Эксплуатация электрических подстанций и распределительных устройств

Красник В. В.

Глава 2. Обслуживание оборудования подстанций

 

 

2.1. Производственные помещения для обслуживания ПС

Для обслуживания ПС предусматриваются производственные помещения в ОПУ, а также используются передвижные ремонтные мастерские. Если ПС является базовой для группы ПС, не имеющих ремонтно-производственной базы, на ней предусматривается ЗВН.

В ОПУ ПС, а также на закрытой ПС (независимо от формы обслуживания) предусматриваются помещения для персонала, осуществляющего ремонт и техническое обслуживание силового оборудования, устройств РЗиА, средств телемеханики, управления и связи. Рабочее место оперативного персонала ПС предусматривается в помещении панелей управления, которое рекомендуется отделять от помещения панелей релейной защиты сплошным ограждением.

При установке автоматических осциллографов в ОПУ предусматривается помещение для обработки осциллограмм.

На ПС, не имеющих ОПУ, для организации рабочего места персонала по оперативному, техническому и ремонтному обслуживанию силового оборудования, средств РЗиА, управления и связи, а также для размещения устройств связи и хранения средств техники безопасности предусматриваются обогреваемые помещения площадью 12–18 м2.

Помещение для персонала отделяется от помещения, в котором устанавливается оборудование средств связи.

На ПС в КРУЭ для технического и ремонтного обслуживания оборудования с элегазовой изоляцией предусматривают дополнительные помещения площадью до 18 м2 каждое:

для хранения баллонов с элегазом и азотом;

для защитной спецодежды, устройств и приспособлений;

для чистки и обезвреживания защитной спецодежды и приспособлений от продуктов разложения элегаза.

В зале КРУЭ предусматривается монтажно-ремонтная площадка и место для размещения сервисной аппаратуры. Необходимо, чтобы все эти помещения, а также санузел с холодной и горячей водой располагались на одном уровне с залом КРУЭ.

Вентиляция помещений трансформаторов должна быть выполнена таким образом, чтобы разность температур воздуха, выходящего из помещения и входящего в него, не превосходила:

15 °C — для трансформаторов;

30 °C — для реакторов на токи до 1000 А;

20 °C — для реакторов на токи более 1000 А.

 

2.2. Обслуживание силовых трансформаторов и автотрансформаторов

 

2.2.1. Термины и определения

Трансформаторы и реакторы являются одним из наиболее массовых типов продукции электромашиностроительных заводов и самым распространенным видом электрооборудования на генерирующих объектах и ПС.

В табл. 2.1. приведены основные термины, относящиеся к этой группе оборудования, и их определения.

 

2.2.2 Параметры и режимы работы трансформаторов и автотрансформаторов

Наиболее широкое распространение получили масляные трансформаторы. Основным преимуществом масляных трансформаторов по сравнению с сухими является защищенность их обмоток от внешних воздействий, что повышает надежность работы трансформаторов и упрощает эксплуатационный надзор за ними. Кроме того, по сравнению с сухими масляные трансформаторы имеют сравнительно малое реактивное сопротивление.

Основными параметрами номинального режима работы трансформаторов являются напряжения, токи, частота, которые указываются на заводском щитке, а также номинальная мощность трансформатора (в кВА или МВА).

Трансформаторы рассчитаны на работу при следующих номинальных условиях окружающей среды:

естественно изменяющаяся температура охлаждающего воздуха не более +40 °C и не менее −45 °C при масляно-воздушном охлаждении;

температура охлаждающей воды у входа в охладитель не более +25 °C при масляно-водяном охлаждении;

среднесуточная температура воздуха не более +30 °C.

Таблица 2.1

Окончание табл. 2.1

Номинальный ток трансформатора (линейный ток) каждой обмотки 1л определяется по ее номинальной мощности Sном (кВА) и номинальному напряжению Uном (кВ):

Обмотки трансформатора могут быть соединены в звезду, при котором фазный ток равен линейному (Iф = Iл), или в треугольник, при котором фазный ток в √3 раз меньше линейного (Iф = Iл / √3).

Для трансформаторов, имеющих обмотки с ответвлениями, номинальным током и напряжением являются соответствующие значения для ответвления, включенного в сеть.

Трехобмоточные трансформаторы допускают в номинальном режиме любое сочетание нагрузок по обмоткам, если токи в них не превышают номинальных фазных токов.

Конструктивно автотрансформатор отличается от трансформатора тем, что две его обмотки электрически соединяются между собой, обеспечивая тем самым передачу мощности от одной обмотки к другой не только электромагнитным, но и электрическим путем. Из-за наличия электрической связи между обмотками токораспределение в автотрансформаторе отличается от токораспределения в трансформаторе. Во вторичной цепи ток нагрузки складывается из тока, обусловленного электрической связью обмоток высшего и среднего напряжений и тока Io, обусловленного магнитной связью этих же обмоток.

Номинальная мощность автотрансформатора (Sном) представляет собой мощность на выводах его обмоток высшего (ВН) или среднего (СН) напряжения, имеющих между собой автотрансформаторную связь, и равна:

Типовая мощность автотрансформатора (Sтип) представляет собой ту часть номинальной мощности, которая передается электромагнитным путем, и она в α раз меньше номинальной мощности, то есть

где α — коэффициент выгодности автотрансформатора, равный

где КВН-СН — коэффициент трансформации.

Из приведенных формул (2.3 и 2.4) видно, что с увеличением коэффициента а, то есть сближением друг к другу значений UCН и UВН, типовая мощность становится ближе к номинальной, и наоборот, а именно: чем меньше коэффициент а, тем меньшую долю номинальной составляет типовая мощность. Поэтому нельзя (экономически нецелесообразно) загружать последовательную и общую обмотки автотрансформатора в номинальном режиме работы более чем на типовую мощность Sтип.

Основным назначением обмотки низшего напряжения (НН) является создание цепи с малым сопротивлением для прохождения токов третьих гармоник с целью избежания искажения синусоидального напряжения. Помимо этого обмотка НН используется для питания нагрузки, а также для подключения компенсирующих устройств и последовательно-регулировочных трансформаторов. Ее мощность выбирается из расчета не более типовой мощности (SНН ≤ Sтип). В противном случае размеры автотрансформатора определялись бы мощностью этой обмотки.

Обязательное заземление нейтралей автотрансформаторов вызывает чрезмерное увеличение токов КЗ в сетях, что приводит к необходимости принятия мер по их ограничению.

Кроме того, наличие электрической связи между обмотками и сетями СН и ВН может привести к переходу перенапряжений, возникающих в сетях одного напряжения, на выводы обмоток другого напряжения. Возникновение перенапряжений усугубляется при отключении автотрансформатора с одной стороны. Для устранения воздействия перенапряжений на изоляцию автотрансформатора со стороны СН и ВН применяются разрядники, которые напрямую (без разъединителей) присоединяют к шинам, отходящим от вводов.

Автотрансформаторы могут работать в одном из следующих режимов: автотрансформаторный, трансформаторный и комбинированный (трансформаторно-автотрансформаторный).

Перераспределение нагрузок между обмотками СН и НН производится оперативным персоналом согласно местным инструкциям с использованием соответствующих таблиц и графиков.

Соотношение мощностей зависит от нагрузки и определяется из следующей формулы:

где S2 и S3 — относительные мощности по обмоткам СН и НН, выраженные в долях номинальной мощности автотрансформатора, то есть S2 = SСН / Sном и S3 = SНН / Sном;

φ2 и φ3 — углы сдвига фаз токов обмоток СН и НН от напряжения обмотки ВН.

На ПС 220 кВ и выше, на которых не предусматривается нагрузка на напряжение 6—10 кВ, рекомендуется применение автотрансформаторов 220 кВ мощностью 63 или 125 МВА с третичным напряжением 0,4 кВ для питания собственных нужд ПС.

 

2.2.3. Допустимые перегрузки трансформаторов и автотрансформаторов

Допустимые перегрузки трансформаторов и автотрансформаторов (далее — трансформаторов) в нормальных режимах работы определяются старением изоляции его обмоток — бумаги. Старение изоляции приводит к изменению исходных электрических, механических и химических свойств изоляционных материалов трансформаторов. Сроком естественного износа трансформатора, работающего в номинальном режиме, считается срок, равный примерно 20 годам.

Для нормального суточного износа изоляции трансформатора температура наиболее нагретой точки его обмоток не должна превышать 98 °C. По правилу, предложенному немецким ученым Монтзингером, следует, что если температуру увеличить на 8 °C, срок службы изоляции сократится примерно в 2 раза. В данном случае под температурой наиболее нагретой точки подразумевается температура наиболее нагретого внутреннего слоя обмотки верхней катушки трансформатора.

На практике трансформаторы работают, как правило, с переменной нагрузкой в условиях непрерывно изменяющейся температуры охлаждающей среды. В таких условиях при перегрузках может иметь место форсированный износ изоляции. При нагрузках же меньше номинальной изоляция недоиспользуется, что также экономически нецелесообразно. Следовательно, режим работы трансформатора должен быть оптимальным, то есть близким к расчетному.

Согласно ПТЭ, допускается длительная перегрузка масляных трансформаторов и трансформаторов с жидким негорючим диэлектриком любой обмотки по току на 5 %, если напряжение их обмоток не выше номинального; при этом для обмоток с ответвлениями нагрузка не должна превышать 1,05 номинального тока ответвления. В автотрансформаторе ток в общей обмотке должен быть не выше наибольшего длительно допустимого тока этой обмотки.

Продолжительные допустимые нагрузки сухих трансформаторов устанавливаются в стандартах и технических условиях конкретных групп и типов трансформаторов.

В ряде случаев такой допустимой перегрузки для оптимального использования изоляции трансформатора оказывается недостаточно. В этом случае продолжительность и значения перегрузок трансформаторов номинальной мощностью до 100 МВА находят по графикам нагрузочной способности в зависимости от суточного графика нагрузки, эквивалентной температуры охлаждающей среды и постоянной времени трансформатора. Это же правило относится и к трансформаторам с расщепленными обмотками.

Если при наступлении перегрузки у оперативного персонала отсутствуют суточные графики нагрузки и персонал не может воспользоваться графиками нагрузочной способности для определения допустимой перегрузки, рекомендуется пользоваться данными табл. 2.2 и 2.3 — в зависимости от системы охлаждения трансформатора (см. также п. 2.2.4).

Таблица 2.2

Таблица 2.3

Окончание табл. 2.3

Из этих таблиц следует, что систематические перегрузки, допустимые после нагрузки ниже номинальной, устанавливаются в зависимости от превышения температуры верхних слоев масла над температурой охлаждающей среды, которое определяется не позднее начала наступления перегрузки.

Кроме систематических перегрузок в зимние месяцы года допускаются 1 %-ные перегрузки трансформаторов на каждый процент недогрузки летом, но не более чем на 15 %. Это правило применяется в том случае, если максимум нагрузки не превышал номинальной мощности трансформатора.

Перегрузки по нагрузочной способности и по 1 %-ному правилу могут применяться одновременно при условии, если суммарная нагрузка не превышает 150 % номинальной мощности трансформатора.

При возникновении аварий, например, при выходе из работы одного из параллельно работающих трансформаторов и отсутствии резерва, разрешается аварийная перегрузка оставшихся в работе трансформаторов независимо от длительности и значения предшествующей нагрузки и температуры охлаждающей среды.

При разрешенных аварийных перегрузках форсированный износ изоляции и сокращение ее срока службы считается меньшим злом, чем аварийное отключение потребителей электроэнергии.

В соответствии с ПТЭ, в аварийных режимах допускается кратковременная перегрузка трансформаторов сверх номинального тока при всех системах охлаждения независимо от длительности и значения предшествующей нагрузки и температуры охлаждающей среды в следующих пределах:

Допускается продолжительная работа трансформаторов (при нагрузке не выше номинальной мощности) при повышении напряжения на любом ответвлении любой обмотки на 10 % сверх номинального напряжения данного ответвления. При этом напряжение на любой из обмоток должно быть не выше наибольшего рабочего напряжения.

Во избежание повреждения трансформаторов и развития аварии величины и время аварийных перегрузок трансформаторов должны находиться под контролем.

За время аварийной перегрузки оперативно-ремонтный персонал должен принять меры по замене поврежденного оборудования резервным, а затем разгрузить перегруженные трансформаторы до номинальной мощности отключением менее ответственных по категории надежности электроснабжения потребителей.

 

2.2.4. Устройство и обслуживание систем охлаждения масляных трансформаторов

Процесс передачи теплоты, выделяющейся в обмотках, магнитопроводе и стальных деталях конструкции работающего трансформатора в окружающую среду, можно разбить на следующие два этапа:

передача теплоты от обмоток и магнитопровода охлаждающему маслу

и передача теплоты от масла в окружающую среду.

На первом этапе передача теплоты определяется превышением температуры обмоток и магнитопровода над температурой охлаждающего масла; на втором этапе — превышением температуры масла над температурой окружающей среды.

Исходя из этого, условно принято, что охлаждающее устройство масляного трансформатора состоит из двух систем: системы внутреннего охлаждения, которая обеспечивает передачу теплоты на первом этапе охлаждения, и системы наружного охлаждения, которая обеспечивает передачу теплоты на втором этапе.

Элементами системы внутреннего охлаждения являются вертикальные и горизонтальные каналы в обмотках и магнитопроводе, а также специальные трубы и изоляционные щиты, создающие направленную циркуляцию масла по каналам. Все эти элементы находятся внутри бака трансформатора, что делает невозможным осуществление визуального контроля за ними.

В систему наружного охлаждения входят маслоохладители, фильтры, насосы, вентиляторы и другое оборудование, расположенное снаружи трансформатора. За работой этого оборудования ведется систематический контроль.

На ПС применяются трансформаторы с системами охлаждения М, Д, ДЦ и Ц.

Система естественного масляного охлаждения (М) выполняется для трансформаторов небольшой мощности (до 16 МВА) напряжением, как правило, до 35 кВ. В таких трансформаторах тепло, выделенное в обмотках и магнитопроводе, передается маслу, циркулирующему по баку и радиаторам, а затем — окружающему воздуху. Баки таких трансформаторов гладкие с охлаждающими трубами или навесными трубчатыми радиаторами (охладителями). Для лучшей отдачи тепла в окружающую среду бак трансформатора снабжают ребрами, охлаждающими трубами или радиаторами в зависимости от мощности. Каждый радиатор представляет собой самостоятельный узел, присоединяемый своими патрубками к патрубкам бака. Между фланцами патрубков встроены плоские краны, перекрывающие доступ масла в радиатор. Естественное движение нагретых и холодных слоев масла в трансформаторе происходит за счет их разной плотности, то есть за счет гравитационных сил. В окружающую среду теплота передается конвекционными потоками воздуха у поверхности бака и радиаторов, а также излучением. При номинальной нагрузке трансформатора в соответствии с требованиями ПТЭ температура масла в верхних, наиболее нагретых слоях не должна превышать +95 °C.

Система охлаждения Д (масляное охлаждение с дутьем и естественной циркуляцией масла) применяется для более мощных трансформаторов напряжением 35, 110 и 220 кВ. Охлаждение основано на использовании навесных радиаторов, обдуваемых вентиляторами, которые устанавливаются на приваренных к стенке бака консолях. Вентилятор засасывает воздух снизу и обдувает нагретую верхнюю часть труб. Каждый вентилятор состоит из приводного асинхронного двигателя и крыльчатки серии МЦ. Пуск и останов вентиляторов осуществляется автоматически в зависимости от нагрузки и температуры нагрева масла. Включение и отключение двигателей вентиляторов производится автоматически с использованием термометрических сигнализаторов типа ТС-100 и вручную. Ступица крыльчатки имеет шпоночную посадку на вал двигателя, исключающую соскакивание крыльчатки во время работы.

Трансформаторы с таким охлаждением могут работать при полностью отключенном дутье, если нагрузка не превышает 100 % номинальной, а температура верхних слоев масла не более 55 °C, а также независимо от нагрузки при отрицательных температурах окружающего воздуха и температуре масла не выше 45 °C. Максимально допустимая температура масла в верхних слоях при работе трансформатора с номинальной нагрузкой составляет 95 °C.

На рис. 2.1 приведена схема питания электродвигателей вентиляторов.

Система охлаждения ДЦ (масляное охлаждение с дутьем и принудительной циркуляцией масла через воздушные охладители) применяется для охлаждения трансформаторов наружной установки мощностью 63 МВА и более напряжением 110 кВ и выше. Эта система основана на применении масляно-воздушных охладителей с принудительной циркуляцией масла и форсированным обдувом ребристых труб охладителей воздухом. Охладители состоят из тонких ребристых трубок, обдуваемых снаружи вентилятором, и комплектуются бессальниковыми центробежными насосами серии ЭЦТ и тихоходными вентиляторами типа НАП-7,4. Электронасосы, встроенные в маслопроводы, создают непрерывную принудительную циркуляцию масла через охладители. Благодаря высокой скорости циркуляции масла, большой поверхности охлаждения и интенсивному дутью охладители обладают большой теплоотдачей и компактностью. Такая система охлаждения позволяет значительно уменьшить габаритные размеры трансформаторов. Охладители могут устанавливаться вместе с трансформатором на одном фундаменте или на отдельных фундаментах рядом с баком трансформатора. С целью повышения эффективности теплообмена у крупных трансформаторов масло подается по специальным трубам к определенным частям обмоток, в результате чего создается направленная циркуляция масла по охлаждающим каналам. Для охлаждающих устройств с направленной циркуляцией масла через обмотки трансформаторов применяются насосы с экранированным статором типа ЭЦТЭ. Управление охлаждением автоматическое и ручное. Схема автоматического управления обеспечивает включение основной группы охладителей при включении трансформаторов в сеть, увеличение интенсивности охлаждения включением дополнительного охладителя при достижении номинальной нагрузки или заданной температуры масла в трансформаторе, включение резервного охладителя при аварийном отключении любого работающего, отключение вентиляторов обдува без остановки циркуляционных насосов. Шкафы управления охлаждением оборудованы постоянно включенной сигнализацией о прекращении циркуляции масла, остановке вентиляторов дутья, включении резервного охладителя, переключении питания двигателей системы охлаждения от резервного источника при исчезновении напряжения или его понижении в сети.

Система охлаждения Ц (масляно-водяное охлаждение трансформаторов с принудительной циркуляцией масла) применяется для трансформаторов наружной и внутренней установки. Эта система принципиально устроена так же, как и система охлаждения ДЦ, но в отличие от последней охладители в этой системе состоят из трубок, по которым циркулирует вода, а между трубками движется масло. Температура масла на входе в маслоохладитель не должна превышать 70 °C. Данная система компактна и из-за большей интенсивности теплообмена от масла к воде, чем от масла к воздуху, обладает высокой надежностью и тепловой эффективностью. Однако применение охлаждения Ц возможно лишь при наличии мощного источника водоснабжения. Для трансформаторов наружной установки охладители размещают в помещении с положительной температурой. Кроме того, в зимнее время предусматриваются меры по предотвращению замерзания воды в маслоохладителях, насосах, водяных магистралях, например, слив воды из охладителей при отключении трансформатора, отепление охладителей и др. С целью исключения подсосов воды в масло при образовании неплотностей и трещин в трубах, по которым циркулирует вода, маслонасосы устанавливают перед маслоохладителями. С этой же целью избыточное давление масла в маслоохладителе поддерживают выше давления воды не менее чем на 0,2 МПа (2 Н/см2). В системах охлаждения Ц имеются приборы для контроля температуры, расхода и давления масла и воды, для очистки масла и воды, а также аппаратура управления охлаждением и различные сигнальные устройства. Эта система охлаждения эффективна, но имеет сложное конструктивное исполнение и поэтому применяется для мощных трансформаторов (160 МВА и выше).

При ручном управлении включение системы охлаждения производится после включения трансформатора в сеть в следующей последовательности: сначала включают в работу масляный насос и проверяют циркуляцию масла в маслоохладителе, затем подают охлаждающую воду и проверяют соотношение давлений воды и масла. При необходимости регулируют давление воды. Маслоохладители в системе масловодяного охлаждения снижают температуру масла на 10–15 °C и способны поддерживать температуру верхних слоев масла на уровне 50–55 °C. Поэтому подачу охлаждающей воды в маслоохладители производят при температуре не ниже 15 °C. Циркуляцию воды прекращают при понижении температуры масла до 10 °C. Отключение масловодяного охлаждения производят после отключения трансформатора от сети в следующей последовательности: сначала прекращают доступ воды в маслоохладитель, а затем отключают маслонасос.

В соответствии с требованиями ПТЭ, при номинальной нагрузке трансформатора температура верхних слоев масла должна быть не выше (если заводами-изготовителями в заводских инструкциях не оговорены иные температуры):

у трансформаторов с системой масляного охлаждения с дутьем и принудительной циркуляцией масла (ДЦ) — 75 °C;

с системами масляного охлаждения (М) и масляного охлаждения с дутьем (Д) — 95 °C;

у трансформаторов с системой масляного охлаждения с принудительной циркуляцией масла через водоохладитель (Ц) температура масла на входе в маслоохладитель должна быть не выше 70 °C.

На трансформаторах и реакторах с системами масляного охлаждения ДЦ, направленной циркуляцией масла в обмотках (НДЦ), Ц, направленной циркуляцией масла в обмотках и принудительной через водоохладитель (НЦ) устройства охлаждения должны автоматически включаться (отключаться) одновременно с включением (отключением) трансформатора (реактора).

На номинальную нагрузку включение трансформаторов допускается:

с системами охлаждения М и Д — при любой отрицательной температуре воздуха;

с системами охлаждения ДЦ и Ц — при температуре окружающего воздуха не ниже минус 25 °C. При более низких температурах трансформатор должен быть предварительно прогрет включением на нагрузку до 0,5 номинальной без запуска системы циркуляции масла, которая должна быть включена в работу только после увеличения температуры верхних слоев масла до минус 25 °C.

В аварийных режимах допускается включение трансформаторов на полную нагрузку независимо от температуры окружающего воздуха (трансформаторов с системами охлаждения НДЦ, НЦ — в соответствии с заводскими инструкциями).

Принудительная циркуляция масла в системах охлаждения должна быть непрерывной независимо от нагрузки трансформатора.

Количество включаемых и отключаемых охладителей основной и резервной систем охлаждения ДЦ (НДЦ), Ц (НЦ), условия работы трансформаторов с отключенным дутьем системы охлаждения Д определяются заводскими инструкциями.

Эксплуатация трансформаторов и реакторов с принудительной циркуляцией масла допускается лишь при включенной в работу системе сигнализации о прекращении циркуляции масла, охлаждающей воды и работы вентиляторов обдува охладителей.

При включении масловодяной системы охлаждения Ц (НЦ) в первую очередь должен быть пущен маслонасос. Затем при температуре верхних слоев масла выше 15 °C включается водяной насос. Отключение водяного насоса производится при снижении температуры верхних слоев масла до 10 °C, если иное не предусмотрено заводской документацией.

Давление масла в маслоохладителях должно превышать давление циркулирующей воды не менее чем на 10 кПа (0,1 кгс/см2) при минимальном уровне масла в расширителе трансформатора.

Должны быть предусмотрены меры для предотвращения замораживания маслоохладителей, насосов, водяных магистралей.

Для трансформаторов с системами охлаждения Д при аварийном отключении всех вентиляторов допускается работа с номинальной нагрузкой в зависимости от температуры окружающего воздуха в течение следующего времени:

Для трансформаторов с системами охлаждения ДЦ и Ц допускается:

при прекращении искусственного охлаждения работа с номинальной нагрузкой в течение 10 мин или режим холостого хода (ХХ) в течение 30 мин, если по истечении указанного времени температура верхних слоев масла не достигла 80 °C; для трансформаторов мощностью свыше 250 МВА допускается работа с номинальной нагрузкой до достижения указанной температуры, но не более 1 ч;

при полном или частичном отключении вентиляторов или при прекращении циркуляции воды с сохранением циркуляции масла продолжительная работа со сниженной нагрузкой при температуре верхних слоев масла не выше 45 °C.

Указанные требования действительны, если в инструкциях заводов-изготовителей не оговорены иные.

На трансформаторах с системой охлаждения Д электродвигатели вентиляторов должны систематически включаться при температуре масла 55 °C или токе, равном номинальному, независимо от температуры масла. Отключение электродвигателей вентиляторов производится при снижении температуры верхних слоев масла до 50 °C, если при этом ток нагрузки менее номинального.

Основными задачами обслуживания систем охлаждения являются наблюдение за работой и технический уход за оборудованием системы охлаждения.

Осмотр системы охлаждения производится одновременно с осмотром трансформатора. При осмотре проверяется целость всей системы охлаждения, то есть отсутствие течей масла; работа радиаторов (на ощупь определяется степень их нагрева); работа охладителей системы охлаждения ДЦ по их нагреву и по показаниям манометров, установленных вблизи патрубков маслоперекачивающих насосов; работа адсорбционных фильтров — ощупыванием рукой; состояние креплений трубопроводов, охладителей, насосов и вентиляторов; работа вентиляторов — по отсутствию вибраций, скрежета и задеваний крыльчаток за кожух.

При осмотре шкафов автоматического управления охлаждением проверяется отсутствие нагрева и коррозии контактов, а также повреждений изоляции токоведущих частей аппаратуры, уплотнение днищ и дверей шкафов от проникновения в них пыли и влаги.

Внеочередной осмотр автоматических выключателей в шкафах следует производить после каждого отключения ими тока КЗ. Также следует осматривать контакты коммутационной аппаратуры после автоматического отключения электродвигателей вентиляторов и насосов.

Технический уход за устройствами систем охлаждения включает в себя устранение обнаруженных при осмотре неисправностей, замену износившихся деталей (лопаток насосов, лопастей вентиляторов, подшипников), чистку охладителей и вентиляторов, смазку подшипников, контроль сопротивления изоляции электродвигателей.

При уходе за охладителями системы охлаждения Ц выполняются периодические очистки труб и водяных камер от ила и других отложений на поверхностях охлаждения.

Исправность схем питания двигателей охлаждения и действие АВР проверяются по графику не реже 1 раза в месяц.

Эффективность работы систем охлаждения в целом проверяется по температуре верхних слоев масла в трансформаторе. При исправном охлаждении максимальные температуры масла не должны превышать в трансформаторах:

с охлаждением М и Д — 95 °C;

с охлаждением ДЦ при мощности до 250 МВА включительно — 80 °C и при мощности выше 250 МВА — 75 °C;

с охлаждением Ц температура масла на входе в маслоохладители — 70 °C.

За максимальную температуру масла в данном случае принимается температура масла под крышкой бака, измеренная при работе трансформатора с номинальной нагрузкой в течение 10–12 ч для трансформаторов с охлаждением М и Д, и в течение 6–8 ч — для трансформаторов с охлаждением ДЦ при неизменной температуре охлаждающего воздуха, равной 40 °C.

В эксплуатации при номинальной нагрузке трансформатора температура верхних слоев масла редко достигает максимального значения.

Возможны следующие причины повышения нагрева масла для систем охлаждения М и Д:

закрыты или не полностью открыты плоские краны радиаторов; из верхних коллекторов радиаторов не выпущен воздух при заполнении радиаторов маслом;

сильно загрязнены наружные поверхности радиаторов.

Для охлаждения Д помимо перечисленных возможны следующие причины:

в работе находятся не все вентиляторы,

крыльчатки вентиляторов вращаются в обратную сторону.

Для системы охлаждения ДЦ характерны следующие причины:

рабочее колесо насоса вращается в обратную сторону;

недостаточно число работающих вентиляторов;

крыльчатки вентиляторов вращаются в обратную сторону;

сильно загрязнены поверхности ребер трубок охладителей и т. д.

Если при внешнем осмотре не будет обнаружена неисправность в работе механизмов системы охлаждения, следовательно, причиной повышенного нагрева может явиться неисправность самого трансформатора.

В соответствии с требованием ПУЭ, каждый масляный трансформатор следует устанавливать в отдельной камере, расположенной на первом этаже. Допускается установка масляных трансформаторов на втором этаже, а также ниже уровня пола первого этажа на 1 м в незатопляемых зонах при условии обеспечения возможности транспортирования наружу и удаления масла в аварийных случаях.

Допускается установка в общей камере двух масляных трансформаторов с объемом масла до 3 т каждый, имеющих общее назначение, управление, защиту и рассматриваемых как один агрегат.

 

2.3. Включение трансформатора в сеть и контроль за его работой

Для включения трансформатора в сеть предварительно необходимо проверить:

уровень масла в расширителе и выводах, который должен быть не ниже отметки, соответствующей температуре окружающего воздуха;

состояние пускового устройства оборудования в системе охлаждения;

соответствующее положение указателей переключателей напряжения;

исправность заземляющих разъединителей и оборудования защиты нейтралей;

положение дугогасящего реактора (должен быть отключен), а на ПС без выключателей со стороны ВН — положение коротко-замыкателей (должны быть отключены);

после ремонта трансформатора — отсутствие закороток, защитных заземлений на трансформаторе и его оборудовании, чистоту рабочих мест.

Если трансформатор находился в резерве (ручном или автоматическом), то его допускается включать в работу без предварительного осмотра. Осмотр резервных трансформаторов и проверка их готовности к немедленному включению производится при очередных осмотрах работающего оборудования.

Трансформатор включается в сеть обычно со стороны питания, то есть со стороны ВН. Включение часто сопровождается броском тока намагничивания, что фиксируется резким отклонением стрелки амперметра.

Следует знать, что максимальный ток намагничивания в несколько раз превышает номинальный ток трансформатора. Поскольку обмотки трансформатора рассчитаны на прохождение токов КЗ, значения которых больше максимально возможных токов намагничивания, имеющих затухающий характер, то броски тока намагничивания для трансформатора не представляют какой-либо опасности. Поэтому для устранения ложных срабатываний дифференциальной защиты трансформатора она отстраивается от токов намагничивания.

На ПС напряжением 110–220 кВ с упрощенными схемами (без выключателей со стороны ВН) включать трансформатор под напряжение рекомендуется разъединителями.

После включения трансформатора в сеть на нем устанавливается нагрузка в зависимости от нагрузки на шинах ПС, вплоть до номинальной нагрузки. Трансформаторы с охлаждением М и Д разрешается включать под номинальную нагрузку при температуре масла не ниже минус 25 °C. Если температура верхних слоев масла окажется ниже минус 25 °C, ее следует повысить включением трансформатора только на ХХ или под нагрузку не более 40–50 % номинальной.

В аварийных ситуациях указанных ограничений не придерживаются и включают трансформаторы на номинальную нагрузку при любой температуре. Возникающий при этом значительный перепад температуры между маслом и обмотками из-за высокой вязкости холодного масла не приводит к повреждению трансформатора, но ускоряет процесс старения изоляции, то есть приводит к ее форсированному износу.

Повышение вязкости масла в зимнее время учитывается при включении не только самого трансформатора, но и охлаждающих устройств. Циркуляционные насосы, погруженные в воду, надежно работают при температуре перекачиваемого масла не ниже минус 20–25 °C. Поэтому у трансформаторов с охлаждением ДЦ и Ц рекомендуется включать насосы лишь после предварительного нагрева масла до указанной выше температуры. В остальных случаях насосы принудительной циркуляции масла должны включаться в работу одновременно с включением трансформатора в сеть и постоянно находиться в работе независимо от его нагрузки.

Вентиляторы охладителей при низких температурах воздуха включаются в работу позже, когда температура масла достигнет 45 °C.

При системе охлаждения Д допускается работа трансформатора с отключенными устройствами воздушного дутья только при нагрузке 0,5 номинальной независимо от температуры масла. Отсюда следует, что вентиляторы дутья должны находиться в работе, если нагрузка трансформатора S ≥ Sном или если температура верхних слоев масла ≥ 55 °C.

Отключение вентиляторов дутья должно производиться при снижении температуры масла до 50 °C, если нагрузка трансформатора меньше номинальной.

Трансформаторы с охлаждением ДЦ могут эксплуатироваться только при работающих вентиляторах дутья, насосах циркуляции масла и с включенной сигнализацией о прекращении подачи масла и остановке вентиляторов обдува.

Следует иметь в виду, что при остановленном охлаждении отвод теплоты потерь в трансформаторе не обеспечивается, даже если он без нагрузки. В этом случае в режиме ХХ трансформатор может находиться не более 30 мин, а с номинальной нагрузкой — не более 10 мин. Время работы трансформатора под нагрузкой ниже номинальной может быть продлено до 1 ч, если у трансформаторов мощностью до 250 МВА температура верхних слоев масла не достигла 80 °C, а у трансформаторов мощностью выше 250 МВ-А — 75 °C.

Поэтому во избежание резкого возрастания разности температур по истечении этого времени и невозможности восстановления необходимых условий охлаждения трансформатор должен быть разгружен.

Нагрузка трансформаторов с системами охлаждения ДЦ и Ц при отключении части охладителей должна быть уменьшена пропорционально числу отключенных охладителей, а именно:

Контроль за нагрузками трансформатора ведется по амперметрам, на шкалах которых нанесены красные риски, соответствующие номинальным нагрузкам обмоток. Нанесение рисок на стеклах приборов не допускается из-за возможных ошибок при отсчете.

Контроль за напряжением, подведенным к трансформатору, и напряжением его вторичных обмоток ведется по вольтметрам, измеряющим напряжением на шинах.

Превышение напряжения на трансформаторе сверх номинального допускается в небольших пределах, а именно: длительно на 5 % при нагрузке не более номинальной и на 10 % при нагрузке не более 25 % номинальной. При этом линейное напряжение на любой обмотке не должно превышать наибольшего рабочего напряжения для данного класса напряжения трансформатора:

Превышение этих значений напряжения приводит к насыщению магнитопровода, резкому увеличению тока и потерь ХХ, что, в свою очередь, повлечет перегрев стальных конструкций магнитопровода.

Превышение рабочих напряжений трансформаторов и реакторов 110 кВ и выше допускают лишь кратковременно. Например, в табл. 2.4 приведены допустимые значения повышения напряжения и длительность его воздействия.

Таблица 2.4

В табл.2.5 приведены номинальные междуфазные напряжения трехфазного тока свыше 1000 В (ГОСТ 721—97).

Таблица 2.5

Окончание табл. 2.5

Контроль за тепловым режимом трансформатора заключается в периодических измерениях температуры в верхних слоях масла в баках. Измерения производятся при помощи стеклянных термометров, погруженных в специальные гильзы на крышках трансформаторов, дистанционных термометров сопротивления и термометров манометрического типа — термосигнализаторов. На крышке трансформатора устанавливаются по два термосигнализатора с переставными контактами. Контакты одного из них используются для управления системой охлаждения, другого — для сигнализации и отключения трансформатора при превышении допустимых температур масла.

Периодические осмотры трансформаторов (реакторов), в соответствии с требованиями ПТЭ, должны производиться в следующие сроки:

главных понижающих трансформаторов ПС с постоянным дежурством персонала — 1 раз в сутки;

остальных трансформаторов электроустановок с постоянным и без постоянного дежурства персонала — 1 раз в месяц;

на трансформаторных пунктах — не реже 1 раза в месяц.

Внеочередные осмотры трансформаторов (реакторов) производятся:

после неблагоприятных погодных воздействий (гроза, резкое изменение температуры, сильный ветер и др.);

при работе газовой защиты на сигнал, а также при отключении трансформатора (реактора) газовой или (и) дифференциальной защитой.

При осмотре проверяются внешнее состояние трансформаторов и их систем охлаждения, устройств РПН, устройств защиты масла от окисления и увлажнения, фарфоровых и маслонаполненных вводов, защитных разрядников на линейных вводах и в нейтрали, кранов, фланцев и люков, а также резиновых прокладок и уплотнений (они не должны набухать и выпучиваться), отсутствие течей масла и уровень его в расширителях, целость и исправность приборов (термометров, манометров, газовых реле), маслоуказателей, мембран выхлопных труб, исправность заземления бака трансформатора, наличие и исправность средств пожаротушения, маслоприемных ям и дренажей, состояние надписей и окраски трансформаторов. Осматриваются контакты соединения и указатели, контролирующие их перегрев.

На слух проверяется гул трансформатора, а также отсутствие звуков электрических разрядов.

В закрытых камерах трансформаторов проверяется исправность кровли, дверей и вентиляционных проемов.

При нормальной работе вентиляции помещения разность температур входящего снизу и выходящего сверху воздуха не должна превышать 15 °C при номинальной нагрузке трансформатора.

Отключение трансформатора от сети, как правило, производят со стороны нагрузки (НН и СН) выключателями, а затем со стороны питания (ВН). На ПС с упрощенной схемой (без выключателей со стороны ВН) отключение трансформаторов от сети следует производить отделителями после отключения выключателей со стороны нагрузки.

В соответствии с требованиями ПТЭ, трансформатор (реактор) должен быть аварийно выведен из работы:

при сильном неравномерном шуме и потрескивании внутри трансформатора;

ненормальном и постоянно возрастающем нагреве трансформатора при нагрузке ниже номинальной и нормальной работе устройств охлаждения;

выбросе масла из расширителя или разрыве диафрагмы выхлопной трубы;

течи масла с понижением его уровня ниже уровня масломерного стекла.

Трансформаторы выводятся из работы также при необходимости немедленной замены масла по результатам лабораторных анализов.

 

2.4. Параллельная работа трансформаторов

Параллельная работа трансформаторов (автотрансформаторов) разрешается при следующих условиях:

группы соединения обмоток одинаковы. Параллельная работа трансформаторов, принадлежащих к разным группам соединения обмоток, невозможна по причине того, что между вторичными обмотками одноименных фаз соединяемых трансформаторов появляется разность напряжений, обусловленная углом сдвига между векторами вторичных напряжений;

соотношение мощностей трансформаторов не более 1:3. Это вызвано тем, что даже при небольших перегрузках трансформаторы меньшей мощности будут больше загружаться в процентном отношении, особенно в том случае, если они имеют меньшие напряжения КЗ (uк);

коэффициенты трансформации отличаются не более чем на +0,5 %;

ик отличаются не более чем на ±10 %;

произведена фазировка трансформаторов.

Для выравнивания нагрузки между параллельно работающими трансформаторами с различными напряжениями КЗ допускается в небольших пределах изменение коэффициента трансформации путем переключения ответвлений при условии, что ни один из трансформаторов не будет перегружен.

Во избежание значительных величин уравнительного тока, которые возникают при включении трансформаторов на параллельную работу, разность вторичных напряжений должна быть минимальной.

Напряжение КЗ является постоянной величиной для каждого трансформатора, зависящей от его конструкции. При работе трансформаторов под нагрузкой необходимо равенство этих напряжений. Это требование объясняется тем, что нагрузка между трансформаторами распределяется прямо пропорционально напряжениям КЗ. Неравенство напряжений КЗ приводит к недогрузке одного параллельно работающего трансформатора и перегрузке другого. Если два трансформатора номинальной мощности S1 и S2 имеют различные напряжения КЗ uк1 и uк2 соответственно, то распределение общей нагрузки S между ними определяется по следующей формуле:

Выравнивание нагрузки в данном случае можно достичь путем изменения коэффициента трансформации за счет повышения вторичного напряжения недогруженного трансформатора. Однако при этом возрастают потери от уравнительного тока, вследствие чего данный способ в эксплуатации нерентабелен.

Оптимальное использование установленной мощности трансформаторов возможно лишь при равенстве напряжений КЗ. Однако в эксплуатации допускается включение трансформаторов на параллельную работу с 10 %-ным отклонением Uк в сторону увеличения или уменьшения, что связано с конструкцией трансформаторов (размерами обмоток) и технологией их изготовления.

Группы соединения обмоток в ряде случаев могут быть изменены путем перемаркировки выводов и соответствующего присоединения к ним шин. В противном случае необходимо вскрывать трансформатор для изменения группы соединения его обмоток.

На практике важной проблемой является определение экономически целесообразного числа параллельно включенных трансформаторов.

На ПС с двумя и более трансформаторами целесообразно иметь на параллельной работе такое число трансформаторов, при котором активные потери ХХ всех включенных трансформаторов и активные потери КЗ будут наименьшими.

Потери ХХ Рх — величина постоянная, не зависящая от нагрузки трансформатора.

Потери КЗ Рк зависят от нагрузки и изменяются пропорционально квадрату тока, возрастая от нуля до полных потерь пропорционально росту нагрузки соответственно от нуля до номинальной мощности.

При возрастании нагрузки к n параллельно включенным трансформаторам подключают еще один трансформатор, если

при снижении нагрузки отключают один из трансформаторов, если

Формулы (2.7) и (2.8) применимы только для однотипных трансформаторов одинаковой мощности. При наличии на ПС неоднотипных трансформаторов различной мощности пользуются кривыми приведенных потерь, которые строят на одной координатной плоскости для каждого трансформатора и для нескольких одновременно включенных трансформаторов.

Для того чтобы отключение по экономическим соображениям части трансформаторов не отразилось на надежности электроснабжения, выводимые в резерв трансформаторы снабжаются устройствами АВР. Исходя из необходимости сокращения числа оперативных переключений частота вывода трансформатора в резерв по экономическим соображениям не должна превышать 2–3 раз в сутки.

 

2.5. Обслуживание устройств регулирования напряжения

В соответствии с требованиями ПТЭ, устройства РПН должны быть в работе, как правило, в автоматическом режиме. Их работа должна контролироваться по показаниям счетчиков числа операций. Для автоматического управления РПН снабжаются блоками автоматического регулирования коэффициента трансформации (АРКТ).

Допускается дистанционное переключение РПН с пульта управления, если колебания напряжения в сети находятся в пределах, удовлетворяющих требования потребителей. Переключения под напряжением вручную (с помощью рукоятки) не разрешаются.

Устройство РПН приводится в действие дистанционно со щита управления ключом или кнопкой и автоматически от устройств автоматического регулирования напряжения. Предусмотрено также переключение приводного механизма РПН специальной рукояткой или с помощью кнопки, располагаемой в шкафу (местное управление).

Местное управление является вспомогательным, и к нему прибегают только при ремонте.

Один цикл переключения РПН выполняется за 3-10 с. Процесс переключения сигнализируется красной лампой, которая загорается в момент подачи импульса и горит до тех пор, пока механизм не закончит цикл переключения с одной ступени на другую.

Переключающие устройства РПН трансформатора разрешается включать в работу при температуре верхних слоев масла выше минус 20 °C (для наружных резисторных устройств РПН) и выше минус 45 °C — для устройств РПН с токоограничивающими реакторами, а также для переключающих устройств с контактором, расположенным на опорном изоляторе вне бака трансформатора и оборудованным устройством искусственного подогрева.

Наиболее распространенным способом регулирования напряжения на шинах ПС является переключение ответвлений на трансформаторах. С этой целью, как правило, у обмоток ВН трансформатора, имеющих меньший рабочий ток, предусматриваются регулировочные ответвления и специальные переключатели ответвлений, при помощи которых изменяют число включенных в работу витков w, увеличивая или уменьшая коэффициент трансформации, равный

KВН-HН = UВН/UНН = wВН /wНН. (2.9)

Переключения секции витков производят на работающем трансформаторе под нагрузкой устройством РПН или на отключенном от сети трансформаторе устройством переключения без возбуждения (ПБВ).

Трансформаторы большой мощности с устройством ПБВ имеют до 5 ответвлений для получения 4-х ступеней напряжения относительно номинального (±2×2,5 %)Uном.

Применяют различные трехфазные и однофазные переключатели ответвлений, что зависит от напряжения трансформатора, числа ступеней регулирования и его исполнения.

Класс изоляции устройств РПН соответствует классу изоляции СН трансформатора.

В качестве других способов регулирования напряжения трансформатора применяются специальные последовательные регулировочные трансформаторы.

Различают продольное регулирование, при котором напряжение сети изменяется только по величине без изменения фазы, и поперечное регулирование, при котором напряжение изменяется только по фазе. На крупных ПС системного значения возникает необходимость в регулировании напряжения и по величине, и по фазе, которое осуществляется специальными агрегатами продольно-поперечного регулирования. При этом в схему вводятся два напряжения, одно из которых совпадает с напряжением сети, а другое сдвинуто на 90°.

Устройства РПН состоят из переключателя (или избирателя), контактора, токоограничивающего реактора (или резистора) и приводного механизма.

Реактор и избиратель (ввиду того что на его контактах дуги не возникает) обычно размещают в баке трансформатора, а контактор помещают в отдельном масляном баке, чтобы не допускать разложения масла электрической дугой в трансформаторе.

Отличие действия устройств РПН с резистором от работы переключающих устройств с реактором состоит лишь в том, что в нормальном режиме резисторы зашунтированы или отключены и ток по ним не проходит, а в процессе коммутации ток проходит всего в течение сотых долей секунды. Поскольку резисторы не рассчитаны на длительную работу под током, то переключение контактов в них происходит мгновенно под действием мощных сжатых пружин. Резисторы имеют сравнительно малые размеры и являются, как правило, конструктивной частью контактора.

Нормальная работа устройств РПН обеспечивается при температуре верхних слоев масла в контакторах не ниже минус 20 °C. В выносных баках контакторов применяется система автоматического подогрева масла, которая обеспечивает нормальную работу устройств при температуре наружного воздуха до минус 45 °C. Уровень масла в баках контакторов контролируется по маслоуказателям.

Практика обслуживания устройств регулирования напряжения показала, что перестановка переключателей ПБВ с одной ступени на другую производится всего лишь 1–2 раза в году — сезонное регулирование.

При длительной работе без переключения контактные стержни и кольца покрываются оксидной пленкой. Чтобы разрушить эту пленку и обеспечить хороший контакт, рекомендуется при отключенном трансформаторе при каждом переводе переключателя предварительно не менее 5-10 раз прокручивать его из одного крайнего положения в другое. При пофазном переводе переключателей проверяют их одинаковое положение. Установка привода на каждой ступени должна фиксироваться стопорным болтом. О переключении ответвлений должна быть сделана запись в оперативном журнале.

Для очистки от шлама и оксидов контактов переключающих устройств РПН их также следует через каждые 6 мес «прогонять» по всему диапазону регулирования по 5-10 раз в каждую сторону.

Устройства РПН должны постоянно находиться в работе с блоком АРКТ. На дистанционное управление их переводят только при неисправности автоматических регуляторов, невыполнении команды на переключение, например, из-за застревания контактов избирателя в промежуточном положении или из-за отказа в работе приводного механизма. При повреждении АРКТ оно должно быть отключено и устройство РПН переведено на дистанционное управление. При отказе в работе схемы дистанционного управления РПН следует перевести на местное управление и принять меры по устранению неисправности. Если обнаружится неисправность избирателя или контактора, трансформатор следует отключить.

Работу РПН не могут ограничивать нормальные эксплуатационные или аварийные перегрузки трансформатора при условии, что ток не превышает 200 % номинального тока. При нагрузке выше максимально допустимой срабатывание переключающего устройства запрещает блокировка.

Положение РПН контролируется при осмотрах оборудования. При этом необходимо сверять показания указателя положения переключателя на щите управления и на приводах РПН, поскольку может возникнуть рассогласование сельсина — датчика и сельсина — приемника. Кроме того, необходимо проверять одинаковое положение РПН всех параллельно работающих трансформаторов или отдельных фаз при пофазном управлении, а также производить запись показаний счетчика числа переключений РПН.

Большое влияние на электрическую износостойкость РПН оказывают значения переключающего тока:

при токах до 1000 А допускается выполнение не менее 60 000 переключений;

при разрыве тока более 1000 А допускается 25 000 переключений;

эксплуатационными инструкциями предписывается выполнять 10 000—20 000 переключений под нагрузкой, после чего контактор РПН необходимо вывести в ревизию и при этом заменить обгоревшие контакты контакторных устройств. Нагрев таких контактов усиливает процесс разложения масла.

Качество масла в баке контактора РПН оценивается по отсутствию влаги (не более 0,003 %) и минимальному пробивному напряжению, которое для РПН 35 кВ принято равным 30 кВ, для напряжений 110 и 220 кВ — соответственно 35 и 40 кВ. Пробы масла должны отбираться через каждые 5000 переключений, но не реже 1 раза в год.

Наличие масла в отсеке расширителя или в баках контакторов фиксируется по маслоуказателям. Следует знать, что при пониженном уровне масла увеличивается время горения дуги на контактах.

При низкой температуре окружающего воздуха необходим контроль за работой нагревательных элементов в баках контакторов. Если температура масла в баке контактора или в баке трансформатора (для РПН, встроенных в бак) понизится до минус 21 °C, то РПН следует вывести из работы. Следует иметь в виду, что в вязком масле контактор во время срабатывания испытывает значительные механические перегрузки, которые могут вызвать его повреждение.

Если в РПН предусмотрен обогрев контактора, то в зимний период при температуре окружающего воздуха минус 15 °C включается система автоматического обогрева контакторов. Включение этой системы вручную (кроме действия автоматики) не допускается.

При включении резервного трансформатора с устройством РПН, оборудованным электроподогревом, при температуре окружающего воздуха ниже минус 20 °C должна предварительно включаться на 13–15 ч система автоматического обогрева контактов. В этом случае пользоваться РПН разрешается только по истечении указанного времени.

Следует учитывать, что приводные механизмы РПН являются наиболее ответственными и наименее надежными узлами этих устройств. Поэтому их необходимо предохранять от попадания пыли, влаги, трансформаторного масла, а трущиеся детали и шариковые соединения передач следует смазывать незамерзающей тугоплавкой смазкой через каждые 6 мес.

При регулировании напряжения переключением ответвлений с помощью устройств РПН или ПБВ нельзя допускать длительного повышения напряжения на трансформаторе сверх номинального для данного ответвления более чем на 5 % при нагрузке не выше номинальной и на 10 % при нагрузке не выше 25 % номинальной.

Для автотрансформаторов без ответвлений в нейтрали и регулировочных трансформаторов допускается длительное повышение напряжения до 10 % сверх номинального.

Превышение указанных значений приводит к перенасыщению магнитопровода, резкому возрастанию тока и потерь ХХ. При этом потери в стали возрастают пропорционально квадрату напряжения. Увеличение потерь в стали приводит к форсированному износу изоляции и перегреву стальных конструкций.

При параллельной работе двух регулируемых трансформаторов изменение их коэффициентов трансформации следует производить одновременно, чтобы избежать перегрузки уравнительным током. При автоматическом управлении РПН такую задачу решает специальная блокировка. При отсутствии автоматического управления переключение ответвлений следует выполнять постепенно, не допуская рассогласования по ступеням ответвлений более чем на одну ступень.

Персонал потребителя, обслуживающий трансформаторы, обязан поддерживать соответствие между напряжением сети и напряжением, устанавливаемым на регулировочном ответвлении.

 

2.6. Заземление нейтралей трансформаторов. Дугогасящие реакторы для компенсации емкостных токов

Электрические сети 35 кВ и ниже работают с изолированной нейтралью обмоток трансформаторов или заземлением через дугогасящие реакторы, сети 110 кВ и выше — с эффективным заземлением нейтралей обмоток трансформаторов.

При необходимости компенсации емкостных токов в сетях 6, 10 и 35 кВ на ПС устанавливаются дугогасящие заземляющие реакторы с плавным или ступенчатым регулированием индуктивности. На напряжении 6 и 10 кВ дугогасящие реакторы подключаются к нейтральному выводу отдельного трансформатора, подключаемого к сборным шинам через выключатель. Количество и мощность дугогасящих реакторов 6-10 кВ определяются на основании данных энергосистемы.

На напряжении 35 кВ дугогасящие реакторы присоединяются, как правило, к нулевым выводам соответствующих обмоток трансформаторов через развилку из разъединителей, позволяющую подключать их к любому из трансформаторов.

Последствия от замыкания на землю в зависимости от вида электросети, значения емкостных токов и способы выполнения защит различны.

Так, в сетях с изолированной нейтралью однофазное замыкание на землю не вызывает КЗ, поскольку в месте замыкания проходит ток малой величины, обусловленный емкостью двух фаз на землю. Значительные емкостные токи компенсируются включением в нейтраль трансформатора дугогасящего реактора. В результате компенсации остается малый ток, который не в состоянии поддерживать горение дуги в месте замыкания, поэтому поврежденный участок не отключается. Однофазное замыкание на землю сопровождается повышением напряжения на неповрежденных фазах до линейного, а при замыкании через дугу возможно возникновение перенапряжений, распространяющихся на всю электрически связанную сеть. Для предохранения трансформаторов в сетях с изолированной нейтралью или с компенсацией емкостных токов от воздействия повышенных напряжений изоляцию их нейтралей выполняют на тот же класс напряжения, что и изоляцию линейных вводов. При таком уровне изоляции не требуется применения средств защиты нейтралей, кроме вентильных разрядников, включаемых параллельно дугогасящему реактору.

В сетях с эффективным заземлением нейтрали однофазное замыкание на землю приводит к КЗ, что видно из рис. 2.2.

Ток КЗ проходит от места повреждения по земле к заземленным нейтралям трансформаторов Т1 и Т2, распределяясь обратно пропорционально сопротивлениям ветвей. Защита от замыкания на землю отключает поврежденный участок. Через трансформаторы Т3 и Т4 ток однофазного КЗ не проходит, поскольку их нейтрали не имеют глухого заземления.

Однофазное замыкание на землю является причиной наибольшего числа повреждений в электросетях (по статистике — до 80 % случаев всех КЗ), и оно считается тяжелым видом повреждения. Поэтому для его предотвращения (снижения возможности возникновения) принимают специальные меры, например, такие как частичное разземление нейтралей трансформаторов. Эта мера не касается автотрансформаторов, поскольку они рассчитаны для работы с обязательным заземлением концов общей обмотки.

Число заземленных нейтралей на каждом участке по возможности выбирается минимальным и должно определяться расчетом. Основными требованиями к защите заземленных участков являются требования к релейной защите по поддержанию на определенном уровне токов замыкания на землю и обеспечение защиты изоляции разземленных нейтралей от перенапряжений. Последнее требование тем более важно, что все отечественные трансформаторы 110–220 кВ имеют пониженный уровень изоляции нейтралей.

При неполнофазных отключениях (включениях) ненагруженных трансформаторов с изолированной нейтралью, то есть когда коммутационная аппаратура (выключатели, разъединители или отделители) оказывается включенной не тремя, а двумя или даже одной фазой, переходный процесс сопровождается кратковременными перенапряжениями. Надежной защитой от таких процессов является применение вентильных разрядников.

На практике, помимо воздействия кратковременных перенапряжений, нейтрали трансформаторов могут оказаться под воздействием фазного напряжения промышленной частоты, которое опасно как для изоляции трансформатора, так и для разрядника в его нейтрали. Опасность усугубляется еще тем, что такое напряжение может длительно оставаться незамеченным при неполнофазных режимах коммутации выключателями, разъединителями и отделителями ненагруженных трансформаторов, а также при аварийных режимах.

При неполнофазном включении ненагруженного трансформатора, то есть при пофазной коммутации, его электрическое и магнитное состояние изменяется. Если включение трансформатора осуществляется со стороны обмотки, соединенной в звезду, то при наличии двух фаз напряжение на нейтрали и на отключенной фазе будет равно половине фазного. Если подать напряжение по одной фазе, то все обмотки трансформатора и его нейтраль будут находиться под напряжением включенной фазы. Во избежание негативных последствий и предупреждения аварии неполнофазный режим должен быть немедленно устранен.

В идеале наилучшей мерой защиты в таких случаях является глухое заземление нейтралей обмоток трансформаторов. Поэтому перед включением или отключением от сети трансформаторов 110–220 кВ, у которых нейтраль защищена вентильными разрядниками, следует наглухо заземлять нейтраль включаемой или отключаемой обмотки, если к тем же шинам или к питающей линии не подключен другой трансформатор с заземленной нейтралью.

Глухое заземление нейтрали трансформатора облегчает процессы отключения и включения намагничивающих токов, вследствие чего дуга при отключении трансформатора горит менее интенсивно и быстро гаснет.

Отключение заземляющего разъединителя в нейтрали трансформатора, работающего с разземленной нейтралью, следует производить сразу же после включения и проверки полнофазного включения коммутационного аппарата. Не допускается длительно оставлять нейтраль заземленной. Заземлением нейтрали изменяется распределение токов нулевой последовательности и нарушается селективность действия защит от однофазных замыканий на землю.

В настоящее время широкое распространение получили упрощенные схемы питания от одиночных и двойных проходящих линий 110–220 кВ. Число присоединяемых к ним трансформаторов может достигать 4–5. Если к такой линии присоединены два и более трансформаторов, то целесообразно хотя бы у одного из них иметь глухое заземление нейтрали, что позволит в случае неполнофазной подачи напряжения на линию вместе с подключенными к ней трансформаторами избежать появления опасных напряжений на изолированных нейтралях других трансформаторов. На линейных вводах всех подключенных к линии трансформаторов образуется симметричная трехфазная система напряжений, при которой напряжение на изолированной нейтрали трансформатора будет равно нулю.

В сетях с эффективно заземленной нейтралью трансформаторы при возникновении аварийных режимов подвержены опасным перенапряжениям. Это может иметь место, когда при обрыве и соединении провода с землей выделяется участок сети, не имеющей заземленной нейтрали со стороны источника питания. На таком участке напряжение на нейтралях трансформаторов становится равным по величине и обратным по знаку ЭДС заземленной фазы, а напряжение неповрежденных фаз относительно земли повышается до линейного. Возникающие при этом из-за колебательного перезаряда емкостей фаз на землю перенапряжения представляют опасность для изоляции трансформаторов и другого оборудования данного участка.

В сетях с эффективно заземленной нейтралью на случай перехода части сети в режим работы с изолированной нейтралью предусматривают защиты от замыкания на землю, реагирующие на напряжение нулевой последовательности 3Uо, которое появляется на зажимах разомкнутого треугольника ТН при соединении фазы с землей.

Такие защиты действуют на отключение выключателей трансформаторов с незаземленной нейтралью. Их настраивают так, чтобы при однофазном повреждении первыми отключались трансформаторы с изолированной нейтралью, а затем трансформаторы с заземленной нейтралью.

На ПС 110 кВ, где трансформаторы не могут получать подпитку со стороны СН и НН, такие защиты от замыкания на землю не устанавливаются и глухое заземление нейтралей не производится.

На основании изложенного оперативному персоналу необходимо выполнять следующие рекомендации:

при выводе в ремонт трансформаторов, а также при изменениях схем ПС необходимо обеспечивать режим заземления нейтралей, принятый в энергосистеме, и при переключениях не допускать в сетях с эффективно заземленной нейтралью выделения участков без заземления нейтралей у питающих сеть трансформаторов;

во избежание автоматического выделения таких участков на каждой системе шин ПС, где возможно питание от сети другого напряжения, рекомендуется иметь трансформатор с заземленной нейтралью с обязательной токовой защитой нулевой последовательности;

при выводе в ремонт трансформатора, нейтраль которого заземлена, необходимо предварительно заземлить нейтраль другого параллельно работающего с ним трансформатора;

без изменения положения нейтралей других трансформаторов производится отключение трансформаторов с изолированной нейтралью или нейтралью, защищенной вентильным разрядником.

 

2.7. Защита оборудования ПС от перенапряжений

Защита высоковольтного оборудования ПС от грозовых и коммутационных перенапряжений осуществляется:

от прямых ударов молнии — стержневыми и тросовыми молниеотводами;

от набегающих волн с отходящих линий — молниеотводами (от прямых ударов молнии на определенной длине этих линий) и защитными аппаратами, устанавливаемыми на подходах и в РУ, к которым относятся разрядники вентильные (РВ), ОПН, разрядники трубчатые (РТ) и защитные искровые промежутки.

Для оборудования ПС 110–220 кВ наибольшую опасность представляют грозовые перенапряжения, вследствие чего вольт-секундные характеристики искровых промежутков РВ должны быть такими, чтобы разрядники (например, типов РВС, РВМ, РВМГ) были отстроены от воздействия коммутационных перенапряжений.

Для сетей 330–750 кВ опасны как грозовые, так и коммутационные перенапряжения. Вследствие этого разрядники для ПС с таким напряжением (например, типа РВМК) выбираются на срабатывание при воздействии как грозовых, так и коммутационных перенапряжений.

Здания ЗРУ и ПС следует защищать от прямых ударов молнии в районах с числом грозовых часов в году более 20.

При установке стержневых молниеотводов на защищаемом здании от каждого молниеотвода прокладываются не менее двух токоотводов по противоположным сторонам здания.

РУ 3-20 кВ, к которым присоединены ВЛ, должны быть защищены РВ или ОПН, установленными на шинах или у трансформаторов. РВ или ОПН в одной ячейке с ТН должен быть присоединен до предохранителя ТН.

На подходах к подстанциям ВЛ 3-20 кВ с металлическими и железобетонными опорами установка защитных аппаратов не требуется. Однако при применении на ВЛ 3-20 кВ изоляции, усиленной более чем на 30 % (например, из-за загрязнения атмосферы), на расстоянии 200300 м от ПС и на ее вводе должны быть установлены защитные искровые промежутки.

Следует иметь в виду, что РВ морально и конструктивно устарели и уже сняты с производства, а оставшиеся в эксплуатации РВ практически отслужили свой нормативный срок. В настоящее время происходит их замена на современные ОПН. Таким образом, разрядники в качестве средств защиты от перенапряжений на вновь проектируемых ПС 110–750 кВ не применяются.

Необходимость установки ОПН для защиты оборудования в ячейках линий 330–750 кВ для ограничения коммутационных перенапряжений определяется расчетом и уровнем испытательных напряжений защищаемого оборудования.

Для линий 330 и 500 кВ длиной до 50 км установка ОПН не требуется.

Защитные аппараты от перенапряжений устанавливаются:

в цепи трансформатора (автотрансформатора);

на шинах РУ ПС;

у шунтирующих реакторов.

ОПН устанавливается для защиты трансформаторов, автотрансформаторов и шунтирующих реакторов в цепи их присоединений до выключателя.

 

2.8. Трансформаторное масло: изоляционные свойства, отбор проб, очистка, осушка и регенерация

Трансформаторное масло применяется в трансформаторах в качестве охлаждающей среды для отвода тепла от проводов обмоток, а также служит изоляцией.

Одной из основных характеристик трансформаторного масла является его вязкость, уменьшающаяся при росте температуры и возрастающая при ее снижении.

Высокая вязкость масла ухудшает работу механизмов систем охлаждения, в связи с чем эта величина является нормируемой и подлежит проверке перед его заливкой в трансформатор.

Изоляционные свойства масел характеризуются показателями, значения которых должны быть не ниже указанных в табл. 2.6.

Таблица 2.6

При эксплуатации изоляционные свойства трансформаторного масла ухудшаются: оно загрязняется, увлажняется, накапливает продукты окисления, в результате чего масло теряет свои химические и электрофизические свойства и стареет.

Кроме того, масло стареет также за счет совместного воздействия на него кислорода воздуха и электрического поля. Окислению способствуют высокие температуры, солнечный свет, наличие растворимых в масле солей металла, являющихся катализаторами окисления.

При наличии электрического поля в масле доля влаги растет по сравнению с наличием влаги при отсутствии электрического поля. Известно, что капли влаги и частицы загрязнений располагаются в электрическом поле вдоль его силовых линий, что приводит к резкому снижению электрической прочности масла.

Очистка масла от механических примесей и влаги осуществляется центрифугированием и фильтрованием через бумажные фильтры. Эффективная очистка получается при использовании центрифуги в комбинации с фильтр-прессом. Этот способ нашел широкое применение при очистке масла в трансформаторах до 110 кВ. В трансформаторах 220 кВ и выше, где к маслу предъявляются повышенные требования в части содержания газов, очистка производится в процессе ремонта; при этом одновременно осуществляются процессы сушки, фильтрации и дегазации масла, а при необходимости и насыщение его азотом (инертным газом).

В настоящее время получил распространение способ осушки масла при помощи цеолитов, которые по своему составу являются водными алюмосиликатами кальция или натрия. Они содержат огромное количество пор с разными молекулами. При фильтровании масла через слой высушенного цеолита находящаяся в масле влага проникает в поры и в них удерживается. Отработанные цеолиты восстанавливаются в стационарных установках продувкой горячим воздухом.

Регенерация представляет собой восстановление окисленного масла, то есть удаление из него продуктов старения. На практике применяется регенерация эксплуатационных масел с кислотным числом, не превышающим 0,3–0,4 мг КОН/г масла.

Для регенерации применяют различного рода адсорбенты естественного и искусственного происхождения. Восстанавливающие свойства адсорбентов основаны на способности за счет действия сил межмолекулярного притяжения осаждать на их поверхности продукты старения.

В качестве естественных адсорбентов применяются отбеливающая земля «зикеевская опока», искусственных — крупнопористый (КСК) и мелкопористый (КСМ) силикагель. Иногда применяется активный оксид алюминия, обладающий адсорбционной способностью по отношению к кислым продуктам старения масла.

При регенерации масло прокачивается через наполненный адсорбентом бак-адсорбер.

Наряду с перечисленными выше применяются специальные устройства для защиты масла в трансформаторах, такие, например, как расширитель трансформатора или воздухоочистительные фильтры.

Расширитель трансформатора, помимо основной функции по компенсации изменения объема масла в масляной системе трансформатора вследствие колебания температуры, позволяет также уменьшить площадь открытой поверхности масла, соприкасающейся с воздухом, что снижает степень окисления, увлажнения и загрязнения масла. Влага и механические примеси, попадая в расширитель из воздуха, осаждаются в его нижней части, откуда удаляются при ремонте трансформатора.

Воздухоочистительные фильтры устанавливают на опускных («дыхательных») трубах расширителей. В нижней части фильтра размещается масляный затвор, работающий по принципу сообщающихся сосудов, который очищает проходящий через него воздух от механических примесей и устраняет прямой контакт масла в расширителе с окружающей средой. Корпус фильтра заполняется силикагелем, осаждающим на своей поверхности частицы воды, содержащиеся в воздухе. С понижением температуры трансформатора объем масла в нем уменьшается, вследствие чего в расширителе создается разрежение и изменяется соотношение уровней масла в затворе. Когда уровень масла во внешней полости затвора упадет настолько, что обнажится край затворного цилиндра, порция атмосферного воздуха пройдет через затвор и далее через поглотитель влаги, попадая в расширитель. При нагревании трансформатора масло начнет оказывать давление на воздушную подушку и в расширителе процесс пойдет в обратном направлении.

Воздухоосушающая способность фильтра определяется визуально по изменению цвета индикаторного силикагеля с голубого на розовый. Розовый цвет силикагеля свидетельствует о его увлажнении и необходимости замены всего силикагеля.

Срок службы силикагеля в воздухоочистительных фильтрах зависит от объема масла в трансформаторе и колеблется от 1 до 2 лет. Замена масла в масляных затворах производится через 2–3 года.

Для непрерывной регенерации масла в трансформаторах широко применяются адсорбционные и термосифонные фильтры, которые выполняют в виде металлических цилиндров, заполненных сорбентом, поглощающим продукты окисления и влагу из циркулирующего через них масла.

Адсорбционные фильтры применяют в системах охлаждения ДЦ и Ц, где обеспечивается принудительная прокачка масла через фильтры.

Термосифонные фильтры применяют в системах охлаждения М и Д, где масло перемещается сверху вниз вследствие разности плотностей нагретого и охлажденного масла.

Сорбентом в этих фильтрах служит силикагель КСК или активный оксид алюминия. Замена сорбента производится после того, как кислотное число превысит 0,1–0,12 мг КОН/г масла.

Для устранения контакта масла в расширителе трансформатора с атмосферным воздухом и предотвращения тем самым загрязнения и окисления масла применяется азотная защита. В качестве такой защиты на практике наиболее часто применяется система низкого давления (давление азота не более 3 кПа) с применением эластичной емкости.

Основным элементом системы является эластичный резервуар, выполненный из резинотканевой пластины (газонепроницаемый химически стойкий материал) и соединяемый газопроводом с расширителем трансформатора. Система заполняется азотом, давление которого незначительно превышает нормальное атмосферное давление при всех температурных изменениях уровня масла в расширителе. При нагреве трансформатора уровень масла в расширителе поднимается и заполняющий его азот переходит в эластичный резервуар, объем которого увеличивается. При понижении уровня масла в расширителе азот переходит в него из эластичного резервуара, стенки которого опадают. Газоосушитель служит для поглощения влаги, которая может попасть в газовую систему из масла или изоляции, а также из газового баллона во время подпитки системы азотом.

На ПС с двумя и более трансформаторами применяется групповая азотная защита с питанием от одного эластичного резервуара.

Дегазация масла производится под вакуумом на специальных установках, насыщение азота — продувками. При 3–4 продувках кислород в масле почти полностью замещается азотом. Содержание кислорода в газовом пространстве расширителя должно быть не более 1 %. При большем содержании кислорода азотная защита масла становится неэффективной.

Обслуживание азотной защиты заключается в следующем:

при осмотре устройства проверяется уровень масла в расширителе трансформатора, наполнение эластичных резервуаров азотом, цвет силикагеля в осушителе;

если объем эластичных резервуаров мал и не соответствует уровню масла в расширителе, проверяется внешнее состояние эластичных резервуаров и герметичность соединений всей газовой системы;

при необходимости производится подпитка газовой системы азотом из баллонов. Для этого отключается газовая защита трансформатора, закрывается кран и система через редуктор и кран заполняется азотом из баллонов до тех пор, пока объем эластичного резервуара не станет соответствовать уровню масла в расширителе. Подключение эластичного резервуара к трансформатору производится в обратном порядке. Затем окончательно подключается к трансформатору его газовая защита.

Необходимость в подпитке азотом возникает, как правило, не чаще 1 раза в месяц. При надежной герметичности соединений всех узлов в надмасляном пространстве подпитку азотом производят 1 раз в год.

Пробы азота отбирают через каждые 6 мес. Если в газовой смеси обнаруживается более 3 % кислорода, при открытом вентиле производится 10-минутная продувка надмасляного пространства в расширителе чистым и сухим азотом. Газовая защита выводится из работы на все время продувки.

Доливка масла в трансформатор, имеющий азотную защиту, производится через нижний сливной кран.

Для герметизации масла трансформатора применяется пленочная защита в виде подвижной пленки, помещаемой в расширитель трансформатора и изолирующей масло в расширителе от соприкосновения с атмосферным воздухом. Пленочная защита выполняется в виде эластичного компенсатора, изменяющего свой объем при температурных колебаниях объема масла в трансформаторе, или в виде эластичной мембраны, плавающей на поверхности масла и свободно изгибающейся при изменении объема масла в расширителе. При этом в надмасляном пространстве трансформатора сохраняется нормальное атмосферное давление.

Уровень масла в расширителе контролируется по стрелочному указателю, рычаг которого опирается на поверхность пленки. Трансформатор с пленочной защитой заполняется дегазированным маслом с обязательным периодическим контролем его газосодержания.

Герметичность пленки проверяется при очередном ремонте трансформатора. В случае срабатывания газовой защиты трансформатора должна проводиться и проверка пленочной защиты.

Для увеличения срока службы трансформаторного масла применяются присадки. Нормально очищенное масло в качестве естественных антиокислителей содержит смолы, защищающие масло от окисления в начальный период его эксплуатации. Специальные присадки тормозят процесс окисления масла. Присадки в зависимости от принципа действия относят к следующим группам:

ингибиторы — антиокислители;

деактиваторы — вещества, уменьшающие каталитическое действие растворимых в масле соединений, содержащих металлы;

пассиваторы — вещества, образующие на металле пленку, предохраняющую от каталитического действия металлов.

Широкое применение нашли такие присадки, как ионол и антраниловая кислота.

Ионол представляет собой типичный ингибитор, который будучи введенным в масло в количестве 0,2 % от массы масла, замедляет образование осадка в очищенных маслах и тормозит рост tgφ.

Антраниловая кислота представляет собой присадку с многофункциональным действием. Это сильный пассиватор и активатор, но слабый ингибитор. При введении в масло 0,02-0,05 % антраниловой кислоты коррозия меди и железа практически прекращается.

Наиболее эффективным является одновременное применение ионола и антраниловой кислоты.

Для обслуживания маслонаполненного оборудования должны быть организованы централизованные масляные хозяйства, оборудованные резервуарами для хранения масла, насосами, оборудованием для очистки, осушки и регенерации масла, передвижными маслоочистительными и дегазационными установками, емкостями для транспортировки масла.

В соответствии с требованиями ПУЭ, указатели уровня и температуры масла маслонаполненных трансформаторов и аппаратов и другие указатели, характеризующие состояние оборудования, должны быть расположены таким образом, чтобы были обеспечены удобные и безопасные условия для доступа к ним и наблюдения за ними без снятия напряжения (например, со стороны прохода в камеру).

Для отбора проб масла расстояние от уровня пола или поверхности земли до крана трансформатора или аппарата должно быть не менее 0,2 м или должен быть предусмотрен соответствующий приямок.

Для предотвращения растекания масла и распространения пожара при повреждениях маслонаполненных силовых трансформаторов (реакторов) с количеством масла более 1 т в единице должны быть выполнены маслоприемники, маслоотводы и маслосборники с соблюдением следующих требований ПУЭ:

габариты маслоприемника должны выступать за габариты трансформатора (реактора) не менее чем на 0,6 м при массе масла до 2 т; 1 м при массе от 2 до 10 т; 1,5 м при массе от 10 до 50 т; 2 м при массе более 50 т. При этом габарит маслоприемника может быть принят меньше на 0,5 м со стороны стены или перегородки, располагаемой от трансформатора (реактора) на расстоянии менее 2 м;

объем маслоприемника с отводом масла следует рассчитывать на единовременный прием 100 % масла, залитого в трансформатор (реактор). Объем маслоприемника без отвода масла следует рассчитывать на прием 100 % объема масла, залитого в трансформатор (реактор), и 80 % воды от средств пожаротушения из расчета орошения площадей маслоприемника и боковых поверхностей трансформатора (реактора) с интенсивностью 0,2 л/с-м2 в течение 30 мин;

устройство маслоприемников и маслоотводов должно исключать переток масла (воды) из одного маслоприемника в другой, растекание масла по кабельным и другим подземным сооружениям, распространение пожара, засорение маслоотвода и забивку его снегом, льдом и т. п.;

маслоприемники под трансформаторы (реакторы) с объемом масла до 20 т допускается выполнять без отвода масла. Маслоприемники без отвода масла должны выполняться заглубленной конструкции и закрываться металлической решеткой, поверх которой должен быть насыпан слой чистого гравия или промытого гранитного щебня толщиной не менее 0,25 м, либо непористого щебня другой породы с частицами от 30 до 70 мм. Уровень полного объема масла в маслоприемнике должен быть ниже решетки не менее чем на 50 мм;

маслоприемники с отводом масла могут выполняться как заглубленными, так и незаглубленными (дно на уровне окружающей планировки). При выполнении заглубленного маслоприемника устройство бортовых ограждений не требуется, если при этом обеспечивается выполнение приведенных выше требований к объему маслоприемника.

Маслоприемники с отводом масла могут выполняться:

с установкой металлической решетки на маслоприемнике, поверх которой насыпан гравий или щебень толщиной слоя 0,25 м;

без металлической решетки с засыпкой гравия на дно маслоприемника толщиной слоя не менее 0,25 м.

 

2.9. Маслонаполненные вводы: обслуживание, контроль изоляции

Обслуживание маслонаполненных вводов должно осуществляться в соответствии с «Типовой инструкцией по эксплуатации маслонаполненных вводов на напряжение 110–750 кВ» (РД 34.46.503).

Маслонаполненные вводы служат для ввода высокого напряжения в баки масляных трансформаторов и реакторов, масляных выключателей, а также для прохода через стены помещений закрытых РУ.

Токоведущая часть ввода представляет собой медную трубу с контактным зажимом сверху и экранированным контактным узлом снизу. У вводов трансформаторов через медную трубу пропускают гибкий отвод обмотки.

Изоляция ввода состоит из двух фарфоровых покрышек, закрепленных на заземленной соединительной втулке, бумажной изоляции и заполняющего ввод масла.

Применяются также вводы с твердой изоляцией из бумажной намотки на изоляционный сердечник, пропитанной бакелитовой смолой. В этой конструкции отсутствует нижняя фарфоровая покрышка. Поэтому нижняя часть ввода оказывается погруженной в трансформаторное масло.

По способу защиты внутренней изоляции маслонаполненные вводы разделяются на герметичные и негерметичные.

Для выравнивания напряженности электрического поля на изолирующем промежутке вводов используются металлические уравнительные обкладки, которые часто применяются в качестве измерительных конденсаторов. К выводам от них подключаются приспособления для измерения напряжения.

Все неиспользованные выводы от измерительных конденсаторов подлежат заземлению. В противном случае (при разземлении или обрыве выводов) может произойти пробой изоляции из-за перераспределения напряжения по ее бумажным слоям.

Заполнение маслом вводов негерметичного исполнения обеспечивается маслораспределителями, снабженными маслоуказателями и устройствами защиты масла от увлажнения и загрязнения.

В герметичных вводах конденсаторного типа, постоянно находящихся под избыточным давлением, компенсация температурных изменений объема масла осуществляется с помощью компенсирующих устройств — герметически запаянных сильфонов, заполненных азотом, которые размещают в расширителях или в баках давления.

При осмотре маслонаполненных вводов проверяют:

уровень масла во вводе по маслоуказателю расширителя. При температуре окружающего воздуха 20 °C уровень масла должен находиться на половине высоты маслоуказателя;

состояние и цвет силикателя в воздухоочистительном фильтре; давление масла в герметичных вводах;

отсутствие течей масла в местах соединений фарфоровых покрышек с соединительной втулкой, а также в соединениях отдельных деталей в верхней части ввода;

отсутствие загрязнений поверхности, трещин и сколов фарфора;

состояние фланцев и резиновых уплотнений;

отсутствие потрескиваний и звуков разряда;

отсутствие нагрева контактных соединений.

За изоляцией вводов должен осуществляться контроль.

Вводы конденсаторного типа с бумажно-масляной изоляцией заполняются малым количеством масла и имеют повышенные градиенты электрического поля. Поэтому наиболее часто причинами повреждения вводов являются тепловые пробои бумажной изоляции.

Для выявления повреждений внутренней изоляции вводов применяют устройства контроля изоляции вводов (КИВ). Особенно важно их использование для непрерывного контроля трансформаторных вводов напряжением 500 кВ и выше.

Принципиальная схема КИВ показана на рис. 2.3.

Действие КИВ основано на измерении суммы емкостных токов первой гармоники вводов трех фаз. При равенстве емкостей вводов и фазных напряжений в нулевом проводе звезды сумма емкостных токов равна (близка) нулю. Практически у ввода 500 кВ емкостный ток равен 100 мА, а небаланс суммы емкостных токов трех фаз составляет всего 3–5 мА. При нарушении изоляции одного из вводов ток небаланса резко возрастает.

Устройство включает в себя суммирующий емкостные токи и обеспечивающий безопасность работы устройства в случае пробоя трансформатор 4 и блок 5, содержащий измерительный, сигнальный и отключающий каналы, а также канал блокировки. Получаемый от суммирующего трансформатора 4 сигнал преобразуется в схеме блока 5 и поступает на измерительный прибор с двумя диапазонами измерений (0-20 и 0-100 мА) и на входы оперативных каналов устройства.

В зависимости от тока небаланса КИВ срабатывает на сигнал при токе выше 7 % номинального тока ввода, а на отключение трансформатора — при токе выше 25 % номинального тока ввода, и мгновенно блокируется при токе, превышающем 70 % номинального емкостного тока ввода. Блокировка предотвращает ложное срабатывание на отключение при повреждениях в цепях суммирующего трансформатора и вводов. В этом случае КИВ отключают, выясняют и устраняют причину повреждения.

Срабатывание сигнального канала, который считается главным в устройстве, указывает на прогрессирующее повреждение изоляции ввода. При срабатывании КИВ на сигнал необходимо измерить небаланс тока. Если он превышает установленное значение, то измерением емкостного тока каждого ввода определяют неисправный. Результаты замеров фиксируют в оперативном журнале и решают вопрос об отключении трансформатора для испытания ввода.

Ток небаланса вводов в процессе эксплуатации постоянно контролируется по прибору не менее 1 раза в смену.

Маслонаполненные вводы имеют низкую эксплуатационную надежность. Из-за быстрого старения масла образуется желто-бурый осадок (продукты разложения масла) на внутренней поверхности нижней фарфоровой покрышки ввода. Это приводит к перекрытию изоляции, то есть к повреждению оборудования. Сложная технология ремонта поврежденных маслонаполненных вводов и затраты на ремонт сопоставимы со стоимостью нового ввода.

 

2.10. Повреждения при работе трансформаторов

В процессе эксплуатации могут возникнуть неполадки в работе трансформаторов, с одними из которых трансформаторы могут длительно оставаться в работе, а при других требуется немедленный вывод их из работы.

Причинами повреждений могут быть неудовлетворительные условия и уровень эксплуатации трансформаторов, их некачественный монтаж и ремонт, износ и старение изоляционных материалов и т. д.

Наиболее типичными повреждениями являются: повреждения изоляции, магнитопроводов, переключающих устройств, отводов от обмоток к переключающим устройствам и вводам, вводов.

Рассмотрим характер и причины возникновения указанных повреждений.

Повреждения изоляции. Причиной повреждения изоляции является, как правило, нарушение ее электрической прочности при увлажнении или при наличии незначительных изъянов. В трансформаторах 220 кВ и выше повреждения возникают вследствие появления так называемого «ползущего разряда», представляющего собой постепенное разрушение изоляции местными разрядами, распространяющимися по поверхности диэлектрика под действием рабочего напряжения. Вследствие этого на поверхности изоляции возникает сетка токопроводящих каналов, что приводит к сокращению изоляционного промежутка и ведет к пробою изоляции с образованием внутри бака интенсивной дуги.

К форсированному тепловому износу витковой изоляции приводит набухание дополнительной изоляции катушек, следствием чего может являться прекращение подачи масла из-за перекрытия масляных каналов.

Механические повреждения витковой изоляции, как правило, происходят при КЗ в сети и недостаточной электродинамической стойкости трансформаторов из-за ослабления усилий запрессовки обмоток.

Повреждения магнитопроводов. Магнитопроводы повреждаются по причине перегрева вследствие разрушения лаковой пленки между листами и спекания листов стали при нарушении изоляции прессующих шпилек, а также при возникновении короткозамкнутых контуров, когда отдельные элементы магнитопровода замыкаются между собой и на бак.

Повреждение переключающих устройств. Повреждения переключающих устройств ПБВ чаще всего происходят из-за нарушения контакта между подвижными контактными кольцами и неподвижными токоведущими стержнями. Ухудшение контакта, в свою очередь, происходит при снижении контактного давления и образования оксидной пленки на контактных поверхностях.

Переключающие устройства РПН являются сложными и требуют тщательной проверки, наладки и проведения контрольных испытаний.

Причинами повреждения РПН являются нарушения в работе контакторов и переключателей, подгорание контактов контакторных устройств, заклинивание механизмов контакторов, потеря механической прочности стальными деталями и бумажно-бакелитовым валом, перекрытие внешнего промежутка защитного разрядника.

Повреждения отводов . Повреждения отводов от обмоток к переключающим устройствам и вводам в основном возникают из-за неудовлетворительного состояния паек контактных соединений, а также из-за приближения гибких отводов к стенкам баков, загрязнения масла механическими примесями, в том числе оксидами и частицами металла из систем охлаждения.

Повреждения вводов. Повреждения вводов 110 кВ и выше связаны, как правило, с увлажнением бумажной основы. Попадание влаги внутрь вводов может иметь место при некачественных уплотнениях или при доливке вводов трансформаторным маслом с пониженной диэлектрической плотностью.

Как правило, причиной повреждения фарфоровых вводов является нагрев контактов в резьбовых соединениях составных токоведущих шпилек или в месте подсоединения наружных шин.

Контроль за состоянием трансформаторов и обнаружение возникающих неисправностей , как правило, осуществляется по анализу газов, растворенных в масле.

Для обнаружения повреждений на ранних стадиях их возникновения, когда выделение газов сравнительно слабое, на практике широко применяют метод хроматографического анализа газов, растворенных в масле.

При повреждениях трансформаторов из-за высокотемпературных нагревов происходит разложение масла и твердой изоляции с последующим образованием легких углеводородов и газов, которые растворяются в масле и накапливаются в газовом реле трансформатора. Период накопления таких газов может быть длительным, а скопившийся газ может существенно отличаться от состава газа, отобранного вблизи места его выделения. Все это затрудняет диагностику повреждения на основе анализа газа, которая может оказаться по этой причине запоздалой.

В масляных трансформаторах могут возникать частичные разряды при наличии микропузырьков воздуха, например, в бумажно-масляной изоляции. Однако такое явление исключительно редко встречается на практике благодаря технологии вакуумирования при заливке масла.

Анализ пробы газа, растворенного в масле, кроме точной диагностики повреждения дает возможность наблюдения за его развитием до срабатывания газового реле, что может оказаться полезным для более правильной оценки характера и последствий повреждения.

В целях более ранней диагностики повреждений из трансформаторов 2 раза в год отбирают пробы масла для хроматографического анализа газов, растворенных в масле.

Отбор пробы производится в следующей последовательности:

очищают от загрязнений патрубок крана, предназначенный для отбора пробы;

надевают на патрубок резиновый шланг;

открывают кран и промывают шланг маслом из трансформатора;

конец шланга поднимают вверх для удаления пузырьков воздуха;

на конце шланга устанавливают зажим;

иглу шприца вкалывают в стенку шланга;

забирают масло в шприц и сливают масло через иглу для промывки шприца;

повторяют операцию заполнения шприца маслом;

заполненный маслом шприц вкалывают иглой в резиновую пробку и в таком виде отправляют в лабораторию.

В лаборатории проводится анализ масла с применением хроматографа ЛХМ-8МД. Результаты анализа сравниваются с обобщенными данными состава и концентрации газа, выделяющегося при различных видах повреждений трансформаторов. После этого выдается заключение об исправности трансформатора или повреждении и степени его опасности.

По составу растворенных в масле газов можно определить степень перегрева токопроводящих соединений и элементов конструкции трансформатора, частичных электрических разрядов в масле, перегрева и старения твердой изоляции трансформатора.

Из всего сказанного следует, что правильный выбор конструкции и параметров силовых трансформаторов для тех или иных ПС должен быть сделан еще на стадии проектирования с учетом того, что разные условия эксплуатации требуют разных конструктивных решений; следует поддерживать эти параметры в процессе эксплуатации с соблюдением приведенных выше указаний и рекомендаций и сохранять их за счет надлежащего качества ремонта.

При аварии на трансформаторах используют специальные защиты. Например, на рис. 2.4 показана одна из таких защит с использованием короткозамыкателей.

При аварии на трансформаторе одного из присоединений (Т1) установленная на нем защита подаст напряжение на катушку включения соответствующего короткозамыкателя SC1. Короткозамыкатель замкнет свои контакты, создав искусственное замыкание на землю. На это замыкание среагирует защита магистральной ЛЭП, в зоне действия которой находится ПС, и с помощью головного выключателя Q отключит всю подстанцию. Через небольшой промежуток времени сработает автоматическое повторное включение (АПВ) и включит головной выключатель. В бестоковую паузу сработает отделитель поврежденного трансформатора Е1 и отключит его от сети. Таким образом, не используя отдельный выключатель на каждое присоединение, возможно отключить поврежденный участок, сохранив ПС в работе.