При изучении биологически активных веществ различной природы и различного происхождения становится очевидной условность их разделения на медиаторы, обеспечивающие межклеточные связи, гормоны, передающие сигналы на более далекие расстояния, феромоны, являющиеся средствами общения между организмами, и токсины, служащие животным для защиты.

Анализ строения биологических регуляторов показывает, что одно и то же соединение у различных видов животного царства может выполнять разную роль. Люлиберин в системе гипоталамус – гипофиз выступает в роли гормона, в то время как тот же пептид в симпатическом ганглии лягушки является нейромедиатором. Феромон спаривания у дрожжей α-фактор связывается с рецепторами гипофиза млекопитающих и при действии на гонадотропы в тканевой культуре вызывает секрецию лютеинизирующего гормона. Изучение его химического состава показало, что он имеет с люлиберином обширную гомологию последовательностей аминокислот.

Структурная гомология играет важную роль во взаимодействии биостимулятора с рецептором, в то время как физиологический ответ определяется функциональной системой, на которую он действует.

В 1931 г. фон Эйлер и Гэддум обнаружили в экстрактах мозга и кишечника животных вещество, которое при введении наркотизированному кролику вызывало снижение кровяного давления и усиливало сокращение изолированного кишечника. Его назвали «вещество Р». В дальнейшем было установлено, что оно является нейромедиатором чувствительных нейронов и содержание его в задних (чувствительных) корешках спинного мозга превышает в два раза концентрацию в передних корешках. Структура вещества была определена через 40 лет, и оказалось, что она сходна со строением таких пептидов, как физалемин, выделенный из кожи южноафриканской лягушки, и эледозин, обнаруженный в слюнных железах осьминогов.

Арг—Про—Лиз—Про—Гли—Гли—Фен—Гли—Лей—Мет—NH 2

Вещество Р

Пироглу—Ала—Асп—Про—Асп—Лиз—Феп—Три—Гли—Лей—Мет—NH 2

Физалемин

Пироглу—Про—Сер—Лиз—Асп—Ала—Фен—Илей—Гли—Гли—Лей—Мет—NH 2

Эледозин

Эти три вещества имеют сходную структуру, включающую гомологичные участки пептидов, в то время как получены они из разных источников и выполняют разные функции.

В качестве другого примера можно привести пептид бомбезин, который был выделен из кожи европейской лягушки Bombina bombina, а затем обнаружен в Р-клетках слизистой желудка и двенадцатиперстной кишки млекопитающих. Бомбезин выполняет функцию освобождающего фактора при выделении гастрина и холецистокинина. В связи с этим он вызывает стимуляцию желудка и поджелудочной железы, сокращает желчный пузырь и усиливает движение кишечника. С помощью иммунологических методов исследования было установлено, что в нервных клетках коры головного мозга, гипоталамуса, гипофиза, шишковидной железы и мозжечка, кроме обычных гормонов органов пищеварения, содержится и бомбезин. Он не имеет себе равных среди известных веществ по способности воздействовать на терморегуляцию. При введении его в гипоталамическую структуру мозга крысы при 4° происходит снижение температуры тела – она оказывается на несколько градусов ниже, чем обычно у крысы. При 36° температура тела повышалась. Этот пептид был эффективен только при введении в гипоталамус, там, где расположен центр терморегуляции. С этим свойством, вероятно, связано его участие в зимней спячке некоторых животных. Введение бомбезина в желудочки мозга крысы вызывало изменение поведения и снижение болевой чувствительности. Кроме того, он увеличивает содержание глюкозы в крови, повышает концентрацию глюкагона, снижает уровень инсулина и угнетает потребление пищи голодными крысами. Это единственный пептид, который регулирует чувство насыщения, так как он влияет не на частоту приема пищи, а лишь на съеденное количество. Поступление бомбезина в желудочки мозга препятствовало возникновению язв желудка при стрессе. При этом снижалась секреция соляной кислоты и возрастало выведение слизи. Бомбезин стимулирует также секрецию соматотропного и лактотропного гормонов. Его свойства позволяют предполагать, что он является нейромедиатором в нервных структурах.

В зарубежном журнале «Biochem. J.» (1981. Т. 197, № 3) опубликовано сообщение, что из голов падальной мухи Calliphora vomitoria выделено вещество, подобное полипептиду поджелудочной железы млекопитающих, а в другом иностранном журнале (Insect. Biochem. 1977. Т. 7. № 5 – 6) описаны белковые фракции, выделенные из жуков Adalia bipunctata, бабочек Galleria mellonella и пчел, которые по своим свойствам близки к соматотропному гормону сыворотки крови быка.

В 1978 г. К. Грос, М. Лафон-Казал и Ф. Дрей при помощи радиоиммунологических методов обнаружили только в центральной нервной системе перелетной саранчи пептид, близкий к лей-энкефалину, а в нижнечелюстных мышцах, яйцеводах и также в центральной нервной системе той же саранчи – пептид, родственный мет-энкефалину. Другие ученые – Г. Дуве и А. Тоуп (Cell. Tissue Res. 1983. Т. 233, № 2) установили в нервных образованиях некоторых видов мух и гусениц наличие веществ, иммунологически сходных с бычьими нейропептидами и нейрофизином, α- и β-эндорфином, вазопрессином и вазотоцином.

В журнале «Cell. Tissue Res.» (1983. Т. 232, № 2) приведены сведения о том, что нейросекреторные клетки мозга определенных видов насекомых дают иммунологическую реакцию с антисыворотками к В-цепи инсулина, соматостатину, концевым пептидам глюкогона, секретину, энкефалину, эндорфинам и кальцитонину.

Одно и то же вещество может выполнять различную функцию в зависимости от вида животного.

Интересны, например, свойства пептидного гормона пролактина, вырабатываемого в гипофизе. В процессе эволюции он приобретает новые функции. У рыб и земноводных он принимает участие в осморегуляции, у птиц он вызывает «материнское поведение», а у млекопитающих стимулирует рост молочной железы и секрецию молока. Существует мнение, что роль и значение пролактина меняются и в течение внутриутробного развития.

Была обнаружена и существенная особенность гормона кальцитонина у лососей (у млекопитающих этот гормон вырабатывается в щитовидной железе). Оказалось, что он обладает значительно более высокой активностью, чем гормон сухопутных животных. Ученым из Канады, США и Швейцарии удалось установить последовательность аминокислот в молекуле кальцитонина лосося и осуществить его синтез. В настоящее время швейцарская фирма «Сандоз» производит его выпуск под названием «кальцимар». Имеется сообщение, что еще более высокой активностью обладает кальцитонин угрей.

В настоящее время установлено, что одно и то же биологически активное вещество могут вырабатывать различные виды животных. Например, некоторые яды амфибий и рептилий химически очень близки. Буфоталин, офиотоксин, кроталотоксин содержат одинаковое число углеводных атомов кислорода и водорода.

Тетродотоксин, выделенный из половых продуктов и печени рыбы фугу, обнаружен также в яйцах калифорнийского тритона. Очень близкие по химической структуре и механизму действия соединения найдены в слюнных железах одного из видов осьминога, в кожных железах некоторых лягушек, в моллюсках, а также у 40 видов рыб, даже у неядовитых. У всех этих животных тетродотоксин содержится практически во всех тканях и органах, по больше всего его обнаружено в половых клетках и печени.

Стероидный токсин жабы – буфогенин очень близок по структуре к самандарину, входящему в состав защитного секрета саламандр. Однако действует он не на сердце, а на нервную ткань. Аналогичным действием обладает нейротоксин стероидной природы, выделенный из голотурий, – голотурин. Стероиды, родственные буфогенинам жаб, были выделены в 1978 г. Эйснером из некоторых видов светляков. Среди метаболитов морских звезд обнаружены инсулиноподобные вещества, снижающие концентрацию глюкозы в сыворотке крови экспериментальных животных.

Высокая концентрация естественного нейрогормона млекопитающих – серотонина была обнаружена в ядовитых выделениях различных животных. Серотонин входит в состав секрета кожных желез жаб и токсина медуз. Богатым источником стероидных соединений являются жуки-плавунцы, которых часто можно встретить в стоячей воде прудов и озер. Белая жидкость, выделяющаяся из отверстий проторакальных желез этих жуков, содержит высокую концентрацию 11-дезоксикортикостерона. Это вещество является промежуточным продуктом биосинтеза альдостерона – гормона, регулирующего у высших позвоночных животных водно-солевой обмен. У плавунцов выделяемое вещество не принимает участия в гормональной регуляции, а играет защитную роль. У некоторых видов жуков содержание гормона может достигать 1 мг. Подсчитано: чтобы добыть то количество гормона, которое вырабатывает один жук, пришлось бы собрать на бойне надпочечники от 1200 особей крупного рогатого скота. Попадая в больших дозах в организм естественных врагов плавунцов – крупных рыб, 11-дезоксикортикостерон приводит к быстрому нарушению водно-солевого и осмотического баланса, вызывает состояние шока, во время которого жук спасается. Точкой приложения гормона являются почечные канальцы (восходящее колено петли Генле), где он вызывает усиленное выведение ионов калия и фосфора и замедляет выход натрия, хлоридов и воды. Плавунец может справиться с рыбой, которая раза в три-четыре больше его. Рыбка длиной в три-четыре сантиметра погибает через час, если в сосуд, где она плавает, капнуть только одну каплю беловатой жидкости, которую выделяет жук. Есть плавунцы, которые, кроме соединений, подобных кортикостероидам, синтезируют также половые гормоны млекопитающих: тестостерон, дигидротестостерон, эстрадпол и эстрон.

Повышенное содержание гормонов надпочечников млекопитающих: адреналина, норадреналина и дофамина – удалось установить в кожном секрете жаб.

Как видно из приведенных фактов, гормоны могут не только выполнять роль регуляторов жизненных процессов, но и служить средством защиты. Определенное значение здесь может иметь повышенная их концентрация в организме одного вида по сравнению с другими, как у жука-плавунца. Однако чаще в организме происходит выработка таких биологически активных веществ (или гормонов), которые отсутствуют в другом организме и в силу этого оказывают в зависимости от дозы токсическое или фармакологическое действие. Например, доказано, что токсичностью обладает кровь (или гемолимфа) многих представителей животного мира. Некоторые насекомые, например, выделяют гемолимфу при опасности как средство защиты. Причем биологический эффект обусловливают различные вещества, специфичные для каждого вида. У божьих коровок это кокцинеллин и пропилеин, у колорадских жуков – летинотарзин, у жуков-нарывников – кантаридин, у многих других животных – стероидные соединения. Чаще всего природа этих веществ, содержащихся в «крови», еще не изучена. Однако сам факт возможности биосинтеза в организме некоторых животных биологически активных веществ, поступающих в кровь и являющихся естественными продуктами обмена, уже не позволит воспринимать резко отрицательно некоторые суждения, дошедшие до нас из прошлых веков. Может быть, приведенные ниже, казалось бы дикие, цитаты имеют научное обоснование. Квинт Серен Самоник рекомендовал «кровь черепахи при выпадении волос и пятнах, возникающих на голове, кровь зайца для выведения веснушек, кровь ласточки в сочетании с мукой фимиама для лечения эпилепсии, для удаления бородавок – кровь лацерты» (название «лацерта» имеет два значения — род ящериц и разновидность скумбрии). «Кровь лягушки, небольшой по размерам и с голосом хриплым и тихим», рекомендовал для прекращения роста волос. Такие же наставления давал Павел Эгинский (625 – 690 гг.) от парши: «...из черепахи медлительной взятая кровь помогает». Для уничтожения волос Квинт Серен Самоник советовал:

«Вырвал ты волос, – намажь это место кровью от птицы, Что перепончатой кожей трепещет, как будто крылами. Или же кровью клеща, что оторван от черной собаки».

«Если кровью кошки оросить хлеб и съесть – это помогает при лихорадке», «...заячья кровь чистит кожу и сгоняет веснушки», — читаем мы в книге «Источник здравия» (Пан Сум). И далее: «В марте поймать зайца и гонять его, пока не утомится, заколоть, собрать кровь, высушить, истолочь в порошок. Давать 1 – 2 чайных ложки в молоке детям от родимца один раз в день. Взрослым от падучей болезни – только доза больше», «... кровь куропатки, если впускать в глаз свежей, сгоняет бельмо». На Бойковщине рекомендовали кровь крота добавлять в купель детям, которые имели кожные высыпания, кровью голубя натирать бородавки. В книге П. Сидира «Магические растения» имеются следующие строки: «Среди всех растений, которыми пользуется дьявол для извращения чувств своих рабов, нижеследующие занимают первое место: корень белладонны, кровь летучей мыши или удода, аконит или борец желтый, сельдерей, могучник пятилистный, касатик водяной, петрушка, опиум, белена, вех ядовитый и различные сорта мака». Как видим, помимо ссылок на изученные в настоящее время растения, которые могут оказывать влияние на психику человека, указывается также на кровь летучей мыши и удода. Действительно ли в крови этих животных содержатся какие-то нейротропные вещества, ответить трудно.

Читать в наш просвещенный век приведенные выше изречения без снисходительной улыбки невозможно. Конечно, всем ясно, что никто никогда не будет следовать приведенным выше рекомендациям. Однако, вероятно, неосмотрительно и пренебречь опытом, прошедшим через века, не попытаться его использовать применительно к нашему уровню жизни. Многие «дикие» рецепты существуют тысячелетия и прошли испытания жизнью. Правда, не всегда они настолько эффективны, чтобы занять достойное место в арсенале современных лекарственных средств. В том и состоит задача фармакологов: пренебрегая мистическим налетом, исследовать рациональное зерно старых рекомендаций, установить химическую природу действующих начал и, синтезировав их, передать практическому здравоохранению.

Продолжая дальше наш рассказ, необходимо отметить, что идентичные биологически активные вещества животных обнаруживаются и в растительном мире. Такое явление объяснить пока трудно. Наиболее подробно оно, вероятно, изучено для половых гормонов.

Первое сообщение о присутствии женских половых гормонов в семенах финиковой пальмы и гранатового дерева было сделано в 30-х годах Бутенантом и Джакоби. С. И. Ланов в книге «Лизаты и гравидан» (1936) приводит сведения, согласно которым из прорастающих семян пшеницы, сахарного бурака, их дрожжей, цветов вербы были выделены вещества, вызывающие течку у кастрированных мышей. Он также отмечает, что Ашгейм и Хольхвед выделили из торфа, бурого угля, каменного угля и нефти вещество, аналогичное фолликулину, а другие исследователи такое же вещество выделили из злаков растений, муки и риса. Из лука получено вещество, названное лютеоэстрогеном, которое по биохимическим свойствам близко к хориальному гонадотропину и витамину Е. В то же время из мочи человека выделено от 1 до 3 мг ауксина – гормона растений.

Подобные сообщения, к сожалению, были встречены со скептицизмом. Методы анализа в то время были малочувствительными и неточными. И только с применением современных чувствительных методов эти данные удалось подтвердить, и теперь они уже не подвергаются сомнению.

Ниже приведена таблица по содержанию (в различной концентрации) половых гормонов человека в некоторых растениях (по: Хефтман, 1975; Янг и др., 1978).

Соединение Растение Концентрация, мг/кг
Эстрон Семена и цветы финиковой 0,40
пальмы 3,3
Семена гранатового дерева 17,0
Семена яблони 0,1
Эстриол Цветы ивы 0,11
17β-эстрадиол Семена фасоли 0,1
Тестостерон Пыльца сосны 0,08
Андростендион '' 0,59

Наличие эстрогенов в растениях объясняет нарушение менструального цикла у коров или овец после приема этих растений внутрь. Обладающих подобными свойствами растений было обнаружено довольно много: луковицы тюльпанов, чеснок, подсолнечник, кофе, петрушка, картофель, овес, ячмень. Удалось установить, что эстрогенный эффект растений обусловлен не только наличием половых стероидов, но и другими соединениями. Было предложено назвать их «фитоэстрогены».

В 1960 г. внимание исследователей привлекло растение семейства бобовых, корни которого женщины Бирмы и Таиланда использовали в качестве абортивного средства. Было выделено его активное начало, которое по строению напоминало структуру природного женского гормона эстрона. Выделенное вещество также было активно, как 17β-эстрадиол, при введении подкожно и не теряло своих свойств при приеме внутрь. Его активность в три раза выше синтетического соединения диэтилстильбестрола, широко используемого в медицине. Это соединение получило название «мирэстрол».

Открытие других фитоэстрогенов связано с событиями, происходившими в Австралии в 60-х годах. В эти годы овец выпасали дольше, чем обычно, на пастбищах где произрастал один из видов клевера. Вскоре было обнаружено, что плодовитость овец снизилась более чем на 70%. Удалось установить, что стерильность вызывали два изофлавона, содержащихся в клевере, – генистеин и формононетин, которые также имели структурное сходство со стероидным ядром женского полового гормона.

В дальнейшем выделили еще одно соединение – кумэстрол – из люцерны, обладающее в 30 раз более высокой активностью, чем предыдущие фитоэстрогены.

Обнаружение веществ эстрогенной природы в растениях позволило, естественно, предположить, что они не просто там накапливаются, а принимают участие в жизнедеятельности растений. Проведенные эксперименты показали, что обработка эстрогенами и андрогенами (мужскими половыми гормонами) стимулирует прорастание семян и их рост, способствует развитию цветков.

Явление, которое пока трудно объяснить, было обнаружено при обработке растений гормонами щитовидной железы. Ученые Лимского университета в Перу изменяли под влиянием экстрактов щитовидной железы окраску цветков. А сотрудники кафедры биологии и генетики 2-го Московского медицинского института установили, что под влиянием тироксина на 22% увеличивается длина корня посевного гороха и на 150 – 267% – длина побегов. Развитие растений при этом происходит быстрее.

Предполагают, что фитоэстрогены играют важную экологическую роль для птиц, которые кормятся бобовыми растениями. В годы с большим количеством осадков и высокой урожайностью растения содержат относительно мало изофлавонов, обладающих эстрогенной активностью, и кладка яиц происходит нормально. В неурожайные, засушливые годы растения становятся богаче фитоэстрогенами и количество яиц в кладках уменьшается. Происходит саморегуляция рождаемости в зависимости от пищевых ресурсов,

Другие стероидные соединения млекопитающих — некоторые гормоны коры надпочечников также были обнаружены в растениях. Так, минералкортикоидное вещество удалось выявить в растении солодке голой. Голландский врач Д. Ререрс в 1948 г. обнаружил, что назначение препаратов этого растения в больших дозах (так же как гормоны коры надпочечников) способствует выведению из организма человека ионов калия и задержке ионов натрия, хлора и воды. В дальнейшем было установлено, что эффект обусловлен глицирризиновой кислотой, которая состоит из двух молекул глюкуроновой кислоты, соединенных гликозидной связью со стероидной структурой, сходной со строением гормонов коры надпочечников. Назначение глицирризиновой кислоты больным Аддисоновой болезнью, когда наблюдается недостаточная функциональная активность надпочечников, оказывало нормализующее действие на водно-солевой обмен.

Еще один пример такого единства животного и растительного мира был обнаружен в 60-х годах, когда проводились поиски путей синтеза нового класса биологически активных веществ, выделенных из семенной жидкости, – простагландинов. В 1969 г. Винейром и Спраггинсом из Университета штата Оклахома было открыто большое количество простагландинов в горгонариевых кораллах. Открытие простагландинов в живых организмах само по себе не ново. Удивительным было то, что их содержание в кораллах оказалось исключительно высоким (1,5% сухого веса). Это позволило использовать горгонарии в качестве источника получения этих соединений. Простагландин А2, выделенный из кораллов, физиологически неактивен, но химическим путем легко превращается в активную форму. Это открытие произвело сенсацию и в начале 70-х годов привело к созданию нескольких крупномасштабных научно-исследовательских проектов.

Интереснейшим событием в истории биологии является открытие в растениях веществ, обладающих активностью ювенильного гормона насекомых. Однажды известный исследователь Ч. Вильяме пригласил работать в Гарвардский университет биолога К. Слэму из Чехословакии для культивирования клопа-солдатика. Однако все попытки добиться нормального развития клопов, которое успешно проводилось на родине ученого, закончились неудачно. Метаморфоз останавливался на пятой личиночной стадии. При неоднократных поисках причин неудачи выяснилось, что, переехав в Гарвард, К. Слэма заменил ватманскую фильтровальную бумагу для выстилания чашек Петри при культивировании насекомых на бумагу производства США. После применения «неамериканской» бумаги рост и развитие начали протекать нормально. В дальнейшем удалось установить, что все виды бумаг производства США обладают высокой ювенильной активностью, в то время как бумага европейского и японского производства не проявляла подобных свойств. Было высказано предположение о существовании специфического «бумажного фактора». Выяснилось, что в Америке бумагу производят в основном из бальзамической пихты, которую в Европе не используют. Обнаружилось, например, что печатные страницы журнала «Science» обладают ювенильной активностью, а у журнала «Nature» такие свойства отсутствуют. Последний журнал печатался на бумаге из другой древесины. В последующем удалось выделить из бумаги вещество ювабион –структурный аналог гормона насекомых.

Не менее интересное открытие связано с другими гормонами насекомых, с гормонами линьки: α-экдизоном и экдистероном. В 1966 г. японский ученый К. Наканиси со своими сотрудниками изучал популярное в восточной медицине растение подокарпус. Они выделили из него четыре родственных соединения. Каково же было их удивление, когда после установления структуры одно из них оказалось похожим на α-экдизон. Биологические испытания подтвердили, что это вещество обладает свойствами гормона линьки. После описанного открытия началось интенсивное исследование других растений. В настоящее время число видов растений, в которых обнаружены гормоны насекомых, приближается к сотне (например, в папоротниках, черемухе, ясене). Оказалось, что содержание этих гормонов в представителях флоры в сотни тысяч раз больше, чем у животных.

И еще одно важное для медицины событие связано с гормонами насекомых. В настоящее время в аптеках продается экстракт маральего корня под названием «экстракт левзеи». Он является тонизирующим средством, помогающим при функциональных расстройствах нервной системы, умственном и физическом переутомлении. Свое название «маралий корень» растение получило после того, как люди заметили, что уставшие и ослабленные маралы выкапывают корни левзеи из-под опавших листьев и съедают их. Это возвращало им силы. Так вот, доктор химических наук Н. К. Абубакиров со своими сотрудниками установил, что в состав этого растения входит гормон линьки насекомых – экдистерон и, вероятно, он оказывает лечебное действие.

Иногда ядовитость насекомого обусловлена теми биологически активными веществами, которые поступают с пищей (с растениями). Так, гусеница бабочек данаид с острова Тринидад содержит сильные сердечные токсины – узарегинин и калотропагенин. Считают, что они попадают в организм насекомых из растений, служащих кормом. Токсины растений также часто накапливаются в организме кузнечика.

В то же время в растениях обнаружены вещества, которые у животных выполняют роль феромонов. Пахучее соединение, оказывающее половое возбуждение у кабана – 5α-андростан-16-ен-3α-он, близкое по структуре мужским половым гормонам – андростерону и тестостерону – и обладающее сильным мускусным запахом, было обнаружено в следовых количествах порядка 8 нг на 1 г сырой массы в корнях пастернака и стеблях сельдерея. Эти результаты получены путем радиохимического анализа с применением газовой хроматографии и масс-спектроскопии. Не это ли вещество обосновывает рекомендации старых врачей применять указанные растения в качестве средств, повышающих половое влечение.

Одно из пахучих веществ (играющих важную роль во взаимоотношениях млекопитающих) – триметиламин, обладающее сильным рыбным запахом, было выделено из менструальной крови женщин и секрета анальных желез рыжей лисицы. Это же соединение удалось обнаружить в 1956 г. Кромвелю и Рихардсону в растении марь вонючая. Название этому растению было дано еще Линнеем за отвратительный запах, который оказывал сильный возбуждающий эффект на собак.

Половое возбуждение таракана американского вызывают не только природные женские феромоны, но и соединение, выделенное из голосеменных растений, – Д-борнилацетат, которое активно в концентрации 0,07 мг/см². Может быть, наличием феромонов можно объяснить привлекающие и отпугивающие свойства определенных растений для некоторых животных. Известно, например, что некоторые растения своими запахами привлекают насекомых. Рыжих тараканов, прусаков, привлекают метаболиты зубровки, кориандра, моркови, а сильно отпугивают зверобой, хмель, пастернак. Клопов в домах издавна отпугивают папоротником. Растение чернокорень называют в народе «крысогон», так как крысы немедленно покидают те места, где положено это растение. Бузина отпугивает мышей. Ею пересыпают скирды, кладут в амбары, обвязывают деревья.

В древнерусских книжных складах везде развешивали пучки горькой полыни, которая, как считали, отпугивает тлей и червей. У Даля описан совет, как истребить клопов: «В комнате кладут траву печного ореха Lapidium ruderale, к которой все клопы с жадностью бегут и тут же издыхают».

Можно привести еще примеры, когда биологически активные вещества синтезируются как некоторыми видами животных, так и растениями. Стероидный токсин жабы – буфогенин очень близок по структуре к растительным сердечным гликозидам и так же, как они, оказывает выраженное влияние на сердце. Вайленд с сотрудниками обнаружили в некоторых видах ядовитых грибов, которые средневековые скандинавские воины – берсерки – ели перед боем, другой токсин жаб – буфотенин (5-оксидиметилтриптамин), являющийся продуктом метилирования серотонина. Он вызывал психические нарушения, приводил в неудержимую ярость. Буфотенин был также обнаружен в семенах одного из южноамериканских растений Mimosacee piptadenja, нюхательный порошок из которого (или напиток) местные воины применяли в качестве психостимулятора перед боем.

В 1986 г. в одном из журналов Академии наук США появилось сообщение, что в головном мозге млекопитающих обнаружена абсцизовая кислота, которая в растениях выполняет роль гормона, управляющего синтезом нуклеиновых кислот.

Сотрудники Тихоокеанского института биоорганической химии ДВО АН СССР сделали сообщение в журнале «Биоорганическая химия» (1980. № 6) о том, что из трепанга были выделены тритерпеновые гликозиды – стихопозиды, сходные с панаксозидами, полученными из женьшеня. Имеются также сведения, что из кораллов Palythoa tuberculosa выделили вещество микоспорин, которое ранее находили только в грибах. По химическому строению пурпур очень близок к синему индиго, который получают не из моллюсков, а из сока листьев растения индигофера.

В личинках мух удалось установить наличие алантоина, который ранее находили в растении окопник.

У растений и животных имеются также общие защитные токсические вещества. Некоторые из них представлены в приведенной ниже таблице (по: Дж. Харборн, 1985).

Токсины Животные Растения
Алкалоид анабазеин Яд муравьев Aphaenogaster Листья табака Nicotiana
Цианогенные гликозиды линамарин и лотаустралин Защитные цианиды моли Zygaena и бабочки Heliconius Токсины клевера, ледвенца и других растений
Гидрохинон Защитные вещества плавунца Dytiscus Токсины колючек Xanthium canadense
Терпеноид Р-селинен Вещество из личинки чешуекрылого Battus polydamus Вещество из листьев сельдерея
5-гидрокситриптамин Андроконии медведицы Actia caja Жалящие волоски крапивы

Приведенные факты общности биологически активных веществ у животных и растений пока единичны, однако со временем наверняка их будет больше. Уже возникла наука экологическая биохимия, которая занимается систематизированием этих данных.

Царь Берендей из оперы Римского-Корсакова «Снегурочка» начинает свою каватину словами: «Полна чудес могучая природа...» Чудеса как незнание наука превращает в знание и затем указывает пути их использования.

Уже сейчас в медицине применяется большое количество биологически активных веществ животного происхождения, а накопленные в процессе исследований данные позволят еще больше расширить арсенал лекарственных средств. Огромное количество исследований еще предстоит провести. Необходимо проверить те наблюдения, которые оставили для нас ученые древности и средневековья. Их стремились донести до нас лучшие специалисты в области медицины того времени, и пренебрегать ими, вероятно, не следует. И. П. Павлов писал: «...наша академическая медицина, что касается до терапевтических средств, широко черпала из народной медицины». Мы не можем в настоящее время дать положительное или отрицательное заключение об эффективности многих таких средств. Часто просто высказывается умозрительное отрицательное суждение, основанное не на экспериментальных данных, а лишь на эстетической несовместимости старых рекомендаций с современными методами лечения. Французский историк Ж. Жорес призывал: «Возьмем из прошлого огонь, а не пепел». И это предстоит сделать ученым нашего времени. Отбросив все ненужное, необходимо научиться использовать на современном уровне рациональное зерно старинных рецептов.

Как видно из изложенных в книге материалов, фармакологическая активность препаратов животного происхождения и выделенных из них соединений может определяться уже известными веществами, которые и раньше использовал человек, получая их из других источников. Но большинство таких веществ специфичны лишь для определенных видов животных, выполняют в их организме роль гормона, феромона или защитного токсина.

В некоторых случаях лечебный эффект может оказывать специфический продукт обмена животного организма, отсутствующий в организме человека. Это имеет место, например, при использовании свиной желчи.

Кроме того, животные служат источником получения некоторых биологически активных веществ, которые у людей выполняют важные физиологические функции. Эти природные регуляторы жизнедеятельности организма возникли в ходе эволюции живой природы в течение миллиардов лет. Они обеспечивают функционирование различных регуляторных систем: генетической, эндокринной, иммунной, нервной и других. Это особые молекулы химических соединений, являющиеся продуктами метаболизма определенных клеток. Их ценным свойством является высокая специфичность и способность оказывать эффект в очень низких концентрациях. Кроме того, они обладают низкой токсичностью и не накапливаются в организме. Продукты их распада являются естественными продуктами обмена. Одним из существенных недостатков таких веществ является кратковременность действия. Например, период полураспада пептидных гормонов измеряется десятками секунд. Поэтому ученые химики-биоорганики поставили перед собой цель синтезировать аналоги природных биорегуляторов, селективная способность которых выше, а продолжительность пребывания в живых организмах па несколько порядков больше, чем у природных веществ. Важный вклад в разработку этой проблемы внесли сотрудники Института органического синтеза Академии наук Латвийской ССР. В этом институте впервые в СССР осуществлен полный химический синтез многих пептидных соединений. Необходимо отметить, что пептидный синтез относится к сложнейшим процессам получения органических соединений, состоит из многих стадий в зависимости от величины пептидной цепи. Например, процесс синтеза инсулина состоит из около двухсот стадий. Результаты, полученные химиками-биоорганиками, являются наглядным примером того, как должна решаться проблема использования природных соединений.

* * *

Заключить книгу мы хотим словами французского физика Пьера Оже, которые, вероятно, наиболее точно характеризуют проблему использования биологически активных веществ природного происхождения в медицине: «Когда наука переживает период стремительного наступления, ученые смело бросаются вперед, проникая отдельными отрядами далеко в глубь неисследованных территорий. В это время вся энергия используется на дальнейшую разведку и не хватает времени для более подробного исследования и закрепления завоеванных областей. При этом кое-где остаются очаги сопротивления, наличие которых, однако, нисколько не умаляет силы победителей... Случается, однако, что эти крепости противостоят многочисленным штурмам и долго сохраняют свою независимость в покоренной стране. Они всем известны, но их оставляют в покое, так как игра не стоит свеч. Старые солдаты, проходя мимо, указывают на них новобранцам скорее для забавы, чем с целью побудить их вновь заняться исследованием. Однако эти заброшенные области науки часто таят секреты, ведущие к новым важным завоеваниям».