоть до конца раннего мела, когда нормальный морской режим установился на всем пространстве зоны раскола между Африкой и Южной Америкой. Впрочем, даже после появления этой связи Атлантический океан не был еще единым целым. В северной его половине продолжался перенос водных масс, поступавших из океана Тетис и в обратном направлении. В то же время в южные впадины проникали воды из смежных областей Тихого океана. Лишь в позднем мелу воды из центральной части Атлантики распространились на юг, вплоть до окраин Габона и Камеруна (рис. 18). Однако полная перестройка системы океанической циркуляции произошла лишь во второй половине эоцена. Это было вызвано окончательным развалом Лавразийского континентального блока и формированием Лабрадорской, Гренландской и других впадин, а затем и Северного Ледовитого океана (рис. 19). Таким образом, Атлантический океан с характерной для него специфической, почти замкнутой системой поверхностных и придонных течений сложился лишь 40—50 млн лет назад, т. е. через 100 млн лет после возникновения здесь первых участков с океаническим типом коры.

На этом примере можно убедиться, какой сложной и длительной может быть эволюция океана. Между тем изучение палеозойских разрезов в периферийных районах США, Канады, Великобритании и Франции свидетельствует о том, что 600—400 млн лет назад в пространстве между этими регионами существовал крупный морской водоем. В нем аккумулировались осадки, типичные для зоны перехода от континентов к океану: рифовые известняки, комплексы турбидитов, оползневые образования. На Ньюфаундленде сохранились остатки палеозойских аллохтонов, в составе которых ведущее место занимают офиолиты — реликты древней океанической коры. Накопленные к настоящему времени данные убедительно доказывают, что формированию Пангеи предшествовал длительный этап, в течение которого материковые глыбы, составляющие ныне Северную Америку и Евразию, были разобщены. Центрами консолидации континентальной коры были Канадо-Гренландский, Балтийский, Алданский, Анабарский и Синийский щиты. Они составляли ядра древних материков, разделенных областями с океанической корой. Одна из самых обширных располагалась между Балтией и Канадо-Гренландией, т. е. на месте современной Северной Атлантики. В литературе этот океан известен под именем Япетус.

Рис. 18. Положение материков в западном полушарии в эпоху глобальной сеноман-туронской трансгрессии (примерно 95 млн. лет).

Условные обозначения те же, что и на рис. 16.

К началу палеозоя большинство материков располагалось в южном полушарии, тогда как северное было преимущественно океаническим [Ушаков, Ясаманов, 1984]. Канадо-Гренландский и Балтийский блоки находились в низких широтах, в то время как суперконтинент Гондвана, имевший вытянутую форму, простирался от Южного полюса к экватору (рис. 20). Судя по возрасту пород, слагающих Северо-Атлантическую вулканогенную провинцию, океан Япетус раскрылся в период между 650 и 570 млн лет назад. Согласно одной интерпретации, в кембрийский период существовал единый океанский бассейн. Япетус же был одной из впадин, вдававшейся в виде залива между Балтией и Канадо-Гренландией. Однако геохимические данные, полученные совсем недавно, свидетельствуют о двух различных водных массах, слабо сообщавшихся в кембрии и ордовике, а следовательно, и о двух изолированных океанических водоемах. Эти данные базируются на изучении изотопов неодима и стронция. Отношение 143Nd/144Nd в океанских водах и осадках определяется поступлением изотопов неодима с континентов вместе с речными водами. В бассейне с единой системой циркуляции величина этого изотопного отношения сохраняется одинаковой на всей его площади. Если же океаны разобщены структурными порогами, например вулканическими островными дугами, или между континентальными массивами отсутствуют достаточно широкие проходы, то величины отношение в водах и осадках будут меняться. Концентрации неодима в большинстве типов отложений ничтожны. Правильно определить соотношение изотопов этого элемента можно только при исследовании фосфоритов или биогенных остатков, замещенных апатитом. Лучшими палеозойскими объектами для исследования изотопов неодима являются кости и зубы рыб, конодонты и брахиоподы. В тех случаях, когда они замещены фосфатами, в них устанавливаются высокие концентрации редкоземельных элементов, которые на 5—6 порядков выше обычных. Согласно результатам изучения коллекции конодонтов и брахиопод, отобранных в разных районах распространения нижнепалеозойских пород да территории Северной Америки и Западной Европы, в кембрии и большей части ордовика между этими континентальными блоками располагались два океанических водоема, разделенные крупным структурным порогом. Более обширный океанский бассейн, являвшийся, вероятно, частью Панталассы (Мирового океана того времени), характеризовался значениями εNd в пределах от —10 до —20, тогда как для океанической котловины меньших размеров, которую, видимо, и следует отождествлять с океаном Япетус, было типично другое соотношение изотопов εNd — от —6 до —9. Эта котловина примыкала к континенту Балтия [Keto, Jacobson, 1987].

Рис. 19. Положение материков в западном полушарии в палеоцене в раннем эоцене (примерно 55 млн. лет назад).

Условные обозначения те же, что и на рис. 16; стрелками показаны древние зоны апвеллинга

Рис. 20. Глобальная палеогеографическая реконструкция для позднеордовикской эпохи [Morel, Irving, 1978]

Микроконтиненты: В — балтийский, С — Сибирский; СА — Северо-Американский континент

О природе структурного порога, разделявшего оба океанских бассейна, сейчас трудно судить. Ясно, однако, что он существовал до конца среднеордовикской эпохи, когда большая часть залива Панталассы между Гондваной и Канадо-Гренландией захлопнулась. Не исключено, что он был уничтожен полностью. Одним из следствий было сминание крупных масс осадков в районе Центральных Аппалачей. Эта фаза складчатости, получившая название таконской, была отмечена также надвиганием пластин офиолитов на восточные районы Канадо-Гренландского щита. Пояса вулканитов позднеордовикского возраста, которые установлены и исследованы в Норвегии и Великобритании, возможно, являются реликтами древних вулканических дуг, некогда отделявших Япетус от залива Панталассы.

Закрытие океана Япетус, согласно палеомагнитным данным, началось на рубеже силура и ордовика. Оно сопровождалось сминанием мощных толщ осадков, сформировавшихся на континентальных склонах и подножиях противолежащих окраин. В геологическую историю эти события вошли под названием позднекаледонской складчатости. Столкновение двух континентальных глыб имело место в полосе Скандинавия—Британия с одной стороны и Гренландия—Ньюфаундленд — с другой. Реликты же древних вулканических дуг причленились к краю Балтийского щита. Все это привело к образованию нового континентального блока Евроамерика, который противостоял Гондване. Океаническое пространство, их разделявшее, на палеографических картах девонского периода также названо Атлантическим океаном. Так сколько же их было, Атлантик?

Рис. 21. Глобальная палеогеографическая схема для позднедевонской эпохи [Morel, Irving, 1878]

Если правы английские геологи П. Морель и Э. Ирвинг [Morel, Irving, 1978], то на протяжении фанерозоя, включающего палеозой, мезозой и кайнозой, целых три. Океан Япетус захлопнулся в ордовикско-силурийское время. Однако в начале девонского периода в пространстве между Гондваной и Евроамерикой раскрылся и значительно расширился другой океан, который иногда называют прото-Атлантическим (рис. 21). Он захлопнулся в среднекарбоновую эпоху, т. е. 325—320 млн лет назад, при сближении Гондваны и Евроамерики. Это столкновение привело к формированию мощного герцинского складчатого пояса, протягивавшегося в конце палеозоя на 6—7 тыс. км.

Таким образом, на протяжении 580 млн лет Атлантический океан раскрывался трижды, причем каждый раз практически вдоль одной и той же структурной зоны, проходившей в полосе развития Аппалачей, но всякий раз несколько восточнее той области, которая была захвачена складчатостью. Все это свидетельствует об определенной периодичности и даже цикличности в развитии земной коры. Каждый из таких циклов охватывает промежуток времени в 150—200 млн лет. В калейдоскопе раскрытий и «захлопываний» океанов проявляется игра могучих внутренних сил Земли, что находит отражение в подъеме к поверхности систем мантийных диапиров или в их отмирании. В этой связи вспоминается древнегреческая легенда о титанах, просыпавшихся в недрах Земли, чтобы продолжить борьбу с богами-олимпийцами.

Возникает вопрос: были ли океаны прошлого похожи на современные? И если да, то до какой степени? С полной определенностью на эти вопросы мы пока не можем ответить. Видные советские исследователи П. П. Тимофеев и В. Н. Холодов [1984] показали, что в палеозойских разрезах отсутствуют ассоциации пород, аналогичные тем осадкам, которые ныне характерны для абиссальных областей современных океанов. В целом это утверждение достаточно спорно. Однако можно согласиться с указанными авторами в том, что палеозойские океаны, а тем более океаны докембрия были, вероятно, мало похожи на современные. В них обитали совершенно иные группы организмов, структура речного стока с континентов в отсутствие (до карбона) или при слабом развитии растительного покрова была также другой. Выветривание пород на суше протекало несколько иначе. Несомненно, однако, что в океанах прошлого существовала та же структурно-тектоническая зональность, что и в современных. В них выделялись периферийные области, включавшие континентальные окраины и островные вулканические дуги (вместе с ними шельфы, склоны, подножия, глубоководные желоба), а также центральные зоны со срединно-океаническими хребтами и абиссальными котловинами. О существовании достаточно крутых континентальных склонов свидетельствует широкое распространение палеозойского флиша — толщ турбидитов, накапливавшихся в пределах древнего подножия или в желобах, которые обрамляли вулканические дуги.

Устанавливаются и области древних апвеллингов, нашедшие отражение в разрезах ряда древних осадочных формаций, например позднепалеозойской формации Фосфория на тихоокеанской окраине Северной Америки. Следовательно, картина распределения поверхностных течений, по крайней мере в отдельные эпохи, могла быть похожей на современную.

Вместе с тем облик палеозойских океанов был, вероятно, иным. Они занимали на нашей планете большие пространства, но, по-видимому, были менее глубокими. Во всяком случае, карбонатные осадки в палеозойских океанах были распространены весьма широко, а как известно, ниже критической глубины (в настоящее время глубже 4500 м) карбонаты в океанах не накапливаются. Впрочем, подобные выводы требуют еще дополнительного подтверждения.

Несмотря на неоднократную деструкцию, континентальные мегаблоки, во всяком случае на протяжении фанерозоя, постепенно разрастались. Площадь, которую они занимали на нашей планете, если предполагать постоянство ее размеров, возрастала.