В последние годы подслушивание разговоров с помощью радиомикрофонов получило заметное распространение как в бизнесе, так и в быту. На радиорынках сегодня можно без труда приобрести различные «жучки» любой степени сложности. Обнаружить работающие радиомикрофоны можно с помощью приемников (сканеров), «просматривающих» электромагнитное излучение в широкой полосе частот — от килогерц до гигагерц.

Такие приемники обычно весьма дороги. Но на определенном уровне эту проблему удается решить и с помощью более простых устройств — сигнализаторов и индикаторов наличия высокочастотного поля.

Индикатор высокочастотного радиоизлучения является интересным и полезным прибором, с помощью которого удобно «осязать» состояние электронного изделия или помещения для обнаружения ВЧ излучений.

В этой главе описаны несложные устройства, позволяющие обнаруживать каналы утечки информации и демонстрирующие способы защиты от утечки информации, системы для предотвращения проникновения к охраняемому объекту, использующие различные физические принципы.

Представлены схемотехнические решения, как на доступных дискретных элементах, так и на специализированных микросхемах.

Схема № 1. Рассмотрим для начала простой идикатор поля, который представил на сайте (aka Viper). Достоинством схемы является ее простота. Но этой схеме присущ очень большой недостаток, а именно низкая фильтрация на входе (рис. 4.1).

 Примечание.

Из-за низкой фильтрации на входе индикатор реагирует даже на электрическую проводку в помещении, к тому же он имеет очень низкую чуёствительность (порядка 50 мВ), поэтому маломощные передатчики находить затруднительно.

Рассмотрим работу принципиальной схемы. Сигнал, принятый антенной WA, детектируется диодом VD1, а выделенный низкочастотный сигнал усиливается микросхемой DA1. Питание микросхемы однополярное. Коэффициент усиления регулируется переменным резистором R5. На выходе устройства подключены стрелочный индикатор для визуального контроля уровня и излучения или головные телефоны для работы в режиме монитора.

Рис. 4.1. Схема простого индикатора поля

Стрелочная измерительная головка должна быть с током полного отклонения 1 мА и сопротивлением рамки не менее 1 кОм. Микросхему желательно использовать с полевыми транзисторами на входе, такую как К140УД8.

Диод VD1 должен быть обязательно германиевый, типа Д9, ГД 507. Антенна WA — медйый провод длиной 30 см.

Схема № 2. Индикатор поля на двух микросхемах, схема которого представлена на рис. 4.2, немного сложнее по конструкции, но значительно удобнее в работе. Прибор удобно использовать для контроля за работой и настройки маломощных передающих устройств, работающих в широком диапазоне частот. Схему также представил на сайте (aka Viper).

Рабочая частота составляет 20—1300 МГц, чувствительность — 1 мВ, пределы локализации лежат в пределах 0,05—7 м. Напряжение питания 4,5–9 В, а ток потребления не превышает 8 мА. Прибор имеет телескопическую антенну.

Рис. 4.2. Схема простого индикатора поля

Это устройство предназначено для локального поиска радиозакладок. Его отличительными особенностями являются:

— простота повторения;

— надежность;

— малые габариты.

Примечание.

И этот прибор имеет недостаток — немного реагирует на посторонние излучения радиоэфира от телерадиопередающих станций, радиотелефонов. Но этот недостаток с лихвой компенсируется простотой и дешевизной индикатора.

Входной сигнал, наведенный телескопической антенной, поступает на входной усилитель ВЧ, построенный на транзисторе VT1, и далее, через фильтр C1, L1, СЗ на детектор-компаратор DA1.

Порог включения компаратора устанавливается резистором R5. Сигнал компаратора с выхода 6 через инвертор DD1.3 и ключ VT2 управляет генератором прямоугольных импульсов на элементах DD1.4, DD1.5 с частотой 1 Гц, который, в свою очередь, включает генератор звуковой частоты на DD1.1, DD1.2.

Светодиод VD1 — двухцветный:

— VD1.1 сигнализирует о включении питания зеленым светом;

— VD2.2 сигнализирует об обнаружении источника радиоизлучений красным светом.

Настройка прибора заключается в выборе ОУ DA1 с возможно большим коэффициентом усиления.

Примечание.

Расстояние, на котором индикатор должен устойчиво реагировать, имея антенну длиной 30 см, на радиопередатчик мощностью 1 мВт, должно быть не менее 50 см.

Транзистор КТ3101 можно заменить на КТ371, КТ368 с коэффициентом усиления не менее 150. Операционный усилитель — К140УД608, К140УД708.

Светодиод AЛC331 можно заменить обычными, типа AЛ307, включив их вместо VD1.1 и VD1.2. Катушка индуктивности имеет 19 витков, намотанных в ряд на любом резисторе МЛТ 0,125, проводом ПЭЛ-0,1.

Схема № 3. Этот простой детектор «радиозакладок» (радиомикрофонов, радиотрансляторов и т. п.) позволяет найти «жучки», работающие на частотах от нескольких десятков килогерц до 500 мегагерц. Схему (рис. 4.3) разработал Евгений Лесовой ().

Рис. 4.3. Схема простого индикатора поля

Антенна — кусок провода, длиной около 40 см. Выход на наушники от плеера (низкоомные). Питание от батареи «Крона».

Схема № 4. Простой малогабаритный детектор жучка с индикацией на двух светодиодах отличается малыми габаритами, малым количеством используемых деталей и, вместе с тем, достаточно высокой чувствительностью.

Основу данного устройства составляет микросхема DA1 типа КР1112ПП2. Эта микросхема включает в себя устройство определения баланса электрического моста с индикацией. Микросхема имеет встроенный источник опорного напряжения. Принципиальная схема детектора представлена на рис. 4.4.

Сигнал, наводимый в антенне, усиливается широкополосным апериодическим усилителем высокой частоты на транзисторе VT1 типа КТ3101. Усиленное переменное напряжение высокой частоты через конденсатор СЗ поступает в диодно-резистивный мост на диодах VD1—VD4 типа ГД507 и резисторах R3—R5.

От источника опорного напряжения (вывод 3 микросхемы DA1) через резисторы R3—R5 и диоды VD1—VD4 протекает небольшой (примерно несколько микроампер) прямой ток, который улучшает условия детектирования и увеличивает чувствительность детектора.

В выпрямлении измеряемого переменного напряжения участвуют только диоды VD1 и VD2, а два других — VD3, VD4 — образуют соседнее плечо моста, на котором создается начальное напряжение, балансирующее мост, и одновременно служат для его термокомпенсации.

Рис . 4.4. Принципиальная схема детектора жучков с индикацией на двух светодиодах

Совет.

Все диоды должны подбираться с возможно более близкими вольт-амперными характеристиками.

Конденсатор С4 отфильтровывает переменную составляющую выпрямленного напряжения. Резистор R4 служит для точной балансировки моста. При хорошей балансировке устройство будет реагировать только на напряжение, являющееся результатом выпрямления измеряемого сигнала.

Выпрямленное напряжение и напряжение, балансирующее мост, через резисторы R7 и R8 поступают на входы усилителя постоянного тока, расположенного в микросхеме DA1.

В зависимости от состояния баланса моста сигнал индикации поступает на один из светодиодов VD5 или VD6 (типа AЛ307):

— при балансе моста (отсутствие сигнала) включен светодиод VD5;

— при наличии сигнала (нарушение баланса моста) включен светодиод VD6.

В качестве диодов VD1—VD4 можно использовать любые высокочастотные диоды. В качестве источника питания используется источник постоянного тока напряжением 2,5–5 В.

Схема № 5. Простейшее устройство для поиска «жучков» представляет собой детектор радиоволн со звуковой индикацией. С его помощью можно отыскать в помещении работающий микропередатчик.

Примечание.

Этот детектор радиоволн чувствителен к частотам вплоть до 500 МГц.

Настраивать детектор при поиске работающих передатчиков можно путем изменения длины телескопической приемной антенны. Телескопическая приемная антенна воспринимает высокочастотные электромагнитные колебания в диапазоне до 500 МГц, которые затем детектируются диодом VD1 типа Д9Б.

Принципиальная схема устройства приведена на рис. 4.5.

Рис. 4.5. Схема детектора радиоволн на ИМС К561ЛА7

Схема работает следующим образом. Высокочастотная составляющая сигнала отфильтровывается дросселем L1 и конденсатором С1. Низкочастотный сигнал поступает через резистор R1 на базу транзистора VT1 типа КТ315, что приводит к открыванию последнего и, как следствие, к открыванию транзистора VT2 типа КТ361.

При этом на резисторе R4 появляется положительное напряжение, близкое к напряжению питания, которое воспринимается логическим элементом DD1.1 микросхемы DD1 типа К561ЛА7 как уровень логической единицы.

При этом включается генератор импульсов на элементах DD1.1, DD2.2, R5 и СЗ, с выхода которого импульсы с частотой 2 кГц поступают на вход буферного каскада на элементах DD1.3, DD1.4.

Питается детектор от источника тока напряжением 9 В через параметрический стабилизатор на элементах VD2, R6.

В детекторе используются резисторы типа МЛТ-0Д25. Диод VD1 можно заменить на ГД507 или любой германиевый высокочастотный. Транзисторы VT1 и VT2 могут быть заменены на КТ3102 и КТ3107, соответственно. Стабилитрон VD2 может быть любым с напряжением стабилизации 4,7–7,0 В. Пьезокерамический преобразователь ZQ1 можно заменить на ЗП-22. Индуктивность L1 — 1 мГн. Подробности на .

Схема № 6. Далее рассмотрим пассивный индикатор электромагнитного высокочастотного поля, принципиальная схема которого представлена на рис. 4.6, а. При минимуме деталей и отсутствии активных компонентов он показывает действительно уровень поля, а не возможные неполадки своей электронной схемы.

Главным элементом для изготовления индикатора высокочастотного излучения является сверхвысокочастотный детекторный диод. В качестве такого диода могут быть применены старые (скорее всего точечные) СВЧ диоды типа Д405, Д602 или подобные, СВЧ детекторные диоды Шотки КА202—КА207, импортные детекторные СВЧ диоды. В крайнем случае, для пробы можно взять германиевый диод вроде Д311, но его рабочая Частота не превысит 100 МГц.

Главным отличием детекторного диода является то, что прямая ветвь его вольтамперной характеристики начинает подниматься почти сразу от 0 В.

Внимание.

Ни в коем случае не следует измерять СВЧ диоды тестером.

Рис . 4.6. Индикаторы поля:

а — принципиальная схема пассивного индикатора поля;

б —принципиальная схема индикатор поля со звуковой индикацией;

в — принципиальная схема простого УВЧ для индикатора поля;

г — принципиальная схема широкополосный стабильный УВЧ для индикатора поля

Любознательные, не имеющие характериографа, могут снять характеристику диода вручную с использованием вольтметра и миллиамперметра, подавая на диод прямое напряжение с шагом 0,05 В и ограничивая постоянный ток через него величиной не более 0,5 мА.

Когда диод найден, можно приступать к изготовлению индикатора. Собственно, самим индикатором выступает стрелочный микроамперметр РА1 с пределом измерения тока 30–50 мкА. Кремниевые диоды VD1, VD2 защищают детектор и индикатор от перегрузки.

Антенной WA1 могут служить проволочные «усы» из медного провода диаметром 1–2 мм длиной по 200–300 мм или две телескопические антенны. Для большей чувствительности индикатора длина антенны должна быть близка к полуволне измеряемого излучения.

С помощью пассивного индикатора поля удобно исследовать поведение передатчиков, оценивать диаграммы направленности антенн, но для обследования помещений пассивный индикатор неудобен. Он имеет невысокую чувствительность, размахивая таким индикатором, поэтому затруднительно увидеть изменение положения стрелки прибора, да и сам высокочувствительный стрелочный микроамперметр очень не любит сотрясений и ударов.

Для удобства применения приходится окружать СВЧ детектор электронной схемой (рис. 4.6,б). Схема осуществляет световую и звуковую индикацию уровня напряженности поля.

Изменение напряженности поля можно оценивать по частоте следования звуковых сигналов длительностью 0,2 мс и частотой около 1 кГц или вспышек светодиода VD4.

Количество сигналов меняется от одного за десятки секунд до непрерывного тона при большом уровне сигнала. Звуковая индикация позволяющая оценивать текущий уровень ВЧ излучения и регулятор чувствительности позволяют быстро и эффективно локализовать источник радиоизлучения.

Количество сигналов меняется от одного за десятки секунд до непрерывного тона при большом уровне сигнала. Звуковая индикация позволяющая оценивать текущий уровень ВЧ излучения и регулятор чувствительности позволяют быстро и эффективно локализовать источник радиоизлучения.

Первый ОУ DA1.1 является неинвертирующим усилителем постоянного тока, величина усиления которого регулируется резистором R3, совмещенным с выключателем. Следующие два каскада на ДА1.2, DA1.3 построены по однотипной схеме управляемого мультивибратора на ОУ. Повторитель на DA1.4 служит формирователем уровня «земли». На DA1.3 собран мультивибратор, управляемый напряжением высокого уровня, его частота около 1000 Гц. Звуковой мультивибратор запускается от генератора управляемого напряжением, выполненного на DA1.2.

Положительные импульсы генератора не зависят от уровня входного сигнала, их длительность около 0,2 с задает цепочка R8, СЗ. Длительность пауз между импульсами зависит от скорости разряда СЗ через транзистор VT1 и резистор R6. А проводимость транзистора VT1 в свою очередь зависит от входного ВЧ напряжения выпрямленного детектором VD1 и увеличенного усилителем постоянного тока на DA1.1. В качестве DA1 используется счетверенный операционный усилитель с диапазоном входных сигналов, включающим нулевое входное напряжение.

Если чувствительность индикатора покажется недостаточной, то перед VD1 можно включить широкополосный высокочастотный усилитель выполненный по схеме приведенной на рис. 4.6, в или рис. 4.6, г .

Чтобы широкополосный УВЧ не возбуждался и имел равномерную частотную характеристику, он должен быть выполнен с соблюдением требований конструирования высокочастотных устройств.

Совет.

Транзисторы для УВЧ желательно брать с граничной частотой не менее 4 ГГц.

Прибор снабжен телескопической антенной WA1 и питается от девятивольтовой батареи.

Переменным резистором R3, совмещенным с выключателем питания SA1, регулируют чувствительность прибора. Его выставляют таким образом, чтобы увеличение уровня напряженности поля вызывало наиболее резкое изменение частоты следования импульсов индикации,

Схема № 7. Низкочастотный поисковый индикатор может быть использован для обнаружения устройств, передающих информацию по проводам. Эти устройства используют приемники сигналов с проводной линии, имеющие диапазон частот, лежащий между звуковыми и радиочастотами. Высшую частоту диапазона такого приемника разумно ограничить величиной 100 кГц. Для этого есть несколько причин:

- во-первых, хорошие сканирующие приемники имеют возможность работать в ЧМ, начиная с этой частоты;

- во-вторых, при передаче сигнала по проводам ЧМ является наиболее помехозащищенным видом модуляции;

- в-третьих, в диапазоне 30—100 кГц самыми дальнобойными являются именно низкие частоты.

Причем передача сигнала на частотах 100 кГц и выше имеет заметное радиоизлучение и может быть обнаружена обычным радиоприемником с диапазоном длинных и средних волн.

Схема низкочастотного индикатора (рис. 4.7) представляет собой ЧМ приемник диапазона 25—125 кГц, адаптированный под задачу обнаружения частотно-модулированных сигналов в любой линии. Исследуемая линия подключается через входной трансформатор Т1. Он предназначен для гальванической развязки индикатора от линии в целях защиты от поражения электрическим током.

После трансформатора включен полосовой фильтр с частотами среза 30—100 кГц. Фильтр состоит из последовательно включенных фильтра высоких частот на С2, СЗ, L1 и фильтра низких частот на С4, С5, L2. Фильтры выполнены на пассивных элементах, так как в исследуемых линиях может присутствовать высокое переменное напряжение других частот (как, например, в электрической сети).

Рис. 4.7. Принципиальная схема обнаружителя низкочастотных сигналов

Далее вся выделенная полоса частот усиливается внутренним усилителем-ограничителем микросхемы DA1. Цепочка VD1, VD2, С6 служит для защиты микросхемы от высоковольтных импульсов. Усиленный и ограниченный сигнал демодулируется частотным детектором с ФАПЧ. Петля фазовой автоподстройки частоты включает генератор управляемый напряжением из состава микросхемы DD1 и фазовый детектор из состава микросхемы DA1.

С выхода 10 DA1 через пропорционально-интегрирующий фильтр на R12, R15, С17 сигнал управления поступает на вход ГУНа. Высокочастотный сигнал ГУНа с выхода 4 DD1 через элементы R4, R11, С13 подается на вход 9 фазового детектора из состава DA1. Входной высокочастотный сигнал подключен к фазовому детектору внутренними цепями DA1.

Примечание

Фазовые детекторы из состава DD1 не используются при демодуляции звука, один из них только лишь управляет светодиодом индикации VD3 через повторитель на транзисторе VT3. Использование фазового детектора микросхемы DA1 в петле ФАПЧ позволяет получить более качественное детектирование звука.

Демодулированный звуковой сигнал через внутренний истоковый повторитель (выход 10) микросхемы DD1 поступает на усилитель низкой частоты, выполненный на ОУ DA3 и транзисторах VT1, VT2. Отношение резисторов R18, R14 определяет его величину усиления. К выходу УНЧ подключен малогабаритный динамик ВА1. Частотная селекция входного сигнала осуществляется ФАПЧ демодулятором, его центральная частота перестраивается переменным резистором R2 от 25 до 125 кГц.

В связи с тем, что усилению подвергается вся рабочая полоса частот, на выходе УНЧ всегда присутствует шум — сильный при отсутствии сигнала, слабый при сильном входном сигнале. Это способствует образованию обратной связи при присутствии передатчика.

Индикаторный светодиод VD3 беспорядочно мигает в отсутствии сигнала. При обнаружении сигнала переходит через потушенное и зажженное состояние при перестройке по частоте резистором R2. Или остается в одном из этих состояний, если петля ФАПЧ удерживает настройку при сильном сигнале.

Индикатор обнаруживает на всех 8 км его дальности действия. Индикатор также позволяет определять присутствие видеосигнала в линии, цифрового сигнала с частотной модуляцией. Исследуемая линия может быть любой двухпроводной линией (телефонная линия, линия компьютерной сети, линия электроснабжения 220 В и т. п.). Ограничение накладывает величина пробивного напряжения, определяемая качеством изоляции между обмотками трансформатора Т1 и допустимым напряжением конденсатора С1.

Требования к элементам схемы небольшие: конденсатор С1 обязательно должен быть высоковольтным, С2—С5 составляются из нескольких, имеющих стандартные номиналы.

Трансформатор Т1 и катушки L1, L2 намотаны на ферритовых кольцах 20x10x5 проницаемостью 2000НН. Т1 имеет по 70 витков в каждой обмотке, L1 — 24 витка, L2 — 27 витков.

Обмотки трансформатора изолированы друг от друга слоем лакотканевой или фторопластовой изоляции. При желании намоточные данные катушек и трансформатора можно пересчитать для сердечников меньшего размера. Индикатор питается от девятивольтовой батареи через интегральный стабилизатор DA2.

Настройка индикатора сводится к установке подстроенным резистором R3 меандра на выводе 2 DD1 и резистором R11 наименее искаженного звукового сигнала на выходе УНЧ. Это лучше сделать при наличии входного сигналов.

Схема № 8. Этот прибор можно назвать детектором радиоволн и предназначен для поиска микропередатчиков. Он представляет собой звуковой и световой сигнализатор наличия радиочастотных излучений. Прибор имеет высокую чувствительность в полосе частот до 1 ГГц. Например, «жучок» с излучаемой мощностью 1,5 мВт (выходной каскад на одном маломощном транзисторе) можно обнаружить с расстояния около 10 см.

Конструкция прибора проста и доступна для повторения даже радиолюбителям с небольшим опытом изготовления электронных устройств. В нем использованы доступные компоненты. При этом потребительские свойства этого сигнализатора весьма неплохие. Он имеет малые размеры и массу, прост в эксплуатации: единственный орган управления — выключатель питания.

Принципиальная схема сигнализатора показана на рис. 4.8, а . Расположение элементов и печатная плата приводятся на рис. 4.8,б.

Рис. 4.8. Детектор радиоволн:

а —принципиальная схема; б —печатная плата и расположение элементов

При приближении антенны WA1 к микропередатчику в ней наводится высокочастотное напряжение, которое через конденсатор С1 поступает на вход УРЧ (транзистор VT1). Емкость конденсатора С1 определяет нижнюю границу принимаемого диапазона частот. Ее подбирают такой, чтобы индикатор не реагировал на бытовые низкочастотные помехи от электродвигателей, тиристорных регуляторов напряжения, ГСП магнитофонов и т. п.

С выхода УРЧ сигнал поступает на диодный детектор VD1.

Через фильтр С4 L1 и резистор R6 постоянная составляющая продетектированного сигнала поступает на вход усилителя постоянного тока (транзисторы VT2, VT3).

Резистор R6 несколько снижает чувствительность индикатора, но он необходим для того, чтобы избежать резкого повышения чувствительности прибора на частоте резонанса контура С4 L1 (около 50 кГц).

Усилитель постоянного тока управляет работой мультивибратора на транзисторах VT4 и VT5. К коллекторным цепям транзисторов VT4, VT5 подключен пьезоизлучатель ZQ1, который преобразует электрические колебания, вырабатываемые мультивибратором, в звук. При работе мультивибратора, кроме того, светится и светодиод HL1.

Примечание.

Такое включение излучателя повышает громкость его звучания.

Чем больше мощность сигнала от «жучка», тем больше ток через транзистор VT3 и тем выше частота звукового сигнала и его громкость, а также интенсивность свечения светодиода HL1. Перемещая сигнализатор, ищут его положение, при котором максимальны громкость сигнала и яркость светодиода.

Затем уже в «ближней зоне» проводят визуальный поиск местонахождения подслушивающего устройства.

На диод VD1 через резистор R4 поступает напряжение смещения со стабилизатора напряжения R5, VD6, которое приоткрывает диод VD1 и транзистор VT2. Это повышает чувствительность детектора к малым уровням ВЧ сигналов.

Совет.

Резистор R4 нужно подбирать так, чтобы светозвуковой сигнализатор находился на грани срабатывания сигнализатора.

Как следствие, даже очень небольшая добавка напряжения, возникающая при детектировании исследуемого сигнала, открывает транзисторы VT2, VT3, запуская мультивибратор.

Примечание.

Недостаток такого решения — заметная термочувствительность сигнализатора. Ее можно устранить, подобрав R4 так, чтобы сигнализатор не срабатывал самопроизвольно в выбранном диапазоне температуры.

Облегчит эту процедуру применение в качестве VT2 транзистора с очень малым обратным током.

Диод VD1 можно заменить на КД503Б, КД509А, КД512А, КД407А или КД409А. Стабилитрон VD3 — любой с напряжением стабилизации 5–7 В. Транзистор VT1 — КТ368 с любым буквенным индексом в любом корпусе либо другой высокочастотный, например, КТ3101А-2, КТ3120А, КТ3124.

Транзистор VT2 — КТ3102 с индексами Г, Е. Заменять его другими не стоит, так как он имеет очень малый начальный ток коллектор-эмиттер — менее 0,05 мкА. Транзистор VT3 можно заменить на КТ3107 с индексами К, Д.

Вместо транзисторов VT4 и VT5 допускается использовать любые кремниевые маломощные транзисторы соответствующей структуры с подходящей цоколевкой. Лишь бы обратный ток коллектора был достаточно мал, чтобы мультивибратор не самовозбуждался. По этой причине нельзя применять германиевые транзисторы. Чем больше коэффициент передачи тока каждого транзистора, тем выше чувствительность всего устройства.

В качестве пьезоэлемента использован пьезоизлучатель ZQ1, например, от электронных часов «Монтана», но здесь подойдут и любые другие. Дроссель L1 должен иметь индуктивность 1–2 мГн. Он содержит 180 витков провода ПЭЛШО-ОД2 на кольце от импульсного трансформатора ТИ-18. Выключатель SA1 — ПД9-2. Антенна WA1 — телескопическая от импортной магнитолы общей длиной 32 см.

Совет.

Слишком длинную антенну использовать не следует.

Наладку сигнализатора начинают с установки напряжения смещения на диоде VD1. Для этого конденсатор СЗ нужно временно отключить. Вместо резистора R4 временно устанавливают переменный сопротивлением 560 кОм. Вращая его движок, добиваются исчезновения звука.

Если теперь поднести устройство к лампе накаливания или вынести на солнечный свет, то сигнализатор начнет слабо пищать, набирая громкость с нагревом. Затем измеряют сопротивление переменного резистора и устанавливают резистор R4 с сопротивлением, в полтора раза большим. Это обеспечит работоспособность сигнализатора радиоизлучения в приемлемом диапазоне температуры. Усиление УРЧ регулируют подбором резистора R2.

Схема № 9.Индикаторы излучения рассматриваются на

.

В индикаторе используется диод с барьером Шоттки КД514. При его монтаже с целью исключения выхода его из строя нужно применять защиту от статического электричества.

В простейшем случае антистатический браслет может быть изготовлен из металлического браслета для часов, к которому с помощью зажима «крокодил» прикрепляется резистор номиналом 100 кОм…1 МОм. Второй конец резистора соединяется с контуром заземления или с водопроводной трубой холодной воды. Корпус паяльника также необходимо заземлить.

Настройка ВЧ-индикатора. При подготовке детектора к работе установите движок подстроенного резистора R9 в крайнее левое положение (максимальная чувствительность) и включите питание. Вращая ручку переменного резистора R10, нужно добиться генерации самого низкочастотного тона в отсутствие электромагнитного излучения.

Теперь можно обследовать помещение. При приближении к источнику электромагнитного поля частота тона будет повышаться. При перегрузке детектора резистором R9 уменьшите его чувствительность. Громкость сигнала можно изменить увеличением или уменьшением номинала резистора R26.

В проверяемом помещении необходимо выключить все известные источники электромагнитного излучения: люминесцентные лампы, компьютеры, радиоприемники и все виды телефонов. В противном случае они затруднят поиск «жучков».

С помощью индикатора можно обнаружить передающие устройства, работающие в диапазоне 5—300 МГц. Например, передатчик мощностью 10 мВт можно обнаружить на расстоянии 20–25 см.

Технические характеристики:

— напряжение питания, В…9;

— ток потребления, мА…18–30;

— диапазон рабочих частот, МГц… 5—300.

Электрическая схема индикатора приведена на рис. 4.9.

Индикатор ВЧ-излучения функционально состоит из пяти каскадов. Первый каскад — широкополосный усилитель высокой частоты собранный по схеме с коллекторной стабилизацией рабочей точки на транзисторе VT1. Второй каскад — детектор на диоде Шоттки VD1 Третий — компаратор на операционном усилителе ОУ1 из состава ИС DA1.

На ОУ2—ОУ4 и VT3 собран четвертый каскад — перестраиваемые генератор низкой частоты, управляемый напряжением (ГУН).

ГУН выполнен по классической схеме, содержащей каскады интегратора, компаратора и разрядного транзистора.

Рис . 4.9. Электрическая схема индикатора ВЧ излучения

Интегратор собран на ОУЗ, компаратор — на ОУ4. Скорость заряда конденсатора С10 зависит от величины напряжения на входе ГУН (точка соединения резисторов R16 и R17).

Как только напряжение на выходе интегратора достигает порога срабатывания компаратора ОУ4, открывается разрядный транзистор VT3. После разряда конденсатора С10 цикл начинается заново.

На ОУ2 собран буферный каскад для предотвращения влияния входной цепи ключевого усилителя звуковой частоты, собранного на транзисторе VT2 (пятый каскад), на стабильность работы ГУН.

Внимание.

В индикаторе используется диод с барьером Шоттки КД514. При его монтаже с целью исключения выхода его из строя нужно применять защиту от статического электричества.

В простейшем случае антистатический браслет может быть изготовлен из металлического браслета для часов, к которому с помощью зажима «крокодил» прикрепляется резистор номиналом 100 кОм…1 МОм. Второй конец резистора соединяется с контуром заземления или с водопроводной трубой холодной воды. Корпус паяльника также необходимо заземлить.

Совет.

В проверяемом помещении необходимо выключить все известные источники электромагнитного излучения: люминесцентные лампы, компьютеры, радиоприемники и все виды телефонов. В противном случае они затруднят поиск «жучков».

Настройка ВЧ-индикатора. При подготовке детектора к работе установите движок подстроечного резистора R9 в крайнее левое положение (максимальная чувствительность) и включите питание. Вращая ручку переменного резистора R10, нужно добиться генерации самого низкочастотного тона в отсутствие электромагнитного излучения.

Теперь можно обследовать помещение. При приближении к источнику электромагнитного поля частота тона будет повышаться.

Совет.

При перегрузке детектора резистором R9 уменьшите его чувствительность.

Громкость сигнала можно изменить увеличением или уменьшением номинала резистора R26.

Схема № 10. Индикатор излучения сотового телефона в диапазоне СВЧ рассмотрен на . В отличие от описанного в журнале «Радио» аналогичного устройства (Виноградов Ю. Детектор излучения сотового телефона. — Радио, 2004, № 2, с. 43), предлагаемый индикатор имеет значительно больший радиус действия, достигающий 10 м. Схема устройства показана на рис. 4.10. Прием сигнала ведется на широкополосную полуволновую антенну, состоящую из двух вибраторов W1 и W2.

Прибор выполнен по схеме приемника прямого усиления и содержит усилитель радиочастоты (УРЧ), детектор и звуковой индикатор. Сигнал, наведенный в приемной антенне, усиливается УВЧ и поступает на детектор. Продетектированный сигнал открывает электронный ключ, собранный на транзисторе VT2, а он, в свою очередь, включает звуковой сигнализатор НА1 — зазвучит сигнал.

Рис. 4. 10. Индикатор излучения сотового телефона в диапазоне СВЧ

С помощью индикатора удается определять и режимы работы сотового телефона. Когда сотовый телефон входит в сеть, индикатор подает короткие звуковые сигналы, а при вызове абонента и при разговоре с ним звуковой сигнал звучит непрерывно.

Схема № 11. Радиочастотный искатель подслушивающих устройств рассмотрен на . Сегодня все чаще можно столкнуться с применением в различных целях радиомикрофонов и телефонных радиопрослушивающих устройств. Иногда необходима уверенность в том, что разговор в квартире или офисе не прослушивается. Обычно радиоподслушивающие устройства («жучки») излучают на одной частоте в диапазоне 30—500 МГц небольшую мощность (до 5 мВт).

Иногда такие устройства работают в ждущем режиме: включаются на передачу при наличии шума в помещении (что обеспечивает экономичность расходования энергии элементов питания) или же при снятии телефонной трубки.

Простейшее устройство, которое способно помочь в обнаружении подслушивающих устройств, приведено на рис. 4.11.

Схема является широкополосным мостовым детектором ВЧ напряжения. Он перекрывает диапазон частот 1—200 МГц (при использовании в качестве D01—D06 диодов СВЧ диапазона рабочая полоса может быть расширена) и позволяет обнаруживать «жучки» на расстоянии примерно 0,5–1 м (это зависит от мощности передатчика).

Примечание.

Известно, что измерение ВЧ напряжений с уровнем меньше 0,5 В затруднено тем, что уже при 0,2–0,3 В все полупроводниковые диоды при детектировании становятся неэффективны из-за особенности их вольтамперной характеристики.

Рис. 4.11. Радиочастотный искатель подслушивающих устройств.

В данной схеме применен известный способ измерения малых переменных напряжений с использованием сбалансированного диодно-резистивного моста. Небольшой ток, протекающий через диоды D3, D4, улучшает условия детектирования (повышает чувствительность) и позволяет отодвинуть нижнюю границу уровня измеряемых напряжений до 20 мВ при равномерной амплитудно-частотной характеристике.

Диоды D5, D6 образуют второе плечо моста и обеспечивают термостабилизацию схемы. На элементах микросхемы U1.2—U1.4 собраны трехуровневые компараторы, к выходам которых подключены светодиодные индикаторы HL1—HL3.

Диоды Dl, D2 применены как стабилизаторы напряжения 1,4 В, что необходимо для устойчивой работы схемы в широком диапазоне изменения питающих напряжений.

Примечание.

Применение устройства требует определенных навыков, так как схема довольно чувствительна и способна улавливать вблизи любые радиоизлучения, например, работу гетеродина приемника или телевизора, а также вторичное переизлучение токопроводящими поверхностями.

Для облегчения поиска «жучка» используют сменные антенные штыри с разной длиной, которые позволяют снизить чувствительность схемы. Например, возможно применение сменных штырей длиной 400–700—1200 (мм).

При использовании устройства, после его включения, необходимо резистором R2 добиться свечения индикатора HL3. Этим устанавливается уровень начальной чувствительности относительно фона. При поднесении антенны к источнику радиоизлучения должны начинать светиться светодиоды HL2 и HL1 по мере увеличения амплитуды принятого сигнала.

Регулировку схемы подстроечным резистором R9 выполняют один раз (при первоначальной настройке устройства от него зависит уровень порогов чувствительности компараторов). Схема сохраняет работоспособность при изменении питания от 6 до 10 В.

Схема № 12. Детектор жучков с логарифмической шкалой на 12 светодиодах и звуковой индикацией рассмотрен на . В состав детектора поля входят ФВЧ, усилитель ВЧ, диодный детектор, усилитель постоянного тока с логарифмической зависимостью коэффициента усиления, звуковой генератор с изменяющейся частотой и светодиодная шкала из 12 светодиодов.

Детектор способен регистрировать работающие радиомикрофоны в диапазоне частот 20—600 МГц. Принципиальная схема прибора приведена на рис. 4.12.

Сигнал, наводимый в антенне, фильтруется ФВЧ на элементах С2, L1, СЗ, L2 и поступает на широкополосный апериодический усилитель. Последний выполнен на высокочастотном транзисторе VT1 типа КТ3101.

Рис. 4.12. Детектор жучков с логарифмической шкалой на 12 светодиодах и звуковой индикацией

Нагрузкой усилителя служит эмиттерный повторитель на транзисторе VT2 типа КТ3101. Сигнал, снимаемый с регулятора чувствительности — резистора R4, поступает через конденсатор С6 на диодный детектор, собранный на диоде VD1 типа Д9Б.

Высокочастотные составляющие фильтруются RC-фильтрами R5, С7 и R6, С8. Низкочастотный сигнал поступает на усилитель на микросхеме DA1 типа КР140УД1208. Коэффициент усиления этого усилителя определяется значением резистора R9. При малом уровне входного сигнала усилитель на DA1 имеет большое усиление. По мере увеличения сигнала происходит открывание диода VD2 типа КД522, сопротивление которого изменяется по логарифмическому закону. Это приводит к изменению сопротивления обратной связи также по логарифмическому закону. С выхода усилителя на микросхеме DA1 сигнал поступает на светодиодный индикатор и звуковой генератор.

Звуковой генератор выполнен на транзисторе VT3 типа КТ315 и микросхеме DD1 типа К561ЛА7. Конденсатор С9 заряжается через резистор R11 до напряжения открывания транзистора VT3. Это приводит к смене уровня логической единицы на уровень логического нуля на коллекторе транзистора VT3. При этом катод диода VD3 типа КД522 оказывается подключенным через резистор R18 к минусу источника питания.

Конденсатор С9 быстро разряжается через цепь VD3, R18, что ведет за собой закрывание транзистора VT3. Конденсатор С9 снова начинает заряжаться и весь процесс повторяется. Прямоугольные импульсы преобразуются пьезокерамическим преобразователем ZQ1 типа ЗП-22 в звуковые.

При увеличении напряжения на выходе усилителя DA1 уменьшается время заряда конденсатора С9 до напряжения открывания транзистора VT3, а это, в свою очередь, приводит к увеличению частоты следования импульсов генератора. Таким образом, при увеличении уровня входного сигнала происходит повышение тональности звукового сигнала.

Основой светодиодного индикатора является микросхема DA2 типа КМ1003ПП2. Микросхема КМ1003ПП2 является специализированной и выполняет функцию управления светодиодной шкалой, обеспечивая высвечивание столбика на шкале из 12 светодиодов, которые загораются поочередно при изменении входного напряжения от минимального до максимального значения. Яркость свечения светодиодов поддерживается постоянной.

Входной сигнал, через делитель напряжения на резисторах R13, R16, поступает на вход микросхемы DA2 (вывод 17). На выводы 16 и 3 микросхемы DA2 подаются уровни опорного напряжения, определяющие, соответственно, минимальное (светодиоды не горят) и максимальное (горят все светодиоды) значения входного сигнала.

Питается устройство от источника питания напряжением 5,6 В. Светодиод VD4 типа AЛ307 служит для индикации включения прибора.

Все используемые детали малогабаритные. Детали ФВЧ описаны выше. Микросхема DA1 может быть заменена на КР1407УД2 или любой другой операционный усилитель со своими цепями коррекции. Вместо микросхемы DD1 можно применить K561ЛE5. При замене диода VD1 на ГД507 диапазон прибора может быть увеличен до 900 МГц.

Схема № 13. Детектор жучков с линейной шкалой из восьми светодиодов, регулировкой чувствительности и звуковой индикацией представлена на .

Отличительной особенностью данного детектора поля является: фильтр высокой частоты на входе, усилитель постоянного тока на двух операционных усилителях, звуковой генератор, линейная светодиодная шкала и индикатор разряда батареи. Все это делает данное устройство, несомненно, более простым и удобным в эксплуатации. Принципиальная схема детектора поля приведена на рис. 4.13.

Сигнал, принимаемый антенной, поступает на фильтр высокой частоты на элементах С2, L1, СЗ, L2, необходимый для подавления сигналов частотой менее 20 МГц.

Примечание.

Это необходимо для уменьшения уровня низкочастотных сигналов, обычно составляющих фоновое радиоизлучение.

Рис. 4.13. Детектор жучков с линейной шкалой из восьми светодиодов, регулировкой чувствительности и звуковой индикацией

С ФВЧ сигналы частотой более 20 МГц поступают на вход апериодического широкополосного усилителя высокой частоты, собранного на транзисторе VT1 типа КТ3101. С нагрузки усилителя (резистора R2) напряжение высокой частоты через конденсатор С5 по ступает на диоды VD1, VD2 типа ГД507, входящие в состав резистивно-диодного моста.

Для балансировки моста используется резистор R4. Продетектированное низкочастотное напряжение, сглаженное конденсатором С6, поступает на усилитель постоянного тока, выполненный на двух операционных усилителях DA1.1 и DA1.2, входящих в состав микросхемы К1401УД1.

С выхода элемента DA1.1 постоянное напряжение поступает на генератор звуковой частоты, выполненный на операционном усилителе DA1.3. Частота генератора зависит от уровня постоянного напряжения на неинвертирующем входе элемента DA1.3, которое, в свою очередь, зависит от уровня входного сигнала.

Примечание.

Таким образом, чем больше уровень входного сигнала, тем выше частота генератора звуковой частоты.

С выхода генератора звуковой сигнал поступает на базу транзистора VT4 типа КТ315, в коллекторную цепь которого включен пьезокерамический преобразователь ZQ1 типа ЗП-1.

Микросхемы DA2 и DA3 типа К1401УД1 составляют основу линейной шкалы. Операционные усилители, входящие в состав этих микросхем, включены по схеме компараторов напряжения. На неинвертирующие входы этих компараторов поступает опорное напряжение с линейки резисторов R14—R21.

Другие входы компараторов соединены вместе, на них поступает постоянное напряжение с выхода усилителя постоянного тока DA1.2. При изменении этого напряжения от 0 до максимального значения происходит переключение компараторов, на выходе которых включены светодиоды VD5—VD14, образующие линейную светоизлучающую шкалу. Чем выше уровень сигнала на входе, тем больше светодиодов включено.

Для уменьшения потребляемого светодиодной шкалой тока используется принцип динамической индикации. Для этого на базу/транзистора VT2 типа КТ315 поступают импульсы с генератора звуковой частоты DA1.3, вызывая поочередное закрывание и открывание транзистора VT2.

При закрывании транзистора VT2 положительное напряжение источника питания через резистор R32 поступает на катоды светодиодов VD5—VD14, что приводит к запиранию последних. Ток через светодиоды не течет и они гаснут.

При открывании транзистора VT2 катоды светодиодов замыкаются на минус источника питания, и те светодиоды, на аноде которых присутствует положительное напряжение, загораются. Благодаря инерционным свойствам человеческого глаза мигание светодиодов становится незаметным.

Индикатор разряда батареи выполнен на элементе DA1.4 и светодиодах VD13, VD14. При снижении напряжения источника питания уменьшается ток, протекающий через стабилитрон VD15 и светодиод VD13 и, соответственно, напряжение на аноде VD13. Это вызывает включение светодиода VD14. Уровень срабатьюания устанавливается подстроечным резистором R33 при настройке. Все устройство питается от стабилизатора, собранного на элементах VT3, VD15, VD13, R34, С8.

Детали. В устройстве использованы резисторы типа МЛТ-0,125. Светодиоды VD5—VD14 могут быть любыми. Диоды VD1—VD4 — любые высокочастотные германиевые. Катушки L1 и L2 бескаркасные, диаметром 8 мм, намотанные проводом ПЭВ 0,6 мм. Катушка L1 — 8 витков, катушка L2 — 6 витков. Резистор R4 — любой переменный резистор с линейной характеристикой. Транзисторы VT2—VT4 могут быть типа КТ3102. Стабилитрон VD15 можно заменить на КС147, КС168, КС170. Пьезокерамический преобразователь ZQ1 — любой. Можно также использовать динамическую головку сопротивлением более 50 Ом, резистор R36 при этом можно из схемы исключить.

Настройка схемы особенностей не имеет. Перед началом работы необходимо настроить детектор на максимальную чувствительность резистором R4. Вращением движка резистора R4 добиваются свечения 1–2 светодиодов и выключения звуковой сигнализации. Прибор готов к работе.

Схема № 14. Индикатор напряженности поля представлен на

. Для налаживания антенно-фидерных трактов любительских радиостанций необходим индикатор напряженности высокочастотного электрического поля. Этот прибор отличается от обычно используемых высокой чувствительностью и широкой полосой рабочих частот.

Традиционно индикатор напряженности поля представляет собой антенну (чаще всего, в виде короткого штыря), амплитудный детектор (выпрямитель РЧ напряжений) и стрелочный измеритель (как правило, микроамперметр). Для повышения чувствительности индикатор делают активным, снабжая его усилителем РЧ или постоянного тока. Схема индикатора представлена на рис. 4.14.

Рис . 4. 14. Индикатор напряженности поля

В индикаторе отсутствует обычный амплитудный детектор, поскольку его функции выполняет микросхема К174ПС4 — перемножитель сигналов, широко используемый радиолюбителями в смесителях радиоприемников, конвертерах и т. д.

В выходном сигнале микросхемы присутствует:

— постоянная составляющая;

— переменная составляющая удвоенной частоты;

— постоянная составляющая пропорциональна квадрату входного напряжения.

Поэтому показания микроамперметра РА1, подключенного к выходу микросхемы, будут пропорциональны мощности сигнала, излучаемой антенной.

Переменную составляющую легко подавить, установив конденсатор С7 достаточной емкости. Диоды VD1, VD2 служат для защиты входных цепей микросхемы от мощных сигналов.

Питается устройство от батареи напряжением 9 В («Крона», «Корунд», «Ника») и потребляет ток примерно 1,5 мА. Работоспособность сохраняется при уменьшении напряжения питания до 6 В. Максимальный ток через микроамперметр РА1 ограничен резисторами Rl, R2.

В устройстве можно применить практически любой малогабаритный стрелочный индикатор с током полного отклонения стрелки от 50 до 150 мкА. На частоте 28 МГц чувствительность устройства (минимальный регистрируемый сигнал) был 2–3 мВ, а зависимость показаний от входного напряжения имела квадратичный характер.

Благодаря атому прибор более чувствителен к изменениям напряженности поля, что позволяет точнее настраивать антенно-фидерные тракты. Так, например, при изменении напряжения на входе устройства в 1,4 раза (3 дБ) показания индикатора увеличиваются вдвое.

Вместо указанной на схеме К174ПС4 допустимо применить микросхемы К174ПС1, К174ПС2. Кроме диодов КД510А, подойдут КД522Б, КД503Б, Конденсаторы — КЛС, КД, K10-I7, КМ, резисторы — МЛТ, С2-33, Выключатель — любой малогабаритный, лучше движковый на два положения.

Схема № 15. Схема индикатора поля (рис. 4.15) представляет собой усилитель постоянного тока на ОУ с каскадом УВЧ и ВЧ детектором ().

На входе УВЧ установлен фильтр ВЧ L1, С2, L2, СЗ, который обрезает сигналы с частотой ниже 10–20 МГц.

Примечание.

В противном случае, прибор начинает реагировать на фон электропроводки и другие индустриальные помехи.

Усилитель ВЧ выполнен по схеме с общим эмиттером, режим выставляется резистором R1 так, что бы на коллекторе VT1 было напряжение равное Uкол=Uпит/2.

Через конденсатор С4 сигнал поступает на диодный детектор VD1. Здесь необходимо применять СВЧ германиевый диод ГД402, ГД507. Но нельзя применять диод Д9, максимальная частота которого 40 МГц.

Выпрямленный сигнал поступает на вход ОУ через фильтр L3, L4, С6, С7, которые препятствуют попадания на вход ОУ ВЧ составляющей. Операционный усилитель работает от однополярного питания. Поэтому для его нормальной работы при помощи делителя на R4, R5 создана искусственная «средняя точка».

Рис. 4.15. Индикатор поля

Усиление микросхемы определяется отношением R6/R8 при малых сигналах на входе. При увеличении напряжения на выводе 6 микросхемы до 0,6–0,7 В происходит открывание диода VD2 и в цепь обратной связи усилителя подключается резистор R7, что уменьшает усиление и делает шкалу прибора линейной.

В качестве ОУ можно применить 140УД12 или 140УД6 (предпочтительнее). В случае использования УД6 резистор R9 из схемы необходимо удалить. Резистором R10 осуществляется установка шкалы прибора на 0.

VT1— СВЧ транзистор, например КТ399.

L1 — 8 витков, провода 0,5 на оправке 5 мм. L2 — 6 витков, того же провода. Дросселя L3, L4 по 60-100 мкГн.

Схема № 16. Индикатор напряженности поля представлен на

. Особенность индикатора (рис. 4.16) в способе отображения уровня напряженности — на пятиуровневой светодиодной шкале.

Индикатор может контролировать напряженности полей с частотой до 1000 МГц. АЧХ индикатора не измерялось, так как его функция не измерять уровень ВЧ поля в абсолютных значениях, а демонстрировать его уровень и изменение этого уровня в условных единицах.

Однако, при наличии необходимой аппаратуры, можно сделать соответствующие таблицы. Во всяком случае, он уверенно реагирует:

— на сигнал СВ-радиостанции, работающей в диапазоне 27 МГц;

— на сигнал сотового телефона, работающего на значительно более высоких частотах.

Рис. 4.16. Индикатор напряженности поля

ВЧ-сигнал наводится в антенне W1 и поступает на усилительный каскад на VT1. Здесь работает относительно низкочастотный транзистор КТ3102. Возможно, используя транзистор типа КТ368, КТ381, можно улучшить работу индикатора на ВЧ. На выходе усилительного каскада включен детектор на германиевых диодах VD1 и VD2.

На конденсаторе СЗ выделяется постоянное напряжение, величина которого пропорциональна напряженности ВЧ поля. Это напряжение измеряется шкальным индикатором на поликомпараторной ИМС ВА6137, предназначенной для работы в индикаторах уровня. Уровень напряженности поля оценивают по линейной шкале из пяти светодиодов HL1—HL5.

Индикатор питается от источника из двух последовательно включенных гальванических элементов. Роль корпуса играет пластмассовый футляр для зубной щетки. В нем расположены два элемента питания (один за другим) и детали индикатора. В просверленные отверстия вклеены светодиоды, образующие линейную шкалу. Выводы светодиодов служат и опорными точками для монтажа микросхемы А1.

Роль антенны играет складная телескопическая антенна (с поворотным шарниром) радиоприемника или магнитолы.

Шарнир закреплен с боковой части корпуса так, что в сложенном положении антенна расположена параллельно корпусу. Для работы ее разворачивают на 180° (или другой угол) и вытягивают на нужную длину. Чувствительность можно регулировать, изменяя длину антенны.

При налаживании передатчика индикатор располагают на некотором расстоянии от его антенны, величина которого зависит от мощности и изменение его мощности излучения оценивают при светодиодной шкале. При необходимости индикатор удаляют или приближают к антенне передатчика. Индикатор целесообразно использовать при налаживании передатчиков мощностью не более 0,5 Вт. В противном случае он оказывается слишком чувствительным даже со сложенной антенной и его приходится далеко уносить.

Примечание.

В том случае, если нужно индицировать значительную мощность излучения, можно предусмотреть выключатель, отключающий питание от УВЧ на транзисторе VT1.

Вместо антенны можно подключить объемную катушку диаметром около 100 мм из трех витков толстого намоточного провода. Один конец катушки подключают вместо W1, а второй — на общий минус питания. Не исключен вариант и со сменными перестраиваемыми контурами, на разные частотные участки (получится волномер).