ОСОБЕННОСТИ САДКОВОГО и БАССЕЙНОВОГО ТОВАРНОГО РЫБОВОДСТВА
Технологические особенности рыбоводных индустриальных хозяйств
Среди современных форм товарного рыбоводства наиболее интенсивно развивается индустриальное (промышленное) рыбоводство. Оно характеризуется производством товарной рыбы в небольших рыбоводных емкостях-бассейнах, сетчатых садках, циркуляционных системах, небольших бетонированных прудах и других устройствах. Основным отличием индустриального рыбоводства является высокая интенсивность производства. Она обеспечивается высокой плотностью посадки, то есть концентрацией рыбы на единице площади и воды, целенаправленным формированием водной среды, в особенности температурного режима, газового состава воды и интенсивным водообменом. Существенным признаком индустриального рыбоводства является также применение полноценных сбалансированных по питательным веществам комбикормов в виде сухих оформленных частиц (гранул, экструдатов, крупки и капсул), основанных на сухих мукообразных компонентах.
Бассейн как основная рыбоводная емкость индустриального рыбоводства представляет собой устройство площадью от 1 до 50 м2 прямоугольной, вытянутой, квадратной или круглой формы со сторонами от 1 × 1 м до 5 × 10 м, глубиной от 0,5 до 1,2 м. Используются также круглые бассейны-силосы диаметром 2–4 м и глубиной 3–6 м. Прямоугольные вытянутые рыбоводные бассейны имеют прямой ток воды, обеспеченный подачей ее в начале бассейна и стоком в противоположном конце по длине бассейна. В квадратные, круглые бассейны и бассейны-силосы вода поступает на любом участке, но сток ее осуществляется непременно в центре бассейна, поэтому вода приобретает круговое вращение.
В прямоточных бассейнах сток воды отделен вертикальной сетчатой перегородкой или вертикальным двустенным патрубком и цилиндрическим сетчатым ограждением для предупреждения ухода выращиваемых рыб. В квадратных, круглых бассейнах и бассейнах-силосах водосливное отверстие находится в центре и закрывается сетчатой крышкой.
Рыбоводные бассейны могут быть изготовлены из бетона металла, пластмассы и дерева. Однако преимущественное значение приобретают бассейны из пластмассы или стеклоткани армированные металлом.
Садок, как рыбоводная емкость индустриального рыбоводства представляет собой устройство, напоминающее клетку и состоящее из деревянного или металлического каркаса, обтянутого металлической или синтетической сеткой. Садки имеют площадь от 1 до 50 м2. Их форма квадратная, прямоугольная, вытянутая или круглая со сторонами преимущественно от 1 × 1 м до 5 × 10 м, глубиной 1–3 м. Используются также многоугольные садки и в виде сегментов круга в морских садковых сооружениях. Каркас садков состоит из деревянных и металлических реек или пластмассовых и металлических труб разнообразных конструкций. Помимо синтетической и металлической сетки для изготовления садков используют также деревянные, пластмассовые или металлические рейки, прутья, тонкие трубы, образующие стены и пол с промежутками для циркуляции воды, но не позволяющими рыбе уходить из садка. Нередко садки изготавливают в виде мягких конструкций без вертикального каркаса только с одной верхней рамой, а форма садка обеспечивается за счет оттяжек по нижним углам садка, укрепленных на дне сваями или якорями. При установке в водоем верх садка закрывают сеткой или часть садка- 0,5–0,8 м стенок поднимают над водой для предупреждения ухода рыбы, например, при высокой пищевой активности. Положительная плавучесть садков обеспечивается за счет поплавков из пористого синтетического материала или полых герметизированных емкостей в виде бочек и труб. При стабильном уровне водоема садки иногда устанавливают на сваях, вбитых в дно.
Небольшой проточный пруд как еще одна рыбоводная емкость индустриального рыбоводства напоминает бассейн увеличенного размера, однако, существенно от него отличается. Обычная площадь таких прудов составляет 50-250 м2. Это прямоугольная, вытянутая или овальная проточная рыбоводная емкость глубиной не более 1 м. Соотношение сторон составляет 1: 4–1: 8. Вода поступает в верхний конец пруда и вытекает из противоположного конца через устройство, предупреждающее уход рыбы и обеспечивающее заданный уровень воды. Это обычно донный водоспуск и колодец с регулируемой по высоте заслонкой и сетчатой рамкой, предупреждающей уход рыбы, или уровенная труба, закрытая сетчатым цилиндром. Боковые стороны и дно пруда могут быть выполнены из монолитного бетона или из железобетонных плит, а также из плотного каменистого грунта. Боковые стороны обычно располагаются наклонно под тупым углом по отношению ко дну.
Характерной особенностью индустриального рыбоводства является возможность управления режимом водной среды, формируемым с целью получения максимальной скорости роста. Это относится в первую очередь к обеспечению оптимального температурного режима. Вода естественных водоемов как источников водоснабжения большую часть года имеет температуру ниже оптимальной для обеспечения максимальной интенсивности питания и роста рыб. Поэтому на рыбоводных предприятиях индустриального типа используют воду, подогретую до необходимой температуры. Широкое развитие получило использование в рыбоводных целях нагретой технологической воды тепловых электростанций и некоторых промышленных предприятий. Отработанная технологическая вода после охлаждения агрегатов в зимнее время становится теплее на 10–12 °C, а в летнее — на 7–8 °C естественных водоемов. В бассейны и бетонированные пруды рыбоводных предприятий вода подается по трубам и уходит самотеком в сточную систему. Рыбоводные садки могут быть установлены в водоемы-охладители тепловых электростанций, а также водохранилища, озера и другие водоемы. При тепловых электростанциях создают как бассейновые, так и садковые рыбоводные предприятия индустриального типа.
Рыбоводные бассейны могут быть размещены в здании, под навесом и на открытой площадке. Садковые рыбоводные предприятия обычно состоят из береговой базы и системы сетчатых садков. Используют 2 типа садков — стационарные и передвижные. Каждый из этих типов садков имеет свои преимущества и недостатки:
— стационарные садки могут быть оборудованы настилом для обслуживания, подъездными путями, механическими кормораздатчиками;
— подвижные садки могут перемещаться по водоему для выбора более удобного места, чистой и теплой воды.
Однако, обслуживание плавучих подвижных садков требует применения плавсредств, что сопряжено с определенными профессиональными ограничениями. Для удобства обслуживания стационарные садки формируют в виде садковых линий расположенных перпендикулярно к берегу. Между двумя линиями садков делают настил для подхода и подъезда к садкам. Садки с настилом удерживаются на воде с помощью разнообразных плавучих средств — понтонов, металлических и пластмассовых бочек, труб, пенопластовых поплавков. При стабильном уровне воды садковые линии могут устанавливаться на сваях, забитых в дно. Садки в садковой линии изготавливают из неводной дели или металлической сетки ячеёй от 5 до 15 мм с вертикальными стенками и плоским дном. По углам садков иногда делают якорные оттяжки для сохранения формы. Садки устанавливают в местах с течением воды до 0,3 м/с, между дном садка и дном водоема должно быть не менее 0,5 м, на расстоянии 50 м от садков не должно быть высшей водной растительности. Качество воды в водоемах должно соответствовать принятому ОСТу для рыбоводных предприятий.
На рыбоводных предприятиях индустриального типа с регулируемым температурным режимом устанавливают оптимальную температуру на всех стадиях рыбоводного процесса.
Причем оптимальная температура для различных видов рыб в индустриальных условиях несколько выше, чем в естественных для этих рыб водоемах. Например, для питания и роста карповых рыб в естественных водоемах она равна 23–28 °C, для лососевых рыб — 14-
18 °C, для осетровых рыб -18-23 °C. В рыбоводных емкостях индустриального типа оптимальная температура для этих рыб соответственно равна 25–30 °C, 16–19 °C и 20–26 °C. На рыбоводных предприятиях индустриального типа, использующих нагретую воду тепловых электростанций, температура воды колеблется от 8-10 °C зимой до 32–35 °C летом. В этих условиях практикуют два рыбоводных цикла в год — летом выращивают теплолюбивых рыб — карпа, канального сома, осетровых, зимой — холодолюбивых — радужную форель, стальноголового лосося, форель Дональдсона и других лососевых.
Продолжительность выращивания при температуре свыше 20 °C-4-8 мес., при температуре ниже 20 °C, но не ниже 8 °C-остальное время года.
Плотность посадки рыб в бассейнах и садках устанавливают из следующего расчета:
— конечная масса карпа и других теплолюбивых рыб- 0,5–1,5 кг, конечный выход рыбопродукции 100–250 кг/м2 при отходе не более 10 %;
— конечная масса радужной форели и других холодолюбивых рыб — 150–250 г, конечная рыбопродукция — от 50 до 100 кг/м2.
Однако эти величины могут варьировать в зависимости от условий производства и спроса.
Обеспечение оптимальных условий водной среды в рыбоводных емкостях
В бассейнах, сетчатых садках и небольших проточных прудах как основных рыбоводных емкостях индустриального рыбоводства высокая плотность посадки рыб и высокий выход рыбопродукции являются основным экономическим условием производства. Вместе с тем повышение плотности посадки имеет предел, определяемый качеством водной среды и биологией вида. Качество водной среды характеризуется на основании температуры воды, концентрации кислорода, свободной углекислоты, активной реакцией среды и концентрацией продуктов обмена. Эти величины установлены преимущественно эмпирическим путем, но рыбовод должен представлять условия формирования основных факторов водной среды и по возможности уметь управлять ими.
Температура воды. У рыб как представителей пойкилотермных животных интенсивность обмена определяется температурой воды. Температурный диапазон жизнедеятельности определяется видовой принадлежностью и закрепляется наследственно, но в пределах его может происходить более высокий или низкий обмен веществ. Это объясняется тем, что в тканях с повышением температуры увеличиваются окислительные процессы. При этом рыбе требуется больше кислорода. Повышая температуру воды в рыбоводных емкостях, мы способствуем распаду оксигемоглобина на гемоглобин и кислород, то есть отдаче кислорода тканям. Но это же условие ограничивает связь гемоглобина с кислородом в органах дыхания (в воде). Это вызывает усиление интенсивности дыхания. Следовательно, при повышении температуры необходимо улучшать условия газообмена. Рыбы очень чувствительны к температуре воды и в термоградиенте предпочитают определенную температуру, которая зависит не только от видовой принадлежности рыбы, но и предварительной акклимации.
Концентрация кислорода. Принято считать, что оптимальный уровень кислорода для рыб соответствует нормальному насыщению воды кислородом при оптимальной температуре. Следовательно, для лососевых рыб оптимальный уровень кислорода для питания и роста (при температуре 16–19 °C) составляет 9,4-10,0 мг/л, осетровых рыб (при температуре 20–26 °C) — 8,3–9,2 мг/л, карповых рыб (при температуре 25–30 °C)-7,1–8,4 мг/л. В рыбоводной практике возможны значительные отклонения концентрации кислорода относительно оптимума. Они происходят обычно в сторону снижения уровня кислорода относительно оптимума и редко в сторону повышения. У радужной форели снижение уровня кислорода за пределы 7 мг/л вызывает соответствующее снижение интенсивности питания, обмена и роста. У карпа эта величина составляет 5 мг/л. Между нормальным насыщением воды кислородом и уровнем, при котором наступает уменьшение обмена, находится зона кислородной адаптации рыб. За пределами этой зоны происходит резкое падение интенсивности потребления кислорода. На рыбоводных предприятиях индустриального типа необходимо учитывать зависимость роста рыбы от температуры Боды и концентрации кислорода. По мере повышения температуры воды в пределах оптимальной величины или несколько более разница между основным обменом (поддержание жизнедеятельности рыбы) и общим обменом (включающим прирост рыбы) также возрастает, что является положительным фактором с экономической точки зрения. Разница в потреблении кислорода при общем и основном обмене является резервом для роста. Этот резерв может быть реализован полностью в условиях оптимальной температуры воды при концентрации кислорода в пределах кислородной зоны адаптации.
Таблица 90. Нормальное насыщение пресной воды кислородом при нормальном атмосферном давлении в зависимости от температуры воды, мг/л
Температура воды, °С | Количество растворенного в воде кислорода
1 | 14,24
2 | 13,85
3 | 13,49
4 | 13,14
5 | 12,81
6 | 12,48
7 | 12,18
8 | 11,89
9 | 11,62
10 | 11,35
11 | 11,10
12 | 10,86
13 | 10,62
14 | 10,39
15 | 10,18
16 | 9,97
17 | 9,76
18 | 9,56
19 | 9,37
20 | 9,19
21 | 9,02
22 | 8,85
23 | 8,68
24 | 8,52
25 | 8,37
Свободная углекислота. В условиях индустриального рыбоводства наличие свободной углекислоты (СО2) в воде должно быть ограничено определенными величинами. Избыточный уровень углекислоты уменьшает способность крови связывать кислород и передавать его тканям. Поэтому следует осуществлять контроль за количеством углекислоты. При использовании воды, отвечающей ОСТу для рыбоводных хозяйств, уровень свободной углекислоты при температуре 20 °C составляет 0,6 мг/л. Повышение количества углекислоты до 5–6 мг/л не оказывает отрицательного влияния на рыбу. Но в определенных условиях при высокой концентрации рыбы в рыбоводных емкостях углекислота как продукт обмена может достигать критической величины. В градиенте различной концентрации СО2 рыбы предпочитают минимальный уровень. Высокая концентрация свободной углекислоты в воде вызывает у рыб удушье, нарушение равновесия и гибель. Например, для радужной форели такой концентрацией является 30–35 мг/л, для карпа — 40–45 мг/л.
Активная реакция среды — рН (водородный показатель). Активная реакция водородных ионов является одним из важнейших факторов обмена, определяющих плотность посадки рыбы. Величина рН включает концентрацию водородных ионов и может изменяться в пределах до 14: рН равная 7 соответствует нейтральной среде, ниже 7 — кислой, выше — щелочной. При низкой концентрации СО2 в воде наблюдается нейтральная или близкая к ней реакция среды. Повышение или понижение уровня СО2 сопряжено с изменениями рН среды в прямой зависимости. Уменьшение величины рН (подкисление среды) или увеличение ее (повышение щелочности среды) относительно нейтральной более определенного уровня затрудняет использование рыбой кислорода. Значение рН в пределах 6–8 при выращивании рыб не вызывает отрицательных явлений, хотя оптимальный уровень обычно ограничивают величиной 6,5–7,5. В более кислой или щелочной среде рыба хуже использует кислород. При рН ниже 5 или выше 8,5 летальная концентрация кислорода повышается в несколько раз и, наконец, не обеспечивает потребности в кислороде. В пределах этих величин влияние рН может не проявляться на росте рыбы при высоком насыщении воды кислородом. Реакция рыбы на рН среды зависит от ее возраста и температуры среды. Например, свободные эмбрионы и личинки лососей острее реагируют на понижение рН, чем мальки, пестрятки, смолты. Устойчивость молоди к рН находится в обратной зависимости от температуры воды. Однако в любых условиях существование рыб ограничивается пределами рН от 4,5 до 9,5.
Плотность посадки рыб в индустриальном рыбоводстве
В условиях индустриального рыбоводства плотность посадки (концентрация рыб на единице площади рыбоводной емкости) является важнейшим экономическим фактором. Чем выше концентрация выращиваемых рыб, тем выше экономическая отдача площади рыбоводной емкости. Плотность посадки следует понимать как концентрацию рыбы на единице площади рыбоводной емкости или на единице объема воды, а также как количество подаваемой воды на единицу посаженной рыбы. Оба эти понятия взаимосвязаны. По мере увеличения концентрации рыбы возрастает потребность в кислороде и необходимость отвода продуктов обмена, то есть возрастает потребность в усилении подачи воды и проточности. Это условие и является основным фактором, определяющим плотность посадки рыбы.
При создании необходимой (по возможности, максимальной) плотности посадки рыбы в условиях индустриального рыбоводства следует создавать условия, при которых рыба достаточно обеспечена кислородом. При этом следует учитывать, что потребление рыбой кислорода прямо пропорционально температуре воды и обратно пропорционально массе рыбы. Эта зависимость может быть выражена уравнением:
Q = a W K где: Q — потребность в кислороде, мг/кг ч; W — масса рыбы, кг; а, К — коэффициенты.
Коэффициент а показывает потребление кислорода рыбой массой 1 г, К — изменение потребления кислорода рыбой разного размера. Поскольку по мере увеличения массы рыбы относительное потребление кислорода снижается, коэффициент К — меньше единицы.
Для лососевых рыб численное выражение коэффициентов имеет следующие величины: а = 0,712 мг (0,498 мл); К = 0,76 (при температуре воды 20 °C). Таким образом:
Q = 0,712W0,76
Коэффициенты а и К для разных видов лососевых имеют определенные вариации, однако остаются относительно близкими. Например, для радужной форели массой 0,1-12,0 г коэффициенты а и К равны соответственно 0,601 и 0,78, для пресноводного лосося массой 0,3-20,0 г — 0,742 и 0,74. Для других видов рыб, культивируемых в условиях индустриального рыбоводства, эти коэффициенты будут иными и для каждого вида требуют уточнения.
Однако в практике индустриального рыбоводства следует ориентироваться на коэффициенты, установленные для радужной форели, тогда обеспечение кислородом, например, осетровых, карповых и других культивируемых рыб будет иметь некоторый запас надежности. В зависимости от температуры воды потребление кислорода, и, следовательно, необходимый объем подаваемой воды меняются. Если при 20 °C потребление рыбой кислорода принять за 1, то при 15, 10 и 5 °C оно уменьшается соответственно в 1,6, 2,7 и 5,2 раза. Используя данные о величине потребления кислорода рыбой, при различной температуре воды, представляется возможным сделать расчет подачи воды в рыбоводную емкость. Однако, следует учитывать, что кислород необходим не только для дыхания рыбы, но и для окисления органических веществ, которые появляются при выращивании рыб в основном за счет экскрементов и потерь корма. Кроме того, присутствие углекислоты затрудняет использование кислорода из-за снижения величины рН. Органические вещества подвергаются процессу нитрификации. На потребление кислорода рыбой оказывает влияние ее масса, температура воды, сбалансированность корма, интенсивность кормления, плотность посадки, плавательная активность, время суток, половая активность. Кроме того, присутствие свободной углекислоты затрудняет использование кислорода из-за снижения величины рН. Следует учитывать, что кислород необходим не только для дыхания, но и для окисления органических веществ, которые поступают с водой и появляются за счет несъеденных кормов, экскрементов и других продуктов обмена. Следует учитывать наличие кислорода в воде и интенсивность его потребления, чтобы знать условия содержания рыбы. При этом следует различать такие понятия как "количество растворенного кислорода в воде (мг/л)", то есть то количество, которое может быть использовано рыбой в процессе жизнедеятельности и специфическое потребление кислорода рыбой (мг/кг·ч), то есть то потребление кислорода, которое необходимо для роста и развития.
Оно меняется в зависимости от многих факторов, в особенности от видовой принадлежности рыбы, массы рыбы, температуры воды и состава корма и интенсивности кормления. Специфическое потребление кислорода известно для основных культивируемых рыб (табл. 91).
Таблица 91. Потребление кислорода радужной форелью при кормлении гранулированным комбикормом, мг/кг
| Температура воды, °С
Масса рыбы, г | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21
0,08 | — | 200 | — | — | — | — | 1500 | — | — | — | — | — | — | — | — | — | — | -
0,2 | — | — | — | — | — | — | — | — | — | — | — | 1200 | — | — | — | — | — | -
0,5 | 224 | 243 | 264 | 285 | 310 | 334 | 366 | 396 | 429 | 466 | 506 | 547 | 594 | 642 | 698 | 755 | 811 | 890
1,0 | 216 | 235 | 254 | 274 | 299 | 320 | 353 | 376 | 414 | 442 | 480 | 528 | 570 | 620 | 674 | 734 | 790 | 860
5,0 | 200 | 217 | 236 | 256 | 276 | 302 | 326 | 352 | 382 | 416 | 450 | 488 | 526 | 575 | 622 | 680 | 738 | 794
10 | 135 | 155 | 166 | 182 | 200 | 220 | 241 | 304 | 360 | 390 | 420 | 446 | 476 | 510 | 540 | 587 | 626 | 672
15 | 130 | 150 | 160 | 178 | 192 | 214 | 233 | 290 | 348 | 376 | 404 | 430 | 458 | 488 | 524 | 562 | 602 | 650
20 | 129 | 146 | 154 | 170 | 198 | 208 | 227 | 288 | 341 | 366 | 394 | 419 | 447 | 478 | 515 | 550 | 590 | 632
25 | 124 | 142 | 150 | 166 | 184 | 204 | 221 | 280 | 334 | 360 | 386 | 410 | 440 | 470 | 500 | 538 | 573 | 616
30 | 122 | 140 | 148 | 164 | 182 | 200 | 218 | 274 | 325 | 350 | 374 | 398 | 427 | 459 | 494 | 532 | 566 | 608
35 | 121 | 138 | 146 | 162 | 176 | 194 | 214 | 273 | 320 | 343 | 368 | 396 | 422 | 452 | 489 | 527 | 561 | 600
40 | 120 | 137 | 144 | 157 | 174 | 189 | 212 | 272 | 315 | 339 | 362 | 390 | 416 | 446 | 480 | 520 | 555 | 595
45 | 119 | 135 | 141 | 155 | 173 | 187 | 210 | 270 | 314 | 335 | 359 | 386 | 412 | 442 | 478 | 516 | 550 | 590
50 | 118 | 134 | 139 | 153 | 171 | 186 | 207 | 268 | 310 | 332 | 355 | 384 | 409 | 437 | 475 | 511 | 546 | 580
60 | 116 | 132 | 138 | 151 | 169 | 183 | 204 | 264 | 307 | 328 | 352 | 379 | 404 | 434 | 467 | 504 | 538 | 577
70 | 114 | 130 | 136 | 149 | 166 | 181 | 200 | 260 | 303 | 325 | 344 | 372 | 400 | 432 | 462 | 495 | 528 | 568
80 | 113 | 128 | 135 | 148 | 164 | 179 | 198 | 256 | 298 | 320 | 342 | 370 | 395 | 428 | 452 | 486 | 524 | 556
90 | 112 | 127 | 134 | 147 | 162 | 177 | 197 | 250 | 294 | 316 | 340 | 365 | 390 | 414 | 448 | 484 | 517 | 552
100 | 111 | 126 | 133 | 146 | 161 | 176 | 194 | 244 | 290 | 312 | 336 | 360 | 384 | 410 | 442 | 476 | 514 | 549
200 | 105 | 119 | 126 | 138 | 152 | 168 | 182 | 230 | 274 | 294 | 316 | 338 | 364 | 390 | 422 | 456 | 490 | 522
300 | 102 | 114 | 123 | 133 | 146 | 160 | 176 | 220 | 264 | 285 | 304 | 326 | 350 | 376 | 404 | 438 | 470 | 500
400 | 99 | 112 | 118 | 130 | 142 | 155 | 171 | 214 | 260 | 278 | 297 | 320 | 345 | 368 | 394 | 430 | 460 | 492
500 | 98 | 110 | 115 | 127 | 140 | 152 | 168 | 208 | 254 | 272 | 292 | 311 | 336 | 360 | 387 | 417 | 447 | 484
600 | 96 | 108 | 114 | 126 | 138 | 150 | 166 | 205 | 250 | 267 | 286 | 304 | 327 | 352 | 382 | 409 | 438 | 472
700 | 96 | 106 | 113 | 124 | 136 | 148 | 164 | 204 | 248 | 264 | 282 | 302 | 324 | 349 | 378 | 403 | 432 | 469
800 | 94 | 105 | 112 | 123 | 134 | 147 | 162 | 200 | 244 | 262 | 279 | 300 | 321 | 344 | 372 | 401 | 425 | 466
900 | 93 | 104 | 111 | 122 | 133 | 146 | 160 | 194 | 240 | 257 | 275 | 298 | 318 | 340 | 370 | 396 | 422 | 460
1000 | 92 | 103 | 110 | 120 | 132 | 143 | 159 | 191 | 238 | 254 | 273 | 295 | 314 | 337 | 366 | 394 | 420 | 456
При выращивании радужной форели, как одного из основных объектов индустриального рыбоводства при температуре воды 14–18 °C принято, что 90 % кислорода используется для дыхания, а 10 %- для окисления органических веществ, находящихся в рыбоводной емкости (остатки корма, экскременты, органические взвеси в поступающей воде и др.).
Учитывая данные о поступлении и расходе кислорода, может быть составлено следующее уравнение баланса кислорода в рыбоводной емкости (для радужной форели):
0,9/О2" — О2'/nV = О2сп·Р, (1) где: О2" и О2' — содержание растворенного кислорода на втоке и вытоке, мг/л; п — смена воды в бассейне, раз в час; V — рабочий объем рыбоводной емкости, м3; О2сп — специфическое потребление кислорода радужной форелью, мг/кг·ч; Р — общая масса рыбы в рыбоводной емкости, кг.
Левая часть уравнения кислородного баланса (1) показывает количество растворенного кислорода в рыбоводной емкости при определенной температуре воды, который может быть использован рыбой для дыхания.
Коэффициент 0,9 в уравнении (1) показывает, что 90 % кислорода идет на дыхание, а 10 % — на окисление органических веществ в бассейне. Величина О2' на вытоке не должна опускаться ниже 7 мг/л для форели, поскольку ниже этой величины у форели наступает ухудшение обмена. Для других рыб, например, для карпа, минимальная величина О2' на вытоке может составлять 5 мг/л. Правая часть уравнения показывает специфическое потребление кислорода всей рыбой при определенной температуре воды и определенной индивидуальной массе рыбы в условиях кормления сухим гранулированным кормом по кормовым таблицам.
Под плотностью посадки понимается количество рыбы на единицу площади и объема воды, которую можно выразить формулой:
W= P: V, (2) где: W — плотность посадки рыбы, кг/м3; Р — общая масса рыбы, кг; V — объем рыбоводной емкости, м3 (рабочий объем).
Пользуясь уравнением (1) и формулой (2) и выражая рабочий объем в литрах, можно рассчитать плотность посадки рыбы при заданной проточности:
= [0,9(О2"-О2')-1000-n]/О2cn, (3) где: n- заданная величина смены воды в бассейне, раз в час (интенсивность водообмена).
Интенсивность водообмена и непосредственно связана с расходом воды:
Q = nV/3600, (4) где: Q — расход воды, л/с; V — объем рыбоводной емкости, м3.
Следовательно, общий расход воды, необходимый для выращивания определенного количества рыбы, имеющей конкретную индивидуальную массу при конкретной температуре,
составит:
= PО2cn/(О2"-О2')-0,9. (5)
Расчеты, проведенные по уравнению кислородного баланса в рыбоводном бассейне, могут служить для установления конкретной плотности посадки и интенсивности водообмена в зависимости от температуры воды, индивидуальной массы выращиваемой рыбы, качества комбикорма и качественных свойств воды.
При выращивании рыбы на предприятиях индустриального типа следует создавать оптимальный режим температуры и насыщения воды кислородом. Это достигается использованием нагретой технологической воды тепловых электростанций или применением специальных установок для нагрева. Уровень кислорода в рыбоводных емкостях должен быть равен 100 %-ному насыщению или близким к нему. Природная вода после подогрева не содержит такое количество кислорода, поэтому следует применять методы аэрации воздухом или чистым кислородом, причем последнее предпочтительнее из-за более высокой эффективности. Увеличение интенсивности водообмена с целью улучшения газового состава имеет ограничения, объясняемые физическим воздействием течения на рыб и значительным расходом энергии на удержание тела в потоке.
Потребность рыбы в воде и кислороде
Среди методов определения плотности посадки культивируемых рыб в условиях индустриального рыбоводства привлекает внимание метод, основанный на том, что концентрация рыбы или плотность посадки в единице рыбоводной емкости определяется количеством кислорода, необходимого для окисления суточной нормы корма. Как известно, спокойная, не питающаяся рыба потребляет меньше кислорода, чем активная, питающаяся. Потребление кислорода резко возрастает у питающейся рыбы за счет усиления обмена, окисления съеденного корма и выделения продуктов обмена. Возможное количество корма, которое может быть использовано рыбой при конкретном количестве кислорода может быть вычислено следующим образом:
Х = (КН-КК)- 1,44- n / 220,
где: Х-количество корма, кг/сут.; Кн — начальное содержание кислорода в притекающей воде, мг/л; Кк — конечное минимальное содержание кислорода в вытекающей воде, 5 мг/л; n — количество воды, подаваемой в данную рыбоводную емкость, л/мин.; 1,44-количество воды в сутки при интенсивности подачи 1 л/мин., т; 220 — необходимое количество кислорода для усвоения рыбой 1 кг гранулированного корма с калорийностью 2600–2800 ккал/г (вычислено на основании эмпирических данных за 10 лет работы питомника Мак Ненни, США).
Установив количество корма, которое может быть использовано при данном количестве кислорода, определяется возможное количество рыбы в рыбоводной емкости и плотность посадки. При этом используют кормовые таблицы, например, таблицы ВНИИПРХ, в которых показана суточная норма кормления форели в зависимости от массы тела и температуры воды, то есть:
Возможное количество корма в сутки, кг/ количество количество корма в % к массе рыбы, кг рыбы, кг
Например, температура воды, подаваемой в бассейны рыбоводного предприятия индустриального типа, равна 10 °C, масса рыбы 12 г, следовательно (по кормовым таблицам), для сухих гранулированных кормов суточная норма составит 2,6 % к массе рыбы, то есть:
Возможное 2,94 кг/ количество 0,026 = 113,1 кг (9423 шт.) рыбы, кг
Как видно, метод расчета плотности посадки рыбы основан на потребности в кислороде в зависимости от количества вносимого корма. Эта потребность в кислороде определена эмпирически и фактически учитывает зависимость потребления кислорода от температуры воды, размера рыбы и качества корма. Метод учитывает также и влияние продуктов обмена на способность рыбы использовать кислород в данных условиях кормления. Таким образом, этот метод достаточно универсален. Однако он требует подробных данных о величине суточного рациона в зависимости от температуры воды и массы рыбы. К настоящему времени эта зависимость изучена весьма тщательно, в основном для лососевых и карповых рыб. Она учитывает изменение физиологической активности при разной температуре, следовательно, учитывает изменения общего обмена. Если при температуре 5 °C суточный рацион радужной форели массой 2–5 г составляет 2,2 %, то при температуре 10 °C — 3,3 %, а при 15 °C — 4,9 % от массы рыбы. Суточный рацион имеет обратную связь с массой тела рыбы. Если суточная норма для молоди лососей массой 2 г при температуре 10 °C равна 4,2 %, то для молоди массой 12–25 г — вдвое меньше. В связи с разнообразием условий на рыбоводных предприятиях, плотность посадки рыбы и количество воды на единицу выращиваемой рыбы рассчитывают не только на основании потребности рыбы в кислороде. В поступающей в рыбоводную емкость воде количество кислорода должно превышать потребность рыбы. Если при температуре воды 14–18 °C и близком к нормальному насыщении (95 %) содержание кислорода составляет 8,93-9,75 мг/л (в среднем 9,34 мг/л), а на вытоке — 7 мг/л, то может быть использовано рыбой 2,34 мг кислорода из каждого литра притекающей в бассейны воды. Учитывая имеющиеся данные о расходе воды на 1 кг рыбы, количество поступающего с водой кислорода колеблется от 1193 мг/кг-ч (при выращивании свободных эмбрионов) до 176 мг/кг-ч в период товарного выращивания (табл. 92).
Таблица 92. Количество кислорода, поступающего в бассейны при эмпирически определенной интенсивности подачи воды, и потребность молоди лососей в кислороде при температуре 14–18 °C, насыщении 95 % нормального и минимальное уровне 7 мг/л
| Масса рыбы, г
Показатели | 0,14 | 0,25 | 1 | 4 | 20 | 160
Подача воды, л/мин, на 1 кг рыбы | 8,5 | 6,5 | 4 | 3 | 2,25 | 1,25
Поступление кислорода, мг/кг·ч | 1193 | 917 | 652 | 421 | 318 | 176
Потребность в кислороде, мг/кг·ч | | | | | |
радужная форель (Q = 0,601 W0,78) | 624 | 562 | 415 | 306 | 219 | 132
лосось* (Q = 0,712 W0,76) | 787 | 681 | 491 | 352 | 242 | 141
Различия, % | 52 | 35 | 15 | 19 | 31 | 24
* При температуре 14–18 °C использован переводной коэффициент 1,45.
Вместе с тем потребность рыбы в кислороде, вычисленная по формулам Г.Г. Винберга и Л.П. Рыжкова меньше на 15–52 %. Очевидно, этот избыток кислорода компенсирует повышение потребности его питающейся активной рыбой, а также покрывает затраты на окисление продуктов обмена. Не учитывается также кислород, поступающий из воздуха при активном перемешивании рыбой воды в бассейне. Эти расчеты показали, что в практике рыбоводства потребность рыбы в кислороде значительно выше величин, определенных экспериментальным путем на примере спокойной, не питающейся рыбы.
Оптимальная плотность посадки и расход воды на единицу массы молоди лососевых рыб получены на основании выращивания при температуре воды от 14 °C до 18 °C, то есть в условиях оптимума. Это дает основание с уверенностью использовать эти данные при выращивании рыбы в условиях более низкой температуры воды, поскольку с понижением ее уменьшается интенсивность обмена. Соответственно этому уменьшается и потребность рыбы в кислороде. Следовательно, при более низкой температуре расход воды окажется избыточным. Поскольку расход воды на единицу продукции является экономическим фактором, представляется целесообразным уменьшать его величину в соответствии с уменьшением температуры воды. Это можно сделать, используя температурные коэффициенты для приведения значений обмена на любую температуру. Расчеты показали, что при снижении температуры от 14–18 °C до 3–5 °C потребность в воде снижается в 4–5 раз. Если при температуре 20 °C расчетный коэффициент равен 1, то при 14–18 °C-1,45, то есть потребность в воде снижается в 1,45 раза. Сначала необходимо определить расход воды при температуре 20 °C, затем, используя температурные коэффициенты, можно определить расход воды при других температурах.
Одновременно со снижением температуры воды, как известно, повышается растворимость в ней кислорода. Если при 20 °C нормальное насыщение воды кислородом составляет 9,02 мг/л, то при 1 °C — 14,25 мг/л. Следовательно, при снижении температуры повышается обеспеченность рыб кислородом и соответственно снижается потребность рыбы в воде. Чтобы учесть это снижение, введен кислородный коэффициент. Он показывает отношение концентрации кислорода при интересующей нас температуре воды к концентрации кислорода при температуре 14–18 °C. При этой температуре количество растворенного в воде кислорода по средневзвешенному значению равно 9,82 мг/л (9,40–10,26 мг/л).
Принимая эту величину за единицу, при температуре воды выше 14–18 °C кислородный коэффициент будет менее единицы, при температуре воды ниже 14–18 °C- больше единицы. Разделив величины расхода воды на кислородный коэффициент, мы учтем снижение потребности в воде рыб, соответствующее повышению растворимости кислорода. Таким образом, если при температуре 14–18 °C, например, для свободных эмбрионов потребность в воде составляет 8,1 л/мин., то при температуре 20 °C она повышается до 12,6 л/мин., а при температуре 3–5 °C — снижается до 1,3–1,7 л/мин. на 1 кг рыбы. Однако следует учесть, что эмпирические данные о расходе воды при температуре 14–18 °C получены в условиях насыщения воды кислородом до 95 %. Для удобства пользования расход воды приведен к насыщению 100 % (табл. 93).
Таблица 93. Потребность в воде молоди лососей в зависимости от температуры при нормальном насыщении кислородом, л/мин, на 1 кг рыбы
| Температура воды, °С
Показатели | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12
Температурный коэффициент | 6,40 | 5,80 | 5,19 | 4,55 | 3,98 | 3,05 | 3,05 | 2,67 | 2,40 | 2,16 | 1,94 | 1,74 | 1,57 | 1,43 | 1,31 | 1,20 | 1,09 | 1,00 | 1,45
Кислородный коэффициент | 1,37 | 1,34 | 1,30 | 1,27 | 1,24 | 1,21 | 1,18 | 1,15 | 1,12 | 1,09 | 1,07 | 1,04 | 1,02 | 1,00 | 0,98 | 0,96 | 0,94 | 0,92 | 1,00
Стадия развития и масса рыбы, г:
свободные эмбрионы 0,14 (0,08-0,20) | 1,3 | 1,5 | 1,7 | 2,0 | 2,4 | 2,7 | 3,2 | 3,8 | 4,3 | 4,9 | 5,6 | 6,5 | 7,2 | 8,2 | 9,1 | 10,1 | 11,5 | 12,6 | 8,1 | 0,14 (0,08-0,20)
личинки 0,25(0,15-0,35) | 1,0 | 1,1 | 1,3 | 1,6 | 1,8 | 2,1 | 2,5 | 2,8 | 3,3 | 3,7 | 4,3 | 4,9 | 5,6 | 6,3 | 6,9 | 7,7 | 8,7 | 9,6 | 6,2
мальки до 1 г | 0,7 | 0,7 | 0,8 | 0,9 | 1,1 | 1,3 | 1,5 | 1,8 | 2,0 | 2,4 | 2,7 | 3,0 | 3,4 | 3,8 | 4,3 | 4,7 | 5,3 | 6,0 | 3,8
мальки до 4 г | 0,5 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1,1 | 1,3 | 1,5 | 1,7 | 2,0 | 2,3 | 2,5 | 2,8 | 3,2 | 3,5 | 3,9 | 4,5 | 2,8
молодь посадочная, покатная, смолты массой до 20 г | 0,4 | 0,4 | 0,5 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1,1 | 1,3 | 1,5 | 1,7 | 1,9 | 2,2 | 2,5 | 2,7 | 3,0 | 3,4 | 2,1
молодь посадочная, товарная рыба массой до 250 г | 0,2 | 0,2 | 0,2 | 0,3 | 0,3 | 0,4 | 0,5 | 0,6 | 0,6 | 0,7 | 0,8 | 1,0 | 1,0 | 1,2 | 1,3 | 1,5 | 1,6 | 1,9 | 1,2
Следовательно, если в конкретном рыбоводном предприятии индустриального типа в рыбоводные бассейны поступает вода с концентрацией кислорода менее 100 % насыщения, табличные данные увеличиваются следующим образом:
V= 100 n/М,
где: V — искомый расход воды, л/мин, на 1 кг рыбы; n — расход воды при 100 %-ном насыщении воды кислородом; М-насыщение воды кислородом в конкретном бассейне (во всем предприятии), % от нормального.
Потребность в воде при разной температуре, представленная графически, выглядит в виде параболических кривых, которые при понижении температуры воды имеют тенденцию к выпрямлению.
В практических целях представляет также интерес не расход воды на 1 кг массы выращиваемой рыбы, но, наоборот, возможная посадка рыбы (в кг) на 1 л/мин, подаваемой воды. Как видно, это взаимообратные величины. Для свободных эмбрионов, например, при температуре 14–18 °C требуется расход воды 8,2 л/мин, на 1 кг, в то время как в расчете на 1 л/мин, подаваемой воды можно посадить всего лишь 0,12 кг свободных эмбрионов. В процессе выращивания молоди эти величины сближаются.
Таким образом, для определения плотности посадки рыбы и интенсивности водообмена в бассейнах рыбоводного предприятия индустриального типа следует использовать эмпирические методы. Определение оптимальной плотности посадки рыб различных возрастных групп позволяет вычислить необходимый водообмен.
Качество воды в индустриальном рыбоводном хозяйстве
При определении источника водоснабжения индустриального рыбоводного хозяйства необходимо предъявлять строгие требования к качественным свойствам воды. Любое вещество, растворенное в воде, может попасть в организм рыбы, а некоторые вещества проходят через жабры в кровь и ткани. Однако это не значит, что вода должна быть лишена каких-либо примесей, солей. Например, дистиллированная вода не пригодна для жизни рыб. Вода, являющаяся пресной, содержит до 1 г/л растворенных твердых веществ. Жесткая пресная, вода содержит около 300 мг/л растворенных твердых веществ, мягкая — около 40, средняя по жесткости — речная и озерная вода-100-150 мг/л растворенных веществ. Рыбоводным требованиям в наибольшей мере отвечает средняя по жесткости вода. При выборе источника водоснабжения следует учитывать температурный режим и газовый состав как суточный, так и сезонный с учетом вышеуказанных требований для выращивания тех или иных видов рыб. Индустриальным рыбоводным хозяйствам с регулируемым температурным и газовым режимом воды, тем не менее, необходимо выбирать источники водоснабжения, обеспечивающие водой, требующей минимальной коррекции температуры и газового состава. Вода для индустриального рыбоводного предприятия может поступать с поверхностных и подземных источников.
Поверхностная вода обычно имеет сбалансированный солевой состав, но часто насыщена посторонними загрязняющими веществами. Подземная вода обычно свободна от загрязнений, но может нести токсичные для рыб вещества, например, метан или сероводород. Состав воды в основном определяется грунтами. Известняковые воды характеризуются жесткостью, большим количеством кальция, который оседает на стенах трубопроводов. Подземные воды, протекающие по гранитным грунтам, обладают невысокой жесткостью, в них меньше минеральных веществ, но нередко эти воды содержат много свободной углекислоты, которая вызывает коррозию трубопроводов. Для подземных вод характерна постоянная температура в течение года. В источниках неглубокого залегания температура воды приближается к среднегодовой температуре атмосферного воздуха для данного района. При глубине более 15 м температура воды подземных источников возрастает примерно на 1 °C на каждые 32 м.
Существует 3 вида подземных источников — родники, почвенно- грунтовые воды (депрессии) и скважины. Последние делятся на напорные (артезианские) и колодцы. Родники обладают всеми преимуществами, свойственными грунтовым источникам, и дают воду высокого качества с относительно постоянной температурой. Однако в родниках обычно содержится мало растворенного кислорода. К тому же дебит родников обычно невелик. Почвенно-грунтовые воды достаточно обильны лишь в некоторых районах России. Они содержат мало кислорода и для подачи ее необходимы насосы. Для получения почвенно-грунтовых вод нужно вскрывать почву в местах концентрации этих вод неглубоко от поверхности. Обычно дебит этих вод невелик. Скважина и колодец могут дать необходимое количество воды, но для получения ее следует использовать насосы. Вода скважины содержит обычно сероводород и очень мало кислорода. Поэтому необходимо предусматривать устройства для улучшения газового состава воды. Колодец обычно обладает ограниченным дебитом воды.
Очевидно, родниковая и скважинная вода наиболее пригодны для индустриального рыбоводства, поскольку обладают такими качествами, как чистота, постоянство расхода. Однако температура этой воды на протяжении всего года ниже оптимального уровня даже для холодолюбивых лососевых рыб. Эта вода нуждается в подогреве и дегазации, а также и в насыщении кислородом. Рыбоводные предприятия индустриального типа могут использовать также воду поверхностных водоисточников — рек, озер, ручьев, водохранилищ и даже прудов. Качество воды этих источников зависит от широты местности, геологии ложа, времени года, ширины, глубины, площади, уклона и других факторов. Поверхностные источники отличаются суточными и сезонными колебаниями температуры воздуха, газового состава. В них обитает много животных и растительных организмов, попадание которых в рыбоводные емкости не желательно — они могут быть конкурентами в питании, потреблении кислорода, источниками многих болезней. Вода поверхностных источников несет с собой некоторое количество органических и минеральных веществ и нуждается в фильтрации и очистке. Поверхностные водоисточники нередко насыщены загрязняющими веществами различной природы — удобрениями, смываемыми с полей, химическими веществами различной природы, промышленными и коммунальными стоками. Многие загрязнители являются источником жизнедеятельности синезеленых водорослей, доминирующих в экосистемах. Эти водоросли выделяют химические вещества фенольного ряда, которые отрицательно влияют на качество воды.
Учитывая упомянутые выше недостатки, выбор источника водоснабжения рыбоводного предприятия индустриального типа требует серьезного предварительного анализа множества факторов, в особенности анализа качества и системы очистки воды. Тем не менее, доступность и неограниченный дебит поверхностной воды являются экономически привлекающим фактором в проектировании и строительстве рыбоводных предприятий индустриального типа. При строительстве такого хозяйства в каждом конкретном случае снабжение водой определяется индивидуально, с учетом множества факторов. Наиболее привлекательным в настоящее время является строительство рыбоводного предприятия индустриального типа на технологической отработанной воде тепловых и атомных электростанций, имеющей температуру на 10–12 °C более высокую, чем вода поверхностных источников. Такая вода может быть использована зимой для выращивания лососевых, летом — карповых или после некоторой корректировки — круглый год для любого вида культивируемых рыб.
РАЗВЕДЕНИЕ И ВЫРАЩИВАНИЕ КАРПА И ДРУГИХ ТЕПЛОЛЮБИВЫХ РЫБ В РЫБОВОДНЫХ ИНДУСТРИАЛЬНЫХ ХОЗЯЙСТВАХ.
Формирование ремонтно-маточного стада карпа, половое созревание производителей, получение икры, ее инкубация
Карп — одомашненная культурная форма сазана — является наиболее популярным объектом индустриального рыбоводства в России. Это объясняется его биологическими особенностями — широкой эврибионтностью, высокой плодовитостью, хорошим темпом роста в условиях плотной посадки, неприхотливостью к качеству корма, устойчивостью к температурным, гидрохимическим и санитарным условиям, а также коммерческой ценностью.
Формирование маточного стада карпа в условиях индустриального рыбоводного хозяйства имеет определенные особенности. Для этого используют товарных двухлетков массой не менее 800 г (самцы) и не менее 1200 г (самки). Отобранных рыб содержат при плотности посадки 20–40 шт./м2, проточности воды с интенсивностью, обеспечивающей смену воды в рыбоводной емкости за 20 мин. Кормят рыб полноценными гранулированными кормами рецептов РГМ-5В и РГМ-8В или других подобных рецептов по специальным кормовым таблицам.
При оптимальной температуре воды для производителей 20–25 °C самки карпа созревает через 2 года при средней массе 1–2 кг, самцы — на первом году жизни при массе 500 г и более. В индустриальных рыбоводных хозяйствах производителей карпа содержат в бассейнах или сетчатых садках. При содержании в бассейнах (прямоточных, квадратных или круглых с круговым движением воды) площадью 5-10 м2 плотность посадки составляет 15–30 производителей на 1 м2 при расходе воды, обеспечивающем смену ее 3 раза в час. В сетчатых садках площадью 5-10 м2 с ячеёй 20–25 мм помещают 12–15 производителей на 1 м2. Садки должны быть установлены на участках с течением, не превышающим 0,2 м/с. Соотношение самок и самцов в стаде должно составлять 3: 1 при 100 %-ном резерве производителей. Самок и самцов содержат раздельно.
Производителей карпа для завершения полового созревания и получения зрелой икры пересаживают из бассейнов и садков в небольшие прямоточные или квадратные с круговым током бассейны площадью 2–4 м2. Плотность посадки-до 15 особей на 1 м2 при интенсивности подачи воды, обеспечивающей полную смену ее за 10–15 мин. Температура воды должна составлять 18–20 °C, содержание кислорода — не ниже 6 мг/л.
В первую очередь получают половые продукты от производителей старших возрастных групп и в конце нерестового периода — от молодых производителей. В условиях индустриального рыбоводного хозяйства половые продукты у карпа получают заводским способом с помощью гипофизарных инъекций. В зависимости от зрелости половых продуктов проводят инъекцию гипофиза однократно или двукратно. В хозяйствах с регулируемым температурным режимом достаточно однократной инъекции, которая включает 5 мг гипофиза на 1 кг массы самки. Самцы в большинстве своем не нуждаются в гипофизарных инъекциях и созревают по достижении возраста 1 года. В условиях нерегулируемого температурного режима возникает необходимость в двукратной инъекции гипофиза — предварительной и разрешающей. Доза гипофиза в предварительной инъекции составляет 0,5 мг, разрешающей — 5 мг гипофиза на 1 кг массы самки. Самцам достаточна половинная доза разрешающей инъекции. Гипофиз (карпа, леща, сазана и других карповых рыб) в виде суспензии в физиологическом растворе вводят в мышцу спины между спинным плавником и боковой линией. В результате гипофизарной инъекции при температуре 20–25 °C самки карпа становятся текучими, то есть достигают завершенной 5 стадии зрелости через 12–16 ч после инъекции. Проверку зрелости самок проводят за 2–3 ч до ожидаемого срока полового созревания. Появление икринок при легком надавливании брюшка свидетельствует о готовности к нересту.
Икру получают методом отцеживания, собирают в таз емкостью 5–6 л от одной самки, молоки самцов отцеживают в чистые сухие бюксы. Возможно хранение молок в холодильнике при температуре 3–5 °C на протяжении 15–18 ч. К икре от 1 самки вносят молоки от 2–3 самцов общим объемом 2–5 см3 и тщательно перемешивают. Затем добавляют воду и опять перемешивают. В момент перемешивания икры с молоками и водой происходит активация спермиев и оплодотворение икры.
У карповых рыб икра клейкая, поэтому ее необходимо обесклеить. Для этого используют порошок талька, зубной порошок, цельное молоко. Икру обесклеивают в 8-литровых аппаратах Вейса, в которых также проводят инкубацию. В аппарат Вейса наливают 2 л обесклеивающего раствора и вносят 500–600 тыс. икринок от 1 самки, затем снизу подают сжатый воздух, под воздействием которого происходит перемешивание икры в обесклеивающем растворе. После обесклеивания икры подачу воздуха прекращают и в аппарат Вейса подают воду с температурой 20–22 °C.
Инкубационный период продолжается 3–4 сут. При начале выклева (появлении первых свободных эмбрионов) икру из аппарата Вейса переносят в прямоточные бассейны (лотки площадью до 4 м2) и размещают на сетчатых рамках, установленных в лотки на глубине 5–6 см. При температуре воды 22–25 °C выклев продолжается 0,5–1,0 ч. Свободные эмбрионы (предличинки) прикрепляются, к ячее сетки и остаются неподвижными в течение 1–2 сут., затем поднимаются на плав. С этого момента личинок необходимо кормить. Их размещают в небольшие бассейны площадью 2–5 м2 с плотностью посадки 100 тыс. шт./м3 воды. При этом уровень воды составляет 20 см, интенсивность подачи должна обеспечивать смену воды каждые 10–15 мин.
Выращивание личинок, мальков, сеголетков и рыб других возрастных группы, а также производителей карпа
Личинок и мальков следует кормить комбикормами РК-С, Эквизо или другими аналогичными кормами с периодичностью каждые 0,5 ч на протяжении светлого времени суток (табл. 94).
Таблица 94. Состав стартовых комбикормов для личинок карпа, %
Компоненты | Эквизо для молоди до 1 г | РК-С для молоди до 3 г
Мука рыбная | 18 | 35
Дрожжи этаноловые (эприн) | - | 30
Дрожжи на парафинах нефти (БВК) | 35
Ферментолизат эприна | - | 20
Ферментолизат БВК | 35 |
Казеинат натрия. | - | 6
Мука пшеничная | 10 | 4,8
Масло растительное | - | 1,5
Метионин | 1 | 1,5
Холин-хлорид | | 0,2
Премикс ПФ-1М | 1 | 1
Протеин | 45 | 45
Жир | 4 | 8
Углеводы | 25 | 25
Клетчатка | 1-2 | 1-2
Минеральные соли | 10 | 10
Суточная норма составляет 70–90 % к массе тела на протяжении первых 5–8 дней, затем она уменьшается в соответствии с кормовой таблицей (табл. 95).
Таблица 95. Суточная норма кормления личинок и мальков карповых рыб, % массы тела
| Температура воды, °С
Масса личинок и мальков, мг | 20-25 | 26-30
до 3 | 50 | 50
3-60 | 75 | 90
60-150 | 50 | 75
150-300 | 40 | 50
300-1000 | 30 | 40
Суточную норму следует раздавать равными порциями на протяжении светлого периода суток с периодичностью 15 мин. Разовую дозу корма разбрасывают равномерно, не делая резких движений, по поверхности воды в местах скопления личинок. Размер крупки и гранул должен соответствовать массе молоди (табл 96).
В процессе выращивания молоди оптимальная температура составляет 25–30 °C, уровень кислорода-не менее 6 мг/л, интенсивность водообмена-15-20 мин.
Таблица 96. Размер крупки в зависимости от массы личинок и мальков карповых рыб
Масса личинок и мальков, мг | Размер крупки, мм | № крупки
до 12 | до 0,2 | 1
12-50 | 0,2–0,4 | 2
50-90 | 0,4–0,6 | 3
90-150 | 0,6–1,0 | 4
150-1000 | 1,0–1,5 | 5
В процессе выращивания молоди рыбоводные емкости чистят 2–3 раза в день, удаляют органический осадок, остатки корма, экскременты, стенки и дно бассейна промывают щеткой и резиновой губкой.
По достижении молодью карпа массы 1 г ее размещают в бассейны или садки для выращивания сеголетков и годовиков. Оптимальный размер бассейнов и садков составляет от 4 до 10 м при глубине воды 0,5–0,8 м. Плотность посадки составляет 1000 шт./м2. Кормление молоди осуществляют полноценными гранулированными кормами рецепта 12–80 (табл. 97). Могут быть использованы также форелевые комбикорма типа РГМ-6М и РГМ-5В, что даст более высокий результат.
Таблица 97. Рецепты продукционных комбикормов для карпа в условиях индустриального производства, %
Компоненты | 12-80 | 16-80
Мука рыбная | 25 | 10
Мука мясокостная | 6 | -
Дрожжи на парафинах нефти (БВК) | 20 | 14
Дрожжи гидролизные | 10 | 20
Шрот подсолнечниковый | 18 | 30,5
Пшеница | 16,5 | 19
Меласса | 3 | 3
Метионин | 0,5 | 0,5
Фосфат неорганический | — | 1
Протосубтилин ГЗХ | — | 0,05
Премикс П-2-1.П-5-1 | 1 | 1
Энергетическая ценность, мДж/кг | 12,8 | 12,8
Протеин | 40 | 35-38
Жир | 8 | 2-4
Минеральные вещества | 12 | 11
Таблица 98. Суточная норма кормления мальков и сеголетков карповых рыб, % к массе тела
Масса мальков и сеголетков, г | 20-25 °C | 26-30 °C
0,5–1,0 | 30 | 40
1-3 | 25 | 30
3-5 | 15 | 20
5-10 | 11 | 17
10-20 | 8 | 13
20-40 | 7 | 9
Размер крупки и гранул должен строго соответствовать массе молоди (табл. 99).
Таблица 99. Размер крупки и гранул в зависимости от массы рыб
Масса молоди, г | крупка, мм | гранулы, мм | № крупки и гранул
1-10 | 1,5–2,5 | | 6
10-40 | | 3,2 | 7
Суточную норму следует раздавать равными порциями на протяжении светлого периода суток с периодичностью 0,5 ч. По достижении рыбой массы 10 г количество кормлений может быть сокращено до 10. К концу сентября масса молоди достигает 30–50 г. С этого времени плотность посадки снижают до 500 шт./м2. В хозяйствах индустриального типа с регулируемыми условиями водной среды и оптимальным температурным режимом продолжают интенсивное кормление и выращивание годовиков-двухлетков. Кормление карпа проводят комбикормом 16–80, а также комбикормом РГМ-8В или аналогичными комбикормами других рецептов до получения двухлетков товарной массы. Размер гранул должен строго соответствовать массе рыбы (табл. 100).
Таблица 100. Размер гранул в зависимости от массы годовиков и двухлетков карповых рыб
Масса рыбы, г | Размер гранул, мм | № гранул
10-40 | 3,2 | 7
40-150 | 4,5 | 8
150-500 | 6,0 | 9
более 500 | 8,0 | 10
В индустриальных хозяйствах, снабжающихся технологической теплой водой тепловых электростанций, зимняя температура воды обычно не превышает 12 °C. При этом интенсивность питания невелика и суточный рацион, определяемый по кормовым таблицам, резко снижается. В индустриальных хозяйствах с регулируемым температурным режимом оптимальная температура для роста и развития сохраняется также и в зимнее время. При этом темп роста остается на уровне летнего. Суточная норма кормления при этом должна обеспечивать потенциальные возможности роста и рациональное расходование комбикормов (табл. 101).
Таблица 101. Суточная норма кормления годовиков и двухлетков карпа, % массы тела
| Масса тела, г
Температура воды, °С | 20-50 | 50-100 | 100-250 | 250-500 | Более 500
12 | 2,0 | 1,6 | 1,3 | 1,0 | 0,8
15 | 3,0 | 2,0 | 1,6 | 1,2 | 1,0
18 | 4,0 | 3,0 | 2,0 | 1,6 | 1,3
21 | 5,0 | 4,0 | 3,0 | 2,0 | 1,6
24 | 6,0 | 5,0 | 4,0 | 3,0 | 2,0
27 | 7,0 | 6,0 | 5,0 | 4,0 | 2,2
30 | 8,0 | 7,0 | 6,5 | 4,5 | 2,5
По достижении годовиками карпа массы 100 г плотность посадки в бассейнах следует снизить до 250 шт./м3, в садках — до 200 шт./м3 и продолжать интенсивное выращивание. К концу второго лета карп достигает товарной массы 1,0–1,5 кг, в хозяйствах с нерегулируемым температурным режимом-0,7–1,0 кг. При этом рыбопродуктивность составляет 200–250 кг/м2 в бассейнах и 150–200 кг/м2 в садках. В хозяйствах индустриального типа кормление ремонтной группы и производителей следует проводить комбикормами РГМ-5В. С меньшим успехом могут быть использованы также комбикорма РГМ-8В и 12–80. Размер гранул увеличивается соответственно массе рыбы. Для крупного ремонта и производителей применяют гранулы диаметром 8 мм (№ 10). Суточная норма кормления крупного ремонта и производителей составляет от 0,6 до 2,5 % массы тела (табл. 102).
Таблица 102. Суточная норма кормления ремонтных групп и производителей карпа, % массы тела
| Масса тела, г
Температура воды, °С | 500-1000 | Свыше 1000
12 | 0,9 | 0,6
15 | 1,1 | 0,6
18 | 1,4 | 1,0
21 | 1,8 | 1,3
24 | 2,2 | 2,0
27 | 2,7 | 2,0
30 | 3,1 | 2,0 |
Плотность посадки старшего ремонта и производителей составляет не более 20 кг/м3 при полном водообмене за 10–15 мин.
РАЗВЕДЕНИЕ И ВЫРАЩИВАНИЕ КАРПА И ДРУГИХ РЫБ В ИНДУСТРИАЛЬНЫХ ХОЗЯЙСТВАХ НА ОТРАБОТАННЫХ ТЕПЛЫХ ВОДАХ
Общая характеристика рыбоводных хозяйств
В России насчитывается более 200 тепловых электростанций с общей площадью водоемов-охладителей около 140 тыс. га. Использование этих водоемов в рыбохозяйственных целях позволяет увеличить количество ценного продукта питания — рыбы.
В этих хозяйствах ограниченная зависимость от природно-климатических условий, вегетационный период может длиться круглый год. В них хорошо растут карп, форель, растительноядные рыбы, канальный сом, тиляпия, буффало и др. В таких хозяйствах основными формами интенсификации являются высокая плотность посадки и интенсивный водообмен, что почти исключает возможность выращивания рыбы на естественной кормовой базе, а это, в свою очередь, требует полноценных комбикормов.
В настоящее время существуют несколько типов рыбоводных хозяйств на теплых водах: весь цикл выращивания проходит в водоемах-охладителях; прудовое рыбоводство, использующее для водоснабжения теплые воды ТЭС и АЭС; индустриальное рыбоводство садкового и бассейнового типов; комплексные хозяйства, в которых только отдельные биотехнические процессы проходят с использованием теплых вод.
Основным объектом выращивания в садках и бассейнах на теплых водах ГЭС и АЭС является карп (90–95 % всего объема производства). Растительноядных рыб используют для зарыбления водоемов-охладителей и как объекты поликультуры в садках и бассейнах (10–50 % от посадки карпа). Выращивают растительноядных рыб (посадочный материал и товарная рыба) в садках, в монокультуре, при этом решающим является обеспечение рыбы естественной кормовой базой.
Хозяйства на теплых водах могут быть полносистемными, нагульными и питомными. Наиболее успешно их используют для выращивания крупного посадочного материала. На теплых водах при средней температуре 9-12 °C успешно проходит зимовка карпа, при этом за зимний период карп не только не снижает массы, но и дает прирост в среднем на 65 %. В бассейновых и садковых хозяйствах можно летом выращивать карпа, а в зимний период — радужную форель и стальноголового лосося, которые к весне достигают товарной массы, тем самым срок получения товарной продукции сокращается на 1 год по сравнению с обычной технологией.
Выращивание карпа в бассейнах и садках на теплых водах
Выращиванию карпа на теплых водах способствуют такие его биологические особенности, как широкая эврибионтность, большая плодовитость, способность давать хороший прирост в условиях плотных посадок на дешевых кормах, устойчивость к температурным, гидрохимическим и санитарным условиям, порционность нереста при отсутствии сезонности размножения. Последняя особенность карпа позволяет получать потомство от производителей, выращенных на теплых водах, в любое время года при регулировании температуры воды, в том числе в ранние сроки — в январе-марте. Для дозревания производителей достаточно кратковременное (5-15 дней) выдерживание при температуре 18–20 °C. Проведение нереста в январе-феврале дает возможность круглогодично получать молодь, так как помимо нереста в обычные сроки, связанными с ходом температуры поступающей технологической воды ГЭС, можно проводить нерест в летнее и осеннее время, резервируя производителей карпа в холодной воде для повторного нереста при содержании их в оптимальных температурных условиях. Многократность проведения нереста в течение года позволяет использовать принципиально новую технологию индустриального рыбоводства, которая получила название полицикличной. Полицикличность осуществляется как за счет последовательного нереста разных групп производителей при одноразовом нересте каждой особи в течение года, так и за счет многократности использования одной и той же особи.
Наиболее полно эта технология реализована в установке с замкнутым циклом водоиспользования, а также в бассейновых комплексах с прямоточным водоснабжением от источников теплой воды с постоянной в течение года температурой. В хозяйствах с нестабильным температурным режимом наиболее целесообразен комбинированный метод выращивания посадочного материала карпа с использованием бассейнов, прудов, садков на разных этапах выращивания. При этом выращивание карпа до массы 1–2 г осуществляется сначала в лотках и бассейнах, затем в бассейнах садках и прудах рыбоводных хозяйств на теплых водах и в обычных прудовых хозяйствах.
При бассейновом методе выращивания молоди наибольший эффект может быть получен при выполнении следующих требований: вода должна быть оптимальной температуры с нормальным насыщением кислородом; плотность посадки должна соответствовать уровню водообмена; рыбоводное оборудование должно соответствовать возрасту рыбы; системы подачи и сброса воды должны обеспечивать хорошие гидрохимические и санитарные условия в рыбоводной емкости; комбикорма должны содержать оптимальный уровень питательных веществ. В рыбоводных емкостях распределение воды должно быть равномерным как по площади, так и по объему. Подача воды должна осуществляться фронтально, с помощью патрубков, рассекателей или флейт. В круглых и квадратных бассейнах для молоди карповых рыб воду подавать следует с помощью флейт по периметру емкости.
В первые 5 дней личинок необходимо оберегать от прямого механического воздействия струй, создавая рассеиватели или гасители потока. Водосливные устройства должны обеспечивать равномерный сток воды, обладать достаточной поверхностью, препятствующей притягиванию личинок в зону стока и их выносу из рыбоводных емкостей. В бассейнах и лотках так называемые "фонари" из газа, окружающие водосливную трубу или сетки, отделяющие водосливную часть бассейна, должны быть съемными и легко заменяемыми. Для личинок и мальков до 50 мг используют газ № 17-19К, массой от 50 до 300 мг — № 11К, более 300 мг — № 7-5К. Бассейновый метод предполагает выращивание молоди в ограниченной емкости с постоянным водообменом при определенной температуре воды. Вода, поступавшая на рыбоводные хозяйства с ГРЭС, может иметь суточные колебания температуры в пределах 5–7 °C. Изменения температуры, как правило, происходят не постепенно, а скачкообразно за 1–2 ч. Характерной особенностью теплых вод электростанций является возможное выделение газов, насыщающих воду в виде мелких пузырьков. При инкубации икры в такой воде происходит инкрустация икринок пузырьками газа и вынос из аппаратов. Рыба в такой воде заболевает газопузырьковой болезнью. Весной, в период паводка, во многих хозяйствах наблюдается увеличение содержания в воде механической взвеси, которая заметно уменьшает ее прозрачность.
Ранняя молодь чрезвычайно чувствительна к изменениям среды и реагирует на любые ухудшения качества воды снижением скорости роста и повышенным отходом. Поэтому в хозяйствах, где предполагается выращивание посадочного материала, следует позаботиться об обеспечении питомного участка водой необходимого качества. Очистку воды от взвеси проводят путем отстаивания и использования многоступенчатых фильтров разнообразных конструкций (керамзитных, песчанно-гравийных, песчанно-керамзитных или других, в том числе фильтров, работающих по принципу центрифугирования). Для освобождения поступающей воды от избытка растворенных газов можно использовать установки (дегазаторы), работающие по принципу интенсивного барбатажа. Для стабилизации температуры воды в заданных пределах применяют регуляторы температуры различных конструкций. Общая схема водоподготовки выглядит следующим образом: фильтр, регулируемый подогрев, дегазатор.
Формирование маточных стад карпа с использованием теплых вод проходит по обычной технологии. Отбор рыб для воспроизводства осуществляется из числа товарных двухлетков, масса которых составляет не менее 800-1200 г. Отобранных рыб содержат при относительно невысокой плотности посадки (20–40 шт./м2) и интенсивном кормлении. В индустриальных хозяйствах на отработанных тепловых водах самки карпа созревают в возрасте 2 года при средней массе 1–2 кг, самцы становятся половозрелыми на первом году жизни при массе 500 г и более. В зависимости от типа хозяйств, для содержания производителей используют сетчатые садки или бассейны. В садки с ячеёй 20–25 мм размещают по 12–15 шт. производителей на 1 м3 или до 30 кг/м3. При содержании в бассейнах плотность посадки производителей составляет 30 кг/м3 при расходе воды не ниже 0,04 л/с на 1 кг массы рыбы. Соотношение самок и самцов в стаде должно составлять 3: 1 при 100 % резерве производителей. Самок и самцов содержат раздельно. В садковых хозяйствах в преднерестовый период самок следует пересаживать в специальные бассейны на берегу, чтобы исключить контакт с "дикими" самцами, обитающими в водоеме-охладителе.
При раннем получении личинок производителей пересаживают из садков или бассейнов в лотки, эмалированные ванны, квадратные бассейны, куда подается вода. В течение первых суток температуру воды доводят до 18–20 °C. При этой температуре производителей выдерживают до 5 суток. Без подогрева воды получение ранней молоди карпа начинают при устойчивой среднесуточной температуре воды не ниже 17 °C, обычно во 2–3 декаде апреля. Нерест должен завершаться до повышения температуры воды за пределы 23 °C; иначе происходит быстрое перезревание икры и ухудшение ее рыбоводно-биологических показателей.
В первую очередь получают половые продукты от более старших, повторно созревающих производителей, затем используют для нереста молодых самок, которые обычно созревают позднее и дают вполне доброкачественную икру. Для резервирования производителей для более позднего нереста, например, до 2 декады мая, самок и самцов помещают в бассейны с температурой воды не выше 14–15 °C. Половые продукты у карпа получают заводским способом. После проведения гипофизарных инъекций, описанных выше, самки становятся текучими при температуре воды 17–19 °C через 20–24 ч, при 20–22 °C через 12–16 ч. Индивидуальные колебания скорости созревания после гипофизарных инъекций довольно значительные, однако они соответствуют нормам в обычных условиях. Самцы не нуждаются в гормональных инъекциях, так как в условиях индустриальных хозяйств созревают естественным путем. Первую проверку зрелости самок проводят за 2–3 ч до ожидаемого срока, полового созревания, последующие — через 1,5–2 ч. Появление икринок при легком сдавливании брюшка свидетельствует о необходимости начала сбора икры. Икру получают методом массажирования брюшного отдела и отцеживания. Икру собирают в таз емкостью 5–6 л. Получение икры и все последующие операции проводят в закрытом помещении с температурой воздуха 18–20 °C. Молоки от нескольких самцов еще до получения икры, отцеживают в сухие стеклянные бюксы и хранят в холодильной камере до 12 ч. Перед оплодотворением проверяют активность сперматозоидов. Количество созревших самок при заводском методе не должно быть менее 70 %. Причинами яловости самок являются образование тромбов в брюшной полости и жировое перерождение гонад. Это может возникнуть из-за нарушений в режиме содержания производителей, например, колебаний температуры воды, механических воздействий и стрессовых ситуации. Молодые производители эти воздействия переносят легче.
Икру инкубируют в аппаратах Вейса при температуре 20–22 °C в течение 2–3 сут. В один аппарат размещают икру от одной самки. В этих же аппаратах происходит выклев свободных эмбрионов (предличинок), которые током воды, по мере появления, выносятся и поступают в лоток ЛПЛ, вмещающий 1 млн. шт. При температуре воды 22–23 °C предличинки находятся в прикрепленном состоянии 1–2 сут. Субстратом для прикрепления служат куски марли или чистого газа, которые размещают в лотке на поперечных рамках на расстоянии 50–60 см один от другого. Затем личинок в возрасте 2–3 сут. размещают на выращивание при плотности посадки 50-100 тыс. шт. на 1 м3 воды. Глубина слоя воды не должна превышать 15–20 см. В процессе выращивания личинок и мальков необходимо следить за чистотой емкостей, удалять образующиеся на дне осадок и остатки корма. Лотки чистят 2–3 раза в день сифоном с щелевидной насадкой. Стенки и дно лотка необходимо протирать резиновой губкой. Личинок начинают кормить сразу же после перехода на внешнее питание в возрасте 3–4 суток. Им дают искусственный корм и на ранних этапах (до 5-10 дневного возраста) науплиусов артемии салина. Соотношение искусственного и живого кормов в первые дни может быть 1: 1, затем количество живого корма постепенно уменьшают. Молодь до 10-дневного возраста кормят круглосуточно с интервалом в 15–20 мин. Затем промежуток между кормлениями увеличивают до 30–40 мин. Личинки берут корм только в толще воды, осевший на дно корм они не потребляют. Выращивание молоди может завершиться по достижении массы 50, 200 или 1000 мг. Затем молодь можно пересаживать из лотков в садки или пруды. Вместе с тем, чем больше масса молоди, тем лучше результат дальнейшего выращивания. При пересадке молоди уровень воды в лотках и бассейнах следует понижать, молодь вылавливать, взвешивать, просчитывать, сортировать, а затем пересаживать в бассейны или пруды на дальнейшее выращивание. Сортировку молоди карпа осуществляют с помощью сортировочного ящика на 2–3 размерные группы. Молодь, не достигшую массы 1 г, оставляют на доращивание в лотках или бассейнах. Молодь массой 1–2 г до возраста сеголетка выращивают в бассейнах площадью не менее 10 м2, при уровне воды 0,5–1 м и плотности посадки 1 тыс. шт./м3. Кормят гранулированным комбикормом рецепта 12–80 или другим комбикормам аналогичного состава и назначения. При достижении молодью массы 20 г возможно использование комбикорма рецепта РГМ-8В. Суточную норму кормления определяют по специальным кормовым таблицам (табл. 103).
Таблица 103. Суточная норма кормления карповых рыб сухим гранулированным кормом РГМ-8М, % к массе тела
| Масса рыбы, г
Температура воды, °С | 20-50 | 50-100 | 100-250 | 250-500 | Более 500
12 | 2,0 | 1,6 | 1,3 | 1,0 | 0,8
15 | 3,0 | 2,0 | 1,6 | 1,2 | 1,0
18 | 4,0 | 3,0 | 2,0 | 1,6 | 1,3
21 | 5,0 | 4,0 | 3,0 | 2,0 | 1,6
24 | 6,0 | 5,0 | 4,0 | 3,0 | 2,0
27 | 7,0 | 6,0 | 5,0 | 4,0 | 2,2
30 | 8,0 | 7,0 | 6,5 | 4,5 | 2,5
При выращивании сеголетков хорошо зарекомендовал себя плавающий (экструдированный) комбикорм. Им кормят рыб массой более 10 г. Суточную норму корма раздают равными порциями на протяжении 16–17 ч светлого периода суток с периодичностью 0,5–1,0 ч. Начиная от массы 10 г, число кормлений можно сократить до 10. При использовании автоматических кормораздатчиков кормление карпа осуществляют с 5 до 23 ч с перерывом между кормлениями 15 мин. В период выращивания сеголетков ежедневно контролируют потребление корма, следят за чистотой рыбоводных емкостей, 1 раз в декаду определяют прирост.
В конце сезона проводят полный облов бассейнов и садков. Рыбу сортируют, просчитывают, взвешивают и рассаживают на зимнее содержание. Зимнее содержание карпа в тепловодных хозяйствах начинается при понижении температуры воды до 17–18 °C, отмеченное в октябре-ноябре и завершается в апреле- начале мая при наступлении оптимальной для роста температуры. Садки и бассейны зарыбляют сеголетками, полученными и выращенными в хозяйстве на теплых водоемах, или привезенными из прудовых хозяйств.
Сеголетки карпа в первые дни после посадки, особенно доставленные из прудовых хозяйств, проявляют беспокойство. Они активно перемещаются вдоль стенок, часто выпрыгивают из садков и бассейнов. Во избежание их гибели садки необходимо в первые 3–5 дней закрывать крышками или делью, особенно в зоне водоподачи. Зимой карпа содержат в тех же садках и бассейнах, в которых выращивают его в летний период, при плотности посадки до 1000 шт./м3, а при массе рыбы свыше 30 г — до 500 шт./м3.
При выращивании карпа при температуре более 8 °C следует организовать рациональное кормление. При более низкой температуре воды корм обеспечивает только основной обмен и роста рыбы не происходит. При температуре воды 8-10 °C наиболее эффективным является корм, состоящий из растительных ингредиентов: комбикорм для прудовых хозяйств (ПК-110-1, К-111-1), а также комбикорм для прудовых хозяйств с добавками: комбикорм — 74 %, льняной жмых и шрот — 10 %, дрожжи — 5 %, фосфатиды — 10 %, рыбий жир-1%. При температуре воды 11–12 °C и выше целесообразно использовать гранулированный комбикорм с высоким содержанием протеина, например, РГМ-8, 16–80 и др.
Во избежание потерь корма бассейны необходимо оборудовать кормораздатчиками. Корм вносят 8 раз в сутки и контролируют его потребление. Размер частиц 2-10 мм. Емкость бункера 25 кг, обеспечивает кормление 200 двухлетков в течении 10 суток. Годовиков выращивают в тех же бассейнах. Размер ячеи дели или металлической сетки должен составлять 12–20 мм. Расход воды с учетом максимального прироста к концу выращивания должен быть не ниже 0,02 л/с на 1 кг массы рыбы. При полной смене воды 4 раза в час и средней массе годовиков 50 г, плотность посадки в бассейн составляет 250–300 шт./м2. Летом необходимо контролировать водообмен. Недопустимо скопление грязи в бассейнах, и садках, а так же обрастание садков. Следует также контролировать температуру воды. Летом рыб кормят ежедневно. Даже кратковременные перерывы в кормлений дриводят к замедлению роста. Хорошо зарекомендовали себя экструдированные (плавающие) комбикорма. В тепловодных хозяйствах сочетают применение тонущего и плавающего кормов, при этом потребление плавающего корма служит показателем пищевой активности карпа. Если корм не потребляется карпом, то нужно изменить технологию кормления, проверить состояние рыбы и уточнить суточный рацион. Суточная норма рассчитывается в зависимости от массы рыбы и температуры воды. За 6 месяцев выращивания (с мая по октябрь) при среднемесячной температуре воды в начале и в конце сезона 16–21 °C, а в течение 3–4 месяцев 25–27 °C прирост двухлетков начальной массой 50 г составляет 900-1100 %, т. е. товарная рыба достигает массы 500–600 г. В вегетационный период прирост рыб распределяется следующем образом; май 7–9 %, июнь 17–19 %, июль 29–31 %, август 17–19 %, сентябрь 8-10 %.
Выращивание радужной форели на отработанных теплых водах
Использование теплых вод позволяет значительно продлить вегетационный период и получать крупный посадочный материал радужной форели. В зимний период прирост сеголетков форели в хозяйствах при ТЭС и АЭС может достигать значительных величин. Получать посадочный материал радужной форели можно по двум технологическим схемам. По первой технологической схеме в хозяйстве на теплых водах инкубируют икру, выдерживают свободных эмбрионов и выращивают молодь до массы 1 г. Далее сеголетков выращивают в садках, бассейнах или прудах с благоприятным естественным режимом среды. Икру получают из форелевых хозяйств или от производителей, выращенных в условиях тепловодного хозяйства. Осенью сеголетков вновь переводят в хозяйство на теплых водах и выращивают до товарной массы.
По второй технологической схеме сеголетков форели привозят в тепловодное хозяйство из форелевых хозяйств. Эта схема наиболее распространена.
Технологические нормы от получения икры и молок до выращивания мальков на теплых водах аналогичны процессам в форелевых хозяйствах. Весной (в конце апреля, начале мая) мальков, достигших массы не менее 1 г, переводят в садки или бассейны с естественным режимом среды. Плотность посадки в садки до 1 тыс. шт./м2 (до 0,8 тыс. шт./м3), а в бассейны-1,0–1,5 тыс. шт./м2 при уровне воды 0,5–0,8 м. Садки и бассейны должны быть защищены от прямого солнечного света. Кормление начинают через 1–2 ч после зарыбления рыбоводных емкостей. До массы 15 г используют гранулированный корм РГМ-6М, далее до конца выращивания сеголетков — РГМ-5В (табл. 104).
Таблица 104. Суточная норма кормления молоди форели, % к массе тела.
| Температура воды, °С
Масса молоди, г | 10-15 | 15-20
5-10 | 8 | 11
10-20 | 6 | 9
20-50 | 5 | 7
Рыб кормят 8-12 раз в день вручную, или с помощью кормораздатчиков. В процессе выращивания следят за поведением форели, ее реакцией на корм, и 1 раз в декаду проводят контрольный облов и ихтиопатологическое обследование. В конце периода выращивания сеголетков сортируют с помощью сортировочного ящика на 2–3 размерные группы, учитывают, определяют прирост, кормовые затраты и отход рыбы. Затем сеголетков отправляют в хозяйство на теплых водах для завершения выращивания. Плотность посадки в садки и бассейны составляет до 500–600 шт./м3 при уровне воды в садках до 2 м, в бассейне — 0,8 м. Садки и бассейны закрывают делью, так как первое время рыбы ведут себя беспокойно и стремятся выпрыгнуть из емкости. Форель кормят комбикормом РГМ-5В или другим аналогичным комбикормом. Контроль за темпом роста осуществляют 2 раза в месяц. При большой разнокачественности форели ее сортируют на 2 группы. Товарную форель выращивают из посадочного материала массой не менее 20 г, при плотности посадки 250 шт./м2. Форель к апрелю-маю достигает массы 150–200 г.
Биотехника выращивания товарной форели на теплых водах не отличается от традиционной, поскольку проводится при оптимальной для форели температуре воды в зимний период. Для выращивания товарной радужной форели можно использовать солоноватые теплые воды ГРЭС, что значительно ускоряет темп роста рыбы.
Выращивание канального сома
Маточное стадо канального сома содержат в садках из дели с ячеёй от 10 до 24 мм, размерам от 12 (3 × 4 м) до 24 (4 × 6 м) м2. Дно сетчатых садков выстилают тканью, чтобы потерянный при кормлении комбикорм не уходил за пределы садка и мог быть съеден рыбой. Племенной материал отбирают из товарных двухлетков, отбраковывая уродливых, травмированных и отставших в росте. При отборе следует иметь в виду, что самцы крупнее самок. Двухгодовиков выращивают при плотности посадки 85-100 шт./м2, старших возрастных групп ремонта — 50 шт./м2, производителей — 20–30 шт./м2. Рыб кормят гранулированными комбикормами РГМ-5В, РГМ-8В, 16–80, СБ-3, а также пастообразными кормами, включающими фарш из рыбы или смесь из 80 % говяжьей селезенки, 20 % рыбной муки и 1 % форелевого премикса ПФ-2В. Пастообразные корма могут составлять 20–30 %, а в преднерестовый период — 40–50 % суточного рациона. Рыбу кормят 2 раза в сутки, а в период низких температур — 1 раз в сутки. В период летного выращивания суточный рацион составляет 4–5 % массы рыбы (табл. 105).
Таблица 105. Суточная норма кормления канального сома сухими гранулированными кормами, % к массе тела
| Температура воды, °С
Масса рыбы, г | 12 | 15 | 18 | 21 | 24 | 27 | 30
до 0,1 | 6,0 | 8,0 | 10,1 | 16,0 | 22,0 | 28,0 | 25,0
0,1–0,6 | 5,7 | 6,2 | 8,0 | 10,0 | 15,5 | 22,4 | 21,0
0,6–2,0 | 5,0 | 5,5 | 6,3 | 8,0 | 11,0 | 16,0 | 20,0
2,0–5,0 | 4,0 | 4,4 | 5,1 | 6,2 | 8,3 | 11,7 | 15,0
5-15 | 3,0 | 3,5 | 4,2 | 5,0 | 6,5 | 8,0 | 10,0
15-40 | 2,7 | 3,1 | 3,7 | 4,3 | 5,1 | 7,0 | 8,5
40-100 | 2,3 | 2,6 | 3,1 | 3,9 | 4,6 | 6,0 | 8,0
100-250 | 1,9 | 2,2 | 2,7 | 3,3 | 4,0 | 5,0 | 6,0
250-500 | 1,6 | 1,9 | 2,3 | 2,7 | 3,3 | 4,0 | 5,0
более 500 | 1,5 | 1,7 | 2,0 | 2,5 | 2,9 | 3,4 | 4,0
Производителей содержат в садках до начала нереста. При повышении температуры до нерестовой величины у созревших рыб начинается брачная борьба. Сортировать и пересаживать их в другие садки в этот период не следует, так как подобное вмешательство только увеличивает агрессивность производителей и может привести их к гибели. При первых признаках беспокойства садки с производителями переводят в ту часть водоема, где температура воды на 3–4 °C ниже. Это успокаивает рыбу.
Нерест сома осуществляют прудовым, садковым или аквариумным методом. При прудовом методе площадь пруда должна составлять 0,1 га (100 × 10 м), глубина до 1,5 м. Оптимальная температура 26–28 °C. Периодичность водообмена — 12 ч. В пруду устанавливают искусственные нерестовые гнезда (молочные бидоны, деревянные или металлические бочки, канистры и др.), которые должны быть чистыми и без посторонних запахов, на глубине 50–70 см в горизонтальном положении (на боку) отверстием к центру пруда. В пруд высаживают самок и самцов в соотношении 1: 1 до 100 пар на 1 га пруда. Одно нерестовое гнездо устанавливают на 2 пары рыб. Через 2–3 дня искусственные нерестилища проверяют, предварительно отогнав самца (постучать палкой по бидону). Кладки икры можно оставлять в нерестовых гнездах до выклева эмбрионов или переносить в инкубационные аппараты "Днепр". В такой аппарат помещают 5–6 кладок икры при максимальном водообмене. После выклева свободных эмбрионов сифоном выбирают из аппарата и переносят в лотки или ванны. Ускорить нерест можно с помощью гипофизарных инъекций. При садковом методе, для нереста используют садки из дерева, сетки, бетонных решеток или отгороженные участки пруда. Площадь садка-4,5 м2 (3 × 1,5 м), глубина воды — 60–90 см. Нижнюю подбору стенки садка вкапывают в дно пруда, верхняя — должна возвышаться над водой на 30 см. Садки оборудуют нерестовыми гнездами и в период нереста высаживают в них пару производителей. При аквариумном нересте используют аквариумы емкостью 200 л или обычные бытовые ванны, которые размещают в инкубационных цехах. Водообмен устанавливают из расчета 10–14 л/мин, температуру воды поддерживают на уровне 25–30 °C. При необходимости следует подогревать воду. Во время нереста нужно тщательно следить за кислородным режимом и не допускать его снижения за пределы 5 мг/л. Нерестовые пары подбирают таким образом, чтобы самец был несколько крупнее самки и, чтобы они были одинаково готовы к нересту. Если одна из рыб недостаточно готова к нересту, возникает острый конфликт: готовая к нересту особь ведет себя по отношению к неготовой крайне агрессивно. В этом случае нужно заменить неготовую к нересту рыбу готовой к нересту. При аквариумном нересте производителям делают гормональные инъекции, что ускоряет нерест на 2 недели. Используют гипофизы сазана, леща, растительноядных рыб, европейского сома, буффало, карася, канального сома, а также хориогонический гонадотропин. Самкам делают трехкратные инъекции. Интервалы между первой и второй инъекциями составляют 12–24 ч, между второй и третьей не более 12 ч. Самцам делают инъекцию одновременно с третьей инъекцией самкам. Наиболее результативно введение самкам нарастающего количества гормона: 1 инъекция — 1,5–3,0 мг на рыбу, 2 инъекция — 3–6 мг на рыбу, 3 инъекция — 10 мг/кг массы рыбы. Для самцов достаточно введение 5-10 мг на рыбу. При работе с хориогоническим гонадотропином (препарат без наполнителя, активность 1 мг около 2000 ME) применяют следующие дозировки: 1 инъекция — 0,5–1,0 мг на рыбу, 2 инъекция — 2,0–4,0 мг на рыбу, 3 инъекция — 3–6 мг/кг массы тела. Самцам вводят 2–4 мг на рыбу.
Для снижения интенсивности воспалительных процессов, связанных с травматизацией, при каждой инъекции вводят по 100 тыс. ME пеницилина, разведенного в физиологическом растворе, на котором готовится суспензия гипофиза или раствор хориогонического гонадотропина. Канальный сом склонен к охране территории, поэтому при скученном содержании в преднерестовый период у рыб происходят жестокие схватки. Драки наблюдаются в стадах со смешанной половой структурой, поэтому до третьей инъекции самцов и самок следует содержать раздельно. После третьей инъекции подбирают пары и помещают в ванны или аквариумы. Ванны и аквариумы необходимо закрывать хорошо закрепленными крышками, т. к. во время нереста рыба ведет себя беспокойно и может выпрыгивать. Нерест начинается обычно после третьей инъекции и может продолжаться несколько часов. После окончания нереста самок отлавливают и высаживают на летний нагул, самцов оставляют в ваннах. При использовании хорошо подготовленных к нересту производителей икру откладывают не менее 80 % пар. Обычно самцы хорошо справляются с обязанностями по инкубации икры. В кладках, где икра имеет высокую оплодотворенность, отхода в процессе инкубации почти не наблюдается. В то же время нередки случаи, когда самцы уничтожают (съедают) кладки нормально развивающейся икры. Явление это объясняют влиянием абиотических факторов: резкие колебания температуры, шум и др. Однако факты уничтожения самцами кладок наблюдаются и при наличии вполне благоприятных абиотических условий. По-видимому, аномальное поведение самцов объясняется их плохим физиологическим состоянием, которое является следствием неполноценного кормления.
Продолжительность эмбрионального развития у канального сома в зависимости от температуры колеблется от 5 (при 28–30 °C) до 10 (при 21–24 °C) суток. После завершения выклева самцов отлавливают из ванн и высаживают в пруды на летний нагул или же оставляют для повторного нереста с другими самками. Свободных эмбрионов содержат в ваннах из расчета 150–200 тыс. шт./м3 до перехода на внешнее питание, что происходит при благоприятной температуре на 3–4 сутки после выклева. Переход на внешнее питание совпадает с наполнением плавательного пузыря воздухом.
В ваннах с личинками спуск воды оборудуют защитными сетками. В случае недостатка ванн и аквариумов кладки икры можно инкубировать в инкубационных аппаратах для растительноядных рыб, например, в аппарате "Днепр". После перевода на смешанное питание личинок размещают в мальковые, выростные пруды или отправляют в другие хозяйства. Учитывают личинок эталонным способом. Свободных эмбрионов и личинок канального сома подращивают при температуре 26–28 °C в течении 10 сут. в стекло пластиковых лотках ИПЛ объемом 1,5 м3. Расход воды должен составлять 15–20 л/мин., плотность посадки-до 30 тыс. на 1 м3. Личинок кормят 10–12 раз в сутки до насыщения науплиями артемии салина, отловленным из прудов зоопланктоном или пастообразным кормом на основе говяжьей селезенки, а также стартовыми гранулированными комбикормами РГМ-6М, СБ-1 и другими. При достижении личинками массы 100 мг плотность посадки уменьшают до 5 тыс./м3 и продолжают выращивать до массы 1 г. Выращивание длится 40–45 сут. Выживаемость 90 %. В этот период доля живого корма в рационе может быть уменьшена до 20 %, основными кормами становятся гранулированный и пастообразный. Молодь, достигшую массы 1 г, переводят на дальнейшее выращивание в садки. Выращивание сеголетков канального сома в садках проводится в 2 этапа. Первый — выращивание молоди до массы 5 г, второй до массы 15–20 г. На первом этапе сеголетков выращивают в садках площадью 4-12 м2, изготовленных из дели с ячеёй 3–5 мм. До массы 1 г молодь выращивают при плотности посадки до 2,5 тыс. шт./м2. Молодь кормят смесью пастообразного корма на основе говяжьей селезенки с добавкой 1 % премикса и сухого комбикорма. Соотношение пастообразного и сухого комбикорма должно быть 1: 1. Суточная норма в начале выращивания составляет 10 %, а в конце — 6 % массы рыбы. Частота кормления от 10 (в начале периода) до 6 (в конце) раз в день. Продолжительность выращивания при благоприятных условиях 30–45 сут., выход молоди — 60 %.
На втором этапе выращивания сеголетков пересаживают в садки площадью до 20 м2, изготовленные из дели с ячеёй 8-12 мм, при плотности посадки 1 тыс. шт./м2. Для кормления используют также смесь комбикорма и пастообразного корма с добавкой 1 % премикса, причем доля пастообразного корма сокращается до 30 %. Для зимнего выращивания сеголетков размещают в тех же садках и при той же плотности посадки. Суточный рацион кормления зависит от температуры воды: при температуре 7–8 °C суточный рацион составляет 0,5–1 %, при 9-11 °C — 1–2 %, при 12–13 °C — 3 % массы рыбы. Для кормления используют те же корма, что и в летний период. Можно использовать также фарш из свежей и мороженой рыбы, добавляя в него 1 % поливитаминного премикса, или комбикорма рецептов СБ-1 и СБ-3.
При содержании в садках, установленных в водоеме-охладителе электростанций сеголетки активно питаются и за осенне-зимний период вырастают на 15–20 %.
Товарных двухлетков канального сома выращивают в садках площадью 16–24 м2, изготовленных из дели с ячеёй 14–20 мм. Посадку годовиков в садки производят в марте-апреле. Плотность посадки 350 шт./м2. Масса посадочного материала 15–20 г. Для кормления используют сухой комбикорм, упомянутых выше рецептов, а также пастообразные корма, в которые входят говяжья селезенка, фарш из свежей или мороженой рыбы с добавкой 1 % премикса. Частота кормления-2 раза в день-утром и вечером. Суточный рацион-4-5% массы рыбы. При продолжительности выращивания около 6 мес. двухлетки достигают массы 400 г, выживаемость составляет 80 %, а выход продукции — 90-120 кг/м2. В бассейнах площадью до 220 м2 плотность посадки годовиков сома составляет 200–250 шт./м2 (150–190 шт./м3), водообмен 4–6 раз в час. При температуре 28–29 °C, хороших гидрохимических показателях воды, конечная масса товарных двухлетков составляет 500–700 г.
Выращивание осетровых рыб
Основным объектом товарного выращивания осетровых в рыбоводных хозяйствах на теплых водах является бестер — гибрид белуги и стерляди. Он обладает хорошим темпом роста, высокой жизнеспособностью и широкой экологической пластичностью. Его можно легко приучать к питанию искусственными кормами. Самцы бестера созревают в возрасте 3–4 года, самки — в возрасте 5–7 лет.
В последние годы широкое распространение в товарном осетроводстве получил сибирский (ленский) осетр. В естественных условиях эти рыбы обитают в суровых условиях короткого вегетационного периода, длительной зимовки, низкой кормовой обеспеченности Они могут питаться при низких зимних температурах, в том числе подо льдом. Ленский осетр в природных условиях становится половозрелым при массе 1–3 кг (возраст 9-18 лет), нерест проходит в июне-июле при температуре воды 14–18 °C. При выращивании в хозяйствах на теплых водах значительно ускоряется половое созревание осетра: самцы становятся половозрелыми в 3–4 года, самки — в 5–7 лет. Нерест осуществляется в апреле-мае. Технологии разведения и выращивания бестера и ленского осетра очень близки. Эти рыбы хорошо растут при температуре 15–25 °C. При повышении температуры за пределы 25 °C рост осетровых замедляется, хотя эти рыбы хорошо переносят температуру воды до 27–30 °C. Гибель начинается при 34–35 °C. Бестер и ленский осетр хорошо растут на искусственных кормах, в том числе на сухих гранулированных. В хозяйствах на теплых водах осетровые достигают массы 1,5–2,0 кг в возрасте 3–4 годов.
Технологическая схема разведения осетровых при полноцикличном культивировании включает содержание производителей, регулирование половых циклов и стимулирование полового созревания, получение икры и молок, оплодотворение и инкубация икры, выдерживание и подращивание личинок, выращивание молоди и посадочного материала, отбор и выращивание племенных рыб, формирование маточного стада, выращивание товарной рыбы. При неполном цикле выращивания осетровых в хозяйствах привозят подрощенную молодь массой не менее З г е осетровых рыбоводных заводов. В некоторых случаях рыбоводный цикл начинается от икры или личинок. Выращивание и содержание ремонтных групп и производителей осуществляют в садках и бассейнах. Размеры садков — до 24 м2, бассейнов-10-15 м2. Бассейны могут быть прямоточные или круглые. Глубина воды в садках — до 2 м, в бассейнах — 1 м. Конечная плотность посадки может составлять 50–80 кг/м2 при среднегодовом приросте 2-4-летков 1–1,2 кг, более старших возрастных групп- 1,5–2 кг. Плотность посадки племенных групп осетровых должна быть в 2 раза меньше, чем при товарном выращивании рыбы, не более 25–40 кг/м2.
При повышении температуры воды до 24 °C необходимо в бассейны подавать более холодную воду из естественных водоемов. Водообмен в бассейнах должен осуществляться не менее 3 раз в час. Ремонтные группы и производителей кормят гранулированным кормом РГМ-5В ОПК-1 или другими аналогичными кормами с размером гранул 4,5–8 мм. Суточные нормы кормления зависят от массы рыб и температуры воды (табл. 106).
Таблица 106. Суточная норма кормления производителей ленского осетра, % массы тела
| Масса рыбы, г
Температура воды, °С | 400-800 | 800-1500 | свыше 1500
12 | 2,1 | 1,7 | 1,5
18 | 3,2 | 2,7, | 2,2
21 | 4,0 | 3,2 | 2,6
25 | 5,0 | 3,7 | 3,3
Может быть рекомендован также пастообразный корм, состоящий из рыбного фарша (50 %), рыбной муки (13 %), мясокостной муки (7 %), кровяной муки (5 %), гидролизных дрожжей (8 %), шротов льняного и подсолнечного (5 %), пшеничной муки (2 %), фосфатидов (6 %), масла растительного (2 %), рыбьего жира (1 %) и витаминного премикса (1 %). Величина суточного рациона пастообразного корма для младших ремонтных групп составляет 20–30 % массы рыбы, для старших-от 4 до 10 %, зимой — 2–4 % массы рыбы. Осетровых кормят 4 раза в день в теплое время года и 1–2 раза в холодный период.
В хозяйствах на теплых водах производители созревают в период с октября по апрель. Икру от них можно получать при температуре 11–18 °C (оптимальная 13–16 °C). Регулируя температуру воды, можно получить готовых производителей к нересту в удобные сроки. Для завершения полового созревания и овуляции производителям делают гипофизарные инъекции гипофизом осетровых рыб или карпа (доза вдвое больше). Норма гипофиза осетровых для самок — 2-А мг/кг массы, для самцов — 2 мг/кг массы тела. Перед инъецированием самок и самцов рассаживают в разные бассейны размером 2 × 2 м. Готовность самок к овуляции икры определяют визуально. При массажировании брюшной полости из генитального отверстия должна появляться икра. Первую порцию икры получают путем отцеживания. Затем самку помещают в специальный станок и делают на брюшной части тела разрез длиной 5–7 см. Через разрез получают примерно половину икры, а оставшуюся часть извлекают из полости тела ложкой или рукой. После удаления икры разрез зашивают капроновыми или шелковыми хирургическими нитками с помощью хирургической иглы. Шов срастается за 1–2 мес. Прооперированных самок содержат в бассейнах с гладким дном. Для осеменения икры берут молоки от трех самцов. Их отцеживают катетером в чистый сухой стеклянный бюкс с крышкой и хранят в холодильной камере. Икру оплодотворяют полусухим методом при разбавлении молок в 100–200 раз, в зависимости от концентрации спермиев в эякуляте. В течение 3–5 мин. икру и молоки перемешивают круговыми движениями, затем приливают воду, вновь перемешивают и сливают. После промывания икру помещают в аппараты для обесклеивания или в таз емкостью 5-10 л. К икре приливают воду, в которую внесены тальк или тонкий речной ил и перемешивают. Отмывка от клейкости считается законченной, если в течение 5 мин. икринки не приклеиваются одна к другой или к предметному стеклу.
Икру инкубируют в аппаратах Ющенко или "Осетр". Свободных эмбрионов выдерживают в лотках или квадратных бассейнах в течение 12–14 сут. при температуре 14–15 °C и 10 сут. при температуре воды 18 °C при плотности посадки 3–5 тыс. шт./м2. Выживаемость личинок составляет 60 % при водообмене 30 мин. и температуре воды 17–20 °C. Начало активного питания наступает при массе личинок 35 мг. Хорошим ориентиром начала кормления служит исчезновение меланиновой пробки. При задержке кормления у личинок появляется агрессивность: они кусают одна другую за грудные плавники, повреждая их. Личинок кормят стартовыми кормами СТ-07 или СТ-4АЗ (табл. 107).
Таблица 107. Рецепты комбикормов для молоди осетровых рыб, %
Компоненты | СТ-07 | СТ-4А3
Мука рыбная | 20 | 35
Мука кровяная | 15 | 4
Обрат сухой | — | 5
Дрожжи БВК на парафинах нефти | 20 | 5
Шрот соевый | — | 15
Шрот подсолнечниковый | — | 6
пшеница | — | 8
Ферментолизат БВК | — | 14
Гидролизат криля | 7 | -
Казеинат натрия | 20 | -
Премикс ПФ-2В | 2 | 1,5
Рыбий жир | 8 | -
Фосфатиды | 8 | -
Хлористый натрий | — | 0,5
Протеин | 54 | 54
Жир | 18 | 9
Клетчатка | 0,2 | 1,2
К искусственному корму добавляют 10–15 % живого корма (науплии артемии салина, олигохеты, пресноводный зоопланктон), особенно в течение первого месяца жизни. В первый месяц личинок и мальков кормят круглосуточно через 2 ч до полного насыщения. После того, как молодь достигнет массы 3 г частоту кормления сокращают и кормят через 3–4 ч. Размер кормовых частиц должен соответствовать массе молоди. Для сеголетков массой 5—50 г суточная норма составляет 5–7 %, свыше 50 г- 3,5 % к массе тела. При выращивании в садках бестера и ленского осетра суточная норма корма должна быть увеличена на 30 %. Подращивание мальков до массы 1 г длится 50 сут., до 3 г — 70–80 сут. при водообмене 3 раза в час и выходе 50 %. При массе 3 г молодь пересаживают в садки и бассейны.
Плотность посадки в бассейны площадью 10–15 м2 составляет 400 шт./м2, в садки — 300 шт./м2. В конце периода выращивания осенью сеголетки осетровых достигают массы 60-100 г при выживаемости 50–60 % (от молоди массой 3 г). В зимний период сеголетков содержат при плотности посадки 200 шт./м2. Товарных двухлетков осетровых рыб выращивают при плотности посадки 50-100 шт./м2, а трехлетков при плотности посадки 25–50 шт./м2. В бассейнах плотность посадки годовиков должна быть меньше, чем в сетчатых садках, так как бассейны сильнее загрязняются экскрементами и остатками корма. Полный водообмен должен осуществляться 2–3 раза в час. Рыбу следует кормить гранулированными комбикормами БМ-1АЗ и ПБС-4. Суточная норма гранулированного комбикорма составляет 5-10 %, а пастообразного — 10–15 % массы рыб. Рыб кормят 2–3 раза в сутки.
Рыбопродуктивность составляет 25–30 кг/ м2.
Выращивание рыб в поликульуре
В последние годы в садковом и бассейновом тепловодном рыбоводстве стали широко применять поликультуру. К карпу и канальному сому, например, подсаживают 10–20 % годовиков растительноядных рыб (толстолобиков), которые отфильтровывают из воды пылевидные частицы корма и естественный корм (зоопланктон и фитопланктон). Рыба в возрасте двух лет является посадочным материалом для зарыбления водоемов-охладителей электростанций или реализуются вместе с карпом как товарная рыба.
В водоемах-охладителях электростанций товарную рыбу выращивают по нагульному пастбищному типу. Их зарыбляют крупным посадочным материалом. Основными объектами зарыбления являются растительноядные рыбы, которых в качестве посадочного материала выращивают в специализированных рыбопитомниках. Зарыбление проводят сеголетками массой не менее 30–50 г или двухлетками массой не менее 100 г, что дает более значительный эффект, поскольку эти рыбы недоступны хищникам. Плотность посадки сеголетков составляет 200–300 шт./га. При зарыблении водоемов двухлетками или двухгодовиками плотность посадки рыб зависит от биомассы фитопланктона и зоопланктона (табл. 108).
Таблица 108. Плотность посадки растительноядных рыб в зависимости от биомассы фитопланктона и зоопланктона.
Биомасса, г/м 3 | Плотность посадки шт./га
Фитопланктон | Зоопланктон | Белого и пестрого толстолобиков | Пестрого толстолобика
до 1,5 | 1,5–2,0 | до 60 | 50
3,0 | 2,5–3,0 | до 120 | 75
5,0 | 4,0–5,0 | до 200 | 100-125
6-8 | 6-8 | 250-300 | 150-200
За 3–4 года выращивания растительноядные рыбы достигают массы 10–15 кг. За счет растительноядных рыб рыбопродуктивность водоемов-охладителей может достигать 3,0–6,5 ц/га. Вылов растительноядных рыб из водоемов-охладителей площадью 1,6 тыс. га и более, осуществляется тралами, закидными и ставными неводами. Наибольший эффект получают при использовании электроловильных комплексов ЭЛУ-4М и ЭЛУ-6. Они включают 2 буксирных катера БМК-130, плавающую площадку типа "катамаран", две буксируемые в кильватере лодки ЛЛХ-5.5. Комплекс оснащен электростанцией АБ-4, емкостью для выловленной рыбы, помещением для обогрева работающих в зимнее время и сигнальными приборами для работы в ночное время. В летнее время, когда рыба активно перемещается в водохранилище, в комплексе с ЭЛУ-6 применяют ставные крупноразмерные сети. Их устанавливают впереди по направлению движения электротрала. Это позволяет перекрыть рыбе пути выхода из зоны действия электрического тока.
Новыми перспективными объектами культивирования в водоемах-охладителях электростанций является представители рода Ictiobus семейства Jatostomidae (чукучановые): большеротый и малоротый буффало, которые образуют легко облавливаемые скопления. Они питаются зоопланктоном и, в меньшей степени, бентосом и детритом. Этих рыб целесообразно использовать для зарыбления водоемов-охладителей совместно с толстолобиками и белым амуром.
УСТАНОВКИ С ЗАМКНУТЫМ ЦИКЛОМ ВОДООБЕСПЕЧЕНИЯ
Садковое рыбоводство на пресных водах с естественной температурой воды
Основным принципом при выборе рыб для выращивания в садках является их способность расти и развиваться в характерных условиях садков. Главные условия, которым должны отвечать объекты, следующие: приспособляемость к ограниченному пространству; способность активно принимать и максимально использовать комбикорма; способность расти и развиваться в условиях плотной посадки и достигать массы за минимальный период времени.
Выбор объектов садкового рыбоводства зависит от водоема и качества водной среды. Водная среда определяется экосистемой водоема и гидрологическим режимом. По этой, причине следует особенно тщательно выбирать водоем и место размещения в нем садков. Необходимо учитывать не только влияние условий среды на рыб, но и реакцию экосистемы на садковое выращивание рыбы. При выращивании рыбы в садках применяются комбикорма, тем самым в водоемы поступает много органических веществ, что способствует их эфтрофированию. Поэтому в водоеме следует размещать такое количество садков и вносить такое количество органических веществ, которое они могут полностью утилизировать.
Наиболее благоприятные условия для садкового содержания рыбы создаются в проточных водоемах, где в садки приносится много кормовых организмов, и быстро удаляются продукты метаболизма рыб. В проточных водоемах плотность посадки рыбы в садках может быть выше, чем в непроточных. В непроточных водоемах существуют внутренние течения, связанные с турбулентным перемешиванием воды, разностью температуры разных слоев воды и другими причинами. Они обеспечивают в садках смену воды 4 раза в час. Улучшает режим среды в садках также ветровое перемешивание воды, а также перемешивание воды, вызываемое движением рыбы.
Для размещения садков можно использовать озера, водохранилища, карьеры, водоемы комплексного назначения и другие водоемы с водой, соответствующей ОСТу для рыбоводных хозяйств. Основными показателями, определяющими пригодность водоема для рыбоводных целей и подбор объектов культивирования являются: глубина, течение, температура, содержание в воде кислорода, рН, загрязненность, окисляемость, содержание углекислоты, нитратов, нитритов, аммонийных соединений, сульфатов, хлоридов, удобство подъезда, возможность электроснабжения, наличие площадей для береговых сооружений.
Течение воды в местах установки садков не должно превышать 0,5 м/с. Важным условием для выбора расположения садкового хозяйства является качество воды в различное время года. Решающее значение имеет поступление таких питательных веществ, как азот и фосфор, значительно влияющих на эфтрофирование водоема, а также содержание в воде кислорода. Предельный уровень кислорода для карпа должен быть не менее 5,0 мг/л, для форели- 7 мг/л. Водоемы должны быть с хорошим перемешиванием вод или с максимально глубоким эпилимнионом.
Садковые сооружения можно разделить на два типа: стационарные и плавучие. К стационарным относятся сооружения на сваях, шестах, вбитых в дно. Садки располагаются в виде линий, расположенных перпендикулярно берегу. Между двумя линиями садков устраивают деревянный настил, выдерживающий обслуживающий персонал, автомашины, небольшие грузы и кормораздаточные механизмы. Стационарные садковые линии удобны в обслуживании. Их недостатком является быстрая эфтрофикация участка водоема с садковыми линиями, загрязнение водной акватории садковых линий и ухудшение гидрологического режима, что вызывает необходимость периодического перемещения садковых линий на новые участки. При стационарном расположении садков необходим постоянный или слабо изменяемый уровень воды в водоеме и наличие течения.
Плавучие садки являются в настоящее время также широко распространенным типом садковых сооружений. Садки удерживаются на плаву при помощи бочек, труб, пенопластовых блоков, поплавков и других плавучих средств. Каркас садков представляет собой жесткую раму. Для ее изготовления используют металлические и полиэтиленовые трубы диаметром от 10 см, которые удерживают сетную емкость объемом 10–50 м3. Садки могут быть свободно плавающими, не связанными друг с другом или размещенными группами, линиями для удобства их обслуживания с лодки. Группы садков соединяют между собой подвижно, чтобы избежать деформации каркаса. В случае необходимости весь комплекс садков можно перевести в другое место с благоприятным гидрохимическим режимом. Такая конструкция позволяет осуществлять быстрый монтаж и демонтаж садков. При садках может быть рабочая платформа или все рабочие процессы осуществляются только с передвижных плавучих средств (лодки, катера, плоты и др.). Наиболее удобны в эксплуатации плавучие садки с рабочей площадкой. Этот тип сооружений позволяет оптимально использовать особенности водоемов, поскольку их легко перемещать с одного места на другое. Наличие площадки позволяет осуществлять все рабочие операции с наименьшими затратами труда.
Плавучие садки с рабочей площадкой и настилом могут соединяться с берегом. В этом случае требуется выбор благоприятных мест у берега с большой глубиной и удобной прибрежной зоной. На настиле могут размещаться бункер для хранения кормов и производственные помещения, а также средства малой механизации и рыбоводный инвентарь.
Садки могут быть различных форм и размеров. При выборе размера садка учитывают удобство работы с ним, доступность любого участка садка. Садки приходится периодически извлекать из воды для очистки от обрастаний и ремонта.
Расстояние между дном водоема и дном садков должно быть не менее 1 м, чтобы накапливающиеся на дне продукты обмена не вызывали ухудшения кислородного режима в садках. Глубина садка зависит от глубины водоема, кислородного режима и других факторов, однако садки глубиной более 2 м трудно обслуживать. Сверху садки закрывают сетными крышками для защиты рыбы от птиц и для создания затененных участков. Садковые сооружения крепят якорями ко дну. Минимальное расстояние от растительности должно быть не менее 50 м.
В карповых садковых хозяйствах для обеспечения условий самоочистки отношение площади садков к площади водоема принимается не менее чем 1: 1000.
При организации садкового хозяйства на берегу водоема располагают базу для размещения механических средств, складские помещения для хранения кормов, инвентаря и оборудования, мастерскую по ремонту оборудования, бытовые помещения, плавучие средства для обслуживания садковых сооружений, пирс для маломерных плавсредств.
Садковые хозяйства должны быть механически и технологически унифицированы. Хорошо зарекомендовала себя серийно выпускаемая садковая линия ЛМ-4, которая предназначена для выращивания товарной рыбы и рыбопосадочного материала на незамерзающей акватории водоемов. Она имеет длину 215 м, ширину 14 м, площади садков составляет 1040 м2, а площадь одного садка-10 м2. Корм раздают кормораздатчиком РГК-700, смонтированном на базе шасси Т-16М. Он доставляет гранулированный комбикорм со склада к кормораздатчикам, установленным на садковых линиях.
Садковое выращивание посадочного материала или товарной рыбы основано на комбинированном методе. Зарыбление садков должно осуществляться подрощенной молодью или посадочным материалом из прудовых или индустриальных хозяйств. При выращивании посадочного материала радужной форели в садках их зарыблении подрощенной молодью осуществляется после того, как температура воды в водоеме опускается ниже 20 °C. Это происходит обычно в августе. При плотности посадка 350–500 шт./м3 масса сеголетков за 90-120 дней выращивания достигает 10–15 г. Кормление проводят гранулированным кормом. Зимнее содержание форели в садках происходит успешно, если температура воды не опускается ниже 2–3 °C. Плотности посадки сеголетков массой 5-10 г должна составлять 500–650 шт./м3, массой свыше 10 г-200-250 шт./м3. При температуре воды более 2 °C и регулярном кормлении за 120–130 суг. зимнего содержания масса форели увеличивается в 2–3 раза.
При товарном выращивании форели зарыбление садков осуществляют после таяния льда при положительной температуре воздуха. Масса годовиков при зарыблении садков должна быть не менее 30–40 г, средняя плотность посадки — 100 шт./м3. В водоемах, где в течение длительного периода сохраняются хорошие условия среды, плотность посадки составляет 150–200 шт./м3. Конечная рыбопродукция должна составлять 20 (при 100 шт./м3) или 50 кг/м3 (при 200–250 шт./м3). Продолжительность выращивания составляет 150–180 сут.
В процессе выращивания форель кормят гранулированными кормами: при массе рыб до 50–70 г размер гранул должен быть 3 мм, затем до конца выращивания — 4,5–6 мм. При температуре 13–18 °C суточная норма кормления составляет 3–4 % массы рыбы, при 20 °C — 1 %. Рыб кормят 2–3 раза в день. Если используют пастообразный корм на основе сорной рыбы, то следует вводить поливитаминный премикс. При правильном кормлении кормовые затраты гранулированного корма составляет 2–2,5 кг на 1 кг прироста рыбы, пастообразного — 4–5 кг. В процессе выращивания тщательно контролируют гидрохимический и температурным режимы. При повышении температуры воды свыше 20 °C следует переместить садки в другое место водоема с интенсивном водообменом или обеспечить подачу более холодной воды из нижних горизонтов водоема. При обрастании садков рыбу следует пересадить в запасные садки, а заросшие просушить и очистить от высохших водорослей.
Контроль за темпом роста и эпизоотическим состоянием рыбы осуществляют через 2 недели. В течение производственного цикла проводят не менее 2 сортировок форели. После достижения частью форели товарной массы ее отделяют и отправляют в реализацию.
Озерного лосося, стальноголового лосося, палию, кижуча выращивают в садках по той же технологии, что и радужную форель. Для выращивания товарного карпа используют садки размером до 100 м2, глубиной до 2–3 м. Садки зарыблять следует весной при температуре 8-10 °C. К карпу следует подсаживать годовиков белого толстолобика, гибрида белого и пестрого толстолобика массой 20–30 г и более в количестве 10–15 % от посадки карпа. Поликультура в садках позволяет более полно использовать естественную кормовую базу и комбикорм рецептов РГМ-8В, 16–80 и др., аналогичного состава. Средняя масса двухлетков карпа в конце периода выращивания должна достигать 300–500 г, трехлетков — не менее 500 г. Двухлетки толстолобика, достигшие массы 150–200 г, могут в дальнейшем быть использованы для зарыбления естественных водоемов.
Разведение рыбы в установках с замкнутым циклом
ВОДОСНАБЖЕНИЯ
Установка с замкнутым циклом водоснабжения (УЗВ) включает рыбоводные емкости, устройства для очистки и аэрации воды, кормораздатчики, установку для подогрева и охлаждения воды, приборы для контроля и управления водной средой. Если источник воды не отвечает рыбоводным требованиям (например, водопроводная хлорированная вода, артезианская вода, содержащая железистые и серные соединения), то вводится блок водоподготовки.
В качестве рыбоводных емкостей используют небольшие круглые или квадратные бассейны, бассейны-силосы с гладким внутренним покрытием. Их производят обычно из органического стекла, пластмассы или листового металлы. Бассейны располагают под крышей для удобства эксплуатации. Каждая емкость имеет самостоятельный подвод воды, при необходимости также кислорода и воздуха, а дренажная система может быть общей. Круглые и квадратные бассейны имеют преимущество перед вытянутыми прямоугольными, так как в них отсутствуют слабоомываемые водой зоны, которые образуются в углах, где скапливаются продукты метаболизма и несъеденный корм, вызывающие ухудшение среды и, как следствие, снижение темпа роста рыбы. В круглых и квадратных бассейнах, а также бассейнах-силосах твердые вещества собираются в центре или специальном конусовидном приемнике, откуда легко удаляются с помощью дренажной трубы.
В круглых и квадратных бассейнах поддерживается круговое течение определенной скорости, обеспечивающее равномерное распределение кислорода и самоочистку. Круговое движение воды способствует правильной ориентации и активному плаванию культивируемых объектов. Расход воды регулируют специальными кранами.
В большинстве замкнутых систем выходящая из бассейнов вода попадает в первичный отстойник. Вода должна поступать и выходить из отстойника вблизи поверхности, чтобы оседающие примеси не поступали в воду. Вода поступает вблизи поверхности, а вытекает по периферии, обеспечивая максимальное время пребывания воды в отстойнике. Вместимость отстойника должна быть достаточной для того, чтобы уменьшить скорость потока. В дне отстойника располагается отверстие для удаления взвеси. Удалять из поступающей воды взвешенные вещества можно также с помощью механической фильтрации. Особенно широкое распространение получили песчаные и гравийные фильтры. Хорошие результаты дают и диатомовые фильтры, но они быстро засоряются из-за малого размера пор диатомового наполнителя. Правильно отрегулированный механический фильтр может эффективно задерживать взвешенные вещества, но не в состоянии удалять растворенные продукты обмена. Удаление таких веществ — главная задача блока очистки.
Принцип действия блока очистки, его конструктивные особенности, зависят от положенного в его основу метода очистки. Большинство применяемых методов делятся на 4 группы: физические, химические, физико-химические и биологические. Наиболее эффективным являются биологический метод с использованием биологических фильтров и аэротенок. В них очистка воды осуществляется с помощью прикрепленных к наполнителю микроорганизмов в виде биопленки и взвешенного активного ила. Основным недостатком является их большие габариты. Для нормальной работы установки их объем должен превышать объем рыбоводных емкостей в 7-10 раз. Среди биофильтров получили распространение следующие типы: капельные, погруженные, вертикальные и с вращающимися дисками. В капельных биофильтрах вода поступает сверху и под действием силы тяжести проходит через биофильтр со скоростью, не позволяющей покрывать наполнитель, но все внутренние части фильтра остаются постоянно смоченными. Крупные капельные фильтры оборудованы вращающимися устройствами, которые равномерно распределяют воду над наполнителем (гравий, ракушечник). Капельные биофильтры могут размещаться в несколько ярусов (полочный биофильтр).
Погруженные биофильтры по конструкции сходны с фильтрами грубой очистки, но в них есть среда, на которой развиваются бактерии. Вода входит с одного конца фильтра, проходит через наполнитель и выходит с противоположного конца.
В вертикальных фильтрах вода поступает в нижнюю часть, проходит вверх через наполнитель и выходит из верхней части. В этот фильтр может быть встроен фильтр грубой очистки, который располагается ниже уровня поступления воды.
Во всех биофильтрах происходит накапливание накапливанию взвешенного вещества по мере того, как масса бактерий отделяется от стенок и наполнителя. В связи с этим в днище фильтра устраивают сливной клапан, через который по мере необходимости удаляется накопившийся осадок. В фильтре с вращающимися дисками наполнитель перемещается через воду, в то время как в погруженных, капельных и вертикальных фильтрах он неподвижен.
Фильтр состоит из большого числа вращающихся пластин, насаженных на общую ось. На этих пластинах развиваются бактерии. Попеременное поступление в емкости воды загрязненной продуктами обмена и воздуха обеспечивает постоянное снабжение бактерий питательными веществами и кислородом. Из таких установок наиболее известны "Штелерматик" и "Биорек". Разработаны блоки биологической очистки воды производительностью 10, 20, 80 м3/ч оборотной воды. В качестве наполнителя в них используется перфорированная пластмассовая пленка. Верхняя часть биофильтра орошаемая, а нижняя — погружаемая. Фильтр имеет зоны нитрификации и денитрификации. На базе этих фильтров разработаны установки с замкнутым циклом водоиспользования для выращивания рыбы. Задачей блока регенерации воды является насыщение ее кислородом, поддержание заданной температуры и регулирование рН. Для насыщения воды кислородом применяются аэраторы и оксигенаторы. В первом случае используется кислород воздуха, во втором — чистый кислород. Оксигенатор представляет собой вертикальный бак, в который под давлением 1,5–2,5 кг/см2 подается кислород, сверху поступает вода, в виде брызг, слабых струй, либо если оксигенатор с наполнителем, омывает его, собирается в нижней части и подается на выход. Еще один вариант оксигенатора состоит из цилиндра диаметром 1,6 м, высотой 8 м. Поступающая в него вода, через распределители падает на решетчатую деревянную площадку, которая дробит воду на мелкие струи. Кислород в оксигенарор подается снизу и распыляется через мелкопористые керамические блоки. Такой оксигенатор имеет хорошую эффективность использования кислорода — до 96 %. При единовременной ихтиомассе в установке 10 т расходуется 3 м3/ч кислорода. Насыщенная кислородом вода из оксигенатора поступает в рыбоводные бассейны из расчета 60-110 м3/ч воды на 1 кг ихтиомассы. На очистку направляется не вся отводимая из бассейнов вода, а только 20–50 %, остальная, минуя очистные сооружения, поступает в приемный бак перед насосами.
Температура воды в установке составляет 22–25 °C. Содержание кислорода в воде на входе в бассейны 25–30 мг/л, на выходе — не менее 6 мг/л. Удельный расход кислорода составляет 0,04- 0,08 мгО2/с на 1 кг ихтиомассы. Для поддержания нужной температуры воды используют бойлеры или электронагревательные приборы.
Качество воды в УЗВ необходимо контролировать путем отбора проб из выходящей после фильтра воды ежедневно. При ухудшении очистки воды в биофильтре необходимо изменить количество воды, проходящей через него, увеличить подачу воздуха или кислорода, добавить наполнитель или уменьшить плотность посадки рыбы. В оборотной воде могут аккумулироваться такие токсичные для рыб вещества как аммоний (NH4), нитриты (NO2), нитраты (N03). Наибольшую опасность для рыб представляет свободный аммиак (NH 3) (табл. 109). Для устранения токсичных веществ в установки вводят узел денитрификации.
Таблица 109. Количество свободного аммиака образующегося в воде в зависимости от рН и температуры воды, %.
| Температура воды, °С
рН | 5 | 10 | 15 | 20 | 23 | 25
6,0 | 0,0125 | 0,0186 | 0,0274 | 0,0397 | 0,05 | 0,06
6,5 | 0,0395 | 0,0586 | 0,865 | 0,125 | — | -
7,0 | 0,394 | 0,586 | 0,859 | 1,24 | 0,49 | 0,57
8,0 | 1,23 | 1,83 | 2,67 | 3,82 | 4,70 | 5,38
8,5 | 3,08 | 5,60 | 8,00 | 11,10 | 13,50 | 15,30
В некоторых УЗВ используют вторичный отстойник или осветлитель. По конструкции он не отличается от первичного и служит для сбора твердых взвешенных веществ, прошедших через биофильтр. При наличии устройств по очистке воды от взвешенных веществ перед биофильтром и после него количество взвешенных частиц в рыбоводных бассейнах не превышает 25 мг/л, что не вызывает ухудшения физиологического состояния у рыб.
Можно удалить нитраты, фосфаты и взвешенные частицы, включив в систему водные растения. Блок с ними располагают за биофильтром или окончательным осветлителем, либо помещают их в осветлитель. Для этого можно использовать водный гиацинт (Eichornia erassipes) или водяной китайский каштан (Eleocharis dulcis). Каждое из этих растений эффективно извлекает из воды различные вещества.
По качеству вода должна соответствовать требованиям ОСТа для воды, используемой в прудовых форелевых и карповых хозяйствах. По азотистым соединениям и количеству взвешенных частиц при рН 6,5–7,5 к ней предъявляются следующие требования (табл. 110).
Таблица 110. Количество азотистых соединений и взвешенных веществ, допустимое в УЗВ, мг/л
Показатель | Карп | Форель
1. Инкубация икры и выдерживание эмбрионов и личинок
NH4-NH3 | 2,0 | 0,5
NO2 | 0,12 | 0,12
NO3 | 5-10 | 5
Взвешенные вещества | 5-10 | до 10
2. Выращивание молоди
NH4-NH3 | 4 | 2
NO2 | 0,2 | 0,12
NO3 | до 60 | до 55
Взвешенные вещества | до 30 | до 20
3. Выращивание товарной рыбы
NH4-NH3 | 6,0 | 2,5
NO2 | 0,3 | 0,2
NO3 | 100 | до 60
Взвешенные вещества | до 60 | до 25
Замкнутые установки для выращивания посадочного материала или товарной продукции могут работать по круглогодичной или полицикличной технологии. Под круглогодичной технологией понимают круглогодичное использование замкнутой установки с целью поочередного производства посадочного материала разных видов рыб. Например, замкнутые установки можно использовать для очередного подращивания радужной форели, карпа, растительноядных рыб и др. При зарыблении установки разноразмерным посадочным материалом можно в течение года осуществлять многоразовый съем продукции. При этом регулируют плотность посадки, которая обеспечивала бы равномерную органическую нагрузку биофильтра.
При полицикличной технологии выращивание осуществляется в несколько циклов, завершающихся конечной рыбной продукцией Например, при 2–3 цикличном производстве товарной рыбы происходит 2–3 кратное зарыбление рыбоводных емкостей посадочным материалом, при этом цикл от зарыбления до выхода товарной рыбы длится от 4 до 6 мес. Полицикличность при производстве посадочного материала обеспечивается регулярным получением потомства от производителей карпа, причем от одних и тех же самок можно получать икру до 4-х раз за сезон. Длительность одного цикла составляет 60 сут. Количество получаемой икры от 60 до 100 тыс. шт.
При производстве посадочного материала карпа целесообразно организовывать хозяйства индустриального типа, которые включают участок выращивания и содержания производителей, участок инкубации и подращивания молоди. При производстве форели цикл выращивания целесообразно начинать с икры, завозимой из других хозяйств.
В автоматизированной линии мощностью 50 т рыбопосадочного материала карпа в год, включающей 6 установок, 1 установка предназначена для содержания и выращивания ремонтных групп и производителей. В установке можно содержать 100 гнезд производителей, что обеспечивает получение 50 млн. шт. икринок или в полицикличном режиме может быть обеспечена работа пяти других установок по выращиванию посадочного материала карпа (табл.111).
Таблица 111. Схема выращивания ремонтных групп и содержания производителей карпа в УЗВ объемом 24 м 3
Масса рыб, г | Продолжительность выращивания, сут. | Количество, шт. | Общая биомасса, кг | Отбор, %
0,0015-1 | 30 | 505 | 0,5 | -
1-50 | 40 | 480 | 24,0 | 50
50-500 | 90 | 240 | 120,0 | 50
500-1000 | 60 | 120 | 120,0 | -
1000–2000 | 120 | 120 | 240,0 | 50*
2000–35000 | 120 | 30 | 105,0 | -
* На этом этапе 30 производителей отбирают, а 30 оставляют на доращивание.
Цикл выращивания от личинки до производителя занимает 460 сут. При этом нагрузка на биофильтр находится в пределах 800-1040 кг. Выращивание молоди до массы 50 мг осуществляется при температуре воды 27–28 °C, плотности посадки 100–200 тыс./м3 и расходе воды 0,05 л/с·кг (аэрация воздухом). При использовании чистого кислорода расход воды может быть уменьшен в 10 раз. Молодь кормят науплиусами артемии салина и стартовым гранулированным кормом РК-С с размером крупки от 0,15 до 0,50 мм в количестве 75 % от массы молоди. Выращивание длится 10 сут. Режим кормления следующий: в первый день личинки получают живой корм в количестве 200 % ихтиомассы, к 10 дню его количество уменьшают до 10 %. За этот период суточный рацион корма РК-С уменьшают с 75 до 25 %. Науплиусы артемии выдают молоди 7–8 раз в сутки, РК-С при ручной раздаче вносят до 48 раз в сутки, при использовании автокормушек — через каждые 5-10 мин. Выращивание молоди массой от 50 мг до 1 г проводит при температуре 27–28 °C, плотности посадки 30 тыс. шт./м3, расходе воды 0,05 л/с·кг. Рыб кормят комбикормом РК-С с размером крупки 0,5–1,5 мм. Суточный рацион постепенно уменьшают с 20 до 8 % массы рыбы. Корм раздают вручную через каждые 30 мин. в течение 18 ч или с помощью кормораздатчиков. При массе молоди 0,3 г можно применять автокормушки "Рефлекс". Бассейны чистят 1 раз в сутки. За 20 сут. выращивания молодь должна достигать 1 г при конечной рыбопродукции 25–30 кг/м3. Выращивание молоди массой от 1 до 10 г проводят при температуре воды 26–27 °C, плотности посадки 5-10 тыс. шт./м3. Применяют комбикорм РГМ-6М, РГМ-5В или 12–80 с размером крупки 1,5–2 мм. Суточный рацион составляет 4–8 % массы тела. Используют кормораздатчики или кормят вручную до 18 раз в сутки. Цикл выращивания длится 20 суток. Выращивание молоди до 50 г проводится при температуре 24–25 °C, плотности посадки 2,0–2,5 тыс. шт./м3. Применяют комбикорма РГМ-5В или 12–80 с диаметром 3,2мм. Суточный рацион составляет 2,5 % ихтиомассы, корм вносят до 12 раз в сутки. За 30 сут. выращивания конечная рыбопродукция может достигнуть 100–120 кг/м3.
Посадочный материал радужной форели выращивают в упомянутых выше бассейнах или установке "Биорек". Инкубация икры происходит при температуре 9,5 °C, а со стадии пигментации глаз-при 12 °C. Выдерживание свободных эмбрионов осуществляется при этой же температуре воды и насыщении воды кислородом до 95 %. В установке "Биорек" температуру воды поддерживают с помощью терморегулирующего устройства в пределах 14–17 °C. Водообмен должен обеспечивать на входе в бассейн содержание кислорода не менее 25 мг/л, а на выходе не менее 7 мг/л. Расход воды должен обеспечивать необходимые условия насыщения кислородом (табл. 112).
Таблица 112. Расход воды на 100 кг форели при температуре воды 16 °C
| Расход воды
Масса форели, г | м 3 /ч | л/с
до 0,5 | 5,5 | 1,53
1,0 | 5,3 | 1,47
5,0 | 4,4 | 1,22
20,0 | 2,6 | 0,73
50,0 | 2,2 | 0,61
Скорость роста форели в установках зависит от качества кормов и технологии кормления (табл. 113).
Таблица 113. Режим кормления молоди
Масса, г | Количество кормлений в день, шт.
до 2 | 10
5 | 8-10
10 | 8
40 | 6
- | 3-5
За основу можно взять следующие сроки выращивания молоди форели в УЗВ: от малька до массы 12 г-75 сут., от 12 г до 50 г-65 сут. Отход рыбы за эти периоды выращивания соответственно 10 и 5 %. Корм раздают в равных частях в течение светлого времени суток. Максимальная рыбопродукция форели с 1 м3 составляет 100 кг.
ВОСПРОИЗВОДСТВО РАДУЖНОЙ ФОРЕЛИ И ДРУГИХ ЛОСОСЕВЫХ РЫБ В РЫБОВОДНЫХ ИНДУСТРИАЛЬНЫХ ХОЗЯЙСТВАХ
Подбор производителей радужной форели в условиях индустриального рыбоводного хозяйства
При выращивании радужной форели в условиях индустриального хозяйства применяют однократный массовый отбор с высокой напряженностью. На племя отбирают наиболее крупных особей и выращивают до полового созревания в обычных производственных условиях индустриального хозяйства. Племенная рыба должна быть из одной партии икры, оплодотворенной спермой нескольких самцов. Родители должны быть одного возраста. Оплодотворенная икра должна быть одного размера с незначительными отклонениями. Молодь следует сортировать в возрасте сеголетка по достижении массы 1,0–1,5 г. Отсортированная молодь содержится в общей емкости.
Характеристика самцов. Потомство самцов, полученное от скрещивания с разными самками, различается как темпом роста, так и выживаемостью. В связи с этим существует проблема отбора и оценки самцов в индустриальном форелеводстве.
Через 30–50 дней активного питания у мальков форели соотношение полов близко 1: 1. В течение первого и второго года жизни проводят сортировки рыб (не менее 3). Они резко смещают соотношение полов в сторону самцов, что обусловлено их более высокой скоростью роста. Это следует учитывать при отборе ремонтных групп.
Самцы в индустриальных условиях содержания созревают в возрасте от 7–9 мес. до 17 мес., но часть самцов созревает в 2 года. Основным критерием массового отбора самцов в маточное стадо является масса и длина. У самцов существует тесная корреляция между массой и длиной тела, массой и высотой тела, рабочей и относительной плодовитостью, объемом эякулята и относительной плодовитостью. В то же время такие показатели как объем эякулята, концентрация спермиев, их оплодотворяющая способность, время подвижного состояния спермиев не связаны ни с одним из размерных показателей. Поэтому при формировании маточного стада самцов по размерным признакам будет увеличиваться количество самцов с большим объемом эякулята и высокой рабочей плодовитостью, но остаются не известными такие важные показатели, как время подвижного состояния, концентрация и оплодотворяющая способность спермиев. Следовательно, наряду с массовым отбором по размерным признакам необходимо проводить индивидуальный отбор по качеству спермы.
Объем порции эякулята и концентрация спермиев являются объективной характеристикой качества спермы. При этом одним из наиболее важных показателей является концентрация спермиев. В связи с этим для оценки самцов в стаде производителей следует сделать выборку из 10 % рыб и сравнить их по экстерьерным признакам (масса, длина, высота и толщина тела) и продуктивным признакам (объем эякулята, концентрация и время подвижного состояния спермиев).
Далее необходимо провести оценку элитных самцов по качеству потомства — выживаемости эмбрионов и личинок, а также по общей комбинационной способности, то есть по универсальному сочетанию с самками. Оценка качества самцов проводится до массы молоди 1,5 г, причем, чем больше молоди достигнет этой массы, тем лучше племенные качества самцов.
Для индивидуальной оценки самцов используют показатель относительной плодовитости, то есть отношение количества сперматозоидов в объеме эякулята к единице массы тела. Этот способ (при учете размеров тела) позволяет выбрать самцов с наивысшей потенцией и репродукцией. Объем эякулята и концентрация спермиев зависят от момента взятия спермы в нерестовый период, частоты ее получения, генетически обусловленных индивидуальных свойств самцов, условий окружающей среды и содержания. Качество спермы зависит от возраста производителей. Например, 6-ти годовалые самцы дают вдвое больше спермы, чем 4-х годовалые. Первые порции спермы имеют небольшой объем, он постепенно возрастает к середине нерестового периода, а к концу — уменьшается.
Концентрация спермиев снижается с увеличением возраста. Она зависит также от режима отцеживания — чем чаще производится отцеживание, тем она ниже. Подвижность спермиев зависит от индивидуальных особенностей самцов и момента взятия спермы. В середине нерестового периода отмечена максимальная интенсивность и продолжительность подвижности спермиев. Оплодотворяющая способность спермиев зависит от возраста самцов и имеет тенденцию к снижению в нерестовый период. В начале нерестового периода — 95–97 % оплодотворения, в конце — 79–90 %. Кроме того, она зависит от интервала отцеживания. Самцы радужной форели в условиях индустриального рыбоводства продуцируют сперму в течение нерестового периода, который продолжается до 4 мес. При низкой температуре воды промежуток между взятием порции спермы составляет не менее 7 дней.
Таким образом, режим эксплуатации самцов — производителей радужной форели определяется конкретными условиями рыбоводного предприятия с учетом возраста и массы производителей. Во время нерестового периода происходит изменение репродуктивных показателей с постепенным увеличением количества и улучшением качества спермы к середине нереста и последующим снижением. В условиях содержания в относительно холодной воде-7-10 °C отцеживание производят не ранее, чем через 7 дней, в условиях теплой воды — 12–14 °C-через 4–6 дней. При таком режиме может быть получено максимальное количество спермы хорошего качества при сохранении хорошего физиологического состояния самцов.
Характеристика самок. От размера икры форели зависит качество потомства, выживаемость и рост свободных эмбрионов и личинок. Дальнейший темп роста и выживаемость молоди в основном зависит от условий содержания. Темп роста радужной форели в раннем онтогенезе служит одним из критериев индивидуальной оценки самок при подборе в маточное стадо.
Качество икры по рыбоводной оценке радужной форели зависит от индивидуальных особенностей самок, связано с возрастом, племенной особенностью и условиями содержания. Рабочая плодовитость в значительной мере определяется массой самок. С возрастом она увеличивается. У трехлетних самок, по сравнению с двухлетними, диаметр икры увеличивается на 26 %, а масса — на 88 %, у четырехлетних — соответственно на 32 и 114 %, у пятилетних — на 36 и 140 %, у шестилетних — на 48 и 200 %.
Икра одной и той же самки в момент овуляции имеет неодинаковые размеры. С возрастом по мере увеличения размеров икры различия ее сглаживаются. Размер икры самок одного и того же возраста довольно однообразен. Большие различия в размерах говорят о неблагополучном состоянии производителей. В этом случае отмечается повышенный отход.
Возраст самок и самцов радужной форели влияет на качество и количество половых продуктов, оплодотворяемость икры и жизнеспособность потомства на ранних стадиях развития. Наилучшие половые продукты продуцируют самки и самцы среднего возраста. Качество икры зависит от количества жира. Чем больше жира, тем выше жизнеспособность икры, свободных эмбрионов и личинок. Наименьшее содержание жира отмечено у впервые нерестящихся 3-х годовалых самок, у 4-6-ти годовалых рыб оно возрастает, у 7-ми годовалых вновь снижается. Содержание сухого вещества и влаги остается постоянным у всех возрастных групп.
Из более крупной икры развивается более крупное и быстрорастущее потомство. Свободные эмбрионы от более крупной лкры имеют более значительный запас питательных веществ и позднее переходят на активное питание, имея полнее сформировавшуюся пищеварительную систему.
Большинство впервые нерестящихся самок, созревших на предприятиях индустриального типа в 2-х годовалом возрасте, не являются полноценными производителями. Они продуцируют мелкую икру диаметром от 2,4 до 4 мм и массой от 15 до 44 мг. У них повышенный отход икры и много аномально развивающихся эмбрионов. Однако есть и исключения, когда двухлетние самки продуцировали икру диаметром 4,6 мм и массой 50 мг. В рыбоводной практике рекомендуется использовать икру от впервые нерестящихся самок, если масса ее более 40 мг, а содержание жира — не менее 3 мг. Однако, независимо от размеров, икру впервые созревших самок необходимо отцеживать.
Формирование и содержание ремонтно-маточного стада форели
Формирование ремонтного стада форели следует начинать весной в нерестовый период с отбора рыб, обладающих хорошим экстерьером, высоким темпом роста, специфической форелевой окраской с четко выраженными половыми признаками. Икру получают в первой половине нерестового периода, для получения икры от производителей, содержащихся в холодной воде (2-12 °C), используют самок 4-6-годовалого возраста, самцов 3-4-годовалого возраста. Для получения икры от производителей, содержавшихся в теплой воде (8-20 °C), используют самок 2–4 годовалого, самцов 2-3-годовалого возраста. Масса неоплодотворенных икринок должна составлять 50–80 мг, диаметр — не менее 5 мм. Для осеменения икры используют смесь спермы от 2–3 самцов, имеющих объем эякулята не менее 5 мл, активность спермиев не менее 30 с.
Структура маточного стада в теплой воде. В условиях индустриального форелевого хозяйства, снабжающегося теплой водой (8-20 °C), на 1 выбывающего из стада производителя следует отобрать 4 двухгодовика массой 800-1000 г, 8 годовиков массой 150–200 г, 16 сеголетков массой по 50 г, 160 мальков массой 1,5 г.
Основной признак отбора — масса и экстерьер (скорость роста и экстерьер). У ремонтных групп в двухгодовалом возрасте принимается во внимание также качество половых продуктов. У впервые нерестящихся самок масса икринки должна быть не менее 40 мг, рабочая плодовитость — не менее 2 тыс. икринок. Объем эякулята у самцов ремонтной группы должен составлять не менее 5 мл. Сперма — достаточно вязкая с кремовым оттенком.
Каждую возрастную группу ремонта следует выращивать отдельно от других при нормативной плотности посадки с использованием полноценных гранулированных комбикормов.
Структура маточного стада в холодной воде. В условиях индустриального форелевого хозяйства, снабжающегося холодной водой (2-12 °C), на 1 выбывающего производителя должно быть выращено 6 трехгодовиков (4 самки и 2 самца) средней, массой 800-1000 г, 8 двухгодовиков средней массой 500 г, 12 годовиков средней массой не менее 80 г, 24 сеголетка средней массой не менее 30 г и 200 мальков средней массой 1–2 г.
Основной признак отбора — масса и экстерьер. Среди сеголетков и годовиков отбор производится только по массе и экстерьеру, среди двухгодовиков — по этим же признакам с учетом качества спермы у самцов. Объем эякулята должен составлять не менее 5 мл, активность спермиев — 30 с, средняя масса — не менее 500 г. В трехгодовалом возрасте у впервые нерестящихся самок ремонтной группы масса икринок должна составлять 50 мг, диаметр — 4–5 мм, средняя рабочая плодовитость — 2 тыс. икринок на 1 кг массы тела.
Выращивание ремонтной молоди. Инкубацию икры для получения ремонтной молоди проводят в производственных инкубационных аппаратах Аткинса, ИМ или ИВТМ на сетчатых рамках в 1–2 слоя. Таким образом, в аппаратах Аткинса и ИВТМ на 1 рамку размещают 3–5 тыс., в аппарате ИМ — 30 тыс. икринок. В зависимости от источника водоснабжения и качества воды, поступающей в инкубационный цех, применяют песчано-гравийные или иные фильтры, а при необходимости используют бактерицидное облучение воды. Отбор мертвой или неоплодотворенной икры, а также травмированной икры осуществляют при закладке на инкубацию или после наступления стадии пигментации глаз. Отход за инкубацию не должен превышать 20 %.
Свободных эмбрионов выдерживают в производственных условиях при нормативной плотности посадки. Выращивание ремонтной молоди всех возрастных групп следует проводить при оптимальной температуре, личинок-при 12–14 °C, сеголетков и другие возрастные группы-при 14–18 °C. Однако в условиях нерегулируемой температуры воды выращивание ремонтно-маточных групп можно проводить при температуре от 2 до 20 °C, но с меньшим успехом. Количество растворенного в воде кислорода на втоке должно быть на уровне нормального насыщения, на вытоке — не менее 7 мг/л.
Молодь ремонтных групп радужной форели в условиях рыбоводных хозяйств индустриального типа следует выращивать в квадратных или круглых бассейнах с центральным водосливом и круговым движением воды, а также в прямоточных бассейнах (табл. 114). Оптимальная площадь бассейнов-1,5–2,0 м2. Для рыбы в возрасте 1 год и старше целесообразно применять более крупные бассейны. При этом следует создавать условия, при которых качество ремонтной молоди имеет преимущественное значение.
Таблица 114. Условия выращивания ремонтной молоди радужной форели при температуре 12–14 °C
Возрастная группа | Масса, г | Глубина воды, м | Плотность посадки шт/м 3 | Плотноть посадки кг/ м 3 | Расход воды, | л/с·кг | Водообмен, раз/ч
Свободные эмбрионы | 0,08 | 0,05 | 10 | 16 | 0,08 | 5
Личинки | 0,2 | 0,1 | 10 | 20 | 0,05 | 4
Мальки | 0,5–1,0 | 0,2 | 10 | 25 | 0,02 | 2
При средней массе 1,0–1,5 г проводится массовый отбор молоди для ремонтного стада, затем продолжают выращивание до возраста 1 год и вероятной массы к этому времени 200 г. Отход молоди в процессе выращивания не должен превышать 10 %. Дальнейшее выращивание отобранной молоди проводят в иных условиях.
Годовиков-двухлетков ремонтных рыб выращивают при температуре 14–18 °C, то есть при температуре оптимальной для питания и роста(табл. 115).
Таблица 115. Плотность посадки и водообмен при выращивании ремонтной группы радужной форели при температуре 14–18 °C
Масса рыбы, г | Плотность посадки, кг/м | Расход воды, л/с·кг | Интенсивность водообмена, раз/ч
1-5 | 20 | 0,08 | 5,8
5-10 | 30 | 0,07 | 7,6
10-50 | 28 | 0,06 | 6,0
50-100 | 28 | 0,06 | 6,0
100-200 | 33 | 0,05 | 6,0
По достижении молодью возраста 1 г проводят отбор в маточное стадо и продолжают дальнейшее выращивание. При выращивании рыб в условиях оптимальной температуры воды (14–18 °C) самцы достигают половой зрелости в возрасте 1–2 годов, самки — 2 годов. При выращивании производителей форели создают необходимые условия водной среды (табл. 116).
Таблица 116. Плотность посадки и интенсивность водообмена при выращивании производителей радужной форели
Возраст рыб, мес. | Масса рыб, г | Плотность посадки, кг/м | Расход воды, л/с·кг | Интенсивность водообмена, раз/ч
При оптимальной температуре
12 | 200-300 | 15 | 0,05 | 2,7
17 | 400-500 | 25 | 0,05 | 5,4
21 | 700-800 | 25 | 0,04 | 5,8
При температуре ниже оптимальной
12 | 200-300 | 15 | 0,01 | 0,5
17 | 400-500 | 30 | 0,01 | 1,1
21 | 700-800 | 40 | 0,01 | 1,4
Во время нерестового периода из выращенных ремонтных рыб формируют производителей. При выращивании форели в холодной воде (при температуре ниже оптимума) среди двухгодовиков производят отбор в группу будущих производителей и продолжают выращивание их в течение еще одного года. Затем в нерестовый период среди этих рыб формируют производителей.
Структура и состав маточного стада. Маточное стадо, выращенное в воде с оптимальной температурой (14–18 °C), состоит из самок 2–4 годовалого возраста (80 %) и самцов 2–3 годовалого возраста (20 %). Маточное стадо должно иметь резерв 100 % с таким же соотношением полов. Масса 2-х годовалых самок должна составлять не менее 1 кг, самцов — 0,8 кг, масса трехгодовалых самок-1,8 кг, самцов — 1,3 кг. В преднерестовый период самцы и самки должны иметь ярко выраженную брачную окраску, четко реагировать на внешние раздражители. Ежегодно следует обновлять 25 % нерестового стада.
Маточное стадо, выращенное в холодной воде (при температуре ниже 14–18 °C) состоит из самок 3–6 годовалого возраста средней массой 1–3 кг (90 %) и самцов 2–4 годовалого возраста средней массой 0,8–1,5 кг (10 %). Резервный запас самцов составляет 10 %, самок — 50 %. Ежегодно следует заменять 25 % самок и самцов.
Посленерестовое содержание производителей. В межнерестовый период в условиях индустриального рыбоводства производителей форели содержат в круглых и квадратных бассейнах с круговым движением воды размером 2 x 2 и З × З м или в прямоугольных прямоточных бассейнах размером 8 × 2 м и уровнем воды 0,6–0,8 м. Оптимальная температура должна составлять 14–18 °C, возможна более высокая температура — до 20 °C или более низкая, но не менее 7 °C. Уровень растворенного в воде кислорода составляет 9-11 мг/л. Все другие показатели водной среды должны соответствовать ОСТу для воды форелевых рыбоводных хозяйств.
Производителей взвешивают 1 раз в месяц, корректируют суточную норму кормления, контролируют поведение, возникновение заболеваний, реакцию на корм. Бассейны чистят ежедневно, 3 раза в день определяют температуру воды, интенсивность водообмена. Производителей кормят не менее 4 раз в день специализированным гранулированным комбикормом РГМ-8П или продукционным комбикормом РГМ-5В с диаметром гранул 8 мм по суточным нормам, определенным кормовыми таблицами. При содержании маточного стада плотность посадки зависит от индивидуальной массы рыбы и температуры воды (табл. 117).
Таблица 117. Плотность посадки и интенсивность водообмена при содержании маточного стада радужной форели
Возраст рыб, лет. | Масса рыб, г | Плотность посадки, кг/м | Расход воды, л/с·кг | Интенсивность водообмена, раз/ч
При оптимальной температуре
2-3 | 800-1300 | 30 | 0,04 | 4,3
3-4 | 1300–1800 | 40 | 0,04 | 5,8
4-5 | 1800–2300 | 40 | 0,04 | 5,8
При температуре ниже оптимальной
2-3 | 800-1300 | 30 | 0,1 | 1,1
3-4 | 1300–1800 | 40 | 0,1 | 1,4
4-5 | 1800–2300 | 40 | 0,1 | 1,4
Половое созревание производителей, получение икры, инкубация, подращивание личинок, выращивание мальков и сеголетков
Подготовка к нересту и нерест. За 1,5–2,0 мес. До предполагаемого периода полового созревания и нереста увеличивают водообмен до интенсивности, обеспечивающей смену воды в рыбоводной емкости 6–7 раз в час. Температуру воды следует понизить до 6-12 °C, уровень кислорода на стоке должен быть не ниже 7 мг/л. Плотность посадки не должна превышать 40 кг/м3. За 15–20 дней до предполагаемого нереста самцов и самок размещают в прямоточный бассейн, разделенный на отсеки сетчатыми перегородками. Ширина бассейна 1,2 м, длина-10 м и более в зависимости от объема производства, глубина воды — 0,5-
0,6 м. Производителей сортируют по половому признаку и готовности к нересту. В верхние отсеки бассейна размещают самцов, в нижние — самок, таким образом, чтобы подаваемая в бассейн вода сначала поступала к самцам, затем через них к самкам, причем наименее зрелые самки должны размещаться в ближайшие к самцам отсеки. Это положительно влияет на половое созревание самок. Интенсивность водообмена в бассейне должна обеспечивать полную смену воды каждые 10–15 мин., оптимальная температура воды составляет 6-10 °C, уровень кислорода на вытоке-не менее 7 мг/л.
В процессе преднерестового содержания производителей следует ежедневно проверять состояние зрелости самок. Готовность к нересту определяется на ощупь. Зрелая икра легко перемещается в брюшной полости и свободно выделяется при изгибании тела или легком массажировании брюшного отдела по направлению к анальному отверстию. У самок, достигших полового созревания, следует брать икру не позднее следующего дня после определения готовности к нересту. При более длительной задержке снижается качество икры и способность к оплодотворению. Самцы созревают раньше самок, доброкачественность молок сохраняется длительное время и к периоду полового созревания самок обычно бывает достаточно половозрелых самцов.
Икру и молоки у производителей форели получают путем отцеживания. При этом применяют анестезирование производителей. Для этого используют раствор хинальдина в концентрации 1: 10000-15000. 1 мл хинальдина разводят в 15–20 мл этилового спирта и выливают в емкость с 45–50 л воды. Помещенная в этот раствор рыба через 1–3 мин. засыпает. Затем самку споласкивают чистой водой, протирают тканью и получают икру: держа самку левой рукой за хвостовой стебель головой вверх наклонно вдоль руки, правой отцеживают икру, массажируя боковые стороны брюшка от грудных плавников к анальному отверстию. В сухой эмалированный таз собирают икру от 5–8 самок с тем расчетом, чтобы она занимала не более половины объема. Икра должна вытекать ровной струйкой по краю таза с высоты не более 10 см. От каждой самки отцеживают икру на уложенную в таз марлевую салфетку, затем, убедившись в доброкачественности икры, салфетку осторожно извлекают и кладут сверху для приема икры от следующей самки.
Собранную таким образом икру, смешивают с молоками, взятыми в отдельные бюксы от 3–5 самцов. Такой метод позволяет визуально оценить качество икры и спермы и отбраковать неполноценные половые продукты. Икру и молоки осторожно, но тщательно перемешивают, затем приливают воду (до покрытия икры) и снова тщательно перемешивают. После этого через 5-10 мин. покоя начинают отмывать икру от полостной жидкости, остатков молок и органических примесей. В результате икра должна быть чистой и лишенной клейкости. Икру после промывки в тех же тазах оставляют в покое на 2–3 ч при слабой проточности или смене воды каждые 0,5 ч. В этот период происходит набухание ее за счет появления перивителлинового пространства, а также повышения прочности оболочки. Набухание икры должно происходить в условиях слабой освещенности и полного покоя.
Инкубация икры. Перед инкубацией икру просчитывают с помощью мерных устройств (счетная доска, мерный цилиндр, мерная кружка) и раскладывают на рыбоводные рамки инкубационных аппаратов. Используют инкубационные аппараты горизонтальные (Аткинса, Шустера, Вильямсона, ящиковые, калифорнийские, Ропшинские и др.) Они вмещают 45–60 тыс. шт./м2 инкубационного цеха, а такие инкубационные аппараты вертикальные ("Энванг" — Швеция, "Риттай" — Япония, "Стеллажи" — США, "Вейса" — Германия, ИВТМ и ИМ — Россия). Они вмещают до 30 тыс. икринок на рамку в 1 или несколько слоев.
Перед закладкой на инкубацию отбирает мертвую икру, иногда в процессе инкубации, но лишь после начала пигментации глаз. Однако при опасности массовой гибели икры в особых случаях можно проводить отборку мертвой икры в любой момент инкубации, включая и стадии повышенной чувствительности. Температура воды при инкубации — 6-10 °C, уровень кислорода — не ниже 7 мг/л, рН-6,5–7,5. Устанавливают подачу воды: в горизонтальные аппараты-40 л/мин., в вертикальные- 15 л/мин., в ИМ — 4 л/мин, на 100 тыс. икринок. Через 8-10 ч определяют оплодотворяемость икры по дроблению зародышевого диска или через 8-10сут. по наличию развивающегося эмбриона: с этой целью икру помещают в 5 % раствор уксусной кислоты с добавлением 5 г поваренной соли на 1 л раствора, при этом светлеет оболочка и сквозь нее видно тело эмбриона (если икра была оплодотворена) или просвечивает бесформенное утолщение (если икра не была оплодотворена).
В процессе инкубации проводят профилактическую обработку икры: при закладке на инкубацию, при начале пигментации глаз и далее 1–2 раза в неделю. Для этого применяют раствор формалина (1: 2000), хлорамина (1: 30000), малахитового зеленого (1: 150000), экспозиция 10 мин.
Выдерживание свободных эмбрионов. Свободных эмбрионов содержат в лотках горизонтальных инкубационных аппаратов или в прямоугольных прямоточных и квадратных и круглых с круговым движением воды бассейнах площадью 1–4 м2, глубиной воды от 0,1 до 0,4 м. Предварительно в лотках и бассейнах раскладывают субстрат (гальку, стеклянные или пластмассовые шарики, перфорированные трубки, гофрированные поверхности и т. д.). Соблюдают следующие условия: плотность посадки 10 тыс. шт./м2 при уровне воды 0,1 м (100 тыс. шт./м3); температура воды 12–14 °C; расход воды 0,7–0,9 л/мин, на 1 тыс. шт. эмбрионов; водообмен 10–15 мин.
Подращивание личинок. При наступлении личиночного периода развития, который характеризуется расходованием желточного мешка на 50 % и подъемом на плав, следует начинать кормление. При этом необходимо обеспечить следующие условия: температура воды 14–18 °C; уровень кислорода не ниже 7 мг/л; уровень воды в рыбоводной емкости 0,2 м; плотность посадки 50 тыс. шт./м3; расход воды 1,2–1,9 л/мин, на 1 тыс. шт.; водообмен 10–12 мин.
Выращивание мальков и сеголетков. При полном завершении рассасывания желточного мешка наступает мальковый период развития. Молодь следует содержать в квадратных бассейнах размером 2 × 2 × 0,8 м при тех же условиях среды. Молодь массой до 1 г выращивают при плотности посадки 10 тыс. шт./м2 (25 тыс. шт./м3) при уровне воды 0,4 м; при этом расход воды составляет 3–5 л/мин, на 1 тыс. мальков. Молодь массой от 1 до 3–4 г выращивают при плотности посадки до 3 тыс. шт./м2 (7,5 тыс. шт./м3) при уровне воды 0,4 м, при этом расход воды составляет 3–5 л/мин, на 1 тыс. мальков. Молодь массой от 3–4 г до возраста сеголетка (около 20 г) выращивают за 120–150 дней в бассейнах, прудах или садках при следующих условиях:
Площадь бассейнов 6-30 м2 (бассейны круглые, квадратные, прямоугольные вытянутые); площадь прудов до 500 м2, соотношение сторон 1: 4–1: 8, глубина воды до 1 м; площадь садков до 20 м2, глубина — до 3 м.
При выращивании в бассейнах плотность посадки составляет до 1,5 тыс. шт./м2, уровень воды — 0,8 м, расход воды — 35–50 л/мин, на 1 тыс. шт., смена воды — 10–15 мин.
При выращивании в прудах плотность посадки рыб составляет 600 шт./м, уровень воды — 0,8 м (750 шт./м3), расход воды должен обеспечивать полную смену ее 2–3 раза в час.
При выращивании сеголетков радужной форели в сетчатых садках (садки могут быть установлены в реках, озерах, водохранилищах и других водоемах) плотность посадки составляет до 800 шт./м3, температура воды-не более 18–20 °C, между дном садка и дном водоема не менее 1,5 м, площадь садка -16 м2, уровень кислорода — не менее 7 мг/л.