На космическом корабле

Корейво Марек

ПИТАНИЕ КОСМОНАВТА

 

 

Вам уже наверное приходилось читать в газетах и журналах, чем и как питались первые космонавты во время своих орбитальных полетов. И советские и американские космонавты брали с собой в путешествие пищу в жидком, полужидком или желеобразном состоянии в тюбиках, похожих на те, которые употребляют для зубной пасты.

Тюбики с соответствующими надписями хранят на специальных стеллажах так, что космонавту достаточно протянуть руку, чтобы взять требуемый тюбик. Перед тем, как поесть, космонавт вкладывает тюбик в электрический подогреватель. Во время первых полетов, когда голова космонавта была плотно закрыта шлемом, пообедать было довольно трудно. Необходимость полной изоляции не позволяла космонавту снимать или даже приоткрывать шлем, поэтому ему приходилось приставлять тюбик с пищей к патрубку, выступающему из шлема и сосать пищу через другой его конец, находящийся внутри, рядом с губами. Достаточно было нажать тюбик, чтобы пища поступила прямо в рот.

Таким образом, космонавт мог по желанию выпить черного кофе, кофе с молоком, какао, чаю или осушить бутылку фруктовой воды, пообедать супом, полужидкими или желеобразными блюдами.

Если космонавт почувствует жажду, он может достать трубку, ведущую к резервуару с водой, прикрепить ее к наружному патрубку и сосать воду досыта.

Потом кабины космических кораблей были настолько усовершенствованы, что космонавты могли уже на время снимать шлемы, чтобы позавтракать бутербродами с ветчиной или сыром. Но при этом следовало соблюдать большую осторожность: нельзя уронить хотя бы крошки. В условиях невесомости частицы продуктов питания свободно повисают в воздухе и при малейшей неосторожности вместе с воздухом попадают в дыхательные пути пассажиров корабля.

Во всяком случае, питание космонавтов во время полета не представляло особых трудностей. Советские космонавты: Николаев, Попович, Быковский и Терешкова, хотя находились в космосе несколько дней, не жаловались на трудности с едой. В определенное время они ели то, что им нравилось, словом питались так же, как и на Земле. Еще удобнее обедали другие космонавты: Комаров, Егоров и Феоктистов, которые в кабине своего корабля находились совсем без всяких скафандров, а были одеты в мягкие шерстяные костюмы, похожие на спортивные.

Как утверждают специалисты, питание космонавтов во время полета не будет отличаться от применяемого на современных рейсовых самолетах.

Хотя с точки зрения удобства и сохранности продуктов тюбики с пищей превосходно отвечают условиям космических полетов — ведь они занимают совсем мало места — космонавты их недолюбливают, принимают их только как неизбежное зло. Любой из них предпочитает бутерброды или готовые блюда.

Однако питание — это только часть проблемы.

Значительные трудности появятся во время путешествий на Луну и другие планеты, когда путешествие будет длиться несколько дней или даже недель.

Человек не может длительное время питаться одними жидкими и полужидкими блюдами, даже очень питательными и вкусными. Чтобы обеспечить нормальную работу всех органов пищеварения, процессов обмена веществ в организме человека, необходимо такое же питание, как на Земле.

Таким образом надо решить довольно сложную задачу хранения продуктов питания и приготовления пищи во время длительного полета.

Вполне понятно, что нельзя снабдить космонавтов на все время полета большим запасом бутербродов, ведь даже в самом лучшем холодильнике они быстро утратят свежесть и вкус, а через некоторое время вообще совершенно испортятся.

Техника консервирования продуктов еще несовершенна. И герметически закрытые консервные коробки, и мясо, завернутое в пластмассовую оболочку, стерилизованное с помощью ионизирующего облучения, не решают дела. Все консервированные продукты оставляют желать лучшего с точки зрения вкуса и усвояемости их организмом человека.

Не пригоден и метод сушки продуктов и превращения их в питательные порошки. Сушеные продукты лишены естественного вкуса, и в них часто отсутствуют нужные человеку витамины.

Но пока что, при нынешнем уровне техники консервирования продуктов, космонавтам придется питаться в полетах сушеными, консервированными, облученными продуктами. Из них они будут сами готовить себе блюда на специальных электроплитках. Это значит, что кроме физической и научной подготовки, космонавтам придется пройти и курс кулинарного дела.

Хранение продуктов питания и приготовление пищи во время полетов — дело довольно сложное. Во время изнурительного космического полета хорошее питание может способствовать хорошему самочувствию космонавтов, тогда как плохое, наоборот, может стать источником угнетенности, причиной снижения трудоспособности и нервных потрясений.

Поэтому ученые придают вопросам питания космонавтов в полете очень большое значение и ведут упорные поиски правильного решения.

 

МНОГИЕ ТОННЫ ПРОДУКТОВ?

Немалые трудности возникают вследствие необходимости создавать крупные запасы продовольствия. Простой подсчет количества продуктов, которые должны будут взять с собой космонавты во время полета на Марс и обратно, включая трехдневное пребывание на этой планете (всего 550 дней) дает следующие результаты.

Космонавт ежедневно должен получать специально подобранную пищу, дающую 3000 калорий. Суточная норма питания должна состоять из белка — 100 гр, жиров — 150 гр и углеводов — 350 гр, плюс к этому небольшое количество минеральных солей и витаминов. Это значит, что при суточном рационе в 600 гр сухого питательного вещества запас продуктов на все путешествие для двух космонавтов составит 330 килограммов.

Но ведь это только часть продуктов питания. Ведь необходима еще и вода. Человек потребляет около 2,5 килограммов воды в сутки, в том числе около 1,3 килограмма непосредственно и около 1 килограмма вместе с пищей. Если это количество перемножить на число дней путешествия, получится — 1375 кг. Запас этот можно значительно уменьшить, если принять во внимание возможность многократного потребления одной и той же воды.

Человеческий организм не только поглощает, но и выделяет воду, причем тоже в количестве около 2,5 кг в сутки и, кроме того, дополнительно около 0,2 килограмма за счет химических реакций, происходящих в организме в процессе обмена веществ. Вода в организме человека выделяется при дыхании, испаряется вместе с потом, удаляется с мочой и экскрементами.

Конечно, было бы легкомысленностью не воспользоваться этой водой. Поэтому ученые предусматривают возможность ее полной очистки и вторичного потребления.

Таким образом, на космическом корабле будет осуществлен замкнутый круговорот воды, а именно: из резервуара чистой воды в организм человека, оттуда в резервуар «грязной» воды, из этого резервуара в очистные устройства и обратно в резервуар чистой воды. Этим путем можно полностью решить проблему снабжения водой пассажиров космического корабля, можно отказаться от большого, идущего в сотни килограммов и занимающего много места запаса чистой воды.

 

ВОДОРОСЛИ

Во время длительных космических полетов однообразная пища, приготавливаемая из сухих продуктов, быстро надоест космонавтам, что несомненно окажет пагубное влияние на их самочувствие и работоспособность. Правда, можно надеяться, что ученым удастся создать синтетические продукты питания и придать им аппетитный вид, но следует ожидать, что во время космического путешествия космонавты будут тосковать по привычной земной пище, к которой человеческий организм приспособился во время жизни многих поколений людей.

Каким образом можно будет удовлетворить их желания?

Одним из способов можно считать приготовление блюд из стеблей свежих водорослей, которые снабжают космонавтов свежим кислородом. Эти водоросли изобилуют полезными человеку питательными веществами: белком, жирами и углеводами; кроме того в них содержится много минеральных солей и витаминов.

Таким образом, если удастся получить водоросли, отличающиеся способностью быстро расти в тяжелых условиях космического корабля, задачу можно будет считать решенной.

Некоторые ученые сумели выпечь довольно вкусные и питательные булочки из молотых сушеных водорослей со вкусовыми добавками.

Из такой же муки приготовляли супы, соусы, каши и другие блюда. Прекрасные результаты были получены при приготовлении блюд из свежих водорослей.

 

ВЫРАЩИВАНИЕ ОРГАНИЧЕСКИХ ТКАНЕЙ

Каковы бы не были результаты приготовления пищи из водорослей, космонавты непрочь будут полакомиться хорошим мясным блюдом, приготовленным из свежего мяса. Можно ли будет удовлетворить это естественное желание в условиях длительного космического полета?

В одном из научных институтов США ученые уже много лет работают над проблемой выращивания тканей вне организма. Ученые пытаются вынудить ткани растения или животного разрастаться, увеличиваться в объеме в искусственной среде.

Они например хотят, чтобы кусок мяса разрастался и давал все новые и новые его порции; из окорока хотят получить много окороков, из куска помидора — много аналогичных кусков.

Сколь бы фантастической не казалась такая идея, следует помнить, что возможности науки безграничны.

Американским ученым удалось уже получить первые, хотя еще скромные, результаты, и можно ожидать, что через несколько лет их работа получит вполне практическое применение.

Если это удастся, на космических кораблях будут установлены настоящие фабрики продуктов питания, и космонавты во время длительных полетов ни в чем не будут себе отказывать. Возможно также строительство фабрик продуктов питания на инопланетных базах.

 

ПИЛЮЛИ И ТАБЛЕТКИ

Иной раз приходится слышать или читать о синтетическом питании. Будто бы человек будущего будет питаться пилюлями — будет, дескать, достаточно, вместо нормальной еды принять один раз в день питательные пилюли или таблетки, чтобы быть вполне сытым.

Действительно, современная химия в состоянии приготовить такие пилюли. Химики утверждают даже, что пищевая промышленность в состоянии производить в промышленных масштабах некоторые виды пищевого сырья, из которого можно будет готовить пищевые концентраты.

Однако, следует иметь в виду, что человеческий организм прошел миллионы лет развития и не сможет в течение жизни одного или нескольких поколений приспособиться к новому способу питания. Ведь правильное питание предполагает, что человек должен получить продукты определенного качества, содержащие белки, углеводы и жиры в определенном (совсем немалом) количестве. Желудок, да и весь аппарат пищеварения должны получать определенный объем пищевых продуктов.

С этой точки зрения питательные таблетки или пилюли оставляют желать много лучшего. Они могут служить только дополнением к основному питанию человека. Таблетки помогут поддержать на должном уровне работу организма и устранить чувство голода только на несколько дней; длительное питание таблетками несомненно повлечет за собой расстройство пищеварения.

 

ОТ РАСТЕНИЯ К ЧЕЛОВЕКУ И ОБРАТНО

Как решить проблему питания космонавтов? Мы по собственному опыту знаем, что даже самые лучшие консервы или концентраты уже через несколько дней систематического употребления теряют вкус и привлекательность, и человек начинает тосковать по свежим овощам, фруктам и сочному мясу.

Может быть решение проблемы заключается в организации на космических или инопланетных базах огородов, садов и животноводческих ферм?

Конечно, такая возможность не исключена. Ученые уже давно оперируют понятием «замкнутая экологическая система», заключающимся в том, что животные питаются растениями, а эти последние растут благодаря выделениям животных. Это происходит так: животные потребляют кислород и выдыхают углекислый газ; растения же наоборот — потребляют углекислый газ и выделяют кислород. Животные питаются растениями, а своими выделениями и телами после смерти обогащают почву, питающую растения. Константин Эдуардович Циолковский, родоначальник современной космонавтики, указал на возможность применения такого процесса на космических кораблях и инопланетных базах.

Первые попытки применения такой системы были проделаны с водорослями, после чего в ход пошли другие растения и даже рыбы, в частности малая рыбешка из вида Тилапия, напоминающая по величине и внешнему виду обыкновенного карася. Рыбешка эта отличается отменным вкусом, быстрым приростом веса и неприхотливостью при разведении. Основным продуктом питания этой рыбы являются как раз водоросли.

Таким образом, космонавты могли бы устроить на борту космического корабля огородно-рыбное «подсобное хозяйство», правда без земли, но вполне пригодное для снабжения продуктами нескольких человек. В специальных аквариумах они разводили бы водоросли, кормили бы ими рыбу, которую поедали бы в свою очередь в жареном или вареном виде. Одновременно космонавты за счет собственных выделений, переработанных в специальных аппаратах, и выдыхаемой двуокиси углерода подкармливали бы водоросли.

Авторы фантастических романов уже «взяли на вооружение» подобную идею и украшают орбитальные и инопланетные базы райскими садами, изобилующими животными и полезными растениями. Такие сады не только обеспечили бы постоянный приток свежего воздуха для дыхания людей, не только служили бы источником продуктов питания для них же, но положительно действовали бы на психику космонавтов, вынужденных годами находиться вдали от привычных земных условий.

 

СЪЕДОБНАЯ МЕБЕЛЬ

Ученые, занимающиеся вопросами космических путешествий в поисках правильного решения проблемы питания космонавтов, обратили внимание на рассказы полярных путешественников, которым приходилось во время голода использовать в пищу ездовых собак.

Одному из американских ученых пришла в голову идея создать съедобную мебель. Он разработал состав питательного вещества из молочного порошка, банановой муки, овсяных хлопьев, кукурузной крупы, вкусовых добавок и воды. Из этой смеси он выпекал при температуре 150 градусов и под давлением около 1,5 тонн твердые плиты, из которых делали мебель для установки на космическом корабле.

Во время демонстрации своего изобретения, в присутствии ученой комиссии и журналистов, изобретатель отломал довольно большой кусок крышки стола, разбил его на части и смолол в небольшой мельнице. Полученный при помоле порошок он смешал с водой, подождал, пока масса «подросла», и попотчевал присутствующих.

Блюдо, приготовленное из стола, очень всем понравилось.

Автор идеи утверждает, что съедобная мебель в кабине космического корабля может служить прекрасным резервом продуктов питания на «черный день» и сможет спасти космонавтов при возможных авариях и непредвиденных задержках в полете.

 

КРУГОВОРОТ ВОДЫ

Мы уже писали о «замкнутой экологической системе», в которой происходит замкнутый обмен веществ между человеком и его окружением. Теперь полезно обратить внимание на подробности установки, обеспечивающей замкнутый круговорот воды.

Как нам уже известно, человек выделяет в сутки около 2,5 кг воды, в основном в виде мочи и несколько меньше — с выдыхаемым воздухом и потом. Опыт показал, что в лабораторных условиях почти всю эту воду можно восстановить и сделать ее пригодной для вторичного употребления.

Американские ученые после нескольких попыток освежения воды различными методами сосредоточили все внимание на методе дистилляции воды в вакууме. Они разработали установку небольших размеров, состоящую из резервуара, вакуум-насоса, подогревателя и дистиллятора.

Они помещали в резервуар отходы всякого рода, содержащие то или иное количество воды, а именно человеческие экскременты, мочу, тампоны, использованные для умывания, поглотители из аппаратов для дыхания, после чего плотно закрывали резервуар и нагревали его. Водяной пар из резервуара поступал в небольшую камеру, где, проходя через фильтр из металлических плиток специального состава, терял неприятный запах. После этого пар, уже лишенный пахучих веществ, поступал в конденсатор, а полученный конденсат — в специальный резервуар чистой воды. Эту воду можно было с успехом употреблять для питья, приготовления пищи и мытья, после чего можно было снова повторить описанный процесс очистки.

Метод уже опробован, причем первым человеком, который отважился попробовать очищенную воду, был директор лаборатории, в которой был поставлен опыт. В течение шести дней он употреблял воду только из собственных отходов. Директор утверждает, что не чувствовал ничего, что бы напоминало ему происхождение воды.

Во время коротких космических путешествий описанный метод не имеет практического значения, ввиду небольшого запаса воды, которую необходимо взять с собой в дорогу. Другое дело — во время длительных космических полетов или пребывания например на Луне. В этом случае метод питания космонавтов водой в замкнутом цикле может оказаться весьма полезным, тем более, что попутно решается вопрос утилизации отходов.

 

ВНИМАНИЕ, МЕТЕОРИТЫ!

— Внимание, внимание! На нашем курсе рой метеоритов! Встреча произойдет через 70 секунд! Опасности нет, курс остается прежний — загремело в громкоговорителях главного отсека корабля.

Самый младший член экипажа, Збигнев Янчар, впервые проходящий практику космических полетов под руководством своего отца, выдающегося космонавта и астронома, начал обеспокоено листать страницы учебника космонавтики.

— Неужели рой метеоритов не опасен для нашего корабля? Ведь если наша скорость составляет 45 километров в секунду, а метеориты по-видимому летят с неменьшей скоростью, то…

Не успел он закончить фразу, как вдруг, в тишину кабины корабля ворвался неприятный шум, доносившийся снаружи. Это был тихий шелест, похожий на звук бесчисленного количества песчинок, сыплющихся на стальную оболочку корабля. Иногда среди равномерного шелеста можно было различить звуки ударов, как если бы в струе песка оказались камешки.

Профессор с улыбкой взглянул на сына.

— Вот мы и очутились в рое метеоритов, — сказал он. — Через минуту выйдем из него без всякого вреда.

Збигнев успокоился, но решил подробнее расспросить отца о метеоритах.

— Хорошо, но ведь наша скорость плюс скорость метеоритов составляет вместе около 90 километров в секунду. Ведь в этом случае удары даже очень мелких частиц должны повреждать стальную оболочку корабля. Ведь при такой скорости, при ударах об оболочку должна возникнуть температура в несколько миллионов градусов и давление порядка нескольких миллионов атмосфер, значит сталь должна мгновенно превратиться в газ и испариться. Так сказано в учебнике.

— Ты прав, но в учебнике говорится о метеоритах, диаметр которых равен примерно зернышку гравия; такие метеориты могут конечно повредить оболочку корабля. Но рой, с которым мы только что встретились, состоит из очень мелкой космической пыли, и называем мы эту пыль метеоритами только по аналогии, потому что так мы называем любые частицы материи, вращающиеся вокруг Солнца, Земли и других планет. Один из физиков (американец Гримингер) рассчитал прочность стальной оболочки в предположении, что суммарная скорость корабля и метеоритов равна 76 км/сек. Оказалось, что метеорит величиной с зернышко песка (то есть около 0,5 мм в диаметре) способен при ударе вызывать в оболочке космического корабля углубление не больше одного миллиметра. А поскольку толщина оболочки, как правило, превышает 3–5 мм, такой удар не представляет опасности. Конечно лучше с такими метеоритами не встречаться, но и особо опасаться тоже не следует. Другое дело, если произойдет встреча с метеоритом большого размера. Такой метеорит способен пробить оболочку корабля насквозь, разбить аппаратуру и убить людей, находящихся внутри.

— Ты, как будто, не очень боишься этого.

— Да. Но это не легкомысленность и не пустая бравада, а трезвая оценка степени опасности. К счастью, метеориты встречаются на пути космического корабля чрезвычайно редко, и тем реже, чем они больше по размерам. Если рой метеоритов или облако космической пыли попадаются на нашем пути довольно часто, то метеориты величиной, к примеру, с лесной орех весьма редки и в определенной точке космического пространства появляются не чаще, чем раз на несколько тысячелетий.

— Значит существует все-таки некоторый риск? Известно ли космонавтам, что надо делать для предотвращения таких нежелательных встреч?

— Ну, следует принять во внимание, что не все встречные метеориты движутся с большой скоростью по отношению к нашему кораблю. Рассуждая о таких встречах, мы предполагали худший случай, когда корабль летит прямо навстречу метеоритному рою. Однако, это случается весьма редко. Корабль в большинстве случаев встречается с метеоритами под некоторым углом, иногда идет в одинаковом с ними направлении, иногда метеориты ударяют в обшивку корабля под острым углом и скользят по ней. Кроме того, нам известно, что на протяжении года есть периоды, когда опасность встречи с метеоритами увеличивается. Уже изучены их пути, рассчитаны их орбиты. Астрономы разработали подробные карты метеорных потоков. Наконец, на всех космических кораблях есть радарные установки, которые заранее предупреждают о приближении к метеоритам, что позволяет своевременно уклониться от неприятной встречи.

— Я представляю себе, что метеоритная пыль, хотя и не сможет пробить обшивку нашего корабля, но может ее поцарапать и повредить. Если таких встреч будет много на нашем пути, обшивка может оказаться очень серьезно поврежденной.

— Это верно, но и такая возможность нами предусмотрена. Наш корабль располагает дополнительной защитой, похожей на щиты, которые находятся на расстоянии нескольких сантиметров от обшивки. Противометеоритный обтекатель может выйти из строя, но его легко заменить новым. Испытания обтекателей, которыми оборудованы искусственные спутники, показали, что стальная их конструкция повреждается микрометеоритами очень мало, около 30 миллимикронов в сутки (то есть на 30 миллионных частей миллиметра). Таким образом, износ обтекателя по всей его толщине может произойти только через несколько тысяч лет. Значит опасаться нечего.

— Да, но эти расчеты верны только по отношению к микрометеоритам.

— Конечно, но я уже говорил тебе раньше, что крупные метеориты, даже те, величиной с песчинку, встречаются в космосе весьма редко, и существуют способы их обнаружения и уклонения от встречи с ними. Должен добавить, что в период первоначальных попыток завоевания космоса ученые запускали множество зондов, чтобы определить размеры опасности. Измерительная аппаратура, установленная на первой советской космической ракете, отметила, что корабль, с общей площадью оболочки 50 квадратных метров, воспринимал удары микрочастиц размером 0,04 мм один раз на 200 секунд, причем царапины и углубления в оболочке не превышали 0,25 мм. Меньшие по размерам метеориты вызывали еще меньшие повреждения. Первоначально опасность со стороны метеоритов значительно переоценивалась. Некоторые считали опасность встречи с метеоритами столь большой, что предсказывали невозможность вообще каких-либо полетов в космос. Но результаты, полученные американскими учеными при помощи серии спутников Эксплорер 16, вращавшихся вокруг Земли в течение семи с половиной месяцев (с середины декабря 1962 года до конца июля 1963 года), показали, что опасность встречи с метеоритами в 10 000 раз меньше, чем предполагалось. Правда, Эксплорер 16, когда его выловили из океана, оказался пробитым в 64 местах, но пробоины были в очень тонких (тоньше человеческого волоса), металлических противометеоритных обтекателях, сделанных из полутвердого металла и установленных специально для исследования пробойной силы метеоритов. О том, насколько напрасными были первоначальные опасения, свидетельствуют и полеты советских космонавтов Титова, Поповича и Николаева, состоявшиеся в августе, то есть в месяце наибольшей плотности (в году) метеоритных роев. И несмотря на это ни корабль Титова, который 17 раз облетел вокруг Земли, ни корабли Поповича и Николаева, которые сделали соответственно 33 и 32 оборота, не были повреждены метеоритами. Следовательно, бояться нам нечего. Для нашего корабля никакие метеориты не страшны.

— Я вспомнил еще одно, — заметил сын. — У нашего корабля есть стальные обтекатели и прочная обшивка, но космонавт, которому придется выйти в открытый космос в одном скафандре, лишен такой защиты, и удары даже совсем маленьких микрометеоритов могут быть смертельно опасны для него.

— Браво, ты совершенно здраво рассуждаешь. Действительно, это слабая сторона нашей защиты против метеоритов. Например, может случиться, что несмотря на всю нашу предусмотрительность и осторожность, крупный метеорит пробьет обтекатель и повредит оболочку корабля. После постановки временной заплаты изнутри корабля, надо будет приняться за ремонт обшивки снаружи, или хотя бы произвести осмотр корабля, чтобы определить размеры и опасность повреждений. Один из нас должен будет выйти в открытый космос, и, привязав себя фалом к кораблю, осмотреть его обшивку. В этом случае один или несколько метеоритов, размером не больше песчинки или спичечной головки, легко могут пробить скафандр, и… несчастье налицо. Ведь скафандр изготовлен из ткани с легкой алюминиевой или пластмассовой оболочкой, и его очень легко повредить. Метеорит не только может насквозь пробить тело космонавта, но и вызвать взрыв кислорода, находящегося между слоями ткани, повредить обогревательную сеть и проводку сжатого воздуха. Но мы уже знаем, что вероятность встречи с метеоритами чрезвычайно незначительна. Таким образом, если бы подобная авария произошла во время встречи с роем метеоритов, можно будет несколько уклониться с курса, выйти из соприкосновения с роем и только после этого приступить к осмотру и ремонту корабля. Следует помнить, что рой — это совсем не группа метеоритов, летящих плотным потоком на расстоянии нескольких метров один от другого. Эти расстояния часто превышают десятки километров. Но, чтобы обезопасить себя на всякий, как говорится, пожарный случай, космонавты применяют защитную броню из очень твердой стали. Перед выходом наружу космонавт, если конечно существует реальная опасность встречи с метеоритами, прикрепляет эту броню к скафандру и делается похожим на рыцаря в средневековых доспехах. Такая броня есть и на нашем корабле. По секрету скажу тебе, что мы ее употребляли только один раз. Она так неудобна и громоздка, что космонавты очень неохотно пользуются ею.

 

ТЯЖЕСТЬ ОДИНОЧЕСТВА

— Случалось ли тебе, — продолжал профессор, — находиться в одиночестве в тесном помещении на протяжении нескольких дней, сознавая, что нет никакой надежды на скорое окончание этого состояния? Не случалось? Но ты наверное читал о людях, потерпевших кораблекрушение в море, которым приходилось в полном одиночестве, или в обществе нескольких товарищей блуждать по морю в течение многих дней? Или о полярных исследователях, которым приходилось в одиночестве или небольшой группой людей проводить долгие полярные ночи.

Но все это не может идти ни в какое сравнение с тем, к чему должен быть готов человек в космосе во время длительных, многомесячных и даже многолетних экспедиций на другие планеты, во время пребывания на орбитальной космической станции или на Луне.

— Ученые уже давно, — продолжал после минутного молчания отец Збигнева, — отдавали себе отчет в том, что из многих трудностей, с которыми встретится человек в космосе, проблема одиночества будет, пожалуй, одной из самых трудных. В этом они убедились во время экспериментов в специальных кабинах-тренажерах на Земле, и во время сравнительно кратких космических полетов. Уже на высоте 10 000 метров у пилотов самолетов появляется странное чувство оторванности, перехода в иной мир, полностью отличный от земного. Пилоту кажется, что Земля находится где-то в стороне, на огромном расстоянии, а если, кроме того, она закрыта облаками, чувство это доходит до предела. Ему кажется тогда, что он совершенно оторвался от Земли, потерял с ней связь, и остался один во всем мире. Есть пилоты, которым в это время начинает казаться, что они превратились в великанов. Такие мысли, как правило, появляются совершенно неожиданно. Среди летчиков этот момент получил название «рубежа». Чтобы вернуть себе психическое равновесие и избежать серьезной аварии, летчику приходится употреблять огромное усилие воли, а если это не удастся, ему грозит серьезное нервное расстройство.

Бывает, например, что летчик внезапно почувствует страх перед неизвестностью и не может сделать ни одного движения. Характерно, что «рубеж» бывает не только у малоопытных пилотов, впервые поднявшихся на большую высоту, но и у таких, которые многократно переживали это явление…

— Иногда, — продолжал профессор, — такого рода явления проходят сами по себе, но чаще летчику приходится спуститься вниз к Земле, чтобы почувствовать связь с нею. Во всяком случае, это психологическое явление удается преодолеть довольно быстро.

Во время первых полетов на Луну космонавты страдали бессонницей и переживали приступы необъяснимого страха. Это были первые симптомы «космической болезни». Правда, симптомы эти почти полностью исчезали при сближении с планетой, когда надо было заняться «прилунением», но через некоторое время, при длительном пребывании на поверхности Сребролицей Селены, симптомы эти возвращались с новой силой. Еще хуже обстояло дело на космических кораблях, летевших на Марс или Венеру. «Космическая болезнь» получила свое дальнейшее развитие. У космонавтов появлялась бессонница, чувство апатии и угнетения, нежелание двигаться, пропадал аппетит, но хуже всего, что у них появлялось равнодушное отношение к выполнению своих обязанностей. Если космонавт не умел вовремя взять себя в руки, или если его товарищи не помогли ему в этом, болезнь продолжала развиваться. Из состояния апатии космонавт внезапно переходил к сильному возбуждению; в припадке истерии он кричал, смеялся, плакал и даже силился уничтожить все, что ему попадалось под руку. А когда он на время успокаивался, появлялись галлюцинации. Перед его глазами возникали фантастические картины, ему казалось, что он попадает в страшные ситуации.

— Неужели против этой болезни нет лекарства?

— На борту всех космических кораблей находятся успокаивающие и снотворные средства, и космонавты хорошо знают их действие. Но бывают тяжелые случаи, когда средства эти не действуют, или действуют слабо. Не всегда можно давать большие дозы этих лекарств или применять их слишком часто — в большинстве случаев средства эти в крупных дозах ядовиты. Ты, конечно, знаешь, что медикаменты, особенно воздействующие на психику человека, иной раз приносят осложнения, поэтому при их дозировании нужна особая осторожность.

— А другие средства?

— Самое лучшее средство, применявшееся ранее и применяемое теперь — это правильный подбор кандидатов, обладающих определенной психической стойкостью. Прежде на это обращали меньше внимания, теперь же психическая стойкость кандидата в космонавты считается основным качеством. Любой кандидат должен отличаться стальными нервами, обладать сильным характером, железной волей, умением держать себя в руках в любых обстоятельствах. Физиологические качества космонавта, например здоровый организм и отсутствие каких-либо физических недостатков, хотя и имеют важное значение, однако отходят на второй план.

— Я хорошо помню свои переживания на Станции психологических испытаний, когда меня несколько раз гипнотизировали и вытягивали из меня все мои самые сокровенные мысли.

— Вот видишь. Всех кандидатов в члены космических экипажей просеивают сначала через частое сито неврологических и психических исследований. При этом обращают большое внимание на покладистость характера кандидата, на его умение жить в дружбе с людьми. Ведь часто бывает, что нервная система у человека находится в должном порядке, а жить в коллективе он не способен. Ведь умение жить в мире и согласии с товарищами, находясь длительное время в тесной кабине космического корабля, имеет решающее значение для успеха всей экспедиции. Что касается поведения космонавтов во время путешествия, то злейшим их врагом является безделье. Проблема безделья не существует при краткосрочных полетах, ибо космонавту приходится много работать. А вот во время длительных путешествий, или при пребывании на других планетах бездеятельность превращается в сложную проблему. К счастью, жизнь столь богата и интересна, в ней еще столько неисследованных сторон, что всегда можно найти себе занятие по душе, в особенности по углублению своих знаний. Поэтому космонавты, как правило, посвящают много времени различным областям знания. Кроме того, на космическом корабле, или на станции, всегда есть хорошая библиотека. Конечно, это не собрание тяжелых фолиантов — взять их с собой в космос нет возможности, — а коллекция микрофильмов. Есть также богатая фильмотека, позволяющая устраивать кинематографические сеансы, ну и, как правило, большая коллекция магнитофонных записей лучших музыкальных и вокальных произведений. Наконец, есть еще связь с Землей, на которой у каждого из нас осталась семья, близкие, и мы можем вести с ними беседу с расстояния многих миллионов километров. Иногда беседа по видеофону с кем-нибудь из близких оказывается лучшим лекарством против космической болезни.

 

НАДО ОБЛАДАТЬ ХОРОШИМ ЗДОРОВЬЕМ

— Зачем эта гимнастика? — спросил Збигнев у отца, увидев в его руках гантели.

— Чтобы дать работу мускулам, которым явно вредит мой сидячий образ жизни, — ответил профессор. — Человеческий организм нуждается в движении. Мускулы должны работать, в противном случае они ослабевают, и тогда снижаются физические и психические силы организма, чего мы, в условиях космического путешествия не можем допустить…

Профессор Янчар взглянул на большой хронометр, висящий над щитом управления, и убедившись, что гимнастика продолжалась положенные 10 минут, вытер ватой пот с лица и обратился к сыну:

— Вот теперь я чувствую себя лучше. Кровь быстрее циркулирует по сосудам, поставляя всем клеткам нужное количество питательных веществ и кислорода, уменьшилась опасность преждевременного одряхления и ослабления организма. Хочешь, я расскажу тебе, как один немецкий ученый физиолог изучал влияние бездеятельности на молодой, здоровый организм мужчины. Он выбрал одного из спортсменов и дал ему задание в течение четырех недель проводить регулярную тренировку, в основном бег на большую дистанцию. Потом вдруг положил его в кровать, приказал лежать и запретил ему вставать. Спортсмен находился все время под наблюдением, ему давали лучшую пищу, позволили заниматься умственным трудом и развлекаться, но категорически запретили какие-либо физические занятия. В таком положении спортсмен находился две недели. Каков же был результат? Спортсмен пополнел (его вес увеличился на 2 килограмма), но потерял прежнюю физическую выносливость. Сила его мускулов снизилась на 20 процентов. Несмотря на полноценное питание, в его организме уменьшилось количество белка, изменился химический состав крови, костей и мягких тканей, хуже стали работать все внутренние органы. Потребовалось несколько десятков дней, чтобы наш спортсмен вернулся в свою прежнюю форму, хотя излишний вес остался у него еще несколько месяцев.

Этот пример прекрасно иллюстрирует опасность нарушения общего равновесия организма в результате ослабления работы мускулов. В данном случае подтвердился основной закон физиологии, согласно которому всякий бездействующий орган вырождается. Впрочем, потеря работоспособности данного органа — это еще не все, надо упомянуть еще и другие последствия, значительно худшие. Установлено, что длительное бездействие, даже совсем здоровых людей, ведет к потере кальция в организме и, как следствие этого, к ослаблению костной системы, ухудшению работы сердца, мозга, легких, желудка, печени, почек и желез внутренней секреции. Как видишь, даже на космическом корабле нельзя длительное время находиться без всякого движения. Я по собственному опыту знаю, что если кто-нибудь из участников космического полета начинает лениться, отказываться от ежедневной физической зарядки, то быстро теряет хорошее самочувствие, у него появляется плохое настроение, уменьшается работоспособность.