«Пайсисы» опускаются под воду
Уровень геолого-геофизических исследований, проводимых в последние два десятилетия в океане, неизмеримо вырос. У геологов появились новые средства изучения рельефа дна и недр: многоканальная сейсмоакустическая аппаратура, локаторы бокового обзора, аппараты, буксируемые за судном на небольшом расстоянии от поверхности раздела вода — осадок, различные приборы для отбора проб донных осадков. Однако подлинным символом нового этапа в развитии морской геологии стали подводные обитаемые аппараты (ПОА), способные совершать на большую глубину погружения в автономном режиме. Их экипаж включает гидронавтов — пилотов и наблюдателей. Первые обеспечивают управление погружаемым обитаемым аппаратом, вторые — выполнение научной программы.
ПОА представляет собой замкнутую обитаемую сферу, состоящую из особо прочного корпуса и системы жизнеобеспечения. Аппарат снабжен движителями для перемещения под водой и балластными камерами для закачки и откачки воды. Материалы, применяемые при изготовлении сферы, а также ее конструкция должны сообщать положительную плавучесть аппарату. При погружении на дно производится закачка воды в балластную систему, при всплытии вода откачивается. Скорость погружения и всплытия регулируется принятием на борт того или иного количества воды. С помощью движителей экипаж осуществляет передвижение аппарата над дном, мягкую посадку на грунт, преодоление препятствий, задний ход, развороты, зависание над заданной точкой или на определенной глубине в толще воды.
В зависимости от прочностных свойств корпуса и возможностей системы жизнеобеспечения выделяется несколько типов ПОА. Одни предназначены для работ на шельфе, в основном для осмотра опор буровых платформ, трубопроводов и иного оборудования, другие — для проверки состояния подводных кабелей, проложенных как на шельфе, так и в пределах континентального склона, третьи — для исследования глубоководных участков океанского дна и поисково-спасательных работ в открытом океане. Соответственно эти аппараты рассчитаны на погружения до глубин 200, 600—2000 и 6000 м.
Всего, по данным А. М. Сагалевича [1987], в настоящее время построено и эксплуатируется 103 подводных обитаемых аппарата, из них большинство (около 70%) предназначено для работ на шельфе и в верхней половине континентального склона (глубины до 600 м). Лишь несколько ПОД применяются для выполнения геологических исследований на дне. Среди них такие ставшие уже легендарными аппараты, как «Сиана» и «SM-97» (Франция), «Алвин» и «Си Клифф» (США). Только два ПОА «Си Клифф» и «SM-97» до недавнего времени могли выполнять погружения на глубины до 6000 м. В настоящее время для работ в том же диапазоне глубин перестраивается и «Алвин». Новая подводная мини-лодка, способная достигать глубин 6500 м, строится на верфях Японии. Таким образом, очевидна тенденция к совершенствованию ПОА прежде всего в направлении увеличения диапазона глубин, на которых они могут работать (для достижения абиссали). Это связано с возможной разработкой в ближайшем будущем глубоководных железомарганцевых конкреций, залежей сульфидов и других полезных ископаемых.
Для геологических исследований на дне океана в Советском Союзе в последние годы использовались три погружаемых обитаемых аппарата: «Аргус», «Пайсис-VII» и «Пайсис-XI». Если глубина рабочих погружений «Аргуса» не превышает 600 м, то «Пайсисы» могут работать на глубинах до 2000 м. В 1986 г. были построены два новых аппарата «Мир», способные погружаться до 6000 м, что делает доступными для исследований огромные площади дна Мирового океана.
Из-за ограничений по глубине «Пайсисы» использовались до сих пор в основном при исследованиях рифтовых зон на Байкале, в Красном море, Аденском заливе, в районе подводного хребта Рейкьянес в Атлантике и в Калифорнийском заливе. Опыт погружений ПОА позволяет говорить о новых возможностях, которые открылись с их применением в морской геологии. Только на полигоне в южной части Красного моря (18° ю. ш.) гидронавты совершили 28 погружений, выполнив несколько маршрутов у дна общей протяженностью более 50 миль. Погружениям предшествовали геолого-геофизические работы с борта научно-исследовательских судов, что позволило составить детальные батиметрическую и геологическую карты полигона и выбрать наиболее интересные направления маршрутов ПОА под водой.
При работе с «Пайсисами» применяется гидроакустическая система навигации. В нее входят три донных маяка, устанавливаемые на возвышенных точках подводного рельефа, и акустический маяк на самом аппарате. Дальность действия маяков 2—3 мили. Сигналы от донных маяков поступают в приемно-передаточный блок, находящийся на борту судна-носителя, а оттуда в память микроЭВМ. С ее помощью производится определение расстояния до аппарата, направления и скорости его движения под водой. Эта информация поступает на дисплеи, установленные в специально оборудованной лаборатории на судне, а также на «Пайсис». Командир его экипажа, таким образом, получает возможность быстро скорректировать направление движения, а вахтенные на борту судна-носителя точно знают, где находится ПОА. Все это позволяет обеспечивать, безопасность и высокую эффективность работы экипажа на дне [Сагалевич, 1987].
Геолог, участвующий в погружении в качестве наблюдателя, наговаривает на диктофон свои впечатления от увиденного в маршруте. По его указанию гидронавты ведут видеозапись и фотосъемку наиболее интересных объектов, и в случае необходимости эта информация передается на надводное судно. Двигаясь по намеченному маршруту (максимальная скорость 2 узла), экипаж «Пайсиса» обследует встреченные на пути структуры: вулканические поднятия, трещины-гъяры, подводные уступы, различные насыпные формы рельефа и гидротермальные образования. «Пайсисы» снабжены манипуляторами, поэтому наблюдатель может собирать обломки, находящиеся на дне, и даже отламывать образцы пород, слагающих различные геологические структуры. Предусмотрен и специальный накопитель, куда помещаются взятые образцы. Общий их вес определяется запасом плавучести аппарата. В одном из погружений в Красном море «Пайсис-XI» поднял на поверхность 270 кг донных пород [Подводные..., 1985]. В комплект оборудования входит и небольшой керноотборник. С его помощью геолог может взять колонки коренных пород длиной до 20 см, если отломать образец не удается.
«Пайсис» при длине 6,5 м и ширине 3,5 м легко входит в крупные трещины на дне (шириной не менее 8 м). В Красноморском и других рифтах гидронавты неоднократно погружали ПОА в гъяры, чтобы обследовать стенки и взять образцы выступающих в них пород. При этом, разумеется, необходима большая осторожность, так как аппарат может застрять в узости либо повредить движители.
Создавая небольшую положительную плавучесть, пилот «Пайсиса» заставляет его всплывать вдоль отвесных тектонических уступов, которыми изобилуют рифтовые зоны океана. ПОА может зависнуть на любой высоте вблизи поверхности стенки. Это дает возможность геологу описать обнажающийся разрез с большой детальностью и при необходимости провести послойный отбор образцов пород, что отнюдь не всегда удается делать на суше в гористой местности.
Благодаря ПОА специалисты увидели истинный облик морского дна, неповторимые подводные ландшафты, уникальные образования вроде блистеров, вулканических холмов и гряд, сложенные вулканическими трубами, и многое другое. Они стали свидетелями реально происходящих геологических процессов: выделения гидротерм и вулканических газов, осаждения взвеси из воды, миграции знаков ряби и появления биотурбаций на поверхности осадка.
Уникальны наблюдения, сделанные гидронавтами на границах водных масс с различной плотностью. Приближаясь к такой границе раздела, пилоты ошибочно принимали ее за поверхность дна. В других случаях они наблюдали волны и мелкую рябь, бегущую по поверхности раздела двух сред. Во впадине ТИНРО, расположенной в центре Охотского моря, «Пайсис» пересек несколько таких границ, разделяющих водные массы с различной плотностью. На каждой из них гидронавты наблюдали скопления частиц взвеси, которые из-за своего малого веса не могли проникнуть вниз и, таким образом, не попадали на дно [Сагалевич, 1987]. В Красном море пилоты пытались посадить «Пайсис» на дно рассольной впадины, где формируются металлоносные илы. Для этого потребовалось значительно утяжелить аппарат с помощью дополнительного балласта. Однако рассол выталкивал аппарат каждый раз наверх.
Мостовые из конкреций
На огромных глубинах, превышающих 4000—5000 м, в царстве мрака, низких температур (4—8° С) и огромных давлений (400—500 атм) геологи обнаружили образования, ставшие предметом интенсивного изучения во многих странах. Речь идет о железомарганцевых конкрециях, которыми покрыты огромные пространства в некоторых абиссальных котловинах океана. Не будет преувеличением сказать, что в ряде районов они располагаются на дне так тесно, что касаются краями друг друга, словно ими выложена глубоководная мостовая. Это прекрасно видно на многих фотографиях дна, сделанных с помощью специальных камер для фотографирования в условиях огромных давлений.
Диаметр железомарганцевых конкреций обычно не превышает 10—15 см, хотя часто встречаются и стяжения меньших размеров. Интересно, что в пределах одного относительно небольшого участка дна преобладают конкреции близкого диаметра, тогда как в соседнем районе распространены разные по величине конкреции. Для большинства стяжений характерна гладкая или шишковатая, но очень плотная верхняя поверхность. Нижняя сторона, погруженная в осадок, напротив, оказывается ноздреватой, раковистой и довольно мягкой. Как показали детальные исследования, это связано с различным составом оксидов металлов, концентрирующихся в разных частях конкреций: верхняя половина, которая контактирует с водой, сложена в основном оксидами железа, нижняя — оксидами марганца. Отсюда возникло предположение, что в первом случае вещество, обеспечивающее рост конкреции, поступает из воды, во втором — из осадка. Надо сказать, что если донные отложения в большинстве своем составлены частицами, опустившимися на дно из водной толщи, то конкреции — это новообразования. Они в буквальном смысле вырастают на границе раздела вода—осадок путем адсорбции растворенных или взвешенных в морских и грунтовых водах оксидных соединений металлов. Рост конкреций — чрезвычайно медленный процесс, длящийся миллионы лет.
Конкреции не безразличны к среде, в которой развеваются. Это относится прежде всего к осадкам. В абиссальных районах океана они «предпочитают» зоны распространения кремнистых отложений и красных глубоководных глин. Первые на 50% и более сложены скелетными остатками организмов, использующих для строительства раковин или других образований кремнезем. Это диатомеи, радиолярии, силикофлагелляты и другие мельчайшие планктонные организмы, чьи остатки после смерти опускаются на океанское дно. При этом разрушаются лишь органические компоненты, тогда как скелетные кремнистые составляющие остаются неизмененными. Диатомеи играют в составе планктона главную роль в областях распространения холодных вод, т. е. в высоких, приполярных широтах и областях апвеллинга. Радиолярии, напротив, широко распространены в экваториальной зоне.
Соответственно диатомовые осадки характерны для районов, граничащих с ледовой зоной, а радиоляриевые илы — для тропических широт. Эти зоны разделены обширными пространствами абиссали, покрытыми красной глубоководной глиной. Данные осадки формируются в аридных поясах климата, где состав планктона определяют карбонатстроящие организмы: кокколиты, фораминиферы, перидинеи и др. Известно, однако, что карбонат кальция довольно легко растворяется в холодных водах больших глубин, поэтому дна достигают лишь примеси, содержавшиеся в карбонатных раковинках. В Составе этих примесей много оксидных пленок железа и других металлов. Отсюда красный цвет глубоководной глины.
Исследование радиоляриевых илов показало, что при захоронении их на океанском дне начинаются интенсивные диагенетические (диагенез — превращение рыхлого осадка в твердое образование, породу) процессы перераспределения вещества. В пустотах раковин радиолярий вырастают пластинки глинистого минерала смектита, в кристаллическую решетку которого переходит большая часть (около 95%) катионов железу, содержащегося в осадке. Одновременно на поверхности самих раковин образуются пленки из оксидов других металлов, в основном марганца. При дальнейшем погружении геохимические условия в среде осадка меняются. В результате начинают растворяться многие раковинки радиолярий, а вместе с ними и оксидные пленки. Вместе с отжимаемыми из уплотняющегося осадка водами оксиды металлов поднимаются к границе раздела вода—осадок. Здесь они адсорбируются на нижней, тыльной стороне растущих железомарганцевых конкреций. Поскольку железо осталось в составе смектита, к поверхности дна мигрируют в основном марганец и другие металлы: медь, молибден, цинк и никель. Эти металлы в виде примесей тоже входят в состав абиссальных конкреций.
Таким образом, в процессе диагенеза кремнистых илов происходит разделение железа и марганца. Железо остается в осадке, а марганец переходит в состав конкреций. Однако в океанских водах железа достаточно много. Оно поступает в океан с континента и из гидротермальных источников на дне. Потому верхняя часть конкреций обогащается железом, а нижняя сложена марганцем и металлами-примесями. Марганец присутствует в форме тодорокита, бирнессита и σ-MnO2 [Marchig, Gundlach, 1981].
Аналогичные процессы протекают и в красных глубоководных глинах. На их поверхности также растут конкреции, содержащие нередко до 1—3% таких металлов-примесей, как медь, никель, цинк и кобальт. Именно они являются самым ценным компонентом железомарганцевых конкреций, из-за которых эти последние стали объектом пристального интереса исследователей разных стран.
Конкреции формируются не только в глубоководных обстановках. Они встречаются, и часто в большом количестве, на шельфах и вершинах подводных гор. Однако эти конкреции, как правило, лишены ценных примесей, так как развивались в осадках иного состава, чем кремнистые илы и красная глубоководная глина. Мелководные конкреции сложены преимущественно оксидами железа и почти не содержат меди, никеля, цинка и других металлов.
Хотя железомарганцевые конкреции встречаются во всех океанах, основные их месторождения находятся в Тихом океане и в восточной части Индийского. Самой богатой и перспективной для промышленной разработки залежей глубоководных конкреций считается зона между трансформными разломами Кларион и Клиппертон в восточной половине Тихого океана, на широте Мексики. В этом районе на глубинах от 4500 до 5500 м обнаружены обширные участки дна, буквально выложенные конкрециями. Самым, однако, важным является присутствие в их составе ценных металлов-примесей, прежде всего никеля и меди. Их содержание, достигающее 3—4%, является наиболее высоким по сравнению с конкрециями из других районов. В целом же считается, что железомарганцевыми конкрециями покрыто от 20 до 50% поверхности дна в абиссальных котловинах Тихого океана.
Как же зарождаются и растут конкреции? Железо и марганец, попадая в придонные воды, богатые кислородом, образуют тончайшие агрегаты, которые адсорбируются на поверхности твердых частиц. Таковыми на дне океана чаще всего становятся зубы акул и скелетные остатки млекопитающих, например кости китов. В ядрах конкреций, т. е. в наиболее древней их части, нередко находят зубы акул. В дальнейшем на поверхности зачаточных стяжений откладываются все новые порции марганца и железа. Как полагают многие ученые, не последнюю роль в этом играют микроорганизмы, находящиеся на поверхности конкреций. Их рост замедлен. Расчеты показали, что скорость формирования конкреций в районе подводного плато Блейк в Атлантическом океане составляет не более 1 мм за миллион лет. В Тихом океане эта скорость на 1—2 порядка выше. На шельфах, куда поступает гораздо большее количество железа и марганца с континента, темп развития конкреций еще выше. В Балтийском море он достигает 20—100 мм за 1000 лет.
Таким образом, в настоящее время большинство конкреций, находящихся. на поверхности глубоководных осадков, представляют собой чрезвычайно древние образования, рост которых продолжается и в наше время. Многие из них зародились еще в миоцене и даже в олигоцене, т. е. несколько десятков миллионов лет назад. Послойное исследование конкреций показало, что периоды их относительно быстрого развития чередовались с эпохами замедления, что было связано, видимо, с разным объемом поступавших в океанскую воду железа и марганца. Он был большим в эпохи интенсификации химического выветривания на континентах.
Железомарганцевые конкреции отсутствуют в районах с высокими скоростями накопления терригенных и других осадков, так как из-за незначительного роста они оказываются вскоре засыпанными осадочным материалом. Именно поэтому Атлантический океан довольно беден конкрециями. В Тихом океане, где скорости накопления кремнистых радиоляриевых осадков и красных глубоководных глин много выше скорости роста конкреций, последние находятся тем не менее на поверхности дна. Этот парадокс до настоящего времени не получил объяснения. Действительно, как получается, что конкреции, начало формирования которых восходит к миоцену и олигоцену, не были погребены более молодыми осадками? Более того, они залегают на их поверхности. В ряде случаев это можно объяснить придонными океанскими течениями, не дающими тонким частичкам садиться на дно. Однако в большинстве исследованных районов абиссали дело, по-видимому, в другом. Благодаря взвешивающему эффекту конкреции теряют в воде часть веса. Вследствие этого они как бы всплывают над окружающим рыхлым осадком [Соколов, Конюхов, 1985]. Впрочем, окончательно эту загадку железомарганцевых конкреций еще предстоит разрешить.
Буровые платформы спускаются с шельфа
Испокон веку люди добывали в море пропитание: рыбу, моллюсков, зверя, водоросли. Этот промысел и сейчас сохраняет свое значение, особенно для стран, имеющих выход к океану. Однако в конце XX в. его стал вытеснять другой промысел. Ныне человечество получает из океана горючее и химическое сырье в виде жидких и газообразных углеводородов. Сейчас на морские месторождения нефти и газа приходится почти 25% общемировой добычи углеводородов. Из года в год эта доля возрастает и, как полагают специалисты, к концу столетия достигнет 50%, а может быть, и более. Большинство открытых к настоящему времени морских месторождений нефти и газа расположено в пределах шельфов, входящих в состав подводной окраины континентов. Именно здесь находятся мощнейшие на Земле линзы осадочных пород, где формируются залежи углеводородов.
Основные ресурсы нефти и газа сосредоточены на пассивных окраинах материков. В их недрах уже открыто около 84 млрд т нефти и 40,6 трлн м3 газа, что составляет примерно 80% общих разведанных запасов этого сырья в океане, исключая шельфы СССР [Геодекян, Забанбарк, Конюхов, 1986]. Мощность осадочной толщи на пассивных континентальных окраинах в среднем достигает 8—10 км, а в отдельных районах возрастает до 14—15 и даже 21 км. Это связано с исключительно устойчивым режимом прогибания земной коры на границе континент—океан в тех районах, где они принадлежат к одной литосферной плите. В строении осадочного чехла здесь участвуют как терригенные породы (они сложены обломочным материалом, поступавшим с континента), так и карбонатные отложения, которые возникли за счет остатков морских организмов с так называемой карбонатной функцией. Заметную роль в нижней части разреза играют различные соли и магматические образования. Они остались от периодов рифтогенеза, сопровождавшего раскол древних суперконтинентов.
Основные ресурсы углеводородов разведаны в отложениях верхних и средних подразделений осадочного чехла, представленных терригенными и карбонатными породами. Они сформировались в позднем мезозое и кайнозое, т. е. на этапах, когда закладывались и развивались впадины Атлантического и Индийского океанов. Распределение запасов носит крайне неравномерный характер. По существу, основные залежи углеводородов приурочены к трем стратиграфическим диапазонам разреза: позднеюрскому, ранне (средне) меловому и миоценовому. Наиболее продуктивны нижне-среднемеловые комплексы отложений. В них содержится 27 млрд т нефти и 4,75 трлн м3 газа на пассивных окраинах континентов (за исключением СССР). В породах позднеюрского возраста открыто также множество залежей углеводородов, в которых заключено 22,1 млрд т нефти и около 2 трлн м3 газа. Наконец, в миоценовом комплексе осадков разведано более 18 млрд т нефти и около 10 трлн м3 газа. На остальные подразделения осадочного разреза, которые составляют примерно половину его мощности, приходится лишь седьмая часть суммарных запасов углеводородов. В чем же причина подобного неравномерного размещения углеводородных ресурсов на пассивных окраинах материков?
Известно, что залежи нефти и газа образуются в горизонтах-коллекторах, характеризующихся значительным объемом порового пространства и высокой проницаемостью. Кроме того, они должны быть перекрыты породами, не пропускающими различные флюиды, в том числе и углеводороды. Оказалось, что именно в позднеюрское, ранне (средне) меловое и миоценовое время в пределах краевых частей континентов накапливались такие отложения. Благоприятные для этого условия возникли прежде всего в силу особого геодинамического режима и резких колебаний уровня океана.
В позднеюрское время на многих шельфах развивались мощные барьерные рифы и биогермы, которые типичны для ранних этапов существования пассивных окраин континентов. Это связано с господством аридного климата в прилегающих районах суши и с высокими темпами прогибания морского дна. На окраинах же древнего океана Тетис, где и открыты основные верхнеюрские залежи нефти и газа, активный рост рифовых сооружений и других биогерм обеспечивался главным образом постепенным повышением уровня океана. Он продолжался в течение почти 15 млн лет и привел к затоплению обширных пространств в краевых частях Афро-Аравийского выступа Гондваны в океане Тетис. Здесь в ожерелье крупных лагун возникли мощные карбонатные толщи приливно-отливного генезиса. Вместе с рифовыми известняками открытых частей древнего шельфа они составляют ныне один из самых продуктивных нефтегазоносных комплексов в бассейне Персидского залива.
Близкие условия сохранились здесь и в раннемеловую эпоху, которая ознаменовалась глобальным понижением уровня океанских вод. Казалось бы, рост рифов должен был в связи с этим резко замедлиться, а площадь лагун и приливно-отливных равнин, расположенных за ними, значительно сократиться. На самом же деле рост рифов в Персидском заливе, а также на окраине Северной Америки, в Мексиканском заливе, продолжался. Они; правда, сместились в краевую часть шельфа и на континентальный склон, где темп прогибания земной коры оставался довольно высоким. В зарифовой же зоне лагуны в большинстве своем исчезли, а на их месте накапливались терригенные пески дельтового и мелководно-морского генезиса. В целом же падение уровня океана сказалось на распределении различных типов осадочных образований не очень сильно. Объяснить этот факт можно, предположив, что в апте и альбе началось сближение континентов, обрамлявших Тетис с севера и юга. Оно привело к догружению края шельфа и воздыманию центральных областей Нубийского щита, откуда в изобилии на окраину стал поступать терригенный песчаный материал.
На других пассивных окраинах раннемеловая регрессия сопровождалась выдвижением дельт рек в море, а выносимый ими материал засыпал на обширных пространствах карбонатные подводные плато и рифовые сооружения. В раннем мелу на многих пассивных окраинах материков сформировались довольно мощные (2—3 км) толщи дельтовых отложений. Приуроченные к ним горизонты коллекторов ныне вмещают огромные ресурсы углеводородов.
В позднем мелу, а также в палеогене и эоцене, когда уровень океанских вод был очень высок, в краевых частях континентов отлагались преимущественно тонкозернистые карбонатные и глинистые осадки. По своим характеристикам они скорее принадлежат к породам-флюидоупорам, не пропускающим углеводороды, чем к породам-коллекторам. Неудивительно, что в толщах подобного состава во многих районах отсутствуют крупные скопления нефти и газа. Ситуация изменилась во второй половине кайнозоя, когда начались крупные колебания уровня океанских вод, вызванные тектоническими и климатическими причинами. В миоцене к краю шельфа снова выдвинулись речные дельты, в которых образовались толщи переслаивания песчаников, глин и алевролитов. В пластах песчаников впоследствии возникли скопления нефти и газа.
На активных континентальных окраинах, в большинстве своем расположенных в пределах Тихоокеанского кольца, породы палеозойского и мезозойского возраста сильно деформированы и метаморфизованы. Они не способны вмещать скопления углеводородов, так как почта не содержат крупных пор. Поэтому основные ресурсы углеводородного сырья на активных окраинах связаны с молодыми, кайнозойскими отложениями. Анализ показывает, что и здесь наиболее продуктивны миоценовые формации, Среди них большинство сложено песчаниками в алевролитами. Последние накапливались в эпохи падения уровня океана и выдвижения в сторону моря речных дельт и береговых линий. Впрочем, появились данные о высокой перспективности рифовых построек миоценового возраста. Большое количество погребенных рифовых массивов обнаружено в последнее время в Южно-Китайском море. Бурение на некоторых из них уже дало положительные результаты. Если все они содержат залежи углеводородов, то общие их запасы в этом районе могут превысить ресурсы, выявленные в районе Персидского залива.
Особенностью активных континентальных окраин является то, что залежи нефти и газа здесь обнаруживаются в отложениях, которые никогда не рассматривались ранее в качестве природных резервуаров. Прежде всего речь идет об образованиях кремнистого состава — диатомитах, кремнистых глинах и др. В последнее время на подводной окраине Калифорнии в осадках кремнистого состава разведаны исключительно богатые месторождения нефти (например, Пойнт Аргуэлло). Другой неожиданностью стало открытие залежей нефти и газа в толщах турбидитов. В целом же активные континентальные окраины по разведанным запасам углеводородного сырья пока уступают окраинам в областях с пассивным тектоническим режимом. Хотя коллекторами нефти и газа на окраинах континентов служат самые разнообразные по составу и происхождению отложения, ведущую роль среди них играют карбонатные рифовые известняки и терригенные дельтовые и мелководно-морские пески (песчаники). Это обстоятельство определяет географическую неравномерность распространения скоплений жидких и газообразных углеводородов в периферийных зонах океана. Действительно, рифовые сооружения могли формироваться только в низких широтах на участках с теплым и преимущественно засушливым климатом, т. е. там, где реки с суши выносили не очень много терригенного материала. Такие условия складывались далеко не на всех континентальных окраинах даже из числа тех, что располагались в низких широтах.
С другой стороны, толщи терригенных песчаников подучили широкое развитие преимущественно в тех районах, где к океану выходят дельты крупных рек. Положение последних далеко не случайно, так как реки прокладывают свои русла по областям, испытывающим прогибание. По существу, многие реки текут вдоль древних долгоживущих разломов, которые некогда были боковыми ответвлениями крупнейших рифтовых систем. В связи с этим положение многих современных и древних дельт является тектонически предопределенным. Вместе с тем предопределенной оказалась и высокая концентрация нефтяных и газовых месторождений в самих дельтах и на их подводном продолжении — глубоководных конусах выноса. Действительно, в дельте Нигера и в его конусе выноса открыто более 350 месторождений нефти и газа, в дельте и конусе Миссисипи — 150 месторождений. Крупнейшие скопления углеводородов разведаны в дельте Маккензи. Они открыты и в подводной части дельт Нила, Конго, Кванзы, Огове и множества древних безымянных рек. Подводные конусы выноса и древние коралловые массивы, погребенные под мощным чехлом более молодых осадков, находятся в недрах под континентальным склоном или подножием. Это наиболее перспективные объекты в океане. Поэтому поисково-разведочные работы, которые до недавнего времени были сосредоточены почти исключительно на шельфах, ныне ведутся на глубинах более 200 м, т. е. в пределах континентального склона. Так, в подводном конусе выноса реки Миссисипи в Мексиканском заливе поисково-разведочное бурение осуществляется с платформ, установленных на глубинах от 200 до 1000 м. Здесь уже открыты месторождения нефти и газа, и среди них Бей-Сити на глубинах около 400 м. На Калифорнийском побережье США, где расположено несколько небольших, но весьма перспективных прогибов, разведочные работы ведутся на глубине до 1000 м. Вышли за пределы шельфа и бразильские нефтяники. Согласно последним сообщениям, одну из разведочных скважин они заложили на участке континентального склона на глубине 1800 м.
Уже к началу 1985 г. на континентальных склонах в разных районах Мирового океана было открыто около 30 месторождений нефти и газа, из них семь в Австралии, четыре в США, два в Средиземном море (Валенсийский бассейн Испании), два в Гвинейском заливе. К настоящему времени число этих месторождений, вероятно, возросло.
Черные и белые «курильщики»
Состав океанской воды на больших глубинах исключительно устойчив и меняется от района к району очень незначительно. Поэтому, когда в пробах воды, взятых придонными батометрами, выявлялись резкие аномалии в содержании кислорода или других элементов и соединений, специалисты оценивали такие результаты как явно ошибочные, объясняя этой плохой подготовкой батометров или другими причинами. Подобные случаи не учитывались при составлении карт и редко попадали в отчеты. В последние годы, однако, удалось установить, что аномалии в глубинных водах не только возможны, но и зачастую свидетельствуют об интереснейшем классе явлений, обусловленных гидротермальной деятельностью. На дне океана были обнаружены мощные подводные гейзеры, выбрасывавшие горячую воду на высоту в десятки и сотни метров. В 1977 г. их впервые наблюдали гидронавты с подводного аппарата «Алвин», выполнившего серию погружений в районе Галапагосского рифта на глубину 2—2,5 км.
Собственно говоря, все началось с необычных результатов глубоководного траления в одной из впадин этого рифта, когда с глубины 2400 м был поднят необычный улов: большое количество желтых медуз, моллюсков в толстостенных раковинах, креветок и рыб нескольких видов. Удивительным был сам факт существования в полной темноте при огромных давлениях и, как выяснилось позже, при сероводородном заражении сообщества морских организмов, обычно питающихся фито- и зоопланктоном. Но как раз планктон на этих глубинах отсутствовал. Пожалуй, самым неожиданным было то, что глубоководный трал захватил гигантских существ, напоминающих червей. Они находились в блестящих белых трубках длиной 1—2 м и диаметром 2—3 см, напоминавших обрезки огородного шланга. Из трубок торчали красные щупальца. Эти ранее неизвестные науке организмы были названы вестиментиферами. В район, где были обнаружены столь необычные скопления живых существ, в 1977 г. отправилась новая экспедиция. Опустившись на дно на подводном обитаемом аппарате «Алвин», геологи впервые смогли наблюдать пойманных в предыдущем рейсе животных в естественных условиях. Оказалось, что удивительные сообщества обитают вокруг горячих гейзеров, выбрасывающих из трещин в молодых базальтах но только горячую воду, но и большое количество темного взвешенного вещества, концентрации которого, до данным советских исследователей, могут достигать 200 мг/л. У выходов на дне мощных гидротерм сформировались подводные курганы разнообразной высоты и формы. Они сложены веществом, выносимым на поверхность гидротермами, в основном сульфидами — продуктами выщелачивания базальтов горячей морской водой. Черные фонтаны, насыщенные тончайшими коллоидными веществами, как огромные султаны, воздымаются над подводными холмами. На контакте с холодной морской водой из горячих гидротерм, а их температура может достигать 350° С, выделяется масса тончайших частиц, главным образом сульфидов металлов. Они оседают вниз, словно пеплом покрывая окрестности подводного гейзера и наращивая холмы, курящиеся, как печные трубы. Такие гейзеры, постоянно выбрасывающие на дно большое количество рудного и другого вещества, получили название черных «курильщиков».
Существуют и так называемые белые «курильщики» — фонтаны осветленных гидротермальных вод, не насыщенных рудными компонентами. Температура их значительно ниже, поэтому они не так агрессивны по отношению к породам океанической коры, как горячие гидротермы. Белые «курильщики» создают трубовидные постройки, сложенные рыхлым, пористым материалом. Вокруг них обитают червеподобные существа, близкие по строению к полихетам. Эти животные могут вылезать и возвращаться в трубки, в которых они обитают.
В конце 1986 г. советские и мексиканские ученые на судне «Академик Мстислав Келдыш» провели тщательное обследование рифтовой зоны в Калифорнийском заливе, а затем на подводном хребте Хуан-де-Фука. Благодаря использованию аппаратов «Пайсис» в этих районах было изучено большое количество подводных насыпных построек, отобрано значительное количество образцов сульфидных руд и других осадков, собрана богатая коллекция уникальной фауны гидротерм. В Калифорнийском рифте, по свидетельству А. П. Лисицына [1987], находятся сульфидные постройки, напоминающие причудливые башни. Самая крупная из обследованных с помощью «Пайсисов» возвышалась над дном на 55 м. Локаторы бокового обзора зафиксировали башни высотой до 100 м. Рудоносный дым поднимается над башнями на 100—150 м. Основания построек засыпаны рыхлым осадком, поэтому общая их высота, по-видимому, составляет несколько сот метров. Склоны этих подводных курганов, вода над которыми прогрета от 20 до 40° С, кишат в основном вестиментиферами. Обитающие здесь двустворчатые моллюски достигают величины обеденного блюда, причем вырастают до таких размеров всего за два-три года.
Присутствие на дне рифтовых долин черных «курильщиков» определяется по аномалиям газов в пробах воды из придонной толщи. Наиболее важным признаком считается появление изотопа гелия 3He, поступающего из недр океанической коры. В окрестностях гидротермы аномалии прослеживаются уже в составе самой воды. Для оконтуривания гидротерм используются буксируемые над дном аппараты.
Обычно сульфидные башни встречаются группами. Так, в Калифорнийском заливе на площади 14 км2 советские геологи обнаружили более 70 построек различной величины и формы. Тщательное изучение рудного вещества, которым они сложены, дало поразительные результаты: на 50—60% оно состояло из цинка. В примеси к нему находились медь (иногда в довольно большом количестве), свинец, сурьма и мышьяк. В отличие от железомарганцевых конкреций сульфидные руды рифтовых зон почти лишены никеля и кобальта. Это свидетельствует об ином источнике вещества, участвующего в формировании глубоководных конкреций.
Калифорнийский залив — область с высокой биологической продуктивностью поверхностных вод. Рифтовая зона находится в непосредственной близости от континента, откуда выносится большое количество терригенного материала. Поэтому даже в рифтовой зоне, к которой приурочены сульфидные постройки, велики скорости накопления осадков. Как правило, они представлены тонкозернистыми глинистыми алевритами, обогащенными органическим веществом. Интересно, что под воздействием горячих гидротерм в осадках резко ускоряются процессы нефте- и газообразования. Обычно они реализуются в глубоких слоях осадочной толщи, там, где господствуют температуры порядка 80—120° С. В Калифорнийском заливе в районе действия гидротерм генезис нефтяных и газообразных углеводородов протекает в поверхностных горизонтах плаща осадков. По существу, под влиянием горячих растворов здесь происходит термолиз рассеянного органического вещества. По свидетельству А. П. Лисицына, куски сульфидной руды, отломанные от выступов подводных башен, часто пропитаны нефтеподобными субстанциями. Они загораются от спички и горят дымным пламенем. На дне же рифтовой долины гидронавты наблюдали мощные газовые факелы. Таким образом, наряду с рудообразованием здесь активно протекают и процессы нефтегазообразования.
Одна из загадок гидротерм — связанная с ними жизнь. Это подводное царство совершенно уникально. Действительно, в основе всего живого на Земле вот уже многие сотни миллионов лет лежит фотосинтез, т. е. преобразование солнечной энергии. Сохранились, конечно, бактерии, живущие за счет хемосинтеза. Их много в озерах, болотах, почве. Есть они в морских и океанических осадках. Однако нигде на этой основе не возникал столь сложно построенный и замкнутый органический мир, какой характерен для подводных гидротерм. Животные, встречающиеся здесь в изобилии, существуют за счет уникальных сульфатредуцирующих бактерий, способных окислять сероводород до сульфатов, и метановых бактерий. Они обитают непосредственно в горячей воде подводных гейзеров при температуре 100—120° С, что представляет абсолютный рекорд для существ, живущих на нашей планете. Условия симбиоза этих бактерий и вестиментифер, не имеющих кишечного тракта, еще не выяснены.