Теория и методика подтягиваний (части 1-3)

Кожуркин А. Н.

Глава 6. Развитие статической силовой выносливости мышц предплечья.

 

 

6.1 Энергообеспечение при статическом напряжении мышц предплечья.

Длительный хват может быть природным или натренированным. У нетренированных людей максимальное время виса определяется природными способностями мышц-сгибателей пальцев к выполнению статической работы. Если это время невелико, и составляет 1.5 – 2 минуты, для достижения высокого результата в подтягивании им требуется специально развивать статическую выносливость. Причём, чем меньше природные способности, тем большую часть тренировочного времени придётся уделять развитию статической выносливости мышц-сгибателей пальцев. Можно сказать, что у спортсменов с изначально малым максимальным временем виса тренировка должна быть преимущественно направлена на развитие статики.

Неуверенный контакт с перекладиной затрудняет работу мышц, выполняющих подъём туловища, а многочисленные перехваты съедают время, отведённое на подтягивания. Кроме того, портится техника, что выражается в увеличении амплитуды раскачивания в фазе виса, увеличении времени опускания в вис, появлении ошибок. Так, перенос внимания спортсмена на кисти при появлении проблем с хватом автоматически ведёт к ослаблению контроля за ногами, в результате чего спортсмен может неосознанно отводить пятки назад с последующим рывком или выносить вперёд ноги, согнутые в коленных суставах, что квалифицируется судьями как ошибки.

Чем на больший результат рассчитывает спортсмен, тем большее время ему нужно удерживать надёжный хват и тем меньшим количеством перехватов он должен обходиться при выполнении соревновательного упражнения. Кроме того, при ослаблении хвата и выполнении перехватов нарушается ритм подтягиваний, что приводит к невозможности использовать упругие свойства мышц так, как это происходит при ритмичном выполнении подтягиваний. Давно замечено, что первое подтягивание после перехвата или других действий, сопровождающихся нарушением ритма, субъективно воспринимается спортсменом как более трудоёмкое, чем подтягивания, выполняемые ритмично.

Многолетняя практика показывает, что длительность виса поддаётся тренировке, но для этого приходится прилагать значительные усилия в течение длительного периода напряжённых тренировок. При этом натренированный вис – в отличие от природного – не сохраняется при прекращении тренировок, поэтому при длительных перерывах (по болезни или иным причинам) приходится всё начинать практически с нуля.

При попытке развития статической выносливости спортсмен сталкивается с некоторыми трудностями. Первая заключается в том, что развитие статической силовой выносливости мышц-сгибателей пальцев должно происходить на фоне динамической работы по подъёму туловища. Другими словами, развивать вис приходится не изолированно от тяги, а совместно с ней. Тренировка «чистого» виса, т.е. виса в фазе ИП, ничего не даёт. Хотя «чистый» вис легче поддаётся тренировке, это слабо отражается на результате в подтягивании. Можно предположить, что это связано с различными режимами кровообращения в мышцах верхних конечностей. При интенсивной динамической работе мышцы, производящие подъём/опускание туловища замыкают на себя кровоток так, что мышцы предплечий оказываются на голодном пайке. При выполнении же «чистого» виса кровоснабжение мышц предплечий происходит в более благоприятных условиях

Вторая трудность состоит в том, что для развития статической выносливости мышц предплечий время работы в каждом подходе должно быть как можно больше и уж никак не меньше 2 – 2,5 минут. Но тогда при подтягивании в обычном темпе количество подтягиваний в каждом подходе будет составлять 30 – 35 раз, что для многих спортсменов просто нереально. Если же время подхода будет меньше двух минут, аэробный механизм энергообеспечения не будет успевать разворачиваться, и подтягивание будет производиться преимущественно за счёт гликолиза. А это нам совсем ни к чему.

Следующая трудность связана со сроками восстановления после тренировки, направленной на развитие статической выносливости. Необходимость задействовать аэробный механизм энергообеспечения приводит к тому, что большинство подходов, направленных на развитие статики, должны выполняться до отказа. Несколько подходов до отказа, выполненных в течение одной тренировки, вводят мышечную и нервную систему спортсмена в состояние глубокого утомления. Соответственно, и период восстановления после такой нагрузки будет существенно больше, чем после среднестатистической тренировки.

Вспомним, что происходит в мышцах спортсмена, который срывается с перекладины из-за ослабления хвата. Когда спортсмен начинает подтягивание, нагрузка на мышцы практически скачком возрастает от минимальной (уровень покоя) до максимальной для данного упражнения (фаза подъёма туловища). В энергообеспечении мышечной деятельности участвуют все механизмы ресинтеза АТФ – как анаэробные, так и аэробные, при этом вклад каждого механизма, учитывая ограниченную продолжительность выполнения подтягиваний, зависит от таких характеристик как мощность, ёмкость и время выхода на максимальную мощность.

Уже в ходе первого подтягивания концентрация АТФ в мышцах резко падает, в результате чего ответственность за её ресинтез ложится на креатинфосфатный способ, имеющий минимальное время выхода на максимальную мощность – порядка 1-2 секунды. Малое время развёртывания и высокая максимальная мощность энергопродукции являются главными преимуществами креатинфосфатного пути ресинтеза АТФ. Но вот ёмкость этого механизма такова, что на полную мощность он может функционировать всего 8-10 секунд, после чего выработка АТФ начинает уменьшаться в связи с уменьшением концентрации креатинфосфата в мышцах, и к 30 секунде работы скорость энергопродукции с помощью креатинфосфатной реакции снижается приблизительно вдвое.

При уменьшении количества АТФ соответственно увеличивается количество АДФ, что приводит к активации механизмов гликолитического и аэробного окисления. Интенсивность дыхания увеличивается, но, несмотря на то, что спортсмену приходится перейти на подтягивание с двумя циклами дыхания на каждый цикл подтягиваний, возможностей аэробного пути энергообеспечения пока явно недостаточно, так как время его выхода на максимальную мощность ещё не пришло – на это требуется две-три минуты. Механиз аэробного ресинтеза АТФ нетороплив – к тому моменту, когда он начинает работать на полную мощность, подтягивание уже выходит на финишную прямую. Гликолиз включается гораздо быстрее, его время выхода на максимальную мощность энергопродукции составляет 20-30 секунд. Этот механизм подхватывает эстафету ресинтеза АТФ у креатинфосфатного механизма энергопродукции, после чего события в организме спортсмена начинают развиваться в неприятном, а точнее в катастрофическом для мышц-сгибателей пальцев направлении.

В результате снижения интенсивности работы креатинфосфатной реакции гликолиз остаётся хотя и не единственным, но господствующим путём ресинтеза АТФ. Молочная кислота, образующаяся в процессе гликолиза, накапливается внутри мышечных клеток, повышая их кислотность. В условиях повышенной кислотности снижается каталитическая активность некоторых ферментов, в том числе ферментов самого гликолиза, что ведёт к уменьшению скорости этого пути ресинтеза АТФ. Получается парадоксальная ситуация: чем выше скорость протекания гликолиза, тем быстрее и больше выделяется молочной кислоты и тем быстрее начинает снижаться скорость гликолиза. Вот таким нехитрым способом (который в технике называется механизмом отрицательной обратной связи), организм старается привести в соответствие уровень нагрузки и свои энергетические возможности.

Но уменьшение мощности гликолиза - это одна беда и с ней можно было бы бороться, ещё больше увеличив паузу отдыха в висе и перейдя на подтягивание с тремя и более циклами дыхания, задействуя аэробный механизм энергообеспечения, который к середине второй минуты уже начинает поднимать голову. Но не тут то было - беда никогда не приходит одна.

В связи с перераспределением кровотока в пользу расположенных ближе к сердцу мышц, выполняющих интенсивную динамическую работу по подъёму и опусканию туловища, наблюдается ограниченное поступление кислорода к мышцам предплечья. Кровь, несущая кислород для аэробного окисления, с трудом пробивается через плечо к предплечью, но на этом её трудности не заканчиваются, потому что капиллярная сеть предплечья пережата статически напряжёнными мышцами. При этом затруднена не только доставка кислорода к работающим мышцам, но и вывод из них продуктов обмена. А накопление лактата в мышечных клетках очень некстати ведёт к набуханию этих клеток из-за поступления в них воды из межклеточного пространства, что в итоге уменьшает сократительные возможности мышц [11]. Оказывается, мышцы «дубеют» в том числе и из-за особенности лактата связывать повышенное количество воды.

«Кислотный дождь», проливающийся в статически работающих мышцах предплечья, нарушает работу механизма аэробного окисления. В условиях повышенной кислотности снижается активность ферментов аэробного ресинтеза АТФ, ухудшаются возможности использования кислорода в митохондриях – внутриклеточных структурах, в которых при участии кислорода происходит ресинтез АТФ.

Разбухание мышц предплечья дополнительно сдавливает кровеносные сосуды, что не только затрудняет приток крови, но и препятствует её оттоку и выводу молочной кислоты в кровяное русло. Концентрация лактата в мышечных клетках начинает не просто стремительно расти – она увеличивается лавинообразно. Резкое закисление мышц приводит к падению мощности ресинтеза АТФ, её концентрация в сократительном аппарате мышечных клеток – миофибриллах – уменьшается настолько, что силы сокращения мышц становится недостаточно для удержания надёжного хвата. Кисти начинают ползти, для улучшения контакта с грифом перекладины спортсмен, прилагая неимоверные волевые усилия, пытается делать перехваты. Пару раз ему это удаётся, но неизбежно наступает момент, когда пальцы перестают слушаться. Кисти разжимаются и происходит срыв с перекладины. Физкульт-привет молочной кислоте.

Что делать? Ну, во-первых, не впадать в отчаяние и попытаться хладнокровно разобраться в том, как заставить мышцы сокращаться при минимальном использовании гликолиза. Здесь важна постановка вопроса именно о минимизации вклада гликолиза, а не о развитии его возможностей путём тренировки. Дело в том, что традиционные рекомендации по увеличению выносливости при работе длительностью до 5 минут сводятся к тому, чтобы тренировочный процесс был направлен на решение двух задач. Во-первых, с помощью тренировок требуется увеличить содержание в мышцах основного «сырья» для протекания гликолиза – гликогена. А во вторых, тренировки должны приводить к повышению сопротивляемости (резидентности) накоплению лактата и повышению кислотности, а для этого необходимо, чтобы при каждом тренировочном воздействии нагрузки происходило образование и накопление большого количества лактата. Таким образом, при традиционном подходе целью каждой тренировки, направленной на развитие выносливости для работы продолжительностью не более 5 минут является получение в мышцах ударной дозы лактата и резкое снижение в них содержания гликогена.

Когда речь идёт о динамической нагрузке, такой подход скорее всего сработает. Так, если спортсмену нужно улучшить результат в беге на 1 километр с 3,00 до 2,30, то нужно иметь в виду, что ему требуется увеличить мощность работы при одновременном снижении её продолжительности. Но спортсмену, которому хочется увеличить время надёжного хвата с 2 до 4 минут, нужно добиться увеличения продолжительности работы при её неизменной мощности. Разница есть и её можно попытаться использовать в своих целях.

Итак, нам необходимо увеличить продолжительность статического сокращения мышц до 4 минут, а это больше, чем время работы гликолитического механизма с максимальной мощностью энергопродукции, составляющее 2-3 минуты. Поэтому возникает мысль: а нельзя ли вообще исключить (или хотя бы ограничить) гликолиз при выполнении статической нагрузки. Ну совсем исключить его, конечно не удастся – при любой интенсивной нагрузке длительностью более 10-20 секунд он неизбежен, как крах империализма – а вот привести его привлечение к предельно возможному минимуму принципиальная возможность имеется. Дело в том, что гликолиз включается в работу после креатинфосфатного и до окислительного механизма ресинтеза АТФ. Если с одной стороны увеличить ёмкость креатинфосфатной реакции и замедлить падение её мощности, а с другой – существенно сократить время выхода аэробного механизма на максимальную мощность и одновременно повысить саму величину максимальной мощности, то продолжительность отрезка времени, в течение которого гликолиз будет играть ведущую роль, может значительно сократиться. Нужно построить тренировку так, чтобы зажать гликолиз в своеобразные клещи, образно говоря, нужно создать тиски для гликолиза. С одной стороны мощно и более длительно работает креатинфосфат, а с другой - быстро разворачивается окислительный механизм. В этом случае целью тренировочного процесса будет уже не накопление большого количества лактата в каждом выполняемом упражнении, а наоборот, упражнения будут направлены на то, чтобы свести участие гликолиза к минимуму, т.е. тренировки будут носить антигликолитический характер. Легко сказать, а вот как это реализовать на практике?

Для начала перечислим то, что нужно учесть при построении антигликолитической тренировки по увеличению статической выносливости мышц-сгибателей пальцев.

 Нужно добиться увеличения времени работы с максимальной мощностью для креатинфосфатного механизма энергообеспечения.

 Нужно создать условия для того, чтобы гликолиз не запускался ещё до начала выполнения упражнения (гликолиз мажет активироваться адреналином, выделяющимся в кровь из-за предстартового "мандража") а также снизить восприимчивость к вредному воздействию молочной кислоты, выделяющейся в ходе протекания гликолиза в ходе выполнения упражнения.

 Нужно увеличить аэробную мощность, уровень развития которой зависит от:

 Запасов в организме доступных источников энергии (энергетических субстратов) для аэробного окисления;

 Доставки кислорода в работающие мышцы;

 Степени развития в работающих мышцах митохондриального окисления [11].

 Нужно сократить время развёртывания аэробного механизма ресинтеза АТФ

Рассмотрим перечисленные требования более подробно.

 

6.1.1 Увеличение ёмкости креатинфосфатного механизма.

Время поддержания максимальной мощности ресинтеза АТФ за счёт креатинфосфатной реакции составляет всего 8-10 секунд. Через 30 секунд она падает вдвое, а к концу 3 минуты интенсивной работы креатинкиназная реакция в мышцах практически прекращается [11]. Увеличение запасов креатинфосфата позволит поднять продолжительность максимальной энергопродукции за счёт данного механизма хотя бы на несколько секунд. Кому-то это может показаться ерундой, мелочью, ради которой не стоит напрягаться. Ну что же, попробуйте объяснить это спортсмену, которому до нормы мастера не хватило одного очка, потому что он раньше времени сорвался с перекладины.

 

6.1.2 Снижение негативных последствий гликолиза.

Накопление лактата в мышечных клетках существенно влияет на их функционирование, в частности уменьшается сократительная способность участвующих в мышечной деятельности белков, увеличивается проницаемость биологических мембран. Поскольку все ферменты тканевого дыхания находятся на внутренних мембранах митохондрий и функционируют только при неповреждённых мембранах, повышение кислотности вследствие образования лактата нарушает процесс образования АТФ аэробным способом. Накопление молочной кислоты также приводит к набуханию мышечных клеток вследствие поступления в них воды, что в итоге уменьшает сократительные способности мышц.

Для предупреждения негативного влияния лактата на работоспособность мышц используется несколько приёмов, каждый из которых обеспечивает защиту на своём «участке». Во-первых, в тренировочный процесс включаются упражнения, направленные на развитие резидентности (снижение восприимчивости) организма к молочной кислоте. Во-вторых, непосредственно в день соревнований, выбирается такой характер поведения в зале и проведения разминки, который предотвращает выделение адреналина («мандраж») и создаёт условия для максимально быстрого и эффективного включения механизма аэробного ресинтеза АТФ после начала выполнения соревновательного подхода. И в-третьих, при возникновении малейших признаков закисления уже в ходе выполнения соревновательного подхода спортсмен немедленно снижает темп выполнения подтягиваний, а если это не помогает, пытается исправить ситуацию в паузе отдыха в висе, перенося вес тела на более выносливую (ведущую) руку или используя иные способы.

 

6.1.3 Источники энергии для аэробного ресинтеза АТФ.

Длительность поддержания аэробной работы заданного уровня мощности зависит от запасов в организме доступных источников энергии – энергетических субстратов, т.е. тех веществ, которые могут подвергаться окислению аэробным способом. Хотя за те 4 минуты, которые отводится на выполнение соревновательного подхода, у некоторых спортсменов аэробный механизм даже не успевает выйти на полную мощность по причине бурного протекания гликолиза, затронуть тему энергетических запасов для аэробного окисления необходимо потому, что основная нагрузка в подтягивании выполняется не на соревнованиях, а на тренировках.

Суммарная длительность и интенсивность тренировочной работы иногда может быть такой, что в ходе отдельной тренировки происходит полное исчерпание запасов гликогена в рабочих мышцах. Причём, чем большую роль в энергообеспечении работы мышц играет гликолиз, тем быстрее это происходит, так как гликолиз по сравнению с аэробным окислением гораздо менее экономичен. Так, при аэробном расщеплении гликогена вырабатывается в 13 раз меньше молекул АТФ, чем при его расщеплении аэробным способом т.е. скорость расходования гликогена при протекании гликолиза в 13 раз выше скорости расходования гликогена окислительной системой (при обеспечении работы одинаковой мощности).

В ходе проведения длительной или высокоинтенсивной тренировки по подтягиванию, состоящей из большого количества подходов, происходит многократное включение гликолитического механизма энергообеспечения, в связи с чем к концу тренировки может произойти значительное снижение уровня мышечного гликогена. По мере снижения гликогена скорость его расходования (мощность гликолиза) уменьшается, характер энергообеспечения мышечной работы всё больше смещается в сторону аэробного окисления гликогена и глюкозы. Практически это проявляется в снижении темпа подтягиваний, уменьшении скорости сокращения мышц в фазе подъёма туловища, зависании в верхней части траектории движения, уменьшении времени поддержания надёжного хвата и т.д. В связи с этим, интервал отдыха между двумя напряжёнными (развивающими) тренировками одинаковой направленности нужно планировать с учётом необходимости полного восстановления уровня мышечного гликогена.

При длительном передвижении на лыжах (лыжероллерах) энергообеспечение организма происходит преимущественно за счёт аэробного механизма энергообеспечения. При этом происходит существенное снижение уровня гликогена в мышцах. Особенно это актуально для периода вкатывания в начале зимнего сезона, когда спортсмен резко увеличивает объём тренировочной работы. В период вкатывания довольно тяжело сочетать тренировки по подтягиванию с лыжными тренировками. Руки перестают держать хват, тяга тоже куда-то пропадает и ставшие уже давно привычными силовые тренировочные нагрузки неожиданно становятся недоступными. В такой ситуации - с пониженным содержание гликогена в мышцах, на фоне хронического недовосстановления от тренировок на выносливость - довольно тяжело найти рациональное сочетание силовых и лыжных тренировок и сохранить достигнутый уровень развития силовых способностей.

 

6.1.4 Доставка кислорода в работающие мышцы.

6.1.4.1 Развитие капиллярной сети.

Для функционирования механизма аэробного ресинтеза АТФ требуется кислород. В связи с тем, что содержание кислорода в единице объёма крови находится в жёстких пределах, единственной возможностью увеличения количества кислорода, доставляемого к работающим мышцам, является усиление их кровообращения [16].

Хроническая недостаточность в снабжении мышечной ткани кислородом может вызвать специфическое приспособление сосудистой системы, которое проявляется в увеличении числа кровеносных сосудов, особенно капиллярной сети [9]. Именно в капиллярах происходит диффузия кислорода и растворённых в крови веществ в тканевые клетки и обратно. В быстрых мышечных волокнах на каждый кубический миллиметр приходится 300-400 капилляров, плотность капилляров в медленных мышечных волокнах в среднем в 3 раза больше.

Поскольку причиной запуска процесса создания капиллярной сети является недостаточность в снабжении мышц кислородом, интенсивность и длительность выполнения упражнения должны быть такими, чтобы мышцы постоянно испытывали кислородное голодание. Но при выполнении короткой и интенсивной нагрузки, когда энергообеспечение преимущественно идёт без участия кислорода, стимулы для создания дополнительных капилляров в мышечных волокнах отсутствуют – в них просто нет необходимости. Таким образом, мы снова приходим к тому, что длительность подхода при тренировке статической выносливости должна быть такой, чтобы аэробный механизм ресинтеза АТФ успел выйти на уровень своей максимальной мощности и продержался на этом уровне как можно дольше.

 

6.1.4.2 Создание условий для эффективного кровообращения.

Нужно создать условия для максимальной эффективности кровообращения в статически работающих мышцах. Интенсивность кровотока в капиллярах мышечной ткани зависит от уровня метаболической активности, т.е. интенсивности мышечной деятельности, при этом под воздействием нагрузки изменяется как количество функционирующих капилляров, так и объём кровотока через каждый капилляр. Так, количество действующих капилляров в работающей скелетной мышце может возрасти по отношению к уровню покоя более чем в 50 раз [2]. Объём кровотока через кровеносные сосуды регулируется изменением радиуса кровеносного сосуда. При этом даже небольшое изменение радиуса кровеносного сосуда вызывает существенное изменение величины кровотока, поскольку сопротивление кровотока обратно пропорционально четвёртой степени радиуса кровеносного сосуда.

Мышечный кровоток при физической нагрузке находится в определённой зависимости от некоторых механических факторов, связанных с сокращениями и расслаблениями мышцы. Во время сокращения повышается внутримышечное давление, что приводит к сдавливанию мышечных сосудов и уменьшению кровотока через них. И если при динамических сокращениях небольшой силы возникает лишь небольшое препятствие кровотоку, то при сильных динамических и особенно при статических сокращениях уровень кровотока значительно уменьшается. В этих случаях (к которым можно смело отнести и подтягивание на перекладине) мышечный кровоток определяется противоположным действием двух факторов – концентрации локально образующихся сосудорасширяющих веществ и механического сдавливания кровеносных сосудов сокращающейся мышцей.

Так, при статическом сокращении мышц предплечий кровоток в них возрастает с увеличением силы сокращения лишь до тех пор, пока она не достигнет 15-20% от максимальной произвольной силы этих мышц. При более сильных сокращениях внутримышечное давление снижает кровоток. Если измерять мышечный кровоток сразу после статического сокращения мышц, он существенно больше, чем во время сокращения. Разность между показателями кровотока во время и после статического сокращения («кровяной долг») служит показателем механического препятствия кровотоку во время статического сокращения мышц, причём это препятствие тем больше, чем сильнее мышечное сокращение [9].

Для эффективной работы аэробного механизма энергообеспечения необходимо, чтобы все имеющиеся в распоряжении работающей мышцы капилляры находились в открытом состоянии, а объём кровотока через капиллярную сеть был максимально возможным. Основная сложность состоит в том, что эти условия должны выполняться уже в первом подходе тренировки на развитие статической выносливости. Мало открытых капилляров – мало крови, мало крови – мало кислорода, мало кислорода – ресинтез АТФ преимущественно идёт за счёт гликолиза, идёт гликолиз – образуется лактат, образуется лактат – «дубеют» мышцы, задубели мышцы предплечий – поползли кисти, поползли кисти – тут и сказке конец. Поэтому для того, чтобы не терять первый подход каждой тренировки, нужно тщательно разминаться. Если первый подход «до отказа» в тренировке, направленной на развитие статической выносливости, проводится без соответствующей разминки – это, как правило, загубленный подход.

Сказанное, естественно, относится и к соревнованиям, особенно, если соревновательный подход проводится утром, когда организм еще не проснулся. Можно привести десятки примеров, когда подтягивание в утренние часы без должной разминки не позволяло спортсменам даже приблизиться к своим результатам, показанным на тренировке двумя-тремя днями ранее. Грамотная разминка помогает с максимальной эффективностью использовать то, что наработано на тренировке.

 

6.1.5 Развитие возможностей механизма аэробного окисления в работающих мышцах.

6.1.5.1 Увеличение числа мышечных волокон, способных к аэробному ресинтезу АТФ.

Для того чтобы сделать уборку в своей квартире, нужно сначала обзавестись квартирой. Для того чтобы в мышечных быстро разворачивался и мощно протекал аэробный ресинтез АТФ, нужно сначала добиться, чтобы подходящие для этих целей мышечные волокна имелись в наличии. Дело в тот, что чем выше в мышцах процент медленных волокон (типа I), тем они более выносливы и обладают большей способностью к длительной работе. Быстрые волокна (тип II), наоборот, более приспособлены к кратковременной работе большой мощности, при этом они в большей степени используют анаэробный гликолитическиий путь энергопродукции, а значит и концентрация лактата в них выше, чем в медленных волокнах [9].

У большинства людей в мышцах предплечья преобладают быстрые волокна, хотя количественное соотношение быстрых и медленных волокон у разных людей могут сильно отличаться. Кроме того, по мере старения человека количество быстрых волокон в мышцах уменьшается. В этих условиях при локальной мышечной работе, происходящей на фоне резкого снижения силы мышц, лица пожилого возраста способны показывать высокую статическую выносливость [15]. Но молодой спортсмен не может ждать, пока соотношение мышечных волокон изменится под влиянием естественных причин, результат ему нужен «здесь и сейчас». В связи с тем, что у разных людей наблюдается врождённое (генетически предопределённое) соотношение мышечных волокон, в том числе и в мышцах предплечья, эти мышцы изначально могут отличаться по своей предрасположенности к длительным статическим напряжениям. Так, если один человек без тренировки может отвисеть на перекладине в течение 4 минут, можно с уверенностью сказать, что процент медленных волокон в его мышцах-сгибателях пальцев больше, чем у того человека, максимальное время виса которого составляет, скажем, 2 минуты. Эти люди заведомо находятся в неравных начальных условиях применительно к подтягиванию. Один имеет надёжный природный вис и с усмешкой наблюдает за другим, который кучу времени тратит на то, чтобы поднять статическую выносливость мышц предплечья.

Но несмотря на то, что соотношение волокон в мышцах является врождённым, в процессе тренировки выносливости в тренируемых мышцах всё же происходят изменения, так как быстрые гликолитические волокна (II-B) под влиянием тренировки на выносливость могут превращаться в быстрые окислительные (II-A), что увеличивает общий процент волокон, способных к аэробному метаболизму [19].

 

6.1.5.2 Увеличение количества и размера митохондрий.

Митохондрии - это небольшие (2-3 мкм в длину и 0,7-1,0 мкм в поперечнике) образования округлой или удлинённой формы (рисунок 6.1). Митохондрии располагаются цепочками вдоль сократительных элементов мышечных волокон – миофибрилл. Внутреннее пространство митохондрий окружено двумя трёхслойными мембранами, причём от внутренней мембраны в полость митохондрий отходят гребни, располагающиеся параллельными рядами. Внутренняя полость гребней заполнена жидким раствором белка – матриксом. Мембраны митохондрий построены из белка и содержащих фосфорную кислоту жироподобных веществ – фосфолипидов [24].

Рисунок 6.1

Строение митохондрии. [по Яковлеву Н.Н., 1974 ]

Г – гребни, Ма – матрикс, ВМ – внутренняя мембрана

Митохондрии представляют собой как бы «завод по производству АТФ аэробным способом». Процесс окисления органических веществ в клетках тканей и органов с участием кислорода воздуха называется окислительным (или дыхательным) фосфорилированием. Дыхательное фосфорилирование – основной путь ресинтеза АТФ, в ходе которого окислению могут подвергаться самые различные соединения: углеводы (глюкоза), продукты их неполного окисления – молочная и пировиноградная кислоты, образующиеся из жиров жирные кислоты и глицерин, продукты расщепления белков – аминокислоты.

Ферменты, являющиеся катализаторами окислительных процессов, а также компоненты (переносчики) дыхательной цепи (химические вещества, осуществляющие транспорт электронов и протонов по дыхательной цепи) в определённом порядке располагаются на внутренних мембранах митохондрий. На внешней мембране и в матриксе также находится немало различных ферментов.

По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание обладает самой низкой величиной максимальной мощности энергопродукции. Это обусловлено тем, что возможности аэробного процесса ограничены доставкой кислорода в митохондрии и их количеством в мышечных клетках. Под влиянием систематических тренировок, направленных на развитие аэробной работоспособности, в мышечных волокнах возрастает количество митохондрий, увеличивается их размер, в них становится больше ферментов тканевого дыхания [11].

 

6.1.6 Уменьшение времени развёртывания механизма аэробного ресинтеза АТФ.

Время развёртывания – это минимальное время, необходимое для выхода ресинтеза АТФ на свою наибольшую скорость, т.е. для достижения максимальной мощности. Время развёртывания аэробного ресинтеза АТФ составляет 3-4 минуты (у хорошо тренированных спортсменов может быть около 1 минуты). Такое большое время развёртывания объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц[11].

На рисунке 6.2 приведены обобщённые литературные сведения об использовании кислорода в каскаде окислительного метаболизма и факторах, определяющих эффективность каждой из его ступеней [8].

Рисунок 6.2

Схема кислородного каскада в организме (по Верхошанскому Ю.В.,1988)

В результате газообмена в легких молекулы кислорода попадают в кровь, где в составе химического соединения с гемоглобином переносятся током крови к работающим мышцам. Затем кислород через стенки капилляров проникает внутрь мышечной клетки, пересекает внутриклеточное пространство (самостоятельно или с помощью мышечного белка миоглобина) и мембрану митохондрий, где и используется в химических реакциях окисления.

Понятно, что для статически работающих мышц-сгибателей пальцев проблема состоит как в доставке кислорода к работающим мышцам, так и в его использовании для ресинтеза АТФ в митохондриях.

Дыхательный аппарат обеспечивает снабжение организма кислородом и удаление из него углекислого газа. При подтягивании на перекладине к системе внешнего дыхания не предъявляется повышенных требований, как это происходит, например, в лыжных гонках. Когда спортсмен находится в хорошей форме, подтягивание в соревновательном темпе даже на четвёртой минуте выполняется с умеренными значениями частоты и глубины дыхания, за исключением, пожалуй, последних секунд выполнения упражнения, когда спортсмен предпринимает финишное ускорение. Организм получает из воздуха достаточное количество кислорода (кроме начального отрезка времени), но он не может своевременно доставить его по назначению и использовать с максимальной эффективностью.

В начале выполнении подтягиваний в работающих мышцах (в том числе и в мышцах-сгибателей пальцев) резко возрастает кислородный запрос по отношению к уровню покоя. Пока дыхание и кровообращение не успевают обеспечить адекватное снабжение работающих мышц кислородом, вероятно, используется резервный кислород, связанный с находящимся в мышечных клетках миоглобином. Для эффективной работы аэробного механизма энергообеспечения необходимо, чтобы все имеющиеся в распоряжении работающей мышцы капилляры находились в открытом состоянии, а объём кровотока через капиллярную сеть был максимально возможным. В противном случае после исчерпания миоглобинового резерва кислорода ресинтез АТФ длительное время (по меркам подтягивания) будет происходить за счёт гликолиза. Создание максимально возможного кровотока через работающие мышцы в кратчайшие сроки позволит сократить время развёртывания механизма аэробного окисления.

Поскольку лыжные гонки (наряду с подтягиванием и стрельбой входящие в состав зимнего полиатлона) оказывают существенное развивающее воздействие на возможности кислородотранспортной системы, скорее всего, нет необходимости в том, чтобы на тренировках по подтягиванию специально заниматься развитием возможностей системы внешнего дыхания, сердечно-сосудистой и кровеносной систем (за исключением развития капиллярной сети).

Существенное влияние на скорость развёртывания аэробного ресинтеза АТФ оказывают внутриклеточные факторы (рисунок 6.2).

Установка на автомашину более мощного двигателя даёт возможность во-первых, увеличить её максимальную скорость и, во-вторых, разогнаться до заданной скорости за меньшее время. Митохондрии – это по сути «энергетические установки» аэробного механизма ресинтеза АТФ. При увеличении количества и площади митохондрий происходит не только увеличение максимальной мощности аэробного ресинтеза АТФ, но и достижение заданного уровня мощности за меньшее время, т.е. уменьшение времени развёртывания.

С началом работы в мышцах происходит уменьшение концентрации АТФ и увеличение концентрации АДФ, что является сигналом к запуску как гликолиза, так и аэробного ресинтеза АТФ. При увеличении количества и размера митохондрий увеличивается и концентрация ферментов аэробного окисления (локализованных на их внутренних мембранах), что,вероятно, уменьшает время развёртывания механизма аэробного окисления и повышает шансы спортсмена на длительное поддержание надёжного хвата.

Миоглобин, находящийся в мышечных клетках, во-первых, в начале подтягиваний некоторое время поддерживает снабжение митохондрий кислородом и, во-вторых, облегчает и ускоряет транспорт кислорода к митохондриям, расположенным в глубине мышечного волокна. Это происходит за счёт так называемого "челночного" механизма передачи молекул кислорода от крови до митохондрий [9]. При более высоком содержании миоглобина (а значит и кислорода) в мышечных клетках гликолиз в начальный период работы будет протекать менее бурно.

 

6.1.7 Предполагаемые изменения в схеме энергопродукции.

Таким образом, при увеличении мощности аэробного механизма энергообеспечения и уменьшения времени его развёртывания с одновременным увеличением длительности работы креатинфосфатного механизма и повышением резидентности организма к молочной кислоте, выделяющейся в процессе гликолиза, схему включения путей ресинтеза АТФ при выполнении статической работы по удержанию хвата можно скорректировать так, как это изображено на рисунке 6.3.

Рисунок 6.3 Предполагаемый порядок включения механизмов ресинтеза АТФ до и после тренировочного периода, направленного на развитие статической выносливости

Непрерывные линии – до тренировки

Пунктирные линии – после тренировки

Закрашенные области – предполагаемые изменения

Ожидается, что в ходе проведения тренировочного процесса, направленного на развитие статической выносливости мышц-сгибателей пальцев значительно увеличится мощность и снизится время развёртывания механизма аэробного окисления и существенно снизится роль гликолиза в энергообеспечении мышечной работы. При этом выделение молочной кислоты в работающих мышцах уменьшится до такого уровня, что при выполнении работы по удержанию хвата вместо непрерывно усиливающегося «задубения» мышц (вследствие бурного протекания гликолиза) будет происходить своевременное и безболезненное подключение механизма аэробного ресинтеза АТФ.

 

6.2 Преимущественная направленность тренировочной нагрузки.

После того, как мы рассмотрели факторы, влияющие на уровень развития статической силовой выносливости, нужно выяснить, существует ли такое упражнение, которое позволит развивать все недостающие способности одновременно.

Для повышения содержания в мышцах миоглобина нужно выполнять короткие (до 10 секунд) нагрузки высокой интенсивности, чередуемые с такими же короткими паузами.

Для увеличения запасов креатинфосфата используются также кратковременные упражнения, но уже максимальной интенсивности, причём упражнения проводятся повторно-серийным методом с 4-5 подходами в серии, интервалом отдыха между подходами 10-20 секунд, продолжительностью отдыха между сериями 5-6 минут.

Для повышения резидентности мышц к повышенной кислотности также можно использовать повторно-серийный метод, но при этом серии обычно состоят из 4-5 подходов длительностью до 2 минут каждый, интервал отдыха между подходами находится в пределах от 1 до 3 минут, а время отдыха между подходами составляет 10-30 минут.

Для увеличения скорости развёртывания аэробного механизма требуется применение многократных повторных нагрузок с такими интервалами отдыха между повторами, чтобы к началу очередного подхода интенсивность аэробного окисления успевала снизиться до уровня, близкого к дорабочему.

Адаптация к физической нагрузке специфична. Если применяемые физические нагрузки требуют быстрого включения и интенсивного протекания реакций аэробного окисления, то тренировка с использованием таких нагрузок должна привести к увеличению возможностей аэробного ресинтеза АТФ в рабочих мышцах. Чтобы адаптационные сдвиги происходили именно в направлении увеличения предельной длительности статического напряжения, нужно и в качестве тренировочной использовать нагрузку предельной длительности, т.е. нагрузку, выполняемую до отказа. При этом интенсивность статической работы должна быть такой, чтобы отказ наступал по причине недостаточного уровня развития механизма аэробного окисления, а не из-за бурного протекания гликолиза. Таким образом нагрузки, используемые для развития статической выносливости мышц-сгибателей пальцев, должны выполняться повторным методом, причём каждый подход должен выполняться до отказа.

Для увеличения мощности механизма аэробного окисления нагрузка должны быть достаточно длительной для того, чтобы аэробный ресинтез успевал полностью развернуться, а её величина (например, вес отягощения) должна повышаться от тренировки к тренировке, но так, чтобы вклад гликолиза в энергообеспечение мышечной работы не увеличивался, а хотя бы оставался на прежнем уровне. Таким образом, интенсивность нагрузки нужно поддерживать на границе между гликолизом и аэробным окислением, т.е. на пороге анаэробного обмена (ПАНО).

В связи с тем, что перечисленные требования к нагрузке, противоречивы и требуют выполнения как длительный так и коротких подходов различной интенсивности, не представляется возможным найти универсальную нагрузку, позволяющую одновременно развивать все необходимые качества, поэтому нужно выделить факторы, наиболее существенно тормозящие рост спортивного результата и сконцентрировать усилия в выбранном направлении.

Когда спортсмен после выполнения 25 подтягиваний за 2 минуты каждый раз срывается с перекладины, это чаще всего происходит из-за того, что концентрация лактата в работающих мышцах к моменту срыва достигает критического значения. До тех пор, пока тренировочные воздействия не будет затрагивать развитие возможностей ресинтеза АТФ аэробным способом, при повышении уровня лактата до критической отметки неизбежно будет следовать срыв.

Физиологические сдвиги, происходящие в организме спортсмена в результате воздействия нагрузки, вызывают запуск адаптационных процессов определённой направленности. При этом может происходить: 1) восстановление утраченных способностей (например, при длительном перерыве в тренировках); 2) поддержание или развитие существующих способностей; 3) формирование отсутствующих способностей. Увеличение времени надёжного хвата с 2 до 4 минут связано с формированием ранее отсутствовавшей (или находившейся в «зародышевом» состоянии) способности к аэробному ресинтезу АТФ в мышцах с затруднённым кровоснабжением, находящихся в условиях статического напряжения. Формирование новых способностей, это, как правило, длительный адаптационный процесс, так как он связан с созданием ранее отсутствовавших структурных образований. В нашем случае он должен включать увеличение количества мышечных волокон, способных к аэробному окислению (конверсию мышечных волокон), развитие капиллярной сети (увеличение плотности капилляров), увеличение количества и размера митохондрий.

Хотя процесс формирования и развития физиологических систем и биохимических структур, обеспечивающих высокую аэробную производительность в статически работающих мышцах может занять долгие месяцы и даже годы, другого выбора у нас нет. До тех пор, пока в мышцах-сгибателях пальцев не будет создано условий для эффективной работы механизма аэробного ресинтеза АТФ, длительность подтягиваний в большой степени будет определяться уровнем содержания лактата, а значит, будет существенно ограничена. Короче говоря, нет хвата - нет и результата.

 

6.3 Мышцы-сгибатели, их строение и функции.

Перед тем, как начать обсуждение параметров тренировочной нагрузки, с помощью которой мы будем развивать возможности аэробного окисления в статически работающих мышцах-сгибателях пальцев, нужно, наконец, выяснить, что же скрывается за общей формулировкой «мышцы-сгибатели» и перечислить все те мышцы, которые в той или иной степени в работе по удержанию хвата.

Рисунок 6.4

Мышцы предплечья (А, Б), правого – вид спереди и кисти (В), правой – ладонная поверхность (по Самусев Р.П, Липченко В.Я., 2005)

А – поверхностные; Б – глубокие; 1-двуглавая мышца плеча; 2-плечевая мышца; 3- круглый пронатор; 4-плечелучевая мышца; 5-лучевойй сгибатель запястья; 6- длинная ладонная мышца; 7-локтевой сгибатель запястья; 8-поверхностный сгибатель пальцев; 9-супинатор; 10-длинный сгибатель большого пальца кисти; 11-глубокий сгибатель пальцев; 12-квадратный пронатор

В – мышцы кисти, правой; ладонная поверхность. 13- квадратный пронатор; 14-короткая мышца, отводящая большой палец кисти; 15-короткий сгибатель большого пальца кисти; 16-мышца, противопоставляющая большой палец кисти; 17-мышца, приводящая большой палец кисти; 18-короткая ладонная мышца; 19- мышца, отводящая мизинец, 20-короткий сгибатель мизинца; 21-мышца, противопоставляющая мизинец; 22-сухожилие лучевого сгибателя запястья; 23-сухожилие локтевого сгибателя запястья; 24-червеобразные мышцы.

К мышцам, производящим сгибание пальцев при выполнении виса на перекладине относятся (рисунок 6.4):

1. Поверхностный сгибатель пальцев (поз.8), который сгибает средние фаланги пальцев от указательного до мизинца;

2. Глубокий сгибатель пальцев (поз.11), который сгибает дальние фаланги пальцев и всю кисть;

3. Длинный сгибатель большого пальца кисти (поз. 10), который сгибает дальнюю фалангу большого пальца. Его роль возрастает, когда при выполнении хвата большой и указательный пальцы сцеплены в замок.;

4. Длинная ладонная мышца (поз 6), сухожилия которой хорошо видны под кожей, сгибает ближние фаланги пальцев в пястно-фаланговых суставах;

5. Многочисленные мышцы ладони, которые участвуют в движениях пальцев кисти и укреплении различных соединений кисти. В число этих мышц входит входят червеобразные мышцы, короткие мышцы возвышений большого пальца и мизинца ладонные межкостные мышцы и т.д.

При удержании хвата со сгибанием руки в лучезапястном суставе к работе подключаются мышцы, производящие сгибание запястья и фиксацию лучезапястного сустава:

1. Локтевой сгибатель запястья (поз 7), который сгибает кисть и участвует в её приведении;

2. Лучевой сгибатель запястья (поз 5), который сгибает кисть и участвует в её повороте и отведении;

3. Длинная ладонная мышца (поз 6), которая сгибает кисть в лучезапястном суставе и сгибает ближние фаланги пальцев в пястно-фаланговых суставах.

Кстати, вспомогательную роль при фиксации хвата играют мозоли, образующиеся на поверхности ладоней в результате упорного труда на тренировках. При выполнении хвата ряд мозолей образует «валик», который препятствует соскальзыванию грифа на пальцы, тем самым облегчая нагрузку, приходящуюся на мышцы-сгибатели.

 

6.4 Характеристика развивающей нагрузки.

6.4.1 Общие требования.

Двигаемся дальше. Для того чтобы происходило развитие какого-либо физического качества, необходимо, чтобы организм постоянно ощущал, что ему не хватает имеющегося уровня развития данного качества. Так, если выполнять подъём груза максимального веса, организм будет простимулирован на развитие максимальной силы, поскольку будет постоянно испытывать её дефицит. Если же выполнять подходы до отказа с грузами меньшей величины, организм будет испытывать недостаток силовой выносливости, а значит, именно это качество и будет развиваться.

Для того чтобы повысить длительность надёжного виса тренировочная нагрузка должна быть длительной и не просто длительной, а предельно длительной, т.е. выполняться до отказа. Только в этом случае мы вправе рассчитывать на прирост времени виса в фазе сверхвосстановления. Поскольку время поддержания надёжного хвата зависит от мощности динамической работы, т.е. темпа выполнения подтягиваний (эта зависимость обсуждалась в параграфе 2.4.4, рисунок 2.8), для уменьшения влияния динамики на статику (и ограничения гликолиза) нужно снизить темп подтягиваний до такой величины, чтобы длительность подхода превышала время включения механизма аэробного окисления и составляла не менее 2-2,5 минут. В этом случае мы можем ожидать, что прирост времени поддержания хвата в фазе суперкомпенсации произойдёт только за счёт роста возможностей ресинтеза АТФ аэробным способом.

Чтобы вызвать в организме спортсмена более сильные физиологически сдвиги в нужном нам направлении и, следовательно, больший прирост тренируемых способностей (высоту суперкомпенсации), количество упражнений, выполняемых до отказа на каждой развивающей тренировке должно быть настолько большим, насколько это позволяет организм спортсмена, но при этом нагрузка не должна вызывать переутомления, т.е. превышать его адаптационные возможности.

Интервал отдыха между подходами в пределах одной тренировки должен с одной стороны быть достаточным для выполнения в каждом последующем подходе работы с длительностью не меньшей, чем длительность аналогичного подхода на предыдущей тренировке, а с другой стороны, у спортсмена к началу последующего подхода должно появиться субъективное ощущение готовности к выполнению работы до отказа. В зависимости от степени утомления время отдыха между подходами может корректироваться в ходе тренировки, но в любом случае оно должно быть не менее 15-20 минут.

Время отдыха между двумя развивающими тренировками должно быть таким, чтобы к моменту начала следующей тренировки восстановительные процессы по основному тренируемому качеству находились в фазе суперкомпенсации. При этом нужно помнить, что целью развивающей нагрузки является не выполнение какого-то количества подтягиваний или нахождения на перекладине в течение некоторого времени, а запуск адаптационных процессов, которые действуя в намеченном нагрузкой направлении должны вызвать такие адаптационные перестройки в организме спортсмена, что позволят ему через некоторое время выйти на новый уровень работоспособности. Неважно, сколько времени отвисит спортсмен на перекладине во время развивающей тренировки, важно, чтобы этого времени было достаточно для активизации механизмов повышения уровня аэробной выносливости. С другой стороны, если после напряжённой тренировки организм требует вместо запланированных двух-трёх дней неделю отдыха, значит ему нужно дать эту неделю, а не напрягать через два дня, рискуя вызвать срыв адаптации с последующей потерей работоспособности в лучшем случае недели на две.

 

6.4.2 Выбор исходной нагрузки

Допустим, что на соревнованиях спортсмен подтянулся 25 раз за 2 минуты. Понятно, что с таким результатом он не сможет выполнять подтягивания на тренировке в течение 2-2,5 минут на протяжении нескольких подходов. Попробуем снизить темп выполнения подтягиваний до 5-6 раз в минуту. Когда спортсмен вместо 5 секунд (в среднем) будет затрачивать на каждое подтягивание 10-12 секунд, это должно значительно увеличить время выполнения упражнения при пропорциональном снижении количества подтягиваний в подходе. Но количество подтягиваний при развитии статической выносливости имеет второстепенное значение, особенно на начальном этапе. Далее возможны два варианта развития событий. В первом случае меры по снижению темпа окажутся достаточными для того, чтобы спортсмен смог отвисеть 2-2,5 минуты, подтягиваясь в темпе 5-6 раз в минуту. Тогда спортсмен незамедлительно может начать тренировки, направленные на развитие возможностей аэробного окисления.

Но найдутся и такие спортсмены, которые всё равно будут срывается с перекладины с «задубевшими» мышцами предплечий раньше 2 минут. Это означает, что у таких спортсменов аэробное окисление играет очень незначительную роль в энергообеспечении работы мышц-сгибателей пальцев, так как в мышечных волокнах отсутствуют необходимые условия для его протекания на соответствующем уровне. Что делать в этом случае? Придётся облегчать нагрузку одним из описанных в п.3.2.5.2 до тех пор, пока спортсмен не сможет подтягиваться в темпе 5-6 раз в минуту в течение 2-2,5 минут.

Конечно, параметры исходной нагрузки могут быть и другими – всё зависит от возможностей конкретного спортсмена. В любом случае нужно помнить о том, что продолжительность тренировочного процесса напрямую зависит от степени отличий между исходными и целевыми параметрами нагрузки.

 

6.4.3 Целевые параметры нагрузки.

После задания исходной нагрузки в виде выполнения подтягиваний в темпе 1 раз в 10 секунд при условии работы до отказа в течение не менее 2 минут, нам нужно определиться с целевыми параметрами нагрузки. Поскольку тренировочный процесс следует построить в соответствии с целью, в качестве которой выступает планируемый спортивный результат, то и целевые параметры тренировочной нагрузки должны соответствовать хотя бы части параметров нагрузки соревновательной. Если уж мы решили заняться развитием статической выносливости, то и на тренировках нам нужно стремиться, как минимум, к выполнению подходов длительностью 4 минуты.

Примем в качестве целевой нагрузку, состоящую в выполнении подтягиваний в темпе 1 раз в 5 секунд в течение 4 минут (т.е. 48 раз за 4 минуты). Понятно, что на соревнованиях никто не будет подтягиваться все 4 минуты в одинаковом темпе, но не нужно забывать, что наша цель сейчас состоит совсем не в том, чтобы «порвать всех на ближайших соревнованиях». Мы должны обеспечить условия для максимально эффективного протекания аэробного окисления в статически работающих мышцах. Всё остальное – позже. Будет хват, будет и результат.

 

6.4.4 Варианты изменения параметров нагрузки.

Содержанием тренировки является изменение функциональных возможностей организма спортсмена от исходного уровня до уровня, достаточного для выполнения поставленной цели. Следовательно, при целенаправленной тренировке нам необходимо перейти от подтягиваний в течение 2 минут в темпе 1 раз в 10 секунд к подтягиванию в течение 4 минут в темпе 1 раз в 5 секунд, идя по пути как постепенного увеличения времени выполнения подхода, так и темпа подтягиваний (рисунок 6.5).

Рисунок 6.5 Варианты движения к конечной цели.

С направлением движения всё ясно, но вот какую выбрать траекторию движения от исходного состояния в конечное, как расставить промежуточные цели, чтобы время достижения главной цели и количество затраченных усилий были минимальны?

Можно выбрать вариант А, в соответствии с которым мы на развивающих тренировках вызываем мобилизацию функциональных резервов организма и направляем их по пути увеличения темпа подтягиваний при сохранении исходного времени поддержания надёжного хвата (2 минуты). И только после того, как удастся выполнить двухминутное подтягивание в темпе 1 раз в 5 секунд, мы начинаем постепенно увеличивать время виса с сохранением достигнутого темпа подтягиваний. Этот способ предполагает первоначальное развитие мощности энергообеспечения тех механизмов, за счёт которых выполняется подтягивание. Поскольку у спортсмена, имеющего проблемы с хватом, возможности аэробного окисления сильно ограничены, есть риск что при организации тренировочного процесса по варианту А до тех пор, пока время виса остаётся фиксированным, аэробные способности спортсмена расти не будут.

Рассмотрим вариант Б. В этом случае мы вызываем мобилизацию функциональных резервов организма, направляем её по пути увеличения максимального времени статической работы и только после обеспечения необходимых условий для эффективной работы механизма аэробного окисления, начинаем увеличивать мощность аэробного ресинтеза АТФ, постепенно увеличивая темп выполнения подтягиваний. При таком способе изменения параметров нагрузки увеличение мощности нагрузки приводит к увеличению мощности энергопродукции преимущественно того механизма, который обеспечивает поддержание хвата в течение длительного времени, т.е. механизма аэробного ресинтеза АТФ. А вот это уже то, что нам нужно. Аэробные возможности начнут совершенствоваться с самой первой тренировки.

Вопрос теперь в том, какую траекторию движения к конечной цели выбрать в рамках варианта Б. Идти по пути постепенного увеличения как длительности виса, так и темпа подтягиваний, т.е. двигаться от исходного состояние в конечное по прямой, или искать какой-то другой, отличный от прямолинейного, путь. Для практического применения оказывается удобен способ управления нагрузкой, при котором темп выполнения подтягиваний ступенчато изменяется после достижения запланированного времени поддержания хвата на предыдущей ступени нагрузки (рисунок 6.6).

Рисунок 6.6 Ступенчатое изменение параметров нагрузки при развитии

статической выносливости мышц предплечья.

При использовании способа ступенчатого изменения нагрузки в качестве первой промежуточной цели выбирается время подхода на 30-60 секунд больше, чем время подхода на исходном уровне, а темп выполнения подтягиваний остаётся без изменений и в нашем случае составляет 1 раз в 10 секунд или 6 раз в минуту. После серии развивающих нагрузок спортсмен оказывается способен выполнить подход целевой длительности в первоначально выбранном темпе, например, подтянуться в темпе 1 раз в 10 секунд в течение 3 минут (т.е. 18 раз за 3 минуты). Как только это происходит, темп выполнения подтягиваний увеличивается, и спортсмен начинает подтягиваться в темпе, допустим, 1 раз в 9 секунд до отказа. При увеличении темпа время подхода может сократиться и составить, например, 2 минуты 30 секунд. Тогда в качестве второй промежуточной цели ставится задача довести время выполнения подхода, допустим, до 3 минут при условии сохранения темпа. Через какое-то время спортсмен справляется и с этой задачей. Тогда темп подтягиваний увеличивается до величины 1 раз в 8 секунд, соответственно, в связи с возрастанием нагрузки время подтягиваний до отказа падает, но спортсмен снова стремится увеличить его до значения, соответствующего уже третьей промежуточной цели при условии сохранения выбранного темпа. И так далее до достижения конечной цели, после чего начинается уже совсем другая история.

Если изначально предельное время удержания хвата у спортсмена мало, может оказаться, что ему не хватит одного сезона, чтобы поднять его до 4 минут, особенно если спортсмен планирует выступать на летних соревнованиях по полиатлону (с подтягиванием), когда ему придётся постоянно прерывать тренировочный процесс для непосредственной подготовки к соревнованиям. В этом случае, возможно, будет лучше не ставить невыполнимых задач и разбить процесс доведения времени надёжного хвата до 4 минут на несколько этапов, как это показано на рисунке 6.7

Рисунок 6.7

Пример двухлетнего цикла при развитии статической выносливости мышц предплечья.

В данном примере процесс развития статики распределён на 2 спортивных сезона. В первом тренировочном сезоне спортсмен в течение весны-лета-осени развивает статическую силовую выносливость до уровня, позволяющего ему подтягиваться в темпе 1 раз в 6 секунд в течение 3 минут. Затем, уже после окончания зимнего соревновательного периода, он возвращается на несколько ступенек назад и начинает второй цикл с подтягиваний в темпе 1 раз в 8 секунд в течение 3,5 минут, постепенно доводя свои возможности до целевого уровня. Кстати, такой приём, как возврат к ранее достигнутым показателям, приходится использовать в случае болезни или других вынужденных перерывах в тренировках.

Какой бы путь не избрал спортсмен, нужно помнить, что переход на следующую ступеньку должен происходить только после достижения целевых показателей предыдущей ступени. При этом время, которое потребуется спортсмену для достижения промежуточной цели, определяется индивидуальными возможностями его организма. Кому-то могут потребоваться месяцы тренировок на то, что другие достигнут за пару недель.

 

6.4.5 Дополнительные условия проведения развивающих тренировок.

Помимо уровня развития статической выносливости предельное время статической работы зависит и от других факторов, таких как диаметр грифа перекладины, качество обработки ладоней и грифа, жёсткость перекладины, эффективность проведённой разминки, уровень мотивации спортсмена, его конкретное физическое состояние в момент выполнения подхода и т.д.

Поскольку для развития статической выносливости выполняются подходы до отказа, а контроль за ходом тренировочного процесса ведётся по времени выполнения таких подходов, очень важно обеспечить одинаковые условия при выполнении всех развивающих нагрузок. В противном случае будет трудно понять, почему, например, снизилось время подхода – произошло это из-за переутомления спортсмена, некачественной обработки ладоней и грифа или сказалось влияние вчерашней интенсивной беговой тренировки.

Стандартная разминка, одна и та же перекладина, стандартная процедура обработки ладоней и грифа – соблюдение этих правил позволит избежать большинства ситуаций с неожиданным всплеском или падением тренировочных результатов. Что касается уровня мотивации и физического состояния спортсмена перед проведением развивающих тренировок, эти темы заслуживают отдельного рассмотрения.

Ограничение уровня мотивации. Для того чтобы избежать перегрузок нервной системы при многократном выполнении подходов до отказа, нужно ограничить максимально допустимый уровень волевых усилий, который может позволить себе спортсмен при проведении развивающих тренировок. Так как величина нагрузки растёт пропорционально росту работоспособности, каждая последующая тренировка не должна восприниматься спортсменом тяжелее, чем предыдущая. Когда организм ещё не готов к увеличению нагрузки, но спортсмен всё-таки превышает результат предыдущей тренировки, значит, это произошло не за счёт роста работоспособности, а за счёт активизации дополнительных резервов организма с помощью волевых усилий. Для предупреждения возможных психических срывов следует ограничить уровень мотивации спортсмена, например, запретив ему продолжать подтягивание после трёх перехватов. Такой приём позволит предотвратить перенапряжение нервной системы при попытке добиться увеличения прироста результата «любой ценой».

Физическое состояние. Функциональные резервы адаптации не безграничны. Если мысленно представить адаптационный ресурс организма в виде бочки с водой, а те направления жизнедеятельности, в которых этот ресурс расходуется, в виде пустых вёдер, то для успешной адаптации нужно, образно говоря, наполнить соответствующие вёдра водой из бочки. Зачерпнём одно ведро для работы, другое для семьи, пару вёдер заполним для спорта, полведра выделим для учёбы и после этого с удивлением обнаруживаем, что вода в бочке закончилась - адаптационный ресурс исчерпан. Организм хотя и справляется со всеми нашими потребностями, но работает явно на пределе своих возможностей. А что делать, если некстати прицепится простуда, на борьбу с которой нужно никак не меньше чем «полведра адаптации»? Правильно, придётся сливать воду из других вёдер, снимая силы для борьбы с болезнью с жизненно менее значимых направлений, например, из области спорта. Догадываетесь, что в этом случае произойдёт со спортивными результатами? Естественно, они упадут. Не родился ещё спортсмен, который с температурой 39,9 подтягивается лучше, чем с 36,6. Но болезнь - это крайний случай. Гораздо чаще встречаются такие вещи, как, например, поздние посиделки у телевизора или вечеринка с друзьями. Когда бессонная ночь накладывается на развивающую тренировку, результат отдыхает. Это как раз тот случай, когда тренировку лучше вовремя отложить, чем несвоевременно провести.

Тренировки с подходами до отказа требуют значительного физического и психического напряжения. Поэтому начинать проведение таких тренировок лучше всего тогда, когда организм располагает энергией для успешной адаптации к нагрузкам. Например, сразу после окончания зимнего сезона, когда, с одной стороны, спортсмен находится в хорошей спортивной форме (по подтягиванию), а с другой стороны, часть адаптационного ресурса, ранее используемого на лыжных тренировках, освобождается и может быть направлена на тренировки по подтягиванию. Это как раз тот случай, когда в погоне за двумя зайцами обоих и догоняют.

 

6.5 Сочетание нагрузок при развитии статической силовой выносливости.

6.5.1 Варианты развивающей нагрузки.

Допустим, что спортсмен, подтягиваясь в темпе 1 раз в 10 секунд, может продержаться на перекладине меньше двух минут. Вместо ещё большего облегчения нагрузки (см. п. 6.4.2) можно запустить аэробные процессы и другим способом. Для этого вместо выполнения одиночных подходов выполняются спаренные подходы, разделённые небольшими (до 3 минут) интервалами отдыха. Практически, повторное выполнение одиночных подходов заменяется повторно-серийным, причём каждая серия состоит всего из двух подходов. Первый подход серии выполняется в течение фиксированного времени (допустим, полутора минут), а второй после 2-3 минутного отдыха выполняется до отказа. В этом случае ликвидация кислородного долга, накопленного в ходе выполнения первого подхода каждой серии, будет производиться в паузе отдыха между подходами за счёт возможностей механизма аэробного окисления. Второй подход каждой серии будет начинаться на фоне повышенной активности данного механизма, что сократит его время развёртывания и увеличит вклад в энергообеспечение подхода. В результате соблюдается как условие выполнение работы предельной длительности (за счёт второго подхода серии), так и условие выполнения возможно большего количества работы за счёт возможностей аэробного окисления.

Способ выполнения нагрузки, при котором, с одной стороны не происходит перегрузки нервной системы за счёт развития чрезмерных волевых усилий, а с другой стороны, сохраняется необходимая продолжительность подходов, состоит в том, что при выполнении подходов до отказа ограничивается максимальное количество перехватов, но разрешается продолжение подхода сразу после срыва до истечения заданного времени. Спортсмен после срыва с перекладины встряхивает руками, и продолжает выполнение подтягиваний до очередного срыва и так далее до окончания заданного времени, в качестве которого можно принять продолжительность лучшего подхода или целевую продолжительность для данной ступени нагрузки.

Для того чтобы избежать монотонности и несколько разнообразить тренировочный процесс, можно использовать чередование подтягиваний на перекладине со стандартным и более толстым диаметром грифа. К тому же такой приём позволит сочетать более длительные, но менее интенсивные (по степени статического напряжения) подходы с менее длительными, но более интенсивными, что позволяет развивать потенциал функциональных систем, отвечающих как за ёмкость, так и за мощность аэробного ресинтеза АТФ. При этом следует вести раздельный контроль за ростом предельного времени выполнения подходов на толстой и тонкой перекладинах.

Иногда для разнообразия можно проводить развивающие или поддерживающие тренировки так, что первые подходы выполняются не до отказа, а в течение определённого времени. В этом случае тренировка продолжается до тех пор, пока в очередном подходе спортсмену, для того чтобы достичь необходимой длительности подхода, потребуется предельное напряжение сил. Такой построение нагрузки (при правильном выборе времени подхода) позволяет сократить интервалы отдыха между подходами и увеличить суммарную продолжительность тренировочного воздействия при одновременном снижении напряжённости тренировки.

Для спортсменов, предпочитающих подтягиваться без перехватов, «до последнего» сохраняя первоначальный хват, полезно на поддерживающих тренировках в подходах до отказа выполнять подтягивания до первого отрыва, тренируя способность статически напряжённых мышц работать в максимально затруднённых условиях.

Рисунок 6.8

Направление изменения параметров нагрузки

Не следует забывать и о том, что по мере роста статической выносливости наряду с возрастанием времени выполнения подходов увеличивается и количество подтягиваний в каждом подходе как за счёт увеличения длительности подхода, так и за счёт увеличения темпа подтягиваний. Объём нагрузки непрерывно возрастает. В соответствии с общим принципом перехода от выполнения большого количества подходов с малым числом подтягиваний к выполнению малого количества подходов с большим числом подтягиваний (рисунок 6.8) спортсмену следует уменьшать количество выполняемых до отказа подходов по мере продвижения к главной цели.

Таблица 6.1 Количество подтягиваний в подходе в зависимости от длительности подхода и темпа выполнения подтягиваний.

Цикл Время выполнения подхода, сек
подтяг,сек       2мин           3мин           4мин
  90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12 8 8 9 10 11 12 13 13 14 15 16 17 18 18 19 20
10 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 26 27
8 11 13 14 15 16 18 19 20 21 23 24 25 26 28 29 30
7 13 14 16 17 19 20 21 23 24 26 27 29 30 31 33 34
6 15 17 18 20 22 23 25 27 28 30 32 33 35 37 38 40
5 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
4 23 25 28 30 33 35 38 40 43 45 48 50 53 55 58 60

В таблице 6.1 приведено количество подтягиваний в подходе в зависимости от темпа и длительности подхода. Видно, что при выполнении подхода в темпе 1 раз в 6 секунд длительностью не менее 3 минут спортсмен делает в подходе не менее 30 подтягиваний. В связи с этим, нагрузка становится напряжённой не только по статике, но и по динамике. Уменьшение (в разумных пределах) количества подходов, выполняемых до отказа, как раз и способствует снятию излишней напряжённости.

 

6.5.2 Сочетание нагрузок различной величины и направленности.

Развивая статическую выносливость мышц предплечья, мы строим тренировочный процесс преимущественно в направлении развития механизма аэробного окисления. Но это не означает, что другие механизмы энергопродукции и физические качества, базирующиеся на этих механизмах, не будут подвержены тренировочному воздействию. Будут, а значит и для них будет иметь место процесс изменения работоспособности с фазами пониженной и повышенной (суперкомпенсация) работоспособности, длительность которых может быть отлична от аналогичных характеристик для предельного времени статической работы (гетерохронность восстановительных процессов).

Кроме того, поскольку на начальном этапе процесса по развитию статики суммарное количество подтягиваний, выполняемых в подходах до отказа, не очень велико, динамическая выносливость спортсмена может временно снизиться и для её поддержания в тренировочный процесс необходимо включать соответствующие упражнения. Поддержание уровня динамической выносливости, совершенствование техники, развитие силы на проблемном участки траектории движения и многие другие задачи можно решать параллельно с развитием статической выносливости, спланировав тренировочный процесс так, чтобы действия, связанные с решением вспомогательных задач не мешали движению к выбранной цели по главному направлению.

Целенаправленная тренировка построена так, что длительность тренировочного процесса при движении к намеченной цели определяется в основном возможностями организма спортсмена по адаптации к тренировочным нагрузкам. Если мы задаём объём, интенсивность, направленность нагрузки, то должны подобрать интервалы отдыха между развивающими тренировками так, чтобы проводить их в фазе суперкомпенсации по основному развиваемому качеству или способности.

Если мы фиксируем интервал отдыха, тогда нужно подобрать нагрузку так, чтобы при заданных сроках восстановления фаза суперкомпенсации наступила к моменту выполнения очередной развивающей тренировки.

При сочетании разноплановых по величине и направленности нагрузках мы должны учитывать динамику и сроки восстановления после каждой из них, причём это касается не только сочетания нагрузок по подтягиванию, но и сочетания нагрузок по подтягиванию с тренировочными нагрузками других видов полиатлона.

При проведении серии однонаправленных развивающих тренировок нужно учитывать опасность переутомления и перенапряжения функциональных систем организма, несущих основную нагрузку при выполнении такой тренировочной программы [23]. Существует печальный практический опыт по проведения ряда развивающих нагрузок, разделённых периодом отдыха 48 часов. Несмотря на непрерывный рост результатов от тренировки к тренировке, что вроде бы свидетельствовало об успешном восстановлении от предыдущей нагрузки, после проведения 5-6 развивающих тренировок подряд неожиданно наступал срыв адаптации и, как следствие, вынужденный перерыв в тренировочном процессе в течение 1,5-2 месяцев.

Поскольку тренировки по развитию статической выносливости мышц предплечья требуют предельной мобилизации только тех функциональных систем, которые отвечают за эту способность, а другие функциональные системы вовлекаются в работу с меньшим напряжением, можно сочетать развивающие, поддерживающие, восстанавливающие нагрузки по статике с нагрузками, являющимися восстанавливающими, поддерживающими или развивающими в отношении других физических качеств. Так, при проведении восстанавливающей тренировки по статике, для которой характерно выполнение «облегчённой» по отношению к статической выносливости нагрузки, можно производить подтягивания в таком темпе, чтобы в отношении динамической выносливости нагрузка была поддерживающей. При проведении поддерживающей (относительно статики) тренировки, для которой характерно выполнение меньшего, чем на развивающей тренировке, числа подходов до отказа, ничто не мешает нам во второй части тренировки использовать короткие по времени подходы с грузами, которые сильно напрягут анаэробные механизмы энергообеспечения и в гораздо меньшей степени коснутся аэробного механизма энергопродукции.

На рисунке 6.9 приведён пример недельного тренировочного цикла, состоящего из трёх занятий и построенного в соответствии с описанными выше принципами. Так, в понедельник выполняется нагрузка, которая является развивающей для функциональных систем, отвечающих за предельное время удержания хвата. По отношению к функциональным системам организма, отвечающих за динамическую выносливость, нагрузка является поддерживающей, а для скоростно-силовых способностей, базирующихся на креатинфосфатном механизме энергообеспечения, нагрузка будет

Рисунок 6.9 Одно из возможных сочетаний нагрузок в недельном цикле тренировки при развитии уровня статической выносливости мышц предплечья.

восстанавливающей. Далее, в среду выполняется нагрузка, восстанавливающая по отношению к механизму аэробного окисления, поддерживающая для гликолитического и креатинфосфатного механизмов энергопродукции, а в пятницу – развивающая для креатинфосфатного механизма, поддерживающая для гликолиза и механизма аэробного окисления. При этом параметры нагрузки подбираются так, чтобы к понедельнику обеспечить суперкомпенсацию по тому качеству, в отношении которого будет проводиться развивающая тренировка, т.е. по способности к длительному удержанию хвата, базирующейся на механизме аэробного ресинтеза АТФ.

 

6.6 Краткое описание тренировочного процесса.

Итак, перечислим то, что нужно учитывать при построении тренировочного процесса, направленного на развитие статической выносливости мышц, осуществляющих фиксацию хвата.

1. Цель тренировки. Увеличение предельного времени статического напряжения мышц предплечий до заданной величины (например, до 4 минут при подтягивании в темпе 1 раз в 5 секунд).

2. Направленность тренировки. Увеличение аэробных возможностей статически работающих мышц.

3. Способ достижения цели. Сочетание постепенного увеличения длительности подходов со ступенчатым увеличением темпа выполнения подтягиваний.

4. Основной метод тренировки. Повторный.

5. Параметры исходной нагрузки. Подтягивание до отказа в темпе 1 раз в 10 секунд на стандартной (или более толстой) перекладине при условии длительности подхода не менее 1,5 - 2 минут.

6. Параметры первой промежуточной цели. Подтягивание в темпе 1 раз в 10 секунд на стандартной (или более толстой) перекладине в течение 2,5 минут

7. Порядок проведения развивающей тренировки.

Проводится стандартная разминка, включающая как упражнения ОФП, так и два-три лёгких разминочных подхода, проводится стандартная обработка ладоней и грифа.

Тренировочные подходы выполняются до отказа. Темп выполнения подтягиваний задаётся с помощью таймера со звуковым сигналом или отслеживается по секундомеру, расположенному в поле зрения спортсмена.

Количество подходов за тренировку составляет от 3 до 5 и является компромиссом между желанием выполнить максимальный объём работы и текущими возможностями организма спортсмена.

Время отдыха между подходами до отказа составляет от 10 до 30 минут и является компромиссом между необходимостью более полного восстановления спортсмена и продолжительностью тренировки. Характер отдыха зависит от состояния спортсмена. Для сокращения интервала отдыха проводятся различные восстановительные процедуры.

Для предотвращения перенапряжения нервной системы желательно не допускать улучшения показателей подхода за счёт чрезмерных волевых усилий, для чего, например, можно установить барьер на допустимое количество перехватов.

Для эффективного управления тренировочным процессом желательно вести дневник самоконтроля, записывая основные параметры нагрузки каждого подхода, самочувствие, результаты сравнительного анализа текущих показателей нагрузки с аналогичными показателями предыдущих тренировок.

8. Интервал отдыха между развивающими тренировками. Сроки восстановления после воздействия нагрузки зависят от индивидуальных адаптационных возможностей спортсмена. Интервал отдыха между развивающими тренировками должен быть таким, чтобы следующая развивающая тренировка проводилась в фазе суперкомпенсации относительно предельного времени статической работы. «Скольжение по гребням суперкомпенсации» обеспечивает непрерывный рост работоспособности.

9. Условия перехода на вторую ступень нагрузки. Переход на подтягивание в темпе 1 раз в 9 секунд производится после достижения заданных параметров первой промежуточной цели.

10. Параметры следующей промежуточной цели. Более продолжительный подход при подтягивании в более высоком темпе (например, подтягивание в темпе 1 раз в 9 секунд в течение 2 минут 45 секунд).

11. Динамика нагрузки.

По мере роста продолжительности выполнения подходов до отказа и темпа выполнения подтягиваний (т.е. роста объёма нагрузки) количество выполняемых подходов должно пропорционально уменьшаться.

В ходе тренировочного процесса происходит постепенное увеличение количества подтягиваний в подходе от 10-12 на начальном этапе тренировки до 40-50 на последних ступенях нагрузки. Поэтому нужно следить за тем, чтобы текущий уровень развития динамической выносливости не отставал от достигнутого уровня развития статической выносливости.

12. Условия прекращения тренировок.

При достижении главной цели развивающие тренировки прекращаются, а вместо них проводятся тренировки, направленные на сохранение достигнутого уровня статической выносливости

Снижение прироста результатов или их стабилизация в течение более 2 месяцев. Полная или частичная замена тренировочной программы, изменение параметров тренировочной нагрузки (например, возврат на одну или несколько ступенек назад и повторение тренировок в более низком темпе, но с небольшим отягощением).

При стабильном ухудшении результатов следует сделать перерыв в тренировках по подтягиванию в связи с прогрессирующим переутомлением..

13. Средства контроля.

Целенаправленная тренировка построена так, что позволяет легко контролировать тренировочный процесс как по сравнению показателей одноимённых подходов смежных развивающих тренировок, так и по суммарным (за тренировку) показателям.

Поскольку рост тренировочных результатов не всегда приводит к росту результата на соревнованиях, во избежание ошибок и для оперативной коррекции тренировочных нагрузок необходимо не реже 1 раза в месяц проводить контрольные тренировки в условиях, максимально приближенных к соревновательным.

Когда контрольное подтягивание проводится не отдельно, а в рамках развивающей тренировки, оно должно выполняться в первом или во втором подходе, выполняемом до отказа.

14. Выбор предсоревновательной разминки. Перед проведением контрольных тренировок по подтягиванию необходимо постоянно экспериментировать с разминкой, стараясь подобрать такой её вариант, который позволит показать наилучший результат в первом контрольном подходе.

15. Ограничения.

Не следует проводить серию из нескольких развивающих нагрузок подряд, так как это чревато резкой, без наличия явных признаков переутомления, потерей работоспособности. Не нужно доводить дело до «функциональной ямы».

При появлении признаков утомления (недомогания), не связанных с тренировочным процессом, следует отложить развивающую тренировку на более поздний срок (например, на вечер) или перенести на другой день.

При появлении признаков хронической перегрузки, связанной с тренировочным процессом, следует временно снизить объём тренировочной работы или прекратить тренировки до исчезновения этих признаков

16. Сочетание нагрузок различного характера.

При включении в тренировочный процесс нагрузок различной величины и направленности необходимо так рассчитать сроки восстановления после применения этих нагрузок, чтобы к моменту проведения очередной развивающей тренировки физиологические и биохимические показатели функциональных систем, отвечающих за предельное время статической работы, соответствовали фазе повышенной работоспособности.

При планировании развивающих тренировок по подтягиванию следует учитывать возможное негативное влияние тренировочных нагрузок других видов полиатлона. Так, если спортсмен в выходные дни регулярно проводит напряжённые беговые или лыжероллерные тренировки, развивающие тренировки по подтягиванию лучше проводить не по понедельникам, а по средам или пятницам.

17. Сроки достижения запланированного результата. Всё зависит от исходного уровня развития способности спортсмена к выполнению статической работы и его индивидуальными адаптационными возможностями на пути движения к выбранной цели.

 

6.7 Практический пример

В этом параграфе в качестве примера рассмотрим реальный тренировочный процесс одного из спортсменов коллектива физкультуры "Прибой", построенный с учётом вышеизложенных рекомендаций и реализованный в период с мая по октябрь 2001 года.

Рисунок 6.10

Пример тренировки, направленной на развитие статической выносливости мышц предплечий.

Далее приведено описание только развивающих тренировок, проводившихся, как правило, 1 раз в неделю по средам.

Тренировочный цикл № 1.

Цель: перейти от подтягиваний в темпе 1 раз в 8 секунд в течение 1мин 30 сек к подтягиваниям в темпе 1 раз в 8 секунд в течение 2 минут.

Развивающая нагрузка выполнялась повторно-серийным методом. Серия для развития статической выносливости состояла из трёх подходов с подтягиванием 1 раз в 8 секунд. Количество серий – 3, время отдыха между подходами серии – 3 минуты. Между сериями на статику выполнялись лёгкие подходы на динамику – обычно 2 подхода (25 подтягиваний в первом из них) с облегчением 5 Кг с интервалом отдыха между подходами 2 минуты. Выполнение облегчённых динамических подходов играло вспомогательную роль и преследовало 2 цели: поддержание динамической выносливости и увеличение времени восстановления между напряжёнными статическими подходами.

От тренировки к тренировке максимальное время выполнения подхода постепенно увеличивалось, что свидетельствовало об увеличении статической выносливости мышц-сгибателей пальцев.

Тренировочный цикл № 2.

Цель: перейти от подтягиваний в темпе 1 раз в 7 секунд в течение 2 мин к подтягиваниям в темпе 1 раз в 7 секунд в течение 2 минут 30 секунд.

Развивающая нагрузка также выполнялась повторно-серийным методом. Серия для развития статической выносливости состояла из двух подходов с подтягиванием 1 раз в 7 секунд. Количество серий – от 3 до 5 (в зависимости от самочувствия спортсмена), время отдыха между подходами серии – 3 минуты, между сериями – от 10 до 30 минут.

Цикл оказался растянут на 2 месяца. Сначала спортсмен добился того, чтобы повторить двухминутный подход, но уже с подтягиванием 1 раз в 7 секунд, на что ушло 2 недели. Затем стал увеличивать время подхода. После того, как время подхода увеличилось до 2,15, вместо ожидаемого перехода на 2,30 пришлось потоптаться на месте и застабилизироваться на 2,15. Так как довисание после срыва с перекладины до 2,30 сопровождалось большим количеством перехватов, особенно в последних подходах, была сорвана мозоль, что также привело к потере времени. Поэтому, несмотря на не выполнение запланированного результата в 2 минуты 30 секунд (только 2,25) было принято решение сделать переход на подтягивание в темпе 1 раз в 6 секунд. Это было связано с тем, что психологический ущерб от неспособности длительное время добиться поставленной цели начинал принимать угрожающие размеры. Кроме того, было отмечено, что статика тренируется тяжело и непредсказуемо. Психологически это был самый тяжёлый цикл, т.к. работы было сделано много, а результата нет. Видимо, как раз в этот период происходила структурная перестройка мышц, выполняющих статическую работу и функциональных систем организма, эту работу обеспечивающих.

Тренировочный цикл № 3.

Цель: перейти от подтягиваний в течение 2,30 через 7 секунд к подтягиваниям в течение 3 минут через 6 секунд

Этот цикл также занял 2 месяца, но он не был таким психологически напряжённым, как предыдущий, так как здесь прогресс был явным. Кроме того, была психологически облегчена развивающая нагрузка за счёт того, что подходы на толстой перекладине чередовались с подходами на тонкой перекладине.

После того, как с 7 секунд спортсмен перешёл на 6, время подхода упало с 2,30 до 2,05. И это при том, что от спаренных подходов в серии перешёл к одиночным подходам, так как довисание до 3 минут после срыва с перекладины уже не оставляло сил на второй подход, выполнявшийся через короткий интервал отдыха.

Так как количество подтягиваний в каждом развивающем подходе стало больше 20, во второй части тренировки (проводимой через 15-30 минут отдыха после развивающих подходов) выполнялись подходы на развитие динамической выносливости. Производилось от 4 до 6 подходов с интервалами отдыха между подходами от 4 до 6 минут. При этом количество подтягиваний в первом подходе на развитие динамики также возрастало от тренировки к тренировке так, что к концу данного тренировочного цикла возросло с 20 раз до 35 раз, что явно соответствовало увеличению уровня как статической, так и динамической выносливости.

Через месяц тренировок – когда в первом подходе второй части тренировки спортсмен подтянулся 35 раз – эта серия стала психологически невыносимой, и её пришлось заменить. Замена оказалась полноценной, хотя и не динамической. Спортсмен стал выполнять подтягивания в располагаемых на предплечьях манжетах с отягощением от 2,5 до 3,5 Кг. Всего выполнялось от 4 до 7 подходов до первого отрыва в темпе 1 раз в 6 секунд.

В результате длительной тренировки в направлении повышения статической выносливости произошёл прорыв – в течение месяца время виса при выполнении подтягиваний в темпе 1 раз в 6 секунд на толстой перекладине возросло с 2,15 до 2,55, а на тонкой – с 2,45 до 3,30. Причём это были не единичные результаты, так как впоследствии на толстой перекладине был достигнут результат в 3 минуты. Следствием повышения уровня развития как статики, так и динамики стало повышение результата в контрольном подтягивании на гимнастической перекладине – 43 раза за 3,52, показанный на 22 неделе тренировок. Если учесть, что месяцем раньше лучшее время было почти на минуту хуже (2,56), а результат – хуже на 7 раз, то это можно считать хорошим прогрессом.