Теория и методика подтягиваний (части 1-3)

Кожуркин А. Н.

Глава 1. ФИЗИЧЕСКИЕ ОСНОВЫ ПОДТЯГИВАНИЙ НА ПЕРЕКЛАДИНЕ.

 

 

 

1.1 ФАЗЫ ЦИКЛА ПОДТЯГИВАНИЙ.

Подтягивание на перекладине - это циклическое упражнение, т.е. такое упражнение, в основе которого лежит повторение одного и того же цикла. Все элементы движений, составляющих один цикл, обязательно присутствуют в одной и той же последовательности во всех циклах [2]. Для удобства анализа техники выполнения циклических действий каждый цикл условно разбивается на ряд фаз - неких временны́х элементов движения.

В биомеханике цикл подтягивания на перекладине принято условно разделять на четыре фазы:

1 вис на вытянутых руках хватом сверху (исходное положение)

2 подъём

3 вис на согнутых руках

4 опускание в исходное положение

Рисунок 1.1 Фаза виса в исходном положении (ИП)

а – вид спереди

б – вид сбоку

В исходном положении (рисунок 1.1) всё тело выпрямлено, носки стоп оттянуты, пятки сведены, руки вытянуты над головой вверх и согнутыми пальцами кистей охватывают гриф перекладины. Сила тяжести действует «на разрыв», как бы стремясь отделить друг от друга сочленяющиеся звенья тела. Наибольшая нагрузка приходится на плечевой пояс и верхние конечности. Силы сопротивления костей и связок, а также силы тяги мышц, окружающих суставы, направлены на их укрепление, а также на удержание тела в данном положении. Под действием силы тяжести всего тела возникают опорные реакции грифа перекладины, которые стремятся разогнуть пальцы, чему препятствуют активные усилия мышц-сгибателей пальцев.

По длительности фаза виса в исходном положении занимает бо́льшую часть времени подтягивания. В этой фазе происходит восстановление от предыдущего подтягивания, и совершаются подготовительные действия для выполнения очередного подтягивания. Так, прекращение раскачивания тела после неудачно выполненного опускания в вис производится путём сокращения различных мышечных групп ног и (или) туловища. Изменение глубины и (или) местоположения хвата производится для улучшения условий работы мышц-сгибателей пальцев, выполняющих фиксацию хвата. Для более быстрого восстановления и отдаления момента полного закисления («задубения») мышц-сгибателей пальцев слабейшей руки производится перенос части веса тела на более сильную руку путём кратковременного смещения обоих ног в сторону этой (сильной) руки. По мере развития утомления в процессе подтягиваний происходит постепенное увеличение глубины, частоты и количества циклов дыхания с целью увеличения доставки кислорода к работающим мышцам.

Рисунок 1.2.

Фаза подъёма туловища а – вид спереди

б – вид сбоку, ноги выпрямлены

в – вид сбоку, ноги согнуты по отношению к туловищу

В фазе подъёма (рисунок 1.2.) происходит сгибание в локтевых и разгибание (по отношению к туловищу) в плечевых суставах за счёт значительных усилий соответствующих мышечных групп. Подъём на перекладине сопряжён со смещением верхней части туловища назад, что сопровождается компенсаторным перемещением вперёд ног и таза, поэтому при подтягивании тело спортсмена, если смотреть на него в профиль (рисунок 1.2б), переходит из вертикального положения в наклонное.

Степень участия двуглавой мышцы плеча (бицепс), грудной и широчайшей мышц зависит от ширины хвата. Так, если смотреть на спортсмена сбоку, при подтягивании узким хватом сгибание в локтевых суставах сопровождается выносом локтей вперёд, а при подтягивании широким хватом локти выносятся вперёд - в сторону. И если в первом случае спортсмен делает ставку на мышцы рук, то во втором случае к выполнению подъёма туловища более активно подключаются мышцы спины.

Поскольку работа некоторых мышц, выполняющих подъём туловища, более эффективна при вертикальном расположении туловища, то по мере накопления усталости некоторые спортсмены переводят туловище из наклонного положения в вертикальное. Для этого в процессе подъёма они плавно выносят прямые ноги вперёд, создавая вращающий момент, который отклоняет туловище назад, распрямляя его по вертикали (рисунок 1.2в). В результате такого манёвра мышцы, выполняющие сгибание плечевого сустава, получают более выгодные условия для сокращения на верхнем – проблемном – участке траектории движения в фазе подъёма.

Подъём туловища обычно производится на выдохе или, что значительно реже, на задержке дыхания.

Рисунок 1.3

Фаза виса на согнутых руках а – вид спереди

б – вид сбоку, ноги выпрямлены

в – вид сбоку, ноги согнуты по отношению к туловищу

Фаза виса на согнутых руках (рисунок 1.3). В большинстве случаев при выполнении подтягиваний эта фаза отсутствует. В правилах полиатлона по силовой гимнастике у мужчин записано, что «каждое правильно выполненное подтягивание отмечается командой «Есть!», подаваемой старшим судьёй в момент подъёма подбородка выше грифа перекладины» [10]. Имеет значение только момент перехода подбородка через уровень грифа, а не время удержания этого положения. Более того, задержка в положении виса на согнутых руках с задранным подбородком является признаком нерациональной техники выполнения подтягиваний, так как в такой позе спортсмен бесцельно тратит энергию, компенсируя момент силы тяжести с помощью мышечных усилий. Если же при выполнении очередного подтягивания спортсмен «зависает» на согнутых руках в некоторой точке траектории, нарушая непрерывность движения в фазе подъёма, это считается ошибкой, квалифицируемой правилами как «остановка в движении».

Таким образом, с точки зрения полиатлона рациональная техника выполнения подтягиваний не совместима с наличием фазы виса на согнутых руках. Тем не менее, в процессе выполнения подтягиваний иногда создаются ситуации, когда вис на согнутых руках имеет место. Во-первых, это происходит, когда спортсмен сознательно задерживается в верхней точке траектории движения, чётко фиксируя момент перехода подбородка через уровень грифа перекладины. Во-вторых, когда спортсмену приходится вынужденно задерживаться в положении виса на согнутых руках из-за невнимательности или предвзятого отношения судьи. В-третьих, когда в связи с особенностью техники выполнения подтягиваний спортсмен выполняет подъём на относительно большом расстоянии от грифа. Тогда в верхней части траектории он вынужден приблизить подбородок к грифу в условиях, когда движение по вертикали уже отсутствует. В этом случае можно наблюдать так называемый «динамический вис». В-четвёртых, когда подтягивание выполняется очень медленно – на пределе сил или на сползающих кистях – в этом случае переход от фазы подъёма к фазе опускания производится осторожно, с видимой задержкой в висе на согнутых руках.

И хотя с точки зрения рациональной техники выполнения подтягиваний фаза виса на согнутых руках должна быть исключена, эта фаза, тем не менее, наблюдается при выполнении подтягиваний, а поэтому имеет право на существование.

Положение виса на согнутых руках характеризуется тем, что большинство мышц, участвующих в его фиксации, находятся в предельно напряжённом состоянии. Дыхание в висе на согнутых руках сильно затруднено, особенно если вис сопровождается вынесение ног вперёд.

Рисунок 1.4.

Фаза опускания туловища а – вид спереди

б – вид сбоку, ноги выпрямлены

в – вид сбоку, ноги согнуты по отношению к туловищу

Фаза опускания в исходное положение (рисунок 1.4). Опускание туловища в вис производится с помощью тех же мышц, что и его подъём, но работают эти мышцы уже не в преодолевающем, а в уступающем режиме, тормозя тело, падающее под действием силы тяжести. Чем меньше скорость тела в момент его прихода в И.П., тем большую работу совершают мышцы в фазе опускания туловища. Если после перехода подбородка через уровень грифа мышцы полностью расслабить, они будут отдыхать, пока тело выполняет свободное падение, но тогда в момент прихода в исходное положение скорость тела будет максимальна, и кисти испытают большую ударную нагрузку, что может привести к срыву с перекладины. Поэтому тормозящие усилия мышц в большой степени зависят от возможностей мышц-сгибателей пальцев, и особенно много усилий приходится тратить в фазе опускания в том случае, когда хват находится на грани срыва.

 

1.2 БИОМЕХАНИКА ПОДТЯГИВАНИЙ.

Подтягивание на перекладине производится за счёт мышечных усилий. При этом если в 1 фазе цикла усилия затрачиваются в основном на фиксацию позы, то во 2 - 4 фазах энергия мышц расходуется как на поддержание статических усилий, так и на перемещение тела спортсмена.

Для количественного описания и анализа процессов, происходящих во время выполнения подтягиваний, используются различные биомеханические характеристики, которые принято делить на кинематические, динамические, энергетические [3].

Тело спортсмена в каждый момент времени занимает вполне определённое положение по отношению к перекладине. При движении в фазах подъёма и опускания туловища это положение непрерывно изменяется. Кинематические характеристики отражают особенности движения тела спортсмена в ходе выполнения подтягиваний.

В подтягивании на перекладине участвует большое количество мышц, обеспечивающих как фиксацию позы, так и перемещение тела спортсмена. При изменении положения тела меняются как внешние силы, так и силы тяги мышц. Динамические характеристики несут информацию о причинах изменения движения, помогают разобраться в механизмах его формирования, что способствует овладеванию рациональной техникой выполнения подтягиваний.

Энергия биохимических процессов, происходящих в мышцах, превращается в механическую работу или напряжение. Энергетические характеристики помогают выявить закономерности процессов превращения энергии, рассчитать энергозатраты при выполнении отдельных фаз циклов подтягивания, подобрать наиболее экономичные с физиологической точки зрения варианты техники выполнения подтягиваний.

Кинематические характеристики условно разделяют на пространственные, временны́е и их производные – скоростные или пространственно-временны́е [21].

Пространственные характеристики, взятые для какого-либо момента времени, определяют «мгновенное» положение каждой точки тела человека относительно выбранной точки отсчёта, а также протяжённость звеньев тела в пространстве. Описывая пространственное положение звеньев тела спортсмена, мы должны ответить на вопросы: где находятся, какое положение занимают, какие имеют размеры, в каком направлении и на какое расстояние или угол произошло перемещение?

Временны́е параметры помогают зафиксировать моменты начала и окончания какого-либо события, его продолжительность, а также разницу по времени между началами отдельных событий, т.е. фазовые сдвиги. Временно́й анализ позволяет определить также моменты достижения того или иного состояния в процессе двигательной деятельности, установить ритмовую структуру выполняемых действий.

Скоростные (пространственно-временны́е) характеристики описывают быстроту изменения положения звеньев тела спортсмена в пространстве в единицу времени (скорость) и быстроту изменения скорости в единицу времени (ускорение). Так как ускорение вызывается приложенными силами, по ускорению (взятому вместе с другими характеристиками) можно определить силы, обуславливающие движение [21].

Несмотря на то, что результат в подтягивании определяется количеством выполненных подъёмов тела, преобладающую часть времени выполнения упражнения спортсмен находится в висе в исходном положении, производя в основном статическую работу по фиксации хвата и сохранению равновесия. Поэтому способность спортсмена к длительному проявлению относительно бо́льших статических напряжений (на фоне мощных динамических усилий) в значительной степени определяет спортивный результат в подтягивании. Вследствие особой важности статики необходимо заострить внимание на характеристиках, описывающих статическое напряжение мышц. Практическое значение статических показателей будет состоять в том, чтобы охарактеризовать условия, при которых спортсмен максимально эффективно может выполнять статическую работу по фиксации позы, тем самым облегчая выполнение собственно подтягиваний.

Любое двигательное действие можно охарактеризовать количественно и качественно. Количественные характеристики предназначены для математического описания движений во времени и пространстве. Качественные характеристики позволяют описать особенности способов выполнения двигательных действий (техники) без привлечения математического аппарата.

Вне зависимости от того, какой классификации параметров двигательной деятельности придерживаться, следует не забывать о том, что любая классификация предназначена лишь для удобства анализа и усвоения изучаемого материала. Поэтому, мысленно разбивая целое на части, нужно учитывать, что части не существуют сами по себе, а являются неотъемлемой частью целого.

 

1.2.1 Кинематические характеристики подтягивания.

1.2.1.1 Пространственные характеристики.

Нередко из-за неудачно выбранного исходного положения спортсмен на соревнованиях не может показать результат, который без труда демонстрирует на тренировках. Ненадёжный хват, раскачивание в фазе виса в исходном положении и т.п. не позволяют спортсмену в полной мере реализовать свой потенциал.

Рассмотрим некоторые характеристики, влияющие на спортивный результат при подтягивании на перекладине.

Ширина хвата. На рисунке 1.5 изображены три разновидности хвата - хват уже плеч, хват на ширине плеч и хват шире плеч. Варианты хвата различаются по углу отклонения рук от линии вертикали в фазе виса в исходном положении.

Математический анализ показывает, что усилия, развиваемые спортсменом при висе в исходном положении минимальны, когда выполняется вис с хватом на ширине плеч. Но обычно спортсмены выполняют подтягивания с более широким хватом. Почему? Дело в том, что в зависимости от ширины хвата изменяются условия работы мышц, обеспечивающих перемещение туловища, поэтому спортсмен интуитивно выбирает наиболее оптимальную для него ширину хвата.

При увеличении ширины хвата с одной стороны уменьшается высота подъёма спортсмена до уровня грифа перекладины в фазе подъёма туловища, а значит, уменьшается и энергия, затрачиваемая спортсменом в каждом цикле подтягивания. Но с другой стороны при увеличении ширины хвата суставы рук спортсмена испытывают дополнительные растягивающие усилия и, что самое неприятное - разгибающему воздействию подвергаются пальцы в месте хвата. И если спортсмен расположит руки на перекладине шире, чем позволяет подвижность лучезапястного сустава, в месте хвата возникает перекос сил, нарушающий оптимальное распределение нагрузки на пальцы. Чем больше перекос, тем большая доля нагрузки будет приходиться на более слабые мышцы-сгибатели мизинца и безымянного пальца. Поэтому на вопрос: какой хват лучше - широкий или узкий, можно ответить, что лучше всего хват удобный, т.к. именно такой хват помогает подтянуться максимальное количество раз.

Рисунок 1.5. Ширина хвата а – узкий хват

б – хват на ширине плеч

в – широкий хват

Глубина хвата. Одним из основных факторов, влияющих на спортивный результат при подтягивании, является качество сцепления ладоней с грифом перекладины, т.е. надёжность хвата. И не последнюю роль в этом деле играет глубина хвата. На рисунке 1.6 изображены три различных варианта хвата – глубокий, нормальный (кистевой) и хват на кончиках пальцев.

Рисунок 1.6. Глубина хвата а - глубокий хват

б - нормальный (кистевой) хват

в - хват на кончиках пальцев, вид сбоку

г - хват на кончиках пальцев, вид спереди

Глубина хвата определяется степенью «накручивания» ладоней на гриф перекладины и её можно выразить углом , который образуется между вертикальной прямой и прямой, проходящей через ось перекладины и центр лучезапястного сустава (рисунок 1.7). Чем больше этот угол, тем больше глубина хвата.

Рисунок 1.7 точка А – геометрический центр грифа

точка С – центр лучезапястного сустава

α – угол, характеризующий глубину хвата

АВ - плечо момента силы тяжести Fg

Что нам даёт глубокий хват? Во-первых, он позволяет более плотно обхватить гриф и сместить центр хвата из области пальцев в область ладони, частично разгрузив мышцы-сгибатели пальцев. Кроме того, чем глубже хват, тем ближе подбородок к грифу перекладины, а значит, тем меньше усилий будет потрачено на выполнение каждого цикла подтягиваний.

При утомлении мышц-сгибателей пальцев хват ослабевает, кисти ползут, и спортсмен постепенно опускается в положение хвата на кончиках пальцев. Это и ухудшает условия работы участвующих в подтягивании мышц и увеличивает путь подъёма туловища. Причём путь может увеличиться существенно - примерно на 10% от первоначального значения.

Но если глубокий хват хорош во всех отношениях, почему бы не подтягиваться с использованием как можно более глубокого хвата? Дело в том, что как только кисть отклоняется от строго вертикального положения, возникает момент силы тяжести, который стремится вернуть её обратно. Так что для поддержания глубокого хвата требуется или хорошее трение в месте хвата или дополнительные мышечные усилия или и то и другое одновременно. В конечном итоге выбор глубины хвата - это компромисс между желанием обеспечить более выгодные условия для подъёма туловища и возможностями мышц-сгибателей пальцев с учётом сил трения. Нанесение магнезии на поверхность ладоней и грифа перекладины существенно улучшает условия фиксации хвата. Конечно, можно магнезию не наносить и попытаться выполнить глубокий хват с влажными ладонями. Но для этого придётся сжимать гриф гораздо сильнее обычного, что приведёт к резкому сокращению времени удержания хвата.

Величина обхвата. Величина обхвата - это внешний диаметр трубы, на которой производится подтягивание. В соревновательных условиях величина обхвата равна диаметру грифа перекладины, который в соответствии с правилами соревнований составляет от 27 до 29мм. Диаметр грифа тренировочной перекладины может отличаться от указанного размера в ту или иную сторону.

У спортсменов с недостаточным уровнем развития статической выносливости увеличение диаметра грифа, как правило, приводит к ухудшению результата. Это связано с тем, что на более толстой перекладине хват смещается в сторону пальцев, а момент силы тяжести, которому противодействуют мышцы-сгибатели пальцев, возрастает из-за увеличения плеча этой силы.

Чтобы на соревнованиях избежать проблем с хватом, таким спортсменам для развития статической выносливости мышц – сгибателей пальцев рекомендуется проводить тренировки на более толстой, чем стандартная, перекладине.

Расположение хвата на грифе. Нередко возникает ситуация, когда правая и левая рука спортсмена обладают различными силовыми возможностями. При этом слабейшая рука может значительно уступать по своим силовым способностям руке ведущей. Слабейшая рука быстрее устаёт, «дубеет», вследствие чего силовая нагрузка вынужденно перераспределяется с упором на ведущую руку, вызывая её быстрое утомление. Поэтому необходимо ещё до начала подтягивания создать условия, при которых вес тела спортсмена будет распределён на руки спортсмена не равномерно, а пропорционально их силовым возможностям. Для этого проще всего сместить хват от центра гимнастической перекладины для того, чтобы слабейшая рука оказалась немного ниже ведущей. Тогда и в висе и при подтягивании большая часть нагрузки будет приходиться на руку, расположенную выше, т.е. на сильнейшую. Кроме того, подтягивание на более жёсткой части грифа позволяет более резко начинать движение в фазе подъёма туловища, в то время как резкое сокращение мышц при расположении хвата в более гибкой центральной части грифа может квалифицироваться судьями как рывок.

Чтобы сильнейшая рука не оказалась под чрезмерной загрузкой, величину смещения хвата желательно заранее подобрать на тренировке опытным путём.

Перемещение. Величина перемещения в фазе подъёма туловища - это то расстояние, на которое нужно переместить тело, чтобы подбородок оказался выше грифа перекладины. Это расстояние зависит от анатомических размеров тела - длины рук и шеи, а также от ширины и глубины хвата: чем шире и глубже хват, тем ближе к грифу перекладины изначально находится подбородок спортсмена.

На величину перемещения также влияет техника выполнения подтягиваний. Правила не запрещают «взлетать» над перекладиной хоть до уровня груди, но судьями это не оценивается, а на результате такая бессмысленная трата сил сказывается не лучшим образом. Поэтому спортсмен должен стремиться выполнять подъём туловища на минимальное расстояние, необходимое для того, чтобы судья увидел подбородок выше уровня грифа и засчитал очередное подтягивание. В рамках данной работы такое расстояние мы будем называть обязательным перемещением.

Траектория. При движениях спортсмена во время выполнения подтягиваний любые точки его тела описывают в пространстве некоторые линии, называемые траекториями движения. В траекториях движений различают направление, форму и амплитуду. Технику выполнения физических упражнений характеризует не сама по себе траектория перемещения тела, а оптимальное сочетание траекторий движений его различных звеньев, рациональное регулирование этих движений по направлению, амплитуде и форме траектории [1].

Так как поступательное движение тела спортсмена в фазах подъёма и опускания туловища складывается из вращательных движений частей тела (звеньев) в суставах, то пути, проходимые различными точками тела вдоль траектории движения, отличаются друг от друга. Но, несмотря на то, что путь, проходимый, например, подбородком спортсмена по линии траектории, может быть гораздо больше величины его перемещения, спортивный результат в подтягивании определяется количеством обязательных перемещений подбородка, а не суммарной длиной его траекторий. Поэтому чем более рациональной техникой выполнения подтягиваний владеет спортсмен, чем меньше ненужных движений он производит, тем меньше энергетическая стоимость каждого цикла подтягивания.

Раскачивание в исходном положении. Исходное положение (и.п.) служит одной из важных предпосылок эффективного выполнения последующих движений [1].

При опускании туловища в исходное положение после выполнения очередного подтягивания тело спортсмена довольно часто начинает раскачиваться. Разрешение на выполнение следующего подтягивания судья даёт после того, как амплитуда колебаний снижается до допустимого предела, но так как небольшие колебания всё-таки остаются, их нужно уметь рационально использовать для уменьшения развиваемых мышечных усилий. Энергия движения тела спортсмена при раскачивании должна помогать, а не препятствовать сокращению мышц на начальном участке фазы подъёма туловища.

В фазе подъёма тело спортсмена принимает наклонное положение так, что голова и туловище отклонено назад, а ноги вынесены вперёд. Техника "попадания в кач" состоит в том, что подъём туловища при раскачивании начинается в наиболее удобный для этого момент, т.е. тогда, когда тело, отклонившись назад, замирает перед тем, чтобы качнуться вперёд. Сила инерции при раскачивании складывается силой тяги мышц, что облегчает подъём тела в начальной части и перевод его в наклонное положение, а также в некоторых случаях помогает в дальнейшем избежать "зависания" в верхней части траектории движения.

Положение тела при подтягивании. Рациональная поза в процессе выполнения подтягиваний помогает поддерживать статическое и динамическое равновесие тела, эффективно проявлять силовые качества [1].

По мере развития утомления в процессе выполнения подтягиваний скорость движения в фазе подъёма туловища снижается. Чем медленнее выполняется подъём, тем больше усилий приходится затрачивать не на движение, а на сохранение позы, особенно в верхней части траектории, когда спортсмен прилагает сверхусилия, чтобы дотянуться подбородком до перекладины. Таким образом, в связи с увеличением времени подъёма возрастает доля статической работы по удержанию положения тела. Причём это происходит в условиях, когда кроме собственного веса спортсмену приходится преодолевать и момент силы тяжести, возникающий из-за того, что его голова и туловище находятся на некотором удалении от перекладины. Для того, чтобы сгладить последствия этого негативного явления, спортсмен выносит ноги вперёд, всё больше сгибая их в тазобедренных суставах по мере накопления усталости. Это позволяет переместить центр тяжести ближе к перекладине, в то же время оставляя туловище в положении, оптимальном для эффективного сокращения мышц. Кроме того, если вынос ног делать плавно – как этого требуют правила, но энергично, это поможет пройти проблемный верхний участок траектории.

 

1.2.1.2 Временны́е характеристики.

Время виса при подтягивании. Спортсмены, претендующие на высокий спортивный результат, должны обеспечить надёжный хват на протяжении всех четырёх минут, отведённых на выполнение упражнения.

Для большинства спортсменов, имеющих результат на уровне 30-35 раз, малое время виса является ограничением дальнейшего роста их спортивного мастерства. Через 1,5-2 минуты после начала выполнения упражнения руки «дубеют», хват ослабевает, кисти ползут, перехваты следуют всё чаще и чаще и спортсмен уже не подтягивается, а мучается и в конце концов срывается с перекладины. Чем раньше начинают ползти кисти, тем худший результат показывает спортсмен, тем больше сил у него остаётся после срыва и тем обиднее такой срыв.

Таким образом, время удержания надёжного хвата при выполнении подтягиваний является одной из важнейших характеристик, на которые нужно ориентироваться при построении тренировочного процесса. Но не следует путать время удержания надёжного хвата и время чистого виса. Время чистого виса – это время виса без подтягиваний. Чистый вис легко тренируется, но способность долго висеть, не подтягиваясь, не является гарантией того, что спортсмен сможет обеспечить надёжный хват при подтягивании. К сожаленью, темп подтягиваний и время виса при подтягивании связаны обратной зависимостью: чем выше темп подтягиваний, тем меньшее время спортсмен может надёжно фиксировать хват.

Ещё одним фактором, влияющим на продолжительность виса, является состояние ладоней и поверхности грифа перекладины. Дело в том, что предельное время статической работы и сила, развиваемая мышцами-сгибателями пальцев для обеспечения фиксации хвата, также связаны друг с другом обратной зависимостью.

Из литературы [2] известно, что когда развиваемая мышцами сила составляет менее 20 % от их максимальной силы, статическая работа может проявляться в течение очень длительного времени. В диапазоне силы давления от 20% до 80% от максимальной силы мышц время статической работы уменьшается с увеличением силы давления в соответствии с кривой рисунка 1.8.

Рисунок 1.8. Связь между силой сокращения мышц ( в процентах от максимальной)

и длительностью его удержания (по Я.М.Коцу , 1975).

Таким образом, чем больше сила давления на гриф перекладины со стороны мышц-сгибателей пальцев, тем меньше время надёжного хвата. Даже небольшое снижение силы статического сокращения приводит к значительному увеличению времени, в течение которого возможно поддержание этого сокращения. Именно поэтому опытные спортсмены много внимания уделяют подготовке ладоней и грифа перекладины перед началом подтягивания. Время виса при подтягивании на неподготовленной – «скользкой»- перекладине может оказаться значительно меньшим, чем на подготовленной, так как для поддержания оптимальной глубины хвата спортсмен вынужден сдавливать гриф сильнее, чем обычно. Для уменьшения усилий мышц-сгибателей пальцев «скользкий» гриф обрабатывают грубой наждачной бумагой, делая его поверхность в местах фиксации хвата как можно более шероховатой. Нанесение магнезии на ладони и гриф ещё больше улучшает условия контакта ладоней и грифа за счёт увеличения коэффициента трения.

Тщательная подготовка ладоней и грифа позволяет уменьшить силу давления мышц-сгибателей пальцев, а значит увеличить предельное время статической работы, т.е. в конечном итоге способствует увеличению количества подтягиваний.

Время виса до первого отрыва. При недостаточном уровне развития статической выносливости мышц-сгибателей пальцев в процессе выполнения подтягиваний неизбежно возникает ситуация, когда хват ослабевает и спортсмен сползает на кончики пальцев. Долго подтягиваться в таком положении невозможно, поэтому спортсмен вынужден хват поправлять, теряя при этом драгоценное время. Чем больше перехватов, тем меньше времени остаётся на подтягивание. Если руки ползут сильно, перехваты следуют после каждого подтягивания, причём иногда пауза отдыха для перехвата одной руки может затянуться настолько, что начинает ползти другая рука – и здесь уже не до подтягиваний. В связи с этим, имеет смысл ввести такой показатель как время виса до первого вынужденного отрыва, т.е. время, в течение которого спортсмен способен подтягиваться без необходимости поправлять хват. Кстати, чем больше это время, тем меньше риск сорваться с перекладины во время выполнения перехвата. А такое случается нередко – на «скользкой» перекладине не всегда удаётся восстановить надёжный хват. На то она и «скользкая».

В идеальном случае спортсмен выполняет подтягивание в течение четырёх минут без изменения первоначального хвата – не тратя время на перехваты и изменение местоположения. Но это уже высший пилотаж.

Общая длительность подтягивания. Суммарной временно́й характеристикой движения при выполнении подтягиваний на перекладине является общая длительность выполнения упражнения.

Динамическая работа мышц, участвующих в подъёме и опускании туловища, сочетается со статической работой мышц-сгибателей пальцев, обеспечивающих фиксацию хвата. Поэтому результат в подтягивании будет определяться уровнями развития как статической, так и динамической выносливости названных мышечных групп спортсмена. Ясно, что при недостаточном уровне развития статической выносливости спортсмен заканчивает выполнение соревновательного упражнения раньше отведённых на это четырёх минут по причине утомления мышц-сгибателей пальцев, а при недостаточном уровне развития динамической выносливости он оказывается не в состоянии «вытянуть» очередное подтягивание, несмотря на надёжный хват.

Тренировочные средства, используемые спортсменом должны обеспечить оптимальное сочетание уровней развития статической и динамической выносливости, т.е. такое их сочетание, при котором спортсмен может поддерживать высокий темп подтягиваний на протяжении всех четырёх минут соревновательного упражнения.

Темп и длительность цикла подтягиваний. Развитие процессов утомления во времени характеризуется постепенным увеличением длительности цикла подтягиваний в ходе выполнения упражнения и, соответственно, снижением темпа подтягиваний. Темп – это количество движений в единицу времени. Применительно к подтягиванию на перекладине за единицу времени удобно принять 1 минуту. Тогда длительность цикла в секундах будет выражаться в соответствии с выражением: t = 60 / n , где t – длительность цикла подтягиваний, сек.; n – темп выполнения подтягиваний, раз/мин.

Например, если спортсмен за первую минуту выполнил 20 подтягиваний, а за последнюю – 10, то его темп выполнения упражнения на первой минуте составил 20 раз в минуту, а на последней – 10 раз в минуту. При этом длительность цикла подтягиваний на первой минуте в среднем составляла t=60/20=3 сек., а на последней – t=60\10=6 сек.

На практике иногда понятия темпа и длительности цикла смешиваются, и темп выражается в единицах длительности цикла. Например, если спортсмен говорит, что он собирается выполнить серию подтягиваний «в темпе раз в четыре секунды», то это надо понимать так, что он собирается подтягиваться в темпе 15 раз в минуту, так как длительность цикла при подтягивании в таком темпе как раз и составляет 4 секунды.

И темп, и длительность цикла – это довольно информативные показатели, отражающие степень подготовленности спортсмена. Это связано с тем, что оба показателя значительно изменяются в ходе выполнения упражнения, причём, чем сильнее выражены эти изменения, тем, как правило, хуже подготовлен спортсмен.

Длительность цикла – это показатель, выраженный непосредственно в единицах времени, его легко измерить с помощью секундомера. Динамику изменения длительности цикла в ходе выполнения подтягиваний удобно отслеживать для каждых пяти циклов. Понятно, что средняя длительность цикла в этом случае будет равна одной пятой от времени, затраченного на выполнение этих пяти подтягиваний. Проанализировав зависимость времени, затраченного на каждое подтягивание от количества выполненных подтягиваний (либо от времени выполнения упражнения), можно более точно планировать величину и направленность тренировочных нагрузок.

На рисунках 1.9 – 1.11 представлены графики изменения средней длительности цикла в ходе выполнения подтягиваний, а в таблицах 1.1 – 1.3 - исходные данные для построения этих графиков. Измерения, некоторые результаты которых приведены на рисунке 1.9, проводились в 1994 году на контрольной тренировке полиатлонистов коллектива физкультуры «Прибой» и на Чемпионате СНГ по полиатлону в г. Санкт-Петербурге.

Аналогичные измерения, результаты которых приведены на рисунках 1.10 и 1.11, проведены на Чемпионатах Санкт­-Петербурга в 2004 и 2005 годах соответственно. Правила полиатлона по силовой гимнастике десятилетней давности несколько отличались от современных правил. В частности, при подтягивании разрешалось использовать клеящие вещества; отсутствовало ограничение времени подтягивания; максимальный результат, оцениваемый в 60 очков, составлял для основной группы 44 раза. Поэтому любопытно будет сравнить особенности раскладок времени при подтягивании в то время и сейчас, учитывая произошедшие изменения в правилах соревнований.

Отметим, что длительность цикла подтягиваний в ходе выполнения упражнения увеличивается у всех спортсменов, независимо от их спортивного результата. Это обусловлено несколькими причинами.

Во-первых, нарастает утомление, мышц, выполняющих подъём и опускание тела. Если в начале выполнения упражнения спортсмен может выполнять подтягивание с небольшими паузами отдыха в ИП., то по мере нарастания утомления спортсмену требуется интервал отдыха, позволяющий восстановиться так, чтобы выполнить хотя бы одно подтягивание. С каждым подтягиванием этот интервал становится всё продолжительнее. Кроме того, в связи с нарастающим утомлением увеличивается и длительность фазы подъёма туловища.

Во-вторых, возрастает утомление мышц-сгибателей пальцев, выполняющих статическую нагрузку по удержанию хвата. Во избежание срыва с перекладины спортсмен вынужден всё чаще и чаще поправлять хват. Кроме того, ему приходится производить опускание туловища более медленно для того, чтобы избежать ударной нагрузки на кисти.

В-третьих, фазы цикла подтягиваний необходимо согласовывать с фазами цикла дыхания. Так, подъём туловища обычно производится на выдохе (или на выдохе с задержкой дыхания), а опускание – на вдохе. В паузе отдыха в висе спортсмен производит несколько дополнительных вдохов-выдохов, количество которых обычно колеблется от нуля (если спортсмен после фиксации и.п. без отдыха начинает следующее подтягивание) до трёх и более (при сильном утомлении). Необходимость поправить хват, погасить раскачивание в висе и некоторые другие моменты могут привести к увеличению количества циклов дыхания в висе в исходном положении.

В зависимости от характера изменений длительности цикла подтягиваний при выполнении упражнения можно выделить две группы спортсменов.

Группа 1 (кривые 4-8 рисунка 1.9; кривые 3,5-7 рисунка 1.10; кривые 3-11 рисунка 1.11). Спортсмены с недостаточными (низкими или несбалансированными) уровнями развития статической и динамической выносливости. У спортсменов данной группы кривая изменения длительности цикла в ходе выполнения подтягиваний имеет характерный «хвост» - резкий взлёт незадолго до отказа от дальнейшего выполнения упражнения.

Немного забегая вперёд, отметим, что непосредственным источником энергии для мышечных сокращений является расщепление высокоэнергетического вещества аденозинтрифосфата (АТФ). Запасы АТФ в мышце ограничены, поэтому для того, чтобы мышечные волокна могли поддерживать длительное сокращение, необходимо постоянное восстановление АТФ. При выполнении подтягиваний скорость расходования АТФ больше, чем скорость его восстановления, поэтому рано или поздно наступает момент, когда спортсмен окажется не в состоянии поддерживать фиксацию хвата или выбранный темп подтягиваний. Взлёт кривой как раз и указывает на исчерпание резервов и развитие процесса, когда спортсмену требуется всё больше и больше времени отдыха на то, чтобы восстановить запас АТФ до уровня, достаточного для выполнения хотя бы одного – очередного - подтягивания. Если же силовой потенциал мышц окажется ниже определённого порога, выполнение упражнения прерывается либо по причине срыва с перекладины при разжимании пальцев, либо по причине неспособности вытянуть очередное подтягивание.

Для спортсменов, имеющих проблемы со статикой, характерно быстрое начало. Зная о том, что их время поддержания надёжного хвата составляет полторы-две минуты, они стремятся на первой минуте выполнить как можно больше подтягиваний. А дальше – как получится. Но расплата за быстрое начало не заставляет себя долго ждать. Резкий взлёт кривой свидетельствует о необходимости всё возрастающих интервалов отдыха, связанных с прогрессирующим накоплением в мышцах молочной кислоты. Борьба с "ползущими" кистями заканчивается всегда одинаково – спортсмен срывается с перекладины при опускании в вис или попытке поправить хват.

Для спортсменов, уровень развития динамической выносливости которых не позволяет им подтянуться больше 20-25 раз, раскладка по времени аналогична. Резкое снижение темпа в этом случае говорит о прогрессирующем утомлении динамически работающих мышц. Решение об отказе от дальнейшего выполнения упражнения спортсмен принимает, осознав, что сколько бы времени он ни провисел в паузе отдыха, подтянуться уже не сможет.

Итак, для спортсменов первой группы характерно наличие момента, начиная с которого длительность цикла подтягиваний от плавного увеличения переходит к резко прогрессирующему возрастанию. Графики изменения длительности цикла (кривые 4–8, рисунок 1.9) после излома идут почти параллельно, а значит процессы утомления после прохождения критической точки развиваются практически с одинаковой скоростью. Критическая точка служит индикатором исчерпания силового потенциала мышц. Она является признаком начала процесса, когда спортсмен использует паузу отдыха для восстановления сил только на очередное подтягивание.

Группа 2 (кривые 1-3 рисунка 1.9; кривые 1,2,4 рисунка 1.10; кривые 1,2 рисунка 1.11). Спортсмены с достаточными (высокими и сбалансированными) уровнями развития статической и динамической выносливости.

Особенностями данной раскладки являются: более медленное начало, отсутствие резко выраженного взлёта в конце выполнения упражнения, значительно меньшая разница во времени, затрачиваемом на один цикл подтягиваний в начале и в конце выполнения упражнения по сравнению с аналогичными параметрами спортсменов первой группы.

В отличие от спортсменов первой группы, спортсмены второй группы контролируют своё состояние от начала и до конца выполнения упражнения. Они могут произвольно изменять темп выполнения подтягиваний в зависимости от субъективных ощущений и создавшейся ситуации. Начиная подтягивания в режиме «одно подтягивание на один цикл дыхания», они по мере накопления усталости переходят в режим «одно подтягивание на два цикла дыхания» не скачком, а постепенно, сначала затягивая фазу вдоха в висе в и.п., затем чередуя два-три подтягивания на цикл дыхания с одним подтягиванием на два цикла дыхания. Переход к подтягиванию на три цикла дыхания производится аналогично. Таким образом, спортсмены как бы отслеживают своё внутреннее состояние и оперативно реагируют на его изменение изменением среднего темпа подтягиваний.

Рассмотрим теперь отличия в раскладках 1994 г и 2004-2005 гг. Эти отличия касаются только спортсменов второй группы, т.е. тех, кто способен выполнять подтягивания в течение четырёх и более минут. Если раньше (в 1994г) для того, чтобы показать максимальный результат, можно было подтягиваться сколь угодно долго, то ограничение времени подтягиваний создало определённые проблемы для тех спортсменов, которые привыкли выполнять подтягивание более четырёх минут. Теперь им предстояло показать тот же результат за меньшее время, т.е. увеличить средний темп выполнения подтягиваний. Если при свободном контроле времени спортсмены, которые не испытывали проблем с хватом, могли показать максимальный результат, используя тактику подтягиваний с бо́льшими интервалами отдыха, то при жёстком контроле времени такая тактика уже себя не оправдывала. Вместо решения задачи по выполнению максимального числа подтягиваний за произвольное время спортсмену приходится решать задачу по выполнению максимального числа подтягиваний за ограниченное время. Таким образом, после введения ограничения времени подтягиваний результат спортсмена стал пропорционален не произведённой им механической работе, а количеству работы в единицу времени, т.е. мощности работы.

Ритм. Это соотношение длительностей таких частей движений, которые могут отличаться друг от друга по направлениям движения, величине и изменениям скорости, приложенным силам, значению в целом двигательном акте [21]. Ритм имеется в каждом движении, поэтому можно определить ритм как для всего цикла подтягивания, так и для отдельных его фаз.

В ходе выполнения подтягиваний длительности фаз изменяются (см. рисунок 1.12), что позволяет говорить о непостоянном ритме движений при подтягивании. Большим изменениям подвергается длительность фазы виса в ИП. Продолжительность этой фазы может измениться от 0,5 до 10-15 секунд, длительность фазы подъёма также возрастает в ходе выполнения подтягиваний, но менее значительно – в среднем от 0,5-0,7 сек до 1,2-2 сек. Иногда в фазе подъёма спортсмен «зависает» на 5-6 секунд, обычно после такого продолжительного напряжения подтягивание прекращается. Длительность фазы опускания в среднем составляет 0,6-1,2 секунд, но она значительно увеличивается в том случае, когда у спортсмена возникают проблемы с хватом, и он опускается в вис осторожно, стараясь избежать ударной нагрузки на кисти.

Характер изменения длительности различных фаз подтягиваний в ходе выполнения соревновательных упражнений представлен на графиках рисунка 1.12.

При этом графики 1.12а соответствует случаю, когда спортсмен, подтянувшись 50 раз за 4 минуты, заканчивает выполнение упражнения из-за того, что закончилось отведённое на это время. Для увеличения спортивного результата спортсмену на тренировках необходимо поработать над увеличением темпа выполнения подтягиваний. Кстати, суммарное значение продолжительности всех фаз подъёма, опускания и виса на согнутых руках намного меньше суммарной продолжительности всех фаз виса в исходном положении. Поэтому увеличения темпа подтягиваний проще всего добиться за счёт уменьшения пауз отдыха, так как максимальные потери времени, особенно в конце выполнения упражнения, происходят именно в этой фазе.

Графики 1.12б соответствуют случаю, когда спортсмен, подтянувшись 32 раза за 2 мин 40 сек, заканчивает упражнение из-за ослабления хвата и последовавшего за этим срыва с перекладины во время очередного перехвата. Результат спортсмена при таком развитии событий в основном определяется уровнем развития статической выносливости мышц-сгибателей пальцев и для его улучшения на тренировках следует уделять повышенное внимание развитию именно этого качества.

Рисунок 1.12

Изменение длительности фаз цикла подтягиваний в ходе выполнения упражнения

а) спортсмен прекратил выполнение упражнения, т.к. закончилось время (50раз за 4.00)

б) спортсмен прекратил выполнение упражнения, т.к. поползли кисти ( 32 раза за 2.40)

в) спортсмен прекратил выполнение упражнения, т.к. закончились силы (17 раз за 1.50)

Графики 1.12в соответствуют случаю, когда спортсмен, подтянувшись 17 раз за 1 мин 50 сек, сознательно отказывается от продолжения подтягиваний после выполненного на пределе сил очередного подтягивания, понимая, что его силовые возможности снизились настолько, что он уже не сможет восстановиться и вытянуть хотя бы одно подтягивание. Для быстрого улучшения результата в такой ситуации следует на тренировках в первую очередь поработать над развитием динамической силовой выносливости (тяги).

Ни на одном из представленных графиков не отражено изменение длительности фазы виса на согнутых руках. Это связано с тем, что у всех трёх спортсменов фаза виса на согнутых руках либо не наблюдалась вообще, либо её длительность составляла менее одной десятой секунды.

Для ритмично выполняемого физического упражнения характерна чётко согласованная последовательность включения различных мышечных групп по ходу действия [1]. Потеря благоприятного, т.е. способствующего высокому спортивному результату, ритма в подтягивании может происходить по разным причинам – из-за нарастающего утомления, необходимости поправить хват, согласовать подтягивание и дыхание, из-за раскачивания в фазе виса, «зависания» на верхнем участке траектории, вследствие нечётких действий судей и т.д.

 

1.2.1.3 Пространственно-временны́е характеристики

Пространственные и временны́е характеристики могут быть разделены только в абстракции. Изменение пространственных координат тела происходит во времени, в свою очередь временны́е характеристики подтягивания измеряются в условиях, когда тело или отдельные его части занимают определённое положение в пространстве или изменяют это положение.

Скорость. Быстроту изменения положения тела спортсмена или отдельных его частей, определяемую отношением перемещения к значению промежутка времени, в течение которого это перемещение произошло, называют скоростью движения.

Движение различных точек тела при подтягивании на перекладине в общем случае происходит по криволинейным траекториям. Кроме того, движение любой точки тела не является равномерным, т.е. скорость этого движения не постоянна во времени, так как перемещение тела за равные промежутки времени может быть различным. В исходном положении скорость тела равна нулю. В фазе подъема туловища скорость тела плавно увеличивается на начальном участке траектории, достигает своего максимального значения где-то в средней ее части, а затем, быстро уменьшаясь, падает до нуля в высшей точке траектории движения. При опускании туловища скорость его движения также непостоянна и зависит как от техники, так и от тактики выполнения упражнения.

В тех случаях, когда имеют дело с неравномерным движением, проще всего воспользоваться понятием так называемой средней скорости движения. Средняя скорость показывает, чему равно перемещение, которое в среднем совершается в единицу времени. Измеряется средняя скорость в метрах в секунду (м/с). Используя понятие средней скорости, мы как бы считаем, что вместо неравномерного движения с изменяющейся скоростью тело спортсмена совершает равномерное движение с постоянной скоростью, равной по величине средней скорости.

Знание средней скорости помогает упростить некоторые расчеты, но не объясняет причину изменения скорости, например, на начальном и конечном участках траектории движения тела при выполнении подтягиваний на перекладине, когда тело в одном случае набирает скорость, а в другом - теряет ее. Можно сказать, что средняя скорость - это во многих случаях удобная, но достаточно условная величина. На самом деле скорость не может измениться скачком (например, молниеносно стать равной 0.6 м/с) - в этом состоит непрерывность механического движения. В каждой точке траектории и в каждый момент времени скорость должна иметь определенное значение. Отметим, что скорость в данный момент времени или в данной точке траектории в механике называют мгновенной скоростью.[6]. И если при равномерном движении мгновенная скорость постоянна по величине (и совпадает со средней скоростью), то при неравномерном движении мгновенная скорость тела непрерывно изменяется.

Ускорение. В том случае, если мгновенная скорость за любые равные промежутки времени изменяется одинаково, движение называют равноускоренным. А величину, равную отношению изменения скорости тела к промежутку времени, в течение которого это изменение произошло, называют ускорением.

При подтягивании на перекладине скорость тела на различных участках траектории за равные промежутки времени может изменяться неодинаково. Это означает, что и ускорения на различных участках траектории будут различны. К тому же на одном и том же участке траектории, но в разных циклах подтягивания, скорость изменения скорости - так еще называют ускорение - также различна. Скорость точек в различных движениях человека может изменяться, увеличиваясь, уменьшаясь или меняя направление. Поэтому и ускорения различают соответственно положительное (при увеличении скорости), отрицательное (при уменьшении скорости) и нормальное, или центростремительное (при изменении только направления скорости) [7].

Рассуждения о скоростях и ускорениях могли бы остаться чисто формальными, приведёнными просто для создания полноты картины, если бы скорость движения тела спортсмена при подтягивании ни на что не влияла. Но это далеко не так. Скорость движения тела спортсмена в фазе подъёма туловища, особенно на участке разгона, оказывает значительное влияние на результат в подтягивании.

Разгон тела на начальном участке фазы подъёма туловища связан с затратами дополнительной энергии, величина которой пропорциональна квадрату набранной скорости, т.е. если скорость подъёма туловища увеличить в 2 раза, энергозатраты на участке разгона возрастут при этом в 4 раза. И хотя с точки зрения механики кинетическая энергия движущегося тела на верхнем участке траектории движения спортсмена без потерь преобразуется в энергию потенциальную, с точки зрения физиологии дополнительная метаболическая энергия к этому моменту уже потрачена и ни во что преобразоваться не может. Поэтому, затратив на разгон тела, например, до двойной скорости в четыре раза больше энергии за то же время, т.е. произведя работу в четыре раза большей мощности, спортсмен вынужден пополнять её запасы в фазе виса в ИП. Но на восстановление потраченной энергии потребуется гораздо больше времени, чем на её «сжигание». Выделение энергии происходит в вынужденном режиме – организм стремится любой ценой обеспечить выполнение предъявленной нагрузки. Восстановление же, образно говоря, идёт как бы в плановом порядке – не спеша и с учётом имеющихся возможностей. Поэтому отдых, необходимый для ресинтеза энергетических субстратов, оказывается намного длительнее, чем выигрыш по времени, полученный в результате увеличения скорости подъёма. Кроме того, при увеличении скорости подъёма изменяется режим энергообеспечения так, что увеличивается доля неэкономичной анаэробной работы. Если же паузы отдыха не будут увеличены и подтягивание будет продолжаться в высоком темпе, недовосстановление будет усугубляться и через некоторое время спортсмен будет вынужден резко снизить темп подтягиваний, что мы и наблюдаем у спортсменов, для которых характерно быстрое начало со взлётами над грифом перекладины по самую грудь. Выполнив за первую минуту 22-25 подтягиваний, спортсмены затем резко останавливаются, увеличивая паузы отдыха до 10-15 секунд, оказываясь перед необходимостью ликвидировать негативные последствия нерационального подтягивания. Но уже поздно.

Уменьшение скорости подъёма сопровождается увеличением длительности статического напряжения мышц, выполняющих подъём туловища. Статическое напряжение при «скользящем» висе на согнутых руках также сопровождается повышенным расходом метаболической энергии, и хотя с физической точки зрения при статическом напряжении мышц механическая работа не производится, физиологическая стоимость такого напряжения пропорциональна времени поддержания статических усилий.

Рисунок 1.13 Зависимость суммарных энергозатрат от скорости подъёма туловища

на участке разгона

Таким образом, как увеличение скорости подъёма, так и её снижение сопровождается повышенным расходом энергии. Следовательно, должна существовать такая скорость, при которой энергозатраты спортсмена в фазе подъёма туловища будут минимальны. Эту скорость будем называть оптимальной.

Поскольку энергозатраты в фазе подъёма туловища пропорциональны квадрату скорости, а энергозатраты мышц, развивающих статическое напряжение обратно пропорциональны скорости, зависимость суммарных энергозатрат от скорости должна иметь минимум в точке, соответствующей оптимальной скорости. Для наглядности взаимосвязь энергозатрат при совместном действии статического напряжения и динамического сокращения мышц в фазе подъёма туловища отражена на графике рисунка 1.13. Очевидно, что оптимальную скорость движения каждый спортсмен должен подобрать самостоятельно на тренировках по субъективным ощущениям.

 

1.2.2 Динамические характеристики подтягивания.

К основным динамическим характеристикам относятся сила и масса. Сила в механике – это мера взаимодействия тел. Масса – это с одной стороны количество материи, содержащейся в теле, а с другой – мера инертности тела. В движениях человека силы, приложенные к массам частей, тела обусловливают движения этих частей тела [21].

Силы, влияющие на движение человека, делятся на внешние и внутренние. Внешними силами для человека служат силы, приложенные к телу извне. Для подтягивания на перекладине к числу внешних сил относятся сила тяжести (вес) собственного тела, сила упругости перекладины, сила трения между грифом и ладонями, а также внешние отягощения и сопротивления. Каждая из этих сил характеризуется величиной, направлением, точкой приложения.

Внутренними силами для тела человека служат силы, возникающие внутри тела при взаимодействии его частей. Для подтягивания на перекладине значение имеют такие внутренние силы, как пассивные силы опорно-двигательного аппарата, силы инерции частей тела, силы тяги мышц.

 

1.2.2.1 Двигательный аппарат человека.

Двигательный аппарат человека можно представить как самодвижущий­ся рычажный механизм, состоящий примерно из 600 мышц, 200 костей, нескольких сотен сухожилий. Кости и их соединения (суставы, связки и пр.) составляют скелет, являющийся твердой опорой тела человека.

Двигательный аппарат обычно разделяют на звенья, называя звеном часть тела, расположенную между двумя соседними суставами или между суставом и дистальным (более удаленным от туловища) концом. Так, звеньями тела являются кисть, предплечье, голова и т.д. [3].

Движенья в звеньях тела осуществляются благодаря усилиям мышц, прикрепляющихся к костям скелета. Можно сказать, что мышцы составляют активную часть двигательного аппарата человека. Любое движение - это результат действия тяги одной или нескольких мышц, изменяющий взаимное расположение звеньев тела. Направлением тяги мышцы считается прямая линия, соединяющая центры мест ее начала и прикрепления. Обычно вращение в суставе обеспечивается группой мышц, причем направление тяги любой из мышц данной группы только в редких случаях полностью совпадает с направлением движения звена. В таком случае результат совместного действия двух и более мышц определяется равнодействующей мышечных сил, величина и направление которой зависят от взаимного расположения мышц и величины развиваемых ими усилий. Напомним, что равнодействующей называют силу, которая производит такое же действие, как и несколько одновременно действующих сил. Так, например, направление тяги большой грудной мышцы и широчайшей мышцы спины не совпадает с направлением движения плеча в фазе подъема туловища при подтягивании на перекладине, но их равнодействующая вносит существенный вклад в выполнение данного движения.

Кости, соединённые подвижно в суставах, с точки зрения механики – это рычаги, которые служат для передачи действия силы на расстояние. Суставы представляют собой точку опоры рычага. Таким образом, рычаг является принципиальным механизмом, служащим для передачи и полезного использования механической энергии в двигательном аппарате [18].

В целом двигательный аппарат человека можно рассматривать как систему рычагов, подвижно соединенных в суставных сочленениях. Движение костных рычагов в ту или иную сторону относительно суставов, а также их фиксация осуществляется в результате взаимодействия мышечных сил и сил внешней нагрузки. Законы изменения взаимного расположения звеньев тела под действием внешних сил и сил тяги мышц подчиняется законам, известным в механике как "правила рычага".

Поскольку любое поступательное движение (например, движение туловища вверх в фазе подъёма) складывается из вращательных движений в суставах, для силы важна не столько её величина, сколько вращательная способность, численно равная произведению силы на её плечо, т.е. на расстояние от направления действия силы до оси вращения. Такая вращающая способность называется моментом силы. Когда момент силы тяги мышц равен моменту сил сопротивления – часть тела, к которой приложены силы, находится в равновесии. Для начала движения части тела необходимо, чтобы один из моментов был больше другого. Так, при подтягивании в фазе подъёма момент силы тяги мышц, производящих подтягивание, больше момента силы тяжести, поэтому мышцы сокращается, звенья тела движутся в сторону тяги мышц, которые в данном случае совершают преодолевающую работу. В фазе опускания момент силы тяжести становится больше момента силы тяги мышц, поэтому звенья тела движутся в противоположном направлении, мышцы растягиваются, выполняя при этом уступающую работу. При «зависании» в какой-либо точке траектории движения моменты сил мышц и силы тяжести равны друг другу, тело остаётся неподвижным. Мышцы в этом случае совершают удерживающую работу. Работа мышц в преодолевающем и уступающем режимах относится к динамической форме сокращения, а в удерживающем - к статической.

 

1.2.2.2 Масса тела, сила тяжести, вес тела.

Масса физического тела – это количество вещества, содержащееся в теле или в отдельном звене. Вместе с тем масса тела - это величина, выражающая его инертность. Под инертностью понимается свойство, присущее всем телам, состоящее в том, что для изменения скорости тела на заданную величину нужно, чтобы действие на него другого тела длилось некоторое время. Чем время больше, тем инертнее тело. Масса тела не зависит от того, в каких взаимодействиях участвует тело, ни от того, как оно движется. Что бы с телом ни происходило, его масса остаётся одной и той же. Масса выражается в килограммах [6]. Но в повседневной жизни мы привыкли в килограммах выражать вес. Во избежание путаницы попробуем разобраться во взаимосвязи веса и массы.

Вес тела – это сила, с которой тело воздействует на опору (или подвес) вследствие притяжения к Земле. Когда нет никакой опоры, нет и веса, т.е. тело, находящееся в свободном падении, ничего не весит. Но при этом его масса не изменяется.

Как и любая другая сила, вес выражается в ньютонах. При взвешивании какого либо физического тела на пружинных весах измеряется сила, с которой это тело растягивает пружину под воздействием исключительно силы притяжения к Земле. Именно поэтому в стандартных условиях вес тела Р численно равен силе тяжести Fg , которая в соответствии со вторым законом Ньютона, равна произведению массы тела m на ускорение свободного падения g: Fg = m*g.

Хотя для неподвижного тела сила веса равна силе тяжести, эти две силы нужно чётко различать: сила тяжести приложена к самому телу, притягиваемому Землёй, а вес тела – к опоре или подвесу. В тех случаях, когда эти силы равны и нас интересует только величина силы, а не точка её приложения, смешение понятий сила тяжести и сила веса не приводит к ошибкам.

При условии неизменности ускорения свободного падения масса тела пропорциональна силе тяжести, а значит и весу тела. Интересно, что если какое-либо тело взвесить на одних и тех же пружинных весах сначала на экваторе, а затем на полюсе, показания весов будут отличаться примерно на полпроцента из-за разницы в величине ускорения свободного падения, которая вызвана различным расстоянием до центра Земли и её суточным вращением [13].

Для измерения какой-либо физической величины необходимо сначала выбрать эталон этой физической величины. В качестве эталона массы принята масса платиновой гири-образца, хранящейся в Международном бюро мер и весов в Париже и именуемая килограммом (кг). Но самое интересное, что в качестве эталона силы принята та же самая платиновая гиря. Любая пружина, растянутая подвешенной к ней гирей-эталоном, будет действовать с определённой силой, которую называют килограмм-сила и обозначают кГ. Нужно обратить внимание на то, что определения этих двух величин, получивших почти одинаковые названия (килограмм-сила и килограмм-масса), и обозначения (кГ и кг) основаны на совершенно различных свойствах одного и того же тела – парижской гири-образца. Сила определена по притяжению образца Землёй, а масса – как мера инертности гири, т.е. её способности получать те или иные ускорения под действием различных сил.

Таким образом, если говорят, что спортсмен весит 70 килограммов, это означает не что иное, как то, что его масса составляет 70 кг (килограмм-массы), а вес – 70 кГ (килограмм-силы).

Сила веса возникает в результате притяжения Земли, но по величине она может отличаться от силы притяжения Земли. Это бывает в тех случаях, когда кроме Земли и подвеса на данное тело действуют какие-либо другие тела [14]. Поясним это на примере, связанном с подтягиванием на перекладине.

Когда речь идёт о силе, действующей на гриф перекладины во время подтягиваний, т.е. о силе, которая на совершенно законных основаниях называется весом, то нет ничего удивительного в том, что такая сила может претерпевать разнообразные количественные изменения в различных фазах цикла подтягиваний. Это связано с тем, что сила давления на гриф определяется не только силой тяжести, а является равнодействующей всех сил, действующих на гриф в местах расположения хвата. Так, при висе в исходном положении сила, действующая на гриф перекладины, численно равна силе тяжести, при разгоне тела в начальной части фазы подъёма – больше её, а при торможении при опускании в вис – меньше. При гашении остаточной скорости в момент прихода в исходное положение эта сила может достигать таких высоких значений, что вызванная ею дополнительная ударная нагрузка на кисти (называемая перегрузкой) может привести к срыву с перекладины.

Геометрия масс. Распределение масс между звеньями тела и внутри звеньев называется геометрией масс [3]. Наиболее общим показателем распределения масс в теле служит общий центр тяжести тела (ОЦТ) [21]. Общий центр тяжести тела располагается в зависимости от телосложения человека. В симметричном положении человека стоя с опущенными руками ОЦТ находится на уровне от 1 до 5 крестцового позвонков. С изменением формы тела за счёт иного расположения его частей изменяет своё положение и ОЦТ. В некоторых положениях тела ОЦТ может быть за пределами тела. Чтобы определить, как будет смещаться ОЦТ при движениях человека, нужно определить массы частей тела и расположение их центров тяжести

В человеческом теле около 70 звеньев. Для решения практических задач обычно используется пятнадцатизвенная модель. Величина массы отдельных звеньев тела человека для такой модели в среднем составляет: головы - . 7% от массы всего тела, туловища - 46.4% , плеча - 2.6%, предплечья - 1.8%, кисти - 0.7% , бедра - 12.2%, голени -1 4.6% , стопы - 1.4% [4].

Зная массу тела, массу любого звена можно рассчитать по формуле:

(1.1)

где:

- масса звена, кг ;

- процент массы звена от массы тела, кг ;

- масса тела, кг.

 

1.2.2.3 О влиянии веса и роста спортсмена на результат в подтягивании на перекладине

Подтягивание на перекладине является одним из физических упражнений, в которых оцениваются силовые способности спортсмена [3]. Под силовыми способностями обычно подразумевается максимальная сила, взрывная сила и силовая выносливость тестируемых групп мышц, причём в спортивной практике принято различать абсолютные и относительные силовые показатели. Что это такое и в чём разница, например, между абсолютной и относительной силой спортсмена?

Когда говорят об абсолютной силе, речь чаще всего идёт о мышечной силе атлета, измеренной при его произвольном усилии, т.е. при стремлении максимально сократить необходимые мышцы [19]. Под относительной силой спортсмена понимают величину силы, приходящуюся на 1кг собственного веса тела или спортивного снаряда [18].

Среди всего многообразия физических упражнений можно выделить такие, достижение максимального результата в которых тесно связано с абсолютной силой определённых мышечных групп. В качестве примера рассмотрим упражнения со штангой. Предположим, что победитель на соревнованиях штангистов определялся бы по максимальному поднятому весу без учёта собственного веса спортсмена. Тогда победа в большинстве случаев доставалась бы спортсменам-тяжеловесам. И это нетрудно объяснить, учитывая тот факт, что одним из факторов, определяющих максимальную силу мышцы, является площадь её поперечного сечения, т.е. количество и толщина мышечных волокон, составляющих данную мышцу [19]. А так как мышечный поперечник пропорционален весу тела, то чем больше вес спортсмена, тем, как правило, большую силу он способен развить. Не случайно на соревнованиях по толканию ядра и метанию молота - видах спорта, где отсутствует разделение на весовые категории, а дальность полёта спортивных снарядов сильно зависит от абсолютной силы спортсменов - практически все атлеты имеют солидную комплекцию.

Разделение по весам позволяет организовать состязание спортсменов, имеющих примерно равную мышечную массу, что даёт возможность в каждой весовой категории выявить атлета, располагающего наилучшими показателями эффективности работы участвующих в выполнении упражнения (например, в толчке штанги) мышц, т.е. атлета, обладающего более высокой относительной силой мышц среди спортсменов одного весового диапазона.

Но разделение спортсменов по весовым категориям - это не единственный способ, применяемый в спортивной практике для того, чтобы поставить в относительно равные условия спортсменов, специализирующихся в видах спорта, требующих проявления силовых способностей. Для того, чтобы можно было сравнивать силовую подготовку у атлетов различного веса, не прибегая к разделению на весовые категории, можно создать условия, при которых вес спортивного снаряда будет изменяться пропорционально собственному весу тела спортсмена. Чем больше вес атлета, тем больше его мышечная масса и, соответственно, мышечная сила, но и тем больше вес спортивного снаряда, воздействующий на мышцы при выполнении упражнения. Идеальными упражнениями при использовании такого подхода являются упражнения с самоотягощением, т.е. такие упражнения, в которых в качестве спортивного снаряда используется собственный вес тела спортсмена. Именно к такому типу упражнений и относится подтягивание на перекладине, где вес «спортивного снаряда» прямо пропорционален весу тела спортсмена.

Попробуем обобщить изложенные сведения.

Если вес спортивного снаряда не зависит от собственного веса тела спортсмена или имеет фиксированное значение, разделение спортсменов на весовые категории не производится, когда в качестве критерия для определения победителя используются абсолютные показатели (так поступают, например, в толкании ядра, спортивных метаниях).

Если вес спортивного снаряда не зависит от собственного веса тела спортсмена или имеет фиксированное значение, атлеты разделяются на весовые категории, когда в качестве критерия для определения победителя используются относительные показатели (это справедливо для таких видов спорта, как тяжёлая атлетика, гиревой спорт, силовые единоборства).

Если вес спортивного снаряда пропорционален собственному весу тела, разделение спортсменов на весовые категории не производится, при этом в качестве критерия для определения победителя используются относительные показатели. Данный подход применяется в циклических видах спорта на выносливость, а также в таких упражнениях как отжимание от пола и подтягивание на перекладине.

Одно время в среде спортивной общественности, интересующейся развитием полиатлона, раздавались отдельные голоса в пользу введения в подтягивании весовых категорий (!). Это мотивировалось необходимостью поддержки имеющих большой собственный вес спортсменов, которые по мнению тех, кто отстаивает данную точку зрения, оказываются в заведомо неравных условиях по сравнению с лёгкими спортсменами и поэтому обречены на то, чтобы показывать более низкие результаты в подтягивании на перекладине, а значит и в зимнем полиатлоне в целом. В качестве основного аргумента приводится тот факт, что в тяжёлой атлетике спортсмены более тяжёлых весовых категорий отстают по показателям относительной силы от спортсменов-легковесов. И это действительно так. У штангистов с увеличением собственного веса абсолютные результаты растут, а относительные - подают. Например, по данным мировых рекордов в толчке на 30.07.96г результат в весовой категории до 59 кГ составляет 170.0кг, т.е. 2.88кг на 1кгГ веса спортсмена. А в весовой категории до 108кГ мировой рекорд - 236.0кг, т.е. только 2.18кг в расчёте на 1кГ веса спортсмена [6]. Кстати, математическая зависимость между максимальной силой (F), на которую способен тяжелоатлет и весом тела (P) может быть выражена следующим образом:

(1.2)

где - постоянная величина, характеризующая уровень тренированности спортсмена [3].

В связи с этим необходимо разобраться - действительно ли вес спортсмена при подтягивании играет ту роковую роль, которую ему приписывают.

Работа мышц при подтягивании на перекладине происходит в комбинированном режиме, включающем как статическую так и динамическую формы их сокращения. При этом динамическая работа мышц производится в фазах подъёма и опускания туловища, а статическая работа мышц, обеспечивающих фиксацию хвата, выполняется на протяжении всего упражнения.

Зададимся вопросом: является ли подтягивание на перекладине упражнением, в котором оценивается сила спортсмена? В какой-то мере - да. Ведь для того, чтобы подтянуться хотя бы один раз, атлет обязан обладать достаточной для этого силой. Кроме того, он должен иметь определённый запас (резерв) силы для того, чтобы выполнить как можно большее количество подтягиваний. Резерв силы необходим в связи с тем, что после каждого подтягивания увеличивается утомление рабочих мышц, сопровождающееся снижением их силового потенциала.

Но является ли уровень развития силы единственным фактором, определяющим спортивный результат в подтягивании? По-видимому, это далеко не так. Ведь задача спортсмена, выполняющего подтягивания, состоит не в том, чтобы один раз развить максимальное усилие (как это необходимо штангисту), а в том, чтобы в рамках отведённого времени максимальное количество раз развить заданное мышечное усилие. А это значит, что спортсмен должен иметь высокий уровень развития силовой выносливости - качества, характеризуемого как способность к длительному выполнению статической или динамической работы заданной мощности. При этом именно силовая выносливость, а не сила, является ведущим физическим качеством при подтягивании. В конечном итоге результат в подтягивании на перекладине представляет собой выраженную в очках обобщённую оценку уровня развития динамической и статической силовой выносливости определённых мышечных групп спортсмена в расчёте на 1кГ веса его тела с учётом техники выполнения упражнения и возраста.

Принимая во внимание изложенное, можно сделать вывод о том, что зависимость между весом атлетов и их результатами в тяжёлой атлетике не может являться основанием для введения весовых категорий в подтягивании на перекладине, так как из того, что в упражнениях со штангой спортсмены-легковесы относительно более сильны, совершенно не следует, что при подтягивании на перекладине лёгкие спортсмены относительно более выносливы. Обратите внимание на то, что автор не утверждает, что легковесы при подтягивании не находятся в более выгодных условиях - этот вопрос будет обсуждаться в дальнейшем. Автор лишь отмечает, что одно утверждение не вытекает из другого хотя бы потому, что подтягивание на перекладине с точки зрения топологии участвующих в работе мышц сильно отличается от упражнений со штангой. Кроме того, между показателями максимальной силы и динамической выносливости мышц вообще наблюдается довольно слабая связь, что является свидетельством высокой специфичности тренировочных эффектов: тренировка, направленная преимущественно на развитие мышечной силы, способствует улучшению этого качества, значительно меньше влияя на мышечную выносливость, и наоборот. [2].

Но вернёмся к проблемам полиатлона и попытаемся ответить на вопрос: почему спортсмены с большим собственным весом (более 80кГ) в среднем подтягиваются всё-таки хуже, чем те, чей вес не превышает 70кГ?

Не исключено, что причиной этого в первую очередь является не вес, а рост спортсмена. Дело в том, что как вес, так и мышечная сила пропорциональны росту. Разница состоит в том, что вес пропорционален кубу роста, а максимальная сила - его квадрату. (Кстати, выразив вес через рост и подставив его в выражение для силы можно получить формулу (1), связывающую силу и вес тела спортсмена.) Поэтому при одинаковых пропорциях тела с увеличением роста вес растёт быстрее, чем сила. А это имеет большое значение для мышц-сгибателей пальцев, производящих статическую работу по удержанию хвата. Хотя, как уже говорилось, между максимальной силой и динамической выносливостью взаимосвязи не обнаружено, между силой и статической выносливостью такая связь имеется: чем больше максимальная сила мышцы, тем длительнее удержание заданного усилия [2]. Но величина нагрузки (равная весу тела) с увеличением роста повышается быстрее, чем сила, в результате чего - по крайней мере теоретически - высокорослые спортсмены менее предрасположены к проявлению длительного статического напряжения мышц при выполнении виса, чем их менее рослые соперники.

Но большой рост при подтягивании на перекладине невыгодно иметь не только по этой причине. Кроме того, что высокорослые спортсмены могут иметь проблемы со статикой, их ожидают дополнительные трудности и при выполнении динамической работы. Так, механическую работу, произведённую спортсменом при подтягивании в фазе подъёма туловища, можно выразить следующим образом:

( 1.3 )

где: A - работа в фазе подъёма туловища; m - масса тела, кг; g - ускорение свободного падения, м/с*с; h - высота подъёма, м.

Высота подъёма определяется длиной рук спортсмена и шириной хвата. При фиксированной ширине хвата чем больше рост спортсмена, тем длиннее его руки, а значит, тем большую работу он вынужден совершать, затрачивая при выполнении каждого цикла подтягивания дополнительную энергию. Но, как это часто бывает в спорте, важен результат, а не то, какой ценой он достигается. Поэтому высокорослым можно только посочувствовать. Их путь на пьедестал длиннее, чем у других.

По-видимому, высокорослые атлеты не рождены для установления рекордов при подтягивании на перекладине. Но это не означает, что у них нет шансов в борьбе с лёгкими спортсменами небольшого роста, т.к. не только природные данные определяют успех на соревнованиях. Нередко бывает так, что выигрывают не те, кто идеально подходит для данного вида спорта, а те, кто по своим природным показателям не вписывается ни в какие критерии. Кроме того, таблицы оценки результатов в подтягивании составлены так, что шкала оценок, неравномерная в верхней части, «срезает» высокие результаты, частично уравнивая возможности спортсменов, обладающих различными силовыми способностями.

На протяжении последних лет в подтягивании на перекладине прослеживается тенденция к стремлению поставить спортсменов в абсолютно равные условия, для чего в правила периодически вводятся различные ограничения. И если некоторые из них, такие как ограничение времени выполнения упражнения, вызывают понимание, то запрещение на использование клеящих веществ представляется спорным, а ограничение на ширину хвата и запрещение перехватов - лишёнными здравого смысла. Реализация принципа «делай, как все» лишает соревнования по силовой гимнастике присущей ему интриги. По мнению автора, создание равных условий при выполнении подтягиваний на перекладине состоит не в том, чтобы до мельчайших подробностей расписать последовательность действий спортсменов, а в том, чтобы предоставить каждому участнику возможность максимально проявить свои способности, произведя подготовку и выполнение упражнения в оптимальных для него условиях. При таком подходе результат будет зависеть не только от физического состояния спортсмена, но и от его инициативы, умения анализировать ситуацию.

Ни для кого не секрет, что победу над более физически подготовленным соперником можно одержать за счёт выбора грамотной тактики подготовки к подтягиванию и применению рациональной техники выполнения упражнения.

Тогда зачем лишать возможности спортсмена компенсировать недостаточный уровень развития статической выносливости нанесением на ладони «железной» смазки собственного изобретения. Если кому-то канифоль помогает при подтягивании, совершенно необязательно её запрещать, тем более что подобрать хороший вариант смазки с использованием, например, жидкой канифоли в условиях соревновательного стресса совсем непросто. И хотя при удачном выборе варианта обработки ладоней с использованием клеящих веществ кисти держат лучше, риск «пролететь» значительно выше, так как малейшая ошибка в дозировке приводит к тому, что кисти начинают ползти ещё быстрее, чем при использовании магнезии. Подготовка ладоней и грифа перекладины при выполнении подтягиваний – это такое же искусство, как и искусство подбора смазки в лыжных гонках. Но ведь никому в голову не приходит мысль запрещать использование парафинов и порошков при подготовке лыж.

Непонятно также, почему нужно запрещать участнику подтягивание широким хватом, если это позволяет ему наиболее эффективно использовать силовые возможности участвующих в выполнении упражнения мышц. А кому хуже от того, что некоторые спортсмены будут делать перехваты или изменять место хвата после каждого подтягивания? Время-то идёт.

Конечно, подтягивание должно выполняться силой, поэтому о разрешении подрывов, волн и других технических приёмов, облегчающих выполнение упражнения речь не идёт. Но запрещать спортсмену оптимальным образом проявить свои индивидуальные силовые возможности тоже не стоит.

 

1.2.2.4 Сила упругости перекладины.

Сила, с которой спортсмен действует на гриф перекладины, в соответствии с третьим законом Ньютона равна по величине и противоположна по направлению силе, с которой гриф перекладины действует на кисти спортсмена. Эта действующая со стороны грифа сила, которая для создания надёжного хвата должна быть компенсирована с помощью усилий мышц-сгибателей пальцев, является силой упругости перекладины. Познакомимся с ней поближе, причём знакомство начнём с того момента, когда после команды судьи «Начинайте» спортсмен теряет опору под ногами и повисает на перекладине.

В первый момент времени тело спортсмена под воздействием силы тяжести начинает падать вертикально вниз, увлекая за собой гриф перекладины. Гриф начинает изгибаться, вследствие чего появляется сила упругости, которая увеличивается по мере увеличения деформации перекладины. Когда сила упругости по своему абсолютному значению становится равной силе тяжести, движение прекращается. Таким образом, сила тяжести в фазе исходного положения компенсируется силой упругости перекладины. Для того, чтобы две силы могли компенсировать друг друга, необходимо, чтобы они были приложены к одному и тому же физическому телу [6]. А это значит, что сила упругости перекладины приложена к телу спортсмена в точках его контакта с грифом перекладины.

Предположим, что спортсмен выполняет вис на перекладине, расположив руки на ширине плеч, т.е. строго в вертикальном направлении. Тогда при условии малой величины деформации грифа перекладины мы можем считать, что сила упругости направлена прямо противоположно силе тяжести. Так как спортсмен имеет контакт с перекладиной в двух точках, в каждой точке уравновешивается ровно половина силы тяжести, т.е. сила упругости, действующая на каждую кисть со стороны грифа перекладины, равна половине силы тяжести.

 

1.2.2.5 Разгибающий момент.

Итак, перекладина своей силой упругости воздействует на кисти спортсмена. Если сила приложена к части тела, как к рычагу, она имеет плечо силы и поэтому обладает вращательным моментом относительно оси вращения. Поскольку фаланги пальцев имеют возможность вращаться в суставах, вращательный момент, созданный силой упругости перекладины, действует на их разгибание. Величина разгибающего момента зависит от плеча силы упругости, т.е. от кратчайшего расстояния от линии действия силы упругости до оси вращения, которая проходит через центр пястно-фаланговых суставов (рисунок 1.14).

Мразг = Fупр*r = P*r/2 (1.4)

где:

r – плечо силы упругости,

Мразг – разгибающий момент,

Р – вес тела,

Fупр – сила упругости перекладины.

Рисунок 1.14. Влияние глубины хвата на плечо силы упругости r,плечо силы тяжести R,

разгибающий момент силы упругости Мразг=Fупр*r,

разгибающий момент силы тяжести Мg=Fg*R

Чем больше вращающий момент, тем большую силу должны развить мышцы-сгибатели пальцев для его компенсации. Но длительность статической работы уменьшается с увеличением развиваемой силы так, как это показано на рисунке 1.8.

Чтобы уменьшить разгибающий момент, спортсмен старается уменьшить плечо силы упругости перекладины, увеличивая глубину хвата и тем самым приближая пястно-фаланговый сустав к линии действия силы упругости, рисунок 1.14б.

Увеличение глубины хвата (в разумных пределах) ведёт к уменьшению разгибающего момента, что позволяет удерживать хват меньшим напряжением мышц-сгибателей пальцев, что в соответствии с рисунком 1.8 способствует увеличению времени статической работы. Но если увеличение глубины хвата сопровождается сгибанием кисти в лучезапястном суставе (рисунок 1.14в), возникает момент силы тяжести, который стремится вернуть кисть и предплечье в выпрямленное состояние. Поддержание «излома» руки требует дополнительных статических усилий мышц-сгибателей кисти. Кроме того, чем больше угол излома кисти, тем меньшую силу в состоянии проявить мышцы-сгибатели пальцев, так как сгибание кисти сопровождается пассивным растяжением сухожилий мышц-разгибателей, создавая дополнительное сопротивление для мышц-сгибателей кисти. Таким образом, при чрезмерном увеличении глубины хвата спортсмен хотя и выигрывает в уменьшении разгибающего момента силы упругости, но значительно больше он проигрывает на ухудшении сократительной способности мышц-сгибателей пальцев и дополнительном напряжении мышц-сгибателей кисти. В результате мышцы работают в непривычном для них режиме, быстрее устают и вместо ожидаемого увеличения времени виса и количества подтягиваний, спортсмен получает быстро «дубеющие» мышцы и срыв с перекладины. Поэтому не нужно стремиться как можно больше «намотать» кисти на гриф перекладины перед началом подтягиваний, даже если состояние поверхности грифа позволяет это сделать. Хват должен быть оптимальным по глубине, т.е. таким, который позволит спортсмену обеспечить максимальную длительность его удержания. Лучше всего, если глубина хвата на соревнованиях не будет отличаться от привычной – тренировочной – глубины, в качестве которой обычно выбирается кистевой хват (рисунок 1.6б). А силу трения, которая увеличивается при качественной подготовке ладоней и грифа лучше использовать не для чрезмерного увеличения глубины хвата, а для уменьшения силы сокращения мышц-сгибателей пальцев.

 

1.2.2.6 Сила трения

Большую помощь в удержании хвата оказывает сила трения, препятствующая скольжению ладоней по поверхности грифа, причём роль этой силы возрастает по мере утомления мышц-сгибателей пальцев. Для удержания хвата сила тяги мышц-сгибателей пальцев каждой руки должна быть не меньше половины веса спортсмена за вычетом силы трения, действующей в месте контакта ладони и грифа. Чем больше сила трения, тем меньше потребуется усилий со стороны мышц-сгибателей пальцев для фиксации хвата, соответственно, тем медленнее происходит уменьшение силовых способностей мышц по мере их утомления, а значит, спортсмен сможет удерживать надёжный хват более длительный период времени.

Величина силы трения прямо пропорциональна давлению на перекладину в месте хвата и коэффициенту трения между грифом и поверхностью ладоней. Давление на гриф в месте хвата в висе в ИП для каждого спортсмена является величиной практически постоянной, а вот коэффициент трения может изменяться в значительных пределах в зависимости от качества подготовки ладоней и грифа. Чем больше трение, тем меньше дополнительных усилий придётся затратить спортсмену для фиксации хвата заданной глубины.

С физической точки зрения коэффициент трения характеризует не тело, на которое действует сила трения, а сразу два тела, трущиеся друг о друга. Его значение зависит от того, из каких материалов сделаны трущиеся тела, как обработаны их поверхности, от чистоты поверхностей и т.п. [6].

Тонкая прослойка жира или пота между ладонями и грифом резко снижает коэффициент трения, поэтому для того, чтобы его повысить, приходится очень тщательно обрабатывать как гриф, так и ладони.

Рассмотрим некоторые варианты обработки ладоней и грифа перекладины перед выполнением подтягиваний:

а) Подтягивание без предварительной обработки рук и перекладины. Это довольно распространенный среди новичков тактический вариант подтягивания. Еще не обладая достаточными физическими возможностями, спортсмен в этом случае заранее настроен на поражение, а потому почти не разминаясь и не уделяя должного внимания подготовке ладоней, он стремится поскорее избавиться от неприятной процедуры, которой для него является подтягивание. Психологически это понятно - кому же приятно ощущать себя слабейшим?

Если рассматривать подтягивание без подготовки ладоней с точки зрения качества хвата, можно отметить, что влага (в виде пота) и жир, которые в небольших количествах всегда присутствуют на коже, играют роль своеобразной смазки, которая может значительно уменьшить трение. При этом глубина хвата будет далека от оптимальной, что в свою очередь приведет к снижению и без того низкого результата. И если жир легко удалить с ладоней, вымыв их с мылом незадолго до выполнения упражнения, то борьба с влагой на ладонях является непростой проблемой, т.к. потоотделение на поверхности ладоней может резко усиливаться под влиянием волнения в условиях соревновательной мотивации.

Влагу, конечно, можно удалить, вытерев руки полотенцем или тряпкой, но это дает лишь временный эффект, поэтому процедуру приходится периодически повторять. При этом пот продолжает выделяться и во время подтягивания, потихоньку делая свое черное дело.

б) Подтягивание с "сухой" смазкой. Убить сразу двух зайцев - повысить величину коэффициента трения и нейтрализовать вредное действие воды - позволяет нанесение на ладони и гриф перекладины порошкообразных веществ, таких как гипс или магнезия.

Гипс - белый порошок, который затвердевает при соединении с водой. Это свойство гипса можно использовать на тренировках и соревнованиях при подготовке к подтягиванию. Ладони, натертые гипсом, не потеют, т.к. выступающий пот вступает с ним в химическую реакцию и связывается, а не размазывается тонким слоем по всей ладони.

Магнезия (оксид магния) - это белый порошок, свойства которого зависят от условий получения. Сорта магнезии различаются по объему, весу, химическим свойствам и т.д. Легкую магнезию получают при прокаливании солей магния при температуре 500-700 градусов, тяжелую - свыше 1200 градусов Цельсия.

Техническая магнезия, применяемая при подтягивании, является смесью оксида магния, полученного после прокалки при температуре 500-900 градусов, и карбоната магния. Соотношение компонентов может быть различным. Два этих соединения обладают диаметрально противоположными свойствами по отношению к воде (и, соответственно, влаге воздуха и ладоней). Так, карбонат магния плохо растворим в воде, его растворимость составляет менее 0.1 грамма на литр. Но, несмотря на низкую растворимость, карбонат магния все-таки может связывать влагу ладоней благодаря своей склонности к образованию специфических химических соединений - кристаллогидратов (по так называемому адсорбционному механизму). Оксид магния (легкая фракция) хорошо растворим в воде. При его взаимодействии с влагой и углекислым газом воздуха образуется основной карбонат магния непостоянного состава - где х, у, z - числовые коэффициенты, значение которых зависит от условий протекания данной химической реакции. И в то же время влага, появляющаяся на поверхности ладоней, может удаляться механически благодаря высокой гигроскопичности оксида магния.

Таким образом, использование технической магнезии при подтягивании обусловлено следующими факторами:

1. Карбонат магния , нерастворимый в воде и обладающий адсорбционной способностью, участвует непосредственно в увеличении коэффициента трения в системе гриф перекладины - ладонь за счет механического взаимодействия и косвенно - за счет поглощения влаги при образовании кристаллогидратов.

2. Оксид магния , растворимый в воде и обладающий высокой гигроскопичностью, поглощает влагу, появляющуюся при потении ладоней.

Исходя из физико-химических свойств магнезии, можно рекомендовать следующий порядок ее использования при подтягивании на перекладине:

1. Обезжирить руки, тщательно вымыв их под холодной (1) водой с использованием хозяйственного (щелочного) мыла.

2. Обезжирить перекладину любым растворителем, например, спиртом.

3. Нанести на руки слой магнезии и тщательно втереть по всей площади ладоней и пальцев.

4. Стряхнуть излишки магнезии похлопыванием в ладоши.

5. Зафиксировать хват и выполнить подтягивания.

Неплохой эффект дает выполнение пункта 3 в два приема с интервалом в 5-10 минут - за счет забивания пор ладони магнезией, реакции с влагой, подсыхания и создания дополнительной трущейся поверхности.

Кроме того, будет не лишним перед обезжириванием обработать гриф перекладины крупной наждачной шкуркой, нанеся на него в местах хвата продольные царапины и тем самым создав шероховатость поверхности.

в) «Мокрый» способ нанесения магнезии

Магнезия с большим содержанием растворимого в воде оксида магния позволяет использовать оригинальный способ нанесения, который позволяет значительно увеличить качество её сцепления с поверхностью ладоней. Для этого порошковую магнезию нужно нанести на мокрые ладони и растереть до полного «исчезновения» порошка, который при соединении с водой обесцвечивается. «Жидкая» магнезия легко проникает во все шероховатости кожи и осаждается на ней, обеспечивая в дальнейшем лучшее сцепление с грифом, чем при втирании магнезии сухим способом. По мере испарения воды, которое происходит в течение 2 – 5 минут (в зависимости от первоначального её количества и температуры в помещении), магнезия проявляется на ладонях в виде налёта, обладающего великолепным качеством сцепления. Практика показывает, что при «мокром» способе нанесения магнезия не боится перехватов, оставаясь на ладонях, а не стирается, переходя на гриф перекладины. Единственное ограничение состоит в том, что «мокрый» способ нанесения магнезии не подходит тем спортсменам, которым свойственно высокое потоотделение во время выполнения упражнения. Таким спортсменам больше подходит способ многократного втирания магнезии, обеспечивающий более длительное связывание пота.

Порядок нанесения магнезии «мокрым» способом включает следующие действия:

1. Обезжирить руки, тщательно вымыв их водой с использованием хозяйственного (щелочного) мыла

2. За 4 – 5 минут до начала подтягиваний смочить водой ладони так, чтобы они были влажные, но не мокрые. Для этого можно капнуть несколько капель воды на ладони и растереть по всей поверхности. Излишки воды можно удалить с помощью полотенца.

3. Насыпать на ладонь необходимое количество магнезии и втереть её до полного обесцвечивания. Если руки оказались недостаточно влажными, можно осторожно добавить воды в процессе втирания. Если же воды оказалось слишком много, так что магнезия превратилась в белую кашицу, нужно добавить магнезии или, вытерев руки полотенцем, начать процесс заново. Нужно помнить, что слишком мокрые руки – это хуже, чем недостаточно влажные, так как добавить воду проще, чем избавиться от неё за 3 минуты до начала подтягиваний.

4. После испарения воды можно добавить сухой магнезии на плохо проработанные участки ладоней.

5. В течение 1 минуты, которая даются спортсмену для подготовки к подтягиванию, тренер (помощник) должен нанести сухую магнезию на гриф перекладины путём втирания.

6. Зафиксировать хват и выполнить подтягивания.

В принципе, наносить магнезию «мокрым» способом можно и заранее, ещё на разминке, но в этом случае к моменту начала подтягиваний кожа ладоней оказывается пересушенной, теряет эластичность, чего не происходит, если наносить «жидкую» магнезию непосредственно перед началом выступления.

 

1.2.3 Энергетические характеристики подтягивания.

1.2.3.1 Механическая работа мышц в фазе подъема туловища.

При подтягивании на перекладине тело спортсмена под воздействием силы тяги мышц совершает в фазе подъема туловища вертикальное перемещение из исходного положения в вис на согнутых руках. Следовательно, мышцы спортсмена в этой фазе выполняют работу по подъему груза массой m на некоторую высоту h.

Вообще, понятие «работа» тесно связано с понятием "энергия". Энергией называется величина, характеризующая способность тела или системы тел совершать работу [12].

Поднимая тело на высоту h, мы как бы запасаем работу, равную m*g*h. Эту работу тело способно произвести при его опускании на первоначальный (нулевой) уровень. Так как энергия поднятого тела определяется только его положением относительно нулевого уровня, эту энергию называют энергией положения или потенциальной энергией.

Физические тела могут обладать энергией не только потому, что они занимают определенное положение, но и потому, что они находятся в движении. Энергия, которой обладает тело вследствие своего движения, называется энергией движения или кинетической энергией [ 12].

Так, сокращение мышц в фазе подъема туловища приводят к тому, что изменяется не только положение тела спортсмена по отношению к грифу перекладины, но и его скорость. Под действием силы тяги мышц на начальном участке фазы подъема туловища тело спортсмена получает ускорение, вследствие чего его скорость изменяется от нулевой до максимальной. Работа мышц, затраченная на разгон тела спортсмена, создает запас кинетической энергии, т.е. запас способности в дальнейшем (при торможении) совершать полезную работу. В частности, этот запас кинетической энергии может расходоваться на работу против силы тяжести в верхней части траектории фазы подъема туловища, благодаря чему тело спортсмена может пролететь по инерции - практически без напряжения мышц некоторый участок пути.

Ясно, что высота подъема тела спортсмена по инерции зависит от запаса кинетической энергии. Поэтому чем большую скорость набирает спортсмен на начальном участке фазы подъема туловища, тем большую часть пути на верхнем участке траектории подъем будет происходить при минимальном напряжении мышц.

Когда физическое тело совершает работу благодаря тому, что оно движется, скорость движения уменьшается [12]. В наивысшей точке фазы подъема туловища скорость тела спортсмена становится равной нулю, что означает, что кинетическая энергия полностью израсходована на работу против силы тяжести. А так как работа против силы тяжести ведет к увеличению потенциальной энергии, можно сказать, что по мере уменьшения скорости движения тела спортсмена по инерции кинетическая энергия постепенно превращается в потенциальную.

Итак, сокращение мышц в фазе подъема туловища приводит к тому, что изменяется как скорость тела спортсмена, так и его положение по отношению к грифу перекладины. Это означает, что как кинетическая, так и потенциальная энергия тела в фазе подъема туловища создаются за счет работы силы тяги мышц спортсмена. Механическую работу силы тяги мышц на любом участке траектории движения тела спортсмена в фазе подъёма туловища можно рассчитать по следующей формуле

(1.5)

где: - работа силы тяги мышц, дж; - кинетическая энергия тела спортсмена, дж; - потенциальная энергия тела спортсмена, дж; - масса тела спортсмена, кг; - конечная скорость тела спортсмена, м\с; - начальная скорость тела спортсмена, м\с; - ускорение свободного падения, м\c*c; - координата конечной точки траектории, м; - координата начальной точки траектории, м

Заметим, что формула (1.5) не учитывает затрат энергии на вращательное движение тела в фазе подъема туловища, статическую работу мышц по фиксации хвата и т.п., а лишь выявляет связь между работой мышц, обеспечивающих подъем туловища и изменениями потенциальной и кинетической энергии тела спортсмена в любой точке траектории этой фазы.

Для того чтобы подтягивание происходило в наиболее экономичном режиме, необходимо, чтобы работа силы тяги мышц в расчете на один подъем тела была минимальной. Минимальное значение принимает тогда, когда в момент перехода подбородка через уровень грифа перекладины скорость движения тела спортсмена становится равной нулю. В этом случае работа силы тяги мышц равна работе по подъему тела массой на высоту обязательного перемещения. Если же больше нуля, спортсмен нерационально использует энергию мышц, бесполезно растрачивая ее на подъем тела выше необходимого уровня. Это эффектно, красиво смотрится со стороны, но совершенно не учитывается судьями и обычно сказывается на результате, причем не в лучшую сторону. Да спортсмен обычно и сам это понимает примерно через 1-2 минуты после начала подтягивания.

 

1.2.3.2 Механическая работа мышц в фазе опускания туловища.

В фазе опускания туловища работа мышц направлена на то, чтобы предотвратить слишком быстрое падение тела и тем самым уменьшить ударную нагрузку на пальцы в момент прихода в ИП. Скорость опускания туловища спортсмен регулирует величиной тормозящего усилия мышц. На выбор величины тормозящего усилия оказывают влияние такие факторы, как надёжность хвата, жесткость грифа перекладины, темп подтягиваний и др.

Взаимосвязь между работой мышц в фазе опускания туловища и изменениями потенциальной и кинетической энергии выражается соотношением:

(1.6)

где: - работа мышц в фазе опускания туловища, дж; - масса тела, кг; - ускорение свободного падения, м\с*с; - высота опускания, м; - скорость тела в момент прихода в ИП, м\с.

Если работа мышц равна нулю, т.е. осуществляется свободное падение тела, потенциальная энергия по мере опускания тела на нулевой уровень полностью переходит в кинетическую. И в этом случае в момент прихода в ИП тело спортсмена имеет максимальную скорость, и ее необходимо быстро погасить. Гашение инерции тела сопровождается кратковременной ударной нагрузкой на мышцы, обеспечивающие фиксацию суставов, а также - и это самое главное - на мышцы-сгибатели пальцев, которые обеспечивают надежность хвата.

Видимо, опасность проскальзывания ладоней в месте хвата в момент воздействия ударной нагрузки при гашении скорости и вынуждает спортсмена развивать тормозящее усилие в фазе опускания туловища. Работа мышц при этом будет тем больше, чем меньшую скорость будет иметь тело спортсмена к моменту прихода в ИП. Так, при неуверенном хвате и (или) сильном утомлении мышц-сгибателей пальцев спортсмен медленно, с осторожностью опускается в вис. В этом случае работа мышц (с механической точки зрения) практически равна их работе в фазе подъема туловища, в чем нетрудно убедиться, подставив в формуле (1.6) .

Медленное опускание туловища - это в большинстве случаев вынужденная мера, на которую спортсмену приходится идти для того, чтобы не сорвать хват.

 

1.2.3.3 Внутренняя энергия.

Рассматривая работу мышц в различных фазах подтягивания, мы до сих пор учитывали только такую работу, при которой сокращение мышц сопровождается перемещением звеньев тела спортсмена, т.е. механическую работу. Но довольно часто при сокращении мышц не происходит видимого перемещения, как, например, при статическом напряжении мышц-сгибателей пальцев во время фиксации хвата. В соответствии с формулой (1.5) механическая работа, в этом случае равна нулю. Но любой спортсмен знает, что удерживать хват в течение длительного времени ничуть не легче, чем выполнять подтягивания, что означает, что с физиологической точки зрения какая-то работа все-таки выполняется. Следовательно, затраты организма при выполнении подтягивании и производимая при этом полезная механическая работа далеко не равнозначные понятия. Таким образом, существует необходимость разделения понятий "работа" в физико-механическом смысле и затрат организма при выполнении этой работы. В связи с этим механическую работу, производимую при выполнении какой-либо физической нагрузки, относят к внешней стороне, а физиологические сдвиги, происходящие при этом в организме - к внутренней стороне нагрузки.

Как выполнение полезной механической работы, так и поддержание статических усилий связано с "переводом функционального состояния организма на более высокий, чем в покое, уровень активности" [1] и невозможно без определенных затрат энергии, количество и скорость превращения которых зависят от величины запросов, предъявляемых организму физическим упражнением.

Другими словами, механическая работа и статические усилия осуществляются благодаря превращению потенциальной химической энергии в сокращение мышечных волокон в процессе расщепления высоко-энергетического вещества аденозинтрифосфата (АТФ). В результате сокращения в мышечных волокнах возникает напряжение, которое либо вызывает движение звеньев тела при укорочении мышцы, либо - если мышца не изменяет своей длины - приводит к развитию статических усилий. Таким образом, и движение и фиксация позы осуществляется за счет убыли потенциальной химической энергии при расщеплении АТФ.

Химическая энергия является одной из форм внутренней энергии, т.е. такой энергии, которая зависит от состояния физического тела.

В организм человека разнообразные, богатые потенциальной химической энергией вещества поступают с растительной и животной пищей. Находящаяся в белках, жирах и углеводах пищи потенциальная химическая энергия в процессе обмена веществ превращается в различные формы химической и физической энергии. Энергия, освобождаемая при расщеплении АТФ - единственного прямого источника для мышечных сокращений - при мышечной деятельности переходит в механическую энергию, а также рассеивается в виде тепла [17].

Так как запасы АТФ в мышцах ограничены, необходимо постоянное ее восстановление. Чем интенсивнее протекает мышечная деятельность, тем большее количество АТФ требуется затратить и восстановить. В зависимости от силы и продолжительности сокращения мышц восстановление запасов АТФ может происходить несколькими способами. Способы восстановления (ресинтеза) АТФ неравноценны по эффективности, а это означает, что техника и тактика выполнения физических упражнений могут оказывать существенное влияние на результат. Ресинтез АТФ, а также другие биохимические и физиологические процессы в дальнейшем будут рассмотрены более подробно.

 

1.2.3.4 Мощность работы.

До 1994 года правилами соревнований по полиатлону было предусмотрено подтягивание без учета времени. Тогда результат спортсмена определялся по количеству технически правильно выполненных подъёмов туловища, которые он был в состоянии выполнить, подтягиваясь в удобном для себя режиме. При подтягивании с жестким контролем времени, спортивный результат определяется тем количеством подтягиваний, которые спортсмен успевает выполнить в течение заданного времени. В таких условиях решающую роль играет не столько способность спортсмена длительное время поддерживать определённые мышечные усилия, сколько его способность за ограниченное время выполнить максимальный объем работы.

Кроне того, запрещение использования клеящих веществ для обработки ладоней сильно усложнили задачу тем спортсменам, которые использовали липкие свойства канифоли для компенсации недостаточного уровня развития статической выносливости мышц-сгибателей пальцев. Дело в том, что ту часть работы мышц по удержанию хвата, которая раньше выполнялась за счет липких свойств наносимых на ладони веществ, теперь - при использовании магнезии - вынуждены выполнять сами мышцы.

Таким образом, фактор лимита времени вынуждает спортсмена выполнять подтягивания более интенсивно, чем прежде, а запрет на использование клеящих веществ заставляет его увеличить силу статического напряжения мышц-сгибателей пальцев. В обоих случаях это ведет к увеличению скорости превращения потенциальной химической энергии в сокращение мышечных волокон, а значит требует и увеличения мощности ресинтеза АТФ.

Под мощностью в данном случае будем понимать количество энергии (АТФ), образующейся в единицу времени.

(1.7)

где: - мощность энергопродукции, Дж/с; - количество энергии, Дж; - время, с

Если же рассматривать только механическую работу, производимую при выполнении подтягиваний, то мощностью следует называть величину, равную отношению произведенной работы ко времени, в течение которого она произведена.

(1.8)

где: - мощность механической работы, Дж/с; - механическая работа мышц, Дж; - время, с.

Когда работа и энергия измеряются в джоулях, а время - в секундах, мощность измеряется в дж/с. Эта единица имеет специальное название - ватт (вт).

Так как в полезную механическую работу превращается только часть химической энергии, энергетическая мощность более полно характеризует интенсивность мышечных усилий при выполнении нагрузки. Но химическую энергию измерить сложно, поэтому при расчетах обычно пользуются мощностью механической работы, так как работа, произведенная при подтягивании, легче поддается вычислению.

Для примера попробуем рассчитать механическую мощность, развиваемую спортсменом массой 70 кг в фазе подъема туловища, если высота подъема 0.5м, а время подъёма 1с.

Учитывая, что движение тела спортсмена в фазе подъема туловища не является равномерным и, следовательно, мощность в процессе подъема изменяется по неизвестному нам закону, на основе приведенных данных мы можем рассчитать среднюю мощность, развиваемую мышцами в фазе подъема туловища.

где: - средняя мощность работы мышц, вт; - работа мышц, дж; - время работы, с; - масса тела, кг; - ускорение свободного падения, м/c*c; - высота подъема, м .

Следует иметь в виду, что оперируя понятием "мощность механической работы" мы совершенно не учитываем затраты энергии на поддержание статических усилий, которые в некоторых случаях могут достигать значительных величин. Так, в момент "зависания" спортсмена в верхней части траектории, когда он пытается дотянуться подбородком до уровня грифа перекладины, на удержание положения виса на согнутых руках затрачивается огромное количество энергии, в то время как механическая работа при отсутствии движения равна нулю.