Глава 1.
ИЩИТЕ ТАМ, ГДЕ СВЕТЛО
Если единственный инструмент, который у вас есть, это молоток, то вы невольно начинаете рассматривать все окружающие предметы как гвозди.
Однажды некий миллиардер пригласил биолога, математика и физика и дал им задание за год разработать методику определения победителя на скачках, пообещав за успешное решение задачи миллион долларов.
Первым принёс результаты своих изысканий биолог:
— Мне необходимо знать полную родословную лошади, успехи её родителей, рацион питания, перенесённые заболевания, и тогда я смогу точно назвать максимальную скорость, которую она способна развить на ипподроме.
Следующим пришёл математик:
— Имея точные статистические данные предыдущих забегов этих лошадей, я могу вычислить матожидание результата любого последующего.
Так и не дождавшись результатов физика, миллиардер решил позвонить ему сам.
— Задача пока далека от окончательного решения, — ответил физик, — мне необходимо ещё десять лет, пятьдесят миллионов долларов, команда аспирантов и экспериментальная лаборатория. Но я уже построил модель движения сферического коня в вакууме…
Этот бородатый анекдот если и не смешной, то прекрасно иллюстрирующий, как большинство физиков представляют себе — метафорически — картину мира. Набор инструментов, при помощи которых физикам приходится описывать природу, ограничен.
Большинство современных теорий, о которых вы, вероятно, читали, начинали свою жизнь в виде простых моделей, придуманных учёными, размышлявшими, как ещё можно решить стоящую перед ними задачу. Эти простые модели были основаны на ещё более простых моделях, которые, в свою очередь, базировались на ещё более простых, и так далее, поскольку количество классов уравнений, имеющих точное решение, можно сосчитать по пальцам одной, ну хорошо — двух рук. Большинство физиков следуют тому же правилу, которое позволяет голливудским продюсерам приумножать свои капиталы: эксплуатируйте это, пока оно работает, а потом сделайте ремейк и эксплуатируйте дальше.
Анекдот про сферического коня в вакууме мне нравится ещё и тем, что он отражает один очень важный императив работы учёного, которому обычно редко уделяется внимание в научно-популярной литературе: прежде чем начинать заниматься какой-то проблемой, необходимо абстрагироваться от всех несущественных деталей!
В приведённом императиве — два оператива: абстрагирование и удаление несущественных деталей. Отделение существенных деталей от несущественных является первым шагом в построении любой модели, и каждый из нас подсознательно занимается этим в обычной жизни с момента рождения. Учёные отличаются от обычных людей тем, что делают это сознательно. Преодоление естественного желания не отбрасывать несущественную информацию, вероятно, наиболее важный и сложный аспект изучения физики. К тому же то, что является несущественным в одной ситуации, может оказаться очень даже существенным в другой — всё зависит от того, что в данный момент интересует учёного. И это приводит нас ко второй составляющей императива: абстракции.
Из всех вариантов абстрактного мышления наиболее сложным в физике является выбор способа подступиться к проблеме. Даже для простого описания равномерного прямолинейного движения — первого крупного прорыва в физике — требуется настолько сильно абстрагироваться от повседневного житейского опыта, что многие великие мыслители прошлого не сумели прийти к этому, казалось бы, простому результату, впервые полученному только Галилеем. Но об этом я расскажу позже, а сейчас вернёмся к нашим коням.
Представьте себе, что это конь:
Теперь представьте себе суперконя, во всём идентичного обычному коню, но имеющего вдвое больший диаметр:
Чем отличаются эти кони? Можем ли мы сказать, что суперконь вдвое больше обычного коня? Суперконь имеет вдвое больший диаметр, значит ли это, что он сам вдвое больше? Например, во сколько раз вес суперконя превосходит вес обычного коня? Если оба коня сделаны из одного и того же материала, то логично предположить, что их вес будет пропорционален количеству материала, пошедшему на их изготовление. А количество материала пропорционально объёму коня. Для тел сложной формы определить объём зачастую затруднительно, но для сферы это простая школьная задача. Возможно, вы ещё не забыли формулу объёма шара: V = (4π/3)r3. Но мы не знаем точного значения объёма каждого из коней, мы можем вычислить только их отношение. Объём обычно измеряется в кубических метрах, кубических сантиметрах, кубических километрах, даже в кубических футах или дюймах — для нас не так важны сами единицы измерения, как то, что они — кубические. Это означает, что объём пропорционален кубу линейного размера. Если диаметр шара увеличить в 2 раза, его объём увеличится в 2×2×2 = 8 раз. Значит, суперконь должен весить в 8 раз больше, чем обычный конь. А что, если мы захотим сшить для коня пальто? Насколько больше материала потребуется на пальто для суперконя, чем на пальто для обычного коня? Количество материала должно быть пропорционально площади поверхности коня. Если диаметр коня увеличивается в 2 раза, то площадь, измеряемая в квадратных метрах, километрах, сантиметрах, футах, дюймах, — увеличится пропорционально квадрату линейного размера, то есть в 2×2 = 4 раза.
Итак, конь, размер которого в 2 раза больше, имеет в 8 раз больший вес и в 4 раза большую площадь шкуры, которая удерживает вместе все его внутренности. Получается, что шкура коня, который имеет вдвое больший размер, испытывает вдвое большее давление со стороны внутренних органов. Значит, если мы будем увеличивать размер нашего сферического коня, то в какой-то момент прочность шкуры окажется недостаточной, чтобы удерживать увеличивающийся вес внутренних органов, и коня разорвёт. Мы только что получили очень важный результат: предел размера коня определяется не искусством селекционера и не биологическими законами, а законами физики.
Закон масштабирования, пример которого мы только что рассмотрели, не зависит от формы масштабируемого тела, поэтому мы ничего не потеряли, представив коня в виде сферы. Если бы я попытался вычислить объём настоящего коня и выяснить, как изменится его вес и площадь шкуры при увеличении линейных размеров, я получил бы точно такой же результат, только потратил бы на это неизмеримо больше времени и сил. Поэтому при исследовании данной задачи сферический конь — это совершенно оправданная абстракция.
Теперь рассмотрим более приближённую к реальности аппроксимацию коня. Изобразим его в виде двух сфер, соединённых штангой:
Всё, что мы говорили о масштабировании, остаётся в силе не только для коня целиком, но и для его отдельных частей. Например, голова суперконя будет весить в 8 раз больше, чем голова обычного коня. Теперь посмотрим на шею, представленную штангой. Прочность этой штанги пропорциональна её сечению — очевидно, что более толстая штанга будет более прочной, чем более тонкая. При увеличении диаметра штанги в 2 раза площадь её сечения увеличивается в 4 раза. Но смотрите: вес головы суперконя в 8 раз больше веса головы обычного коня, а прочность шеи — только в 4 раза. Таким образом, если мы будем увеличивать размеры коня, то в какой-то момент его штанга, то есть шея, переломится под весом его головы. Этим объясняется, почему головы гигантских динозавров были так непропорционально малы по сравнению с их туловищами и почему животные с большими по сравнению с их туловищами головами, такие как дельфины и киты, живут в воде: сила Архимеда компенсирует вес их тел, и требования к прочности существенно смягчаются.
Теперь мы понимаем, почему физик из анекдота не посоветовал бизнесмену попросту вырастить суперконя, который бы и победил на скачках. Даже используя такую простую абстракцию, как сферический конь, физик смог вывести ряд важных следствий относительно возможных размеров наземных млекопитающих, потому что принципы масштабирования физических объектов не зависят от их формы.
Используя наш простой пример, можно сделать ещё много интересных выводов, но вернёмся к Галилею. Самым важным среди его достижений следует считать созданное 400 лет назад описание движения — прекрасный пример абстрагирования от несущественных деталей.
Одним из наиболее очевидных результатов наивного наблюдения за окружающим миром является, на первый взгляд, очевидный вывод, что общее описание движения невозможно, потому что все тела движутся по-разному. Перо нежно порхает по ветру, в то время как камень стремительно падает вниз. Шары для боулинга, практически не меняя своей скорости, прямолинейно катятся по настилу, а газонокосилка ни за что не поедет, пока не заведёшь мотор. Галилей пришёл к выводу, что это наиболее очевидное свойство движения в реальном мире является наименее существенным для понимания его сути.
Маршалл Маклюэн мог бы сказать, что среда есть сообщение, однако Галилей значительно раньше обнаружил, что среда только мешает получать точные экспериментальные данные.
Философы до Галилея утверждали, что среда играет важную роль в движении, что движение без среды невозможно, но Галилей убедительно показал, что суть движения может быть понята лишь путём устранения влияния среды: «Каким образом не замечаете вы совершенно очевидных и часто встречающихся явлений, когда из двух тел, движущихся в воде, одно перемещается, например, во сто раз быстрее другого, тогда как при падении в воздухе скорость одного превышает скорость другого едва ли на одну сотую долю? Так, мраморное яйцо опускается в воде в сто раз быстрее куриного яйца; при падении же в воздухе с высоты двадцати локтей оно опережает куриное яйцо едва ли на четыре пальца».
Основываясь на этом рассуждении, Галилей пришёл к правильному выводу о том, что если мы полностью удалим среду, то все тела будут падать совершенно одинаково. Кроме того, он приготовил ответ на критику тех, кто не был готов к его абстрагированию от несущественных деталей для обнажения существенных: «Я не хотел бы, чтобы вы поступали как многие другие, отклоняя беседу от главного вопроса, и придирались к выражению, в котором я допустил отклонение от действительности на один волосок, желая скрыть за этой небольшой погрешностью ошибку другого, грубую, как якорный канат».
Аристотель, по утверждению Галилея, сосредоточивал своё внимание не на сходстве в движении объектов, а на различиях, которые объясняются влияниям среды. С позиции Галилея, идеальный мир, в котором среда полностью отсутствует, и является тем самым «отклонением от действительности на один волосок».
После достижения указанного уровня абстракции всё остальное оказывается очень простым: Галилей утверждал, что если убрать все внешние силы, действующие на тело, то предоставленное само себе, оно будет продолжать движение вдоль прямой линии с постоянной скоростью, независимо от того, как оно двигалось ранее.
В качестве примера ситуации, когда среда оказывает на движущееся тело очень слабое влияние, Галилей приводил скользящий по льду тяжёлый камень: его движение остаётся прямолинейным, а скорость более-менее постоянной. Аристотель же считал, что естественным состоянием всех тел является состояние покоя, потому что он не сумел абстрагироваться от влияния среды.
Чем так важен вышеприведённый вывод Галилея? Он стирает различия между телом, которое движется равномерно, и телом, которое покоится. Движущиеся и покоящиеся тела идентичны в том, что они будут продолжать соответственно двигаться или покоиться до тех пор, пока на них не подействует внешняя сила. Единственное различие между движущимся и покоящимся телом — это величина скорости. Но постоянная скорость математически ничем не отличается от нулевой, ведь ноль — это точно такое же вещественное число, как и все остальные, не лучше и не хуже.
Это наблюдение позволило Галилею перенести своё внимание с положений объектов в пространстве на изменение их положений, то есть на скорость их перемещения. Если вы признаете, что в отсутствие каких-либо сил тело будет двигаться прямолинейно и с постоянной скоростью, то вам останется один маленький шаг (ну и, возможно, в придачу ещё ум Ньютона), чтобы догадаться, что причиной изменения скорости тела является приложенная к нему внешняя сила. А если сила будет непостоянной во времени, то и скорость тела будет изменяться не монотонно. Об этом нам и говорит закон Ньютона. Вооружившись этим законом, можно понять законы движения всех окружающих тел и характер всех сил в природе — это те вещи, которые стоят за всеми изменениями во Вселенной, и они могут быть изучены: с этого момента натурфилософия превращается в современную физику. Но для того чтобы прийти к упомянутому закону, Ньютону понадобилось, подобно Галилею, отбросить несущественные детали и оставить только то, что действительно важно, а именно характер изменения скорости тела.
К сожалению, в попытках максимально подробно изучить какой-нибудь предмет или проблему мы часто упускаем что-нибудь важное и зацикливаемся на второстепенном. Если примеры Галилея и Аристотеля кажутся вам слишком далёкими, рассмотрим более близкую к нам ситуацию. Один мой родственник вместе с несколькими своими знакомыми — все они имели высшее образование, а один из них даже был учителем физики — вложили более миллиона долларов в проект по разработке нового двигателя, единственным источником энергии которого должно было быть гравитационное поле Земли. Движимые мечтами о преодолении мирового энергетического кризиса, уходе от зависимости от иностранной нефти и возможности сказочно разбогатеть, они убеждали себя в том, что машина обязательно заработает, нужно только приложить ещё немного усилий и потратить ещё немного денег.
Эти люди, разумеется, не были настолько наивными, чтобы считать, что можно получить что-то из ничего. Они не подозревали, что вкладывают деньги в очередной вечный двигатель. Они предполагали, что этот двигатель каким-то образом будет извлекать энергию из гравитационного поля. Устройство имело такое огромное количество шестернёй, шкивов и рычагов, что инвесторы были не в состоянии ни прояснить себе принцип действия машины, ни понять особенностей её конструкции. Во время демонстрации после освобождения тормоза главный маховик машины начинал вращаться, постепенно набирая обороты, и продолжал своё вращение в течение всего времени демонстрации. Это казалось инвесторам очень убедительным.
Несмотря на чрезвычайную сложность деталей машины, если абстрагироваться от всего несущественного и второстепенного, можно понять, почему такая машина не должна работать. Рассмотрим принципиальную схему прототипа описанной машины, приведённую на рисунке. Я изобразил начальное и конечное положение механизма, ведь как бы ни была сложна машина, рано или поздно все вращающиеся и движущиеся части должны оказаться в том же самом положении, в котором они были в момент запуска, и вечно работающая машина должна проходить через это состояние бесконечное количество раз.
Итак, рано или поздно механизм должен пройти через такое положение, когда каждый рычаг, каждый шкив, каждая гайка, каждый болт окажутся в точности на том же месте и в том же положении, что и в начальный момент. То есть ничто не сдвинулось, ничего не упало, ничего не испарилось.
Попытка разобрать принцип работы этой машины с инженерной точки зрения упирается в необходимость учёта движения огромного количества деталей и действующих на них сил. Рассмотрение же с физической точки зрения предлагает вместо этого сосредоточиться на главном. Заключим всю конструкцию в чёрный ящик, или, если хотите, в чёрную сферу и оставим только одно простое требование: если что-то производит работу, то энергия, необходимая для этой работы, должна быть извлечена изнутри этого чего-то или получена извне. Но если за полный цикл внутри ничего не изменилось, то и энергии взяться неоткуда!
Но откуда мы узнаём, что важно, а что нет, приступая к решению задачи? Как правило, ниоткуда. Всё, что нам остаётся, это идти вперёд и надеяться на то, что выбранный нами путь — верный, а полученные в конце его результаты будут иметь смысл. Как любил повторять Ричард Фейнман, «К чёрту торпеды, полный вперёд!»
Предположим, к примеру, что мы хотим понять внутреннее устройство Солнца. Для того чтобы обеспечить наблюдаемую светимость солнечной поверхности, в его горячих и плотных недрах должна выделяться энергия, эквивалентная ежесекундному взрыву сотни миллиардов водородных бомб! Невозможно даже представить себе, как подступиться к задаче точного расчёта всех чудовищных турбулентных процессов, происходящих внутри Солнца. Однако, к счастью для нас, солнечная печь бесперебойно и спокойно функционирует на протяжении миллиардов лет, из чего мы можем предположить, что происходящие внутри Солнца процессы хорошо сбалансированы. Простейшее альтернативное и, что более важно, поддающееся аналитическому исследованию решение базируется на предположении, что недра Солнца находятся в состоянии гидростатического равновесия. Это означает, что ядерные реакции, протекающие внутри Солнца, выделяют такое количество энергии, которое достаточно для разогрева солнечного вещества до температуры, приводящей к такому давлению, которое способно уравновесить вес вышележащих слоёв солнечного вещества, не давая им рухнуть вниз под действием силы тяжести. Если Солнце немного сжимается, температура и давление в его недрах растут, что приводит к ускорению ядерных реакций, выделению дополнительного количества энергии, ещё больше разогревающей солнечные недра, что приводит к ещё дальнейшему росту температуры, увеличению давления и расширению Солнца. Аналогично, если Солнце немного расширится, его ядро охладится, ядерные реакции замедлятся, температура ядра упадёт ещё больше, и это приведёт к сжатию Солнца до прежнего размера. Таким способом Солнце автоматически поддерживает скорость ядерных реакций на определённом уровне в течение длительного промежутка времени. В каком то смысле Солнце работает подобно поршню в двигателе вашего автомобиля, когда вы едете по шоссе с постоянной скоростью.
Однако одного этого предположения ещё недостаточно, чтобы построить численную модель внутреннего устройства Солнца. Следует сделать дополнительные упрощающие предположения. Во-первых, будем считать Солнце шаром. В частности, это означает, что Солнце обладает сферической симметрией, то есть в каком бы направлении из центра Солнца мы ни двинулись, мы всегда будем наблюдать одни и те же изменения состояния солнечного вещества. Его свойства — химический состав, плотность, давление и температура — будут зависеть только от расстояния от центра, но не от направления. Во-вторых, мы пренебрежём влиянием множества других факторов, которые могут сильно усложнить расчёт, например исключим из рассмотрения магнитные поля.
В отличие от предположения о гидростатическом равновесии, перечисленные в предыдущем абзаце предположения не следуют из основных физических законов. Более того, мы знаем из наблюдений, что Солнце вращается вокруг своей оси, что на его поверхности имеются тёмные образования, называемые солнечными пятнами, что разные части солнечной поверхности обращаются с разной скоростью и что количество солнечных пятен меняется циклически с периодом около одиннадцати лет. Но мы игнорируем все эти сложности, потому что, с одной стороны, они, прошу прощения за тавтологию, сильно осложняют расчёты, а с другой стороны — выглядит вполне правдоподобным предположение, что кинетическая энергия вращения Солнца и процессы, происходящие на солнечной поверхности, играют очень незначительную роль в общем энерговыделении Солнца, и их можно без зазрения совести отбросить в свете нашей задачи.
Но насколько хорошо работает эта модель? Лучше, чем мы могли бы ожидать. Она предсказывает размеры Солнца, температуру его поверхности, светимость и возраст с очень хорошей точностью. Более того, подобно хрустальному бокалу, вибрирующему, когда вы водите мокрым пальцем по его краю, или Земле, колеблющейся, когда где-то в её коре происходит землетрясение, Солнце тоже испытывает колебания, возбуждаемые происходящими в его недрах процессами. Эти колебания приводят к периодическим движениям поверхности Солнца, которые можно наблюдать с Земли, и их частота и амплитуда могут многое рассказать нам о строении солнечных недр, подобно тому как сейсмические колебания в земной коре позволяют нам обнаруживать залежи полезных ископаемых или нефтяные месторождения. Стандартная солнечная модель — модель, основанная на перечисленных выше предположениях, — более-менее точно предсказывает частотный спектр наблюдаемых колебаний солнечной поверхности.
Таким образом, представление Солнца в виде сферического газового шара в вакууме даёт нам модель, которая оказывается весьма близкой к реально наблюдаемой картине. Но существует одна проблема. Помимо света и тепла, идущие внутри Солнца ядерные реакции производят и множество других вещей, наиболее интересными из которых являются элементарные частицы, называемые нейтрино. Эти частицы имеют важное отличие от частиц, из которых состоит обычное вещество: они настолько слабо взаимодействуют с ним, что большинство нейтрино пролетают сквозь всю толщу Солнца и сквозь всю толщу Земли, даже не замечая её.
За то время, в течение которого вычитали предыдущее предложение, сквозь ваше тело пролетело порядка триллиона нейтрино, рождённых в раскалённых солнечных недрах. Причём неважно, днём или ночью вы читаете эти строки, поскольку толща Земли, как я уже сказал, не является для нейтрино сколько-нибудь заметным препятствием. Предсказанные в 1930-х годах нейтрино сегодня играют очень важную роль в нашем понимании природы. Но солнечные нейтрино поставили учёных в тупик.
Стандартная солнечная модель, так замечательно предсказывающая все основные наблюдательные характеристики Солнца, позволяет нам вычислить, какое количество нейтрино, рождаемых в недрах Солнца, должно достигать земной поверхности. И хотя вы, возможно, подумали, что этих неуловимых тварей невозможно обнаружить, учёные всё-таки научились их регистрировать. Для этого были построены огромные подземные лаборатории, в которых экспериментаторы сутками напролёт терпеливо ждут, когда одно из множества нейтрино будет обнаружено детектором. Такие детекторы называются нейтринными телескопами. Первый из них был построен в глубокой шахте в штате Южная Дакота. Приёмником нейтринного излучения в нём служил горизонтальный цилиндрический бак длиной около 14 метров, содержащий примерно 400 000 литров перхлорэтилена. В редких случаях один из атомов хлора в этом объёме под действием нейтрино превращался в атом аргона, что давало возможность оценить число летящих к нам от Солнца нейтрино. После двадцати пяти лет исследований было обнаружено, что количество регистрируемых нейтрино в 3–4 раза меньше, чем предсказывает Стандартная солнечная модель.
Вашей первой реакцией на это сообщение может быть пожимание плечами — зачем так много шума из ничего. Предсказание результатов, которые по порядку величины согласуются с экспериментами, уже можно рассматривать как большой успех, поскольку эти предсказания опираются на довольно грубые предположения об устройстве солнечной печи.
И действительно, многие физики восприняли это всего лишь как свидетельство того, что по крайней мере одно из принятых приближений является слишком грубым. Другие, прежде всего те, кто участвовал в разработке Стандартной солнечной модели, утверждали, что это крайне маловероятно, поскольку во всех остальных предсказаниях модель демонстрировала прекрасное согласие с наблюдениями.
В 1990-х годах, однако, учёные провели серию героических экспериментов, которые наконец раскрыли эту тайну. Первая серия экспериментов проводилась на гигантском подземном детекторе, содержавшем 50 000 тонн воды. Этот детектор позволял обнаруживать достаточно много нейтрино, чтобы с очень высокой точностью подтвердить, что поток нейтрино, идущий от Солнца, действительно меньше, чем ожидалось.
Затем в Садбери в Канаде был построен подземный детектор нового поколения, в котором вместо обычной воды использовалась тяжёлая. Я не упомянул, что все предыдущие нейтринные детекторы были способны регистрировать только один тип нейтрино — электронный. А в природе существует три типа этих элементарных частиц: электронные, мюонные и тау-лептонные. Но поскольку в ходе ядерных реакций внутри Солнца генерируются только электронные нейтрино, считалось логичным именно их и ловить в первую очередь.
Одним из возможных путей решения проблемы солнечных нейтрино могло бы стать предположение, что электронные нейтрино, рождаемые в недрах Солнца, за время своего пути к Земле каким-то образом превращаются в нейтрино других типов. Это потребовало бы привлечения для объяснения новых физических процессов, не описываемых теорией, известной как Стандартная модель физики элементарных частиц, в частности это потребовало бы, чтобы нейтрино, считавшиеся до этого безмассовыми, имели очень небольшую массу. В этом случае часть электронных нейтрино должна превращаться в нейтрино других типов, и количество регистрируемых на Земле электронных нейтрино окажется меньше, чем их исходное количество, рождённое в центре Солнца.
Детектор на тяжёлой воде был в состоянии одновременно обнаруживать электронные, мюонные и тау-лептонные нейтрино. И вот, когда пыль улеглась и были подсчитаны все пойманные типы нейтрино, оказалось, что общее количество нейтрино, прилетающих от Солнца, в точности соответствует предсказаниям Стандартной солнечной модели! Так были открыты нейтринные осцилляции, массы нейтрино, а несколько счастливых физиков получили Нобелевскую премию. В очередной раз модель сферического коня в вакууме, только на этот раз — коня Гелиоса, оказалась мощным инструментом изучения природы.
Мы можем попытаться распространить представление о Солнце как о сферическом газовом шаре в вакууме и на другие звёзды, более крупные, более мелкие, более старые, более молодые. В частности, простая модель гидростатического равновесия даёт нам грубое представление об изменениях, которые происходят в звёздах на протяжении их жизни. Например, в какой-то момент рождения звезды, когда она формируется из сжимающегося облака межзвёздного газа, в ней «включаются» термоядерные реакции, и она начинает светить за счёт собственного источника энергии. Если звезда слишком мала, гравитационной энергии сжимающегося газового облака может оказаться недостаточно для достижения температуры, при которой включаются реакции синтеза. В этом случае звезда никогда не загорится. Примером такой «недозвезды» является Юпитер. Однако для массивных газовых облаков процесс сжатия продолжается до включения ядерных реакций, и выделяемое ими тепло повышает температуру звёздных недр, что создаёт дополнительное давление, останавливающее сжатие и стабилизирующее звезду. В конце жизни звезды водород, служащий топливом для ядерных реакций, начинает истощаться, равновесие нарушается, и звезда снова сжимается, пока температура в её ядре не достигнет значений, при которых становится возможным новый набор реакций, топливом для которых служит образовавшийся на предыдущем этапе гелий.
Для многих звёзд этот процесс повторяется несколько раз: каждый раз, когда истощается очередной элемент, служивший топливом для ядерных реакций, ядро звезды опять сжимается, поднимая температуру и запуская новый набор реакций синтеза. В то время как внешние слои звезды раздуваются до невероятных размеров, превращая звезду в красный гигант, ядро становится всё горячее и плотнее, пока почти всё его вещество не превратится в железо. На этом всё заканчивается, потому что железо не может служить топливом для ядерных реакций, идущих с высвобождением энергии. Протоны и нейтроны ядер железа так сильно связаны друг с другом, что преобразовать его в ядро другого элемента можно, лишь затратив энергию. Что происходит после этого? Одно из двух: либо звезда медленно умирает, освобождаясь от распухшей внешней оболочки и превращаясь в белый карлик, либо происходит одно из самых грандиозных событий во Вселенной — звезда взрывается!
Взрывающаяся звезда, или сверхновая, выделяет в короткий промежуток такое количество энергии, что светит как вся галактика, ярче ста миллиардов обычных звёзд. За секунды до начала взрыва звезда, спокойно «дожигающая» остатки ядерного горючего, внезапно выходит из состояния гидростатического равновесия. В какой-то момент генерация энергии оказывается недостаточной, чтобы поддерживать температуру, необходимую для создания давления, сдерживающего вес вышележащих слоёв, и они начинают падать на ядро звезды, которое к этому времени имеет массу, сравнимую с массой Солнца, а размер — порядка размера Земли. Это ядро, в свою очередь, менее чем за секунду сжимается до размера порядка 10 километров. Его плотность достигает гигантских значений — одна чайная ложка такого вещества весит тысячи тонн. Ещё более важно, что при таких плотностях атомы железа переходят в совершенно новое, нейтронное, состояние. Ядро как будто бы внезапно застывает, «схватывается», подобно затвердевшему клею. Падающее на ядро вещество отскакивает от него и порождает мощную ударную волну, распространяющуюся наружу и раздувающую оболочку звезды, которая и видна нам как сверхновая.
Эта модель коллапса ядра и последующего взрыва звезды была построена в течение десятилетий кропотливой работы физиков и математиков, после того как Чандрасекар в 1939 году впервые предположил возможность подобного катастрофического сценария. И всё это не более чем развитие простой идеи гидростатического равновесия, которое, как мы считаем, определяет структуру Солнца. Ещё без малого пятьдесят лет после работ Чандрасекара описания процессов, приводящих к взрыву сверхновой, оставались чистой воды теоретическими спекуляциями. Даже когда астрономы научились наблюдать вспышки сверхновых в других галактиках, все их наблюдения сводились только к изучению видимого оптического излучения сбрасываемой оболочки и не позволяли непосредственно увидеть то, что происходит внутри звезды.
Всё изменилось 23 февраля 1987 года. В этот день взорвалась сверхновая в Большом Магеллановом Облаке — карликовой галактике, являющейся спутником нашей звёздной системы, находящейся от нас на расстоянии около 150 000 световых лет. Это была самая близкая к нам сверхновая, вспыхнувшая за последние четыре столетия. Впервые было экспериментально подтверждено, что оптический фейерверк — это лишь верхушка айсберга. Энергия в тысячи раз большая, чем наблюдается в оптическом диапазоне, уносится — возможно, вы уже догадались — почти неуловимыми нейтрино. Я говорю «почти», поскольку, несмотря на то что нейтрино свободно пролетают через толщу Земли, всё же очень редко они взаимодействуют с веществом и попадаются в наши детекторы.
Можно подсчитать, что плотность потока нейтрино от взрыва далёкой сверхновой такова, что каждый миллионный житель Земли, если бы в нужное время сидел в абсолютной темноте, увидел бы вспышку света, возникшую из-за того, что нейтрино провзаимодействовал с одним из атомов в его глазу.
К счастью, нам нет нужды зависеть от случайных свидетелей вспышек в их глазах. У нас есть два гигантских технических нейтринных глаза — два крупных детектора, каждый из которых содержит более 1000 тонн воды, расположенных глубоко под землёй на противоположных сторонах земного шара. В каждом из резервуаров этих детекторов в кромешной темноте за объёмом воды наблюдают тысячи чувствительных фотодатчиков, и вот 23 февраля, в течение 10 секунд в обоих детекторах синхронно были зафиксированы 19 нейтринных событий. Вам это может показаться мелочью, но это именно то количество нейтринных событий, которые, согласно предсказаниям теоретиков, должны были бы зафиксировать детекторы при вспышке сверхновой на другой стороне нашей Галактики. Кроме того, время прилёта этих нейтрино и их энергия оказались в прекрасном согласии с теорией.
Всякий раз, когда я думаю об этом, я не перестаю удивляться. Эти нейтрино были рождены непосредственно в сверхплотных недрах коллапсирующего ядра звезды. Они несут нам прямую информацию об этих решающих секундах, в течение которых происходит коллапс. И они говорят нам, что теория, описывающая гравитационный коллапс, построенная задолго до получения первых эмпирических подтверждений, базирующаяся на всё том же гидростатическом равновесии, которое отвечает за внутреннее устройство Солнца, полностью согласуется с новейшими наблюдательными данными о взрывах сверхновых. Уверенность в нашей простой модели позволила нам понять, как происходит один из самых экзотических и феерических процессов в природе.
Я приведу ещё один пример замечательной предсказательной силы приближения Солнца в виде сферы. Несмотря на то что мы разгадали загадку солнечных нейтрино, у нас всё равно остаётся одна нерешённая проблема, касающаяся внутреннего строения звёзд. Если мы экстраполируем Стандартную солнечную модель на другие звёзды, то сможем более-менее точно предсказать их эволюцию. Для Солнца стандартная модель даёт возраст около 4,55 миллиарда лет. Но когда астрофизики применили эту модель к наиболее старым звёздам, входящим в шаровые скопления, находящиеся на периферии Галактики, у них получилось, что возраст таких звёздных скоплений превышает 15 миллиардов лет.
В то же время мы можем, используя тот факт, что наблюдаемая нами Вселенная расширяется, и предполагая, что это расширение с течением времени замедляется из-за гравитационного притяжения между галактиками, оценить возраст Вселенной, взяв за основу сегодняшнюю скорость её расширения. Первое грубое приближение будет выглядеть следующим образом: мы измеряем скорости, с которыми галактики удаляются друг от друга, учитываем, что раньше они удалялись друг от друга быстрее, вычисляем, насколько быстрее, и таким образом получаем верхнюю оценку времени, которое прошло от начала расширения, то есть от момента Большого взрыва. За последние восемьдесят лет космологам удалось определить скорость расширения Вселенной с точностью до 10%. На основе полученных ими данных наше первое приближение даёт возраст Вселенной около 11 миллиардов лет.
Вот и суть упомянутой проблемы: возраст старейших звёзд в Галактике оказывается больше возраста Вселенной! Но учёные не в первый раз сталкиваются с проблемой определения возраста звёзд, и во все предыдущие разы проблема успешно разрешалась, а учёные в результате получали новые знания об устройстве мира. Например, в 1800-х годах оценка возраста Солнца, основанная на предположении, что источником его энергии служит горение угля, давала значение около 10 000 лет. Хотя эта оценка чудесным образом согласовывалась с тем, что написано в Библии относительно времени существования нашего мира, к тому времени уже было показано, что ископаемые окаменелости и геологические пласты земной коры намного старше. Затем, в конце XIX века, два известных физика, лорд Кельвин из Великобритании и Гельмгольц из Германии, показали, что если энергия, которую излучает Солнце, будет освобождаться за счёт его гравитационного сжатия, то подобный процесс сможет обеспечить существование нашего светила на протяжении 100 миллионов лет. Хотя эта оценка была значительно лучше предыдущей, к тому моменту геология и эволюционная биология уже свидетельствовали о том, что возраст Земли превышает миллиард лет, и ситуация, при которой Земля оказывалась старше Солнца, не вызывала восторга у учёных.
В 1920 году проблема стала настолько серьёзной, что уважаемый астрофизик сэр Артур Стэнли Эддингтон заявил, что в природе просто обязан существовать другой, ещё не известный науке механизм производства энергии, способный обеспечить наблюдаемую светимость Солнца на протяжении нескольких миллиардов лет. Многие отнеслись к его заявлению скептически. Несмотря на то что вычисления показывали, что температура в центре Солнца должна достигать десятков миллионов градусов, что по земным меркам достаточно жарко, физики считали, что это всё же недостаточно горячо, чтобы придумывать для таких температур новую физику. Эддингтон в одном из своих заявлений предложил несогласным с его идеей отправиться «поискать место погорячее».
Как оказалось, Эддингтон был прав, и в 1930-х годах физик Ханс Бете, которого я ещё упомяну в дальнейшем, показал, что недавно обнаруженные ядерные реакции действительно способны обеспечить Солнце энергией на 10 миллиардов лет. За эту работу, которая легла впоследствии в основу Стандартной солнечной модели, Бете получил Нобелевскую премию.
Прежде чем подвергать ревизии Стандартную солнечную модель в отношении применимости её к определению возрастов старейших звёзд, мы с коллегами решили ещё раз пересмотреть оценку возрастов шаровых скоплений. В этой оценке содержалась неопределённость, уменьшив которую мы получили новое значение — по нашим выкладкам выходило, что самые старые шаровые скопления в галактике должны иметь возраст около 12 миллиардов лет, но это всё равно оказывалось больше возраста Вселенной. Таким образом, конфликт между Стандартной солнечной моделью и космологией был налицо.
Поскольку не только этот результат, но и другие независимые наблюдательные данные находились в противоречии с моделью замедляющегося расширения Вселенной, в 1995 году мы с моим коллегой из Чикаго вынуждены были (в какой-то мере даже в шутку) предположить, что расширение Вселенной не замедляется, а ускоряется. Каким бы неправдоподобным ни выглядело это предположение, но на самом деле экзотическая возможность существования гравитационного отталкивания была предложена Альбертом Эйнштейном ещё в 1916 году, вскоре после создания им общей теории относительности, когда он обнаружил, что статическая модель Вселенной, в которой действуют одни только силы притяжения, является неустойчивой. Его гипотеза была отвергнута, когда было обнаружено, что Вселенная расширяется. Следует заметить, что наше предложение не было чисто умозрительным, как может показаться на первый взгляд. Мы уже знали, что дополнительная отталкивающая гравитационная сила может возникать, если пустое пространство обладает особой формой энергии, допускаемой в контексте современной теории элементарных частиц.
И что бы вы думали? В 1998 году сразу две группы исследователей на основе наблюдений за вспышками сверхновых в далёких галактиках сумели построить зависимость скорости расширения Вселенной от времени. И они независимо обнаружили, что Вселенная расширяется с ускорением! Это экспериментальное открытие полностью изменило наше представление о расширяющейся Вселенной, сделав задачу понимания природы той тёмной энергии, которая ответственна за возникновение отталкивающей силы, наиболее важной проблемой в современной космологии. Самым интересным для нас оказался тот факт, что возраст Вселенной, определённый по этим наблюдениям, оказался равным примерно 13–14 миллиардам лет, и это находилось в идеальном согласии с результатами вычисления возрастов самых старых звёзд в нашей Галактике.
Вот так простейшее приближение звезды как сферического газового облака в вакууме вот уже на протяжении 200 лет приводит нас к обнаружению всё более и более глубоких закономерностей во Вселенной.
Предыдущие примеры, демонстрирующие мощь метода аппроксимации в физике при совершении великих открытий, на самом деле скрывают за собой более фундаментальный факт: без аппроксимации в физике мы не можем сделать вообще ничего. Используя то или иное приближение, мы делаем предсказания, которые затем могут быть проверены. Если предсказания оказываются неверными, мы сосредоточиваемся на различных аспектах сделанных приближений, уточняем их и именно таким способом в конце концов приходим к более-менее точному представлению об устройстве Вселенной. По словам Джеймса Клерка Максвелла, наиболее известного и успешного физика XIX века, «правильная теория ставит перед экспериментаторами новые задачи, не препятствуя развитию самой теории».
Иногда физики упрощают картину мира, руководствуясь своей интуицией, но чаще всего они делают это, потому что у них нет иного выбора. Существует известная аллегория, которую любят повторять физики: «Если вы ночью на плохо освещённой улице обнаружите, что потеряли ключи от автомобиля, где в первую очередь вы станете их искать? Разумеется, под ближайшим фонарём. Почему? Не потому, что вы, возможно, потеряли ключи именно в этом месте, а потому что это единственное место, где имеется хоть какая-то вероятность их найти». В своей научной работе большинство физиков руководствуются именно этим принципом: они ищут там, где светло.
Природа так часто бывает к нам благосклонна, что мы привыкли принимать это как должное. Любую новую проблему мы пытаемся решать при помощи старых проверенных методов не потому, что они годятся для этого, а потому, что на тот момент у нас, как правило, нет других. Если повезёт, мы можем надеяться, что даже грубое приближение принесёт нам какое-нибудь новое понимание некоторого физического аспекта. Физика полна примеров, когда поиск там, где светло, приносил гораздо больше, чем мы имели право ожидать. Одним из таких примеров может служить событие, произошедшее вскоре после окончания Второй мировой войны, которое стало лишь звеном большой цепи, приведшей к появлению новейшей физики. Окончательным результатом этой цепи событий явилась та картина мира, которую мы сегодня считаем наиболее приемлемой. Я не встречал обсуждения этого вопроса в популярной литературе, несмотря на то что он имеет основополагающее значение для современной физики.
Война закончилась, и физики, освободившись от необходимости работать на военных, наконец вернулись к исследованию основополагающего вопроса, вставшего после завершения двух великих революций XX века, приведших к появлению теории относительности и квантовой механики. Теперь перед ними стояла новая задача: примирить друг с другом обе теории. Более подробно я расскажу о них в следующих главах, пока же остановимся на наиболее важных их аспектах. Квантовая механика имеет дело с явлениями, происходящими на малых масштабах — как пространства, так и времени. И она утверждает, что на этих масштабах существуют пары параметров, которые не могут быть точно измерены одновременно. Например, невозможно в один и тот же момент времени одинаково точно определить скорость и положение частицы, независимо от того, насколько хороша наша измерительная аппаратура. Аналогично, нельзя точно определить энергию частицы, если измерения производятся в течение короткого интервала времени. Теория относительности же предполагает, что измерения координат, скорости, времени и энергии связаны друг с другом фундаментальными соотношениями, особенности которых становятся наиболее очевидными, когда скорость тела приближается к скорости света. Глубоко внутри атомов составляющие их частицы движутся достаточно быстро, чтобы эффекты теории относительности становились существенными, но в то же время масштабы явлений достаточно малы, чтобы тут уже в полную силу работали и законы квантовой механики. Самым замечательным следствием брака этих двух теорий является предсказание, что, когда промежуток времени настолько мал, что невозможно определить, какое количество энергии содержится в определённом объёме, становится невозможно определить, сколько частиц находится внутри этого объёма. Рассмотрим, к примеру, движение электрона из электронной пушки к экрану в кинескопе телевизора. Электроны — это микроскопические заряженные частицы, которые, наряду с протонами и нейтронами, составляют все атомы обычного вещества. В металлах электроны, двигаясь под действием электрических сил, создают электрический ток. Если металлическую проволоку нагреть, то содержащиеся в ней электроны начнут отрываться от неё и при наличии электрического поля полетят в сторону экрана. Врезаясь в экран, электроны порождают световые вспышки, которые и формируют изображение. Так вот, законы квантовой механики говорят нам, что для любого очень короткого интервала времени невозможно указать точно, по какой траектории движется электрон, и в то же самое время узнать его скорость. При добавлении в эту картину теории относительности выходит, что в течение этого короткого интервала нельзя утверждать с уверенностью, что существует только один электрон, движущийся в выбранной области пространства. Существует вероятность, что в этот момент времени спонтанно появится другой электрон вместе со своей античастицей — позитроном, имеющим противоположный заряд. Эта пара частиц появляется из пустого пространства и путешествует вместе с нашим электроном в течение короткого промежутка времени, а затем лишние частицы исчезают — аннигилируют друг с другом, снова оставляя наш электрон в одиночестве. Дополнительная энергия, необходимая для рождения электрон-позитронной пары, возникает из ниоткуда и после их аннигиляции снова исчезает в никуда, и всё потому, что на очень коротком промежутке времени энергия, согласно законам квантовой механики, не может быть измерена точно.
Трезво поразмыслив над только что описанной ситуацией, вы могли бы прийти к выводу, что всё это выглядит как попытка сосчитать количество ангелов на острие иглы. Но между ангелами и виртуальными частицами имеется существенное различие. Электрон-позитронные пары не исчезают совсем бесследно. Подобно улыбке Чеширского кота, которая хоть и не осязаема, но видима, виртуальные электрон-позитронные пары едва уловимо изменяют некоторые свойства электрона, и эти изменения можно измерить.
В 1930 году было признано, что такие явления, включая само существование античастиц, подобных позитрону, являются неизбежным следствием соединения квантовой механики и теории относительности. Нерешённым оставался лишь вопрос, как посчитать вклад всех возможных виртуальных частиц в конечное значение измеряемых физических величин. Проблема состояла в том, что чем на меньших расстояниях мы хотим подсчитать какой-то параметр, тем больше виртуальных частиц нам необходимо включать в расчёт. Например, мы рассчитываем движение электрона, и в какой-то момент рядом с ним возникает электрон-позитронная пара. Теперь нам нужно для этого короткого промежутка времени учитывать движение уже трёх частиц. Но чем меньше промежуток времени, тем больше неопределённость энергии, значит, рядом с каждой из частиц может возникнуть новая электрон-позитронная пара и так далее. Попытка учесть все возможные виртуальные частицы приводила к бесконечным результатам. Это физиков, разумеется, не устраивало.
Вот в такой ситуации в апреле 1947 года в маленьком отеле на Шелтер-Айленде, небольшом островке около восточной оконечности Лонг-Айленда, состоялась встреча группы теоретиков и экспериментаторов, занимавшихся фундаментальными проблемами структуры материи. Среди них были как маститые старики, так и молодые радикалы, многие из которых провели последние годы в работе над созданием ядерного оружия. Некоторым из них возвращение к мирным проблемам академической науки после стольких лет работы на военных давалось нелегко. Это тоже было одной из причин созыва конференции на Шелтер-Айленде, которая должна была очертить круг наиболее важных проблем, стоявших перед физикой.
Началось всё весьма благоприятно. Автобус с участниками конференции был встречен полицейским эскортом на мотоциклах, едва он пересёк границу округа Нассау на западе Лонг-Айленда; эскорт сопровождал автобус с включёнными сиренами до самого места назначения. Позже учёные узнали, что эскорт был предоставлен в качестве благодарности полицейскими, которые служили во время войны на Тихом океане и считали, что их жизни были спасены благодаря созданному этими учёными ядерному оружию.
Предконференционное возбуждение было вызвано ожиданием запланированного на первый день сообщения о сенсационном открытии. Специализировавшийся в области атомной физики экспериментатор Уиллис Лэмб собирался представить важный результат, полученный им в Колумбийском университете благодаря микроволновой технологии, разработанной в ходе работы над военным радаром. Одним из ранних успехов квантовой механики был расчёт энергий внешних атомных электронов. Однако Лэмб обнаружил, что уровни энергии электронов в атомах слегка отличаются от тех, которые получаются из квантовомеханических расчётов, выполненных без учёта эффектов теории относительности. Это явление сегодня известно как лэмбовский сдвиг. Затем ожидался доклад маститых экспериментаторов И. Л. Раби и П. Куша, обнаруживших аналогичные отклонения у атомов водорода и других элементов. Все трое — Лэмб, Раби и Куш — позже удостоились за своё открытие Нобелевской премии.
Вызов был брошен. Чем может быть объяснён подобный сдвиг и как произвести расчёт, чтобы избежать бесконечных результатов, вызванных необходимостью учёта всех возможных виртуальных электрон-позитронных пар? Мысль о том, что объединение теории относительности и квантовой механики, приводящее к описанным выше проблемам, может привести также и к объяснению лэмбовского сдвига, в то время была лишь смелым предположением. Учёт эффектов теории относительности приводил к такому усложнению процесса вычисления, что никто и понятия не имел, как такие вычисления производить. На конференции присутствовали молодые восходящие звёзды теоретической физики: Ричард Фейнман, Джулиан Швингер и Синъитиро Томонага.
Каждый из них самостоятельно разрабатывал свой способ борьбы с вычислительными трудностями, создавая то, что впоследствии стало называться квантовой теорией поля. Они надеялись, и их надежды позже оправдались, что эти способы позволят каким-то образом изолировать, если не полностью исключить из результата бесконечности, возникающие при учёте всех виртуальных пар частиц, делавших теорию невероятно сложной, хотя предварительные расчёты давали результаты, согласующиеся с теорией относительности.
К моменту завершения своей работы им удалось создать новый способ представления элементарных процессов и продемонстрировать, что теория электромагнетизма может последовательно сочетаться с квантовой механикой и теорией относительности, за что почти 20 лет спустя они заслуженно разделили Нобелевскую премию. Но в то время, когда проходила конференция, ничего этого известно ещё не было. Как можно учесть взаимодействие электрона в атоме с мириадами виртуальных электрон-позитронных пар, спонтанно возникающих из вакуума в ответ на поля, создаваемые самими электронами?
На конференции был и Ханс Бете, к тому времени уже выдающийся теоретик и один из лидеров Манхэттенского проекта. Бете тоже впоследствии получил Нобелевскую премию за работу, демонстрирующую, что термоядерные реакции действительно служат источником энергии звёзд. Он был настолько вдохновлён тем, что услышал от теоретиков и экспериментаторов, что, вернувшись в Корнелльский университет, немедленно занялся расчётом эффекта лэмбовского сдвига. Через пять дней после окончания конференции он подготовил статью, в который утверждал, что получил отличное теоретическое согласие с величиной наблюдаемого эффекта. Бете всегда был известен своей способностью безупречно выполнять сложные вычисления на доске или на бумаге. Тем не менее его замечательный расчёт лэмбовского сдвига не был полностью самосогласованным в плане объединения квантовой механики и теории относительности. Впрочем, получение окончательного строгого результата не особо волновало Бете, его больше интересовала правильность выбранного им пути. Для получения строгого результата в то время ещё просто не существовало необходимых математических инструментов, и он использовал то, что оказалось под рукой.
Он решил, что раз мы не в состоянии последовательно описать релятивистское движение электрона, то можно попытаться произвести «гибридные» вычисления, явно добавив такие эффекты, как рождение и аннигиляция электрон-позитронных пар, к уравнениям движения электронов, выведенных квантовыми механиками в 1920-х и 1930-х годах, которые решаются достаточно просто. Однако он обнаружил, что учёт эффектов рождения виртуальных электрон-позитронных пар всё равно приводит к расходимости решения. Как с этим справиться?
Основываясь на предложении, услышанном им на конференции, Бете произвёл расчёт дважды: один раз для электрона в атоме водорода и один раз для свободного электрона. Хотя в каждом конкретном случае результат получался бесконечным, он надеялся, что при вычитании одного результата из другого бесконечности также вычтутся друг из друга, и «в сухом остатке» мы получим интересующий нас эффект в виде конечного числа — величины лэмбовского сдвига. К сожалению, у него ничего не получилось. Тогда он предположил, что, возможно, используемая математическая модель, в которой мы учитываем рождение виртуальных частиц вплоть до бесконечно малых пространственных и временных масштабов, просто не имеет физического смысла, и следует, руководствуясь физической интуицией, наложить на неё дополнительные ограничения. Бете предложил ограничить число учитываемых при расчёте виртуальных частиц, так чтобы их общая энергия не превышала по порядку величины массу электрона.
Я напомню, что квантовая механика разрешает процессы, в которых участвует множество высокоэнергетичных виртуальных частиц, если промежуток времени, в течение которого эти процессы происходят, достаточно мал, чтобы квантово-механическая неопределённость энергии превосходила суммарную энергию, необходимую для протекания этих процессов. Бете же утверждал, что, если теория претендует на согласие с общей теорией относительности, она должна содержать что-то, ограничивающее максимально возможную энергию виртуальных процессов. То есть он предложил попросту игнорировать бесконечное количество рождений виртуальных пар, оборвав расчёт на каком-нибудь наперёд выбранном значении энергии. Его окончательный расчёт лэмбовского сдвига учитывал только такие процессы, энергия которых была меньше энергии покоя электрона. Кроме того, Бете был полностью согласен с критическими возражениями о слишком волюнтаристском подходе к выбору накладываемых на теорию ограничений.
В то время действительно не было никаких реальных обоснований для выбора конкретного значения энергии, на котором следует обрывать вычисления, но его подход позволял получить разумное конечное приближение для величины лэмбовского сдвига.
Позже Фейнман, Швингер и Томонага устранили несогласованности в методе Бете. Они показали, что в полной теории, последовательно включающей в себя квантовую механику и теорию относительности, на каждом этапе расчёта вклад «хвоста», то есть самых высокоэнергетичных виртуальных пар, в окончательное значение измеряемой в эксперименте характеристики оказывается исчезающе малым. Предсказания созданной на основе их подхода объединённой теории находятся в прекрасном согласии с измеренными в экспериментах значениями лэмбовского сдвига, более того, на сегодняшний день это один из лучших примеров согласия теоретических и экспериментальных результатов за всю историю физики! Но своей ранней работой Бете подтвердил то, что все уже давно знали о нём: он был «плоть от плоти физики». Он хитроумно использовал имеющиеся под рукой инструменты для получения результатов. В духе концепции сферического коня в вакууме он смело отбросил все лишние, по его мнению, детали, связанные с виртуальными процессами, и проложил тропу, по которой его последователи прошли к современной квантовой теории поля. Эта теория стала фундаментом современной физики элементарных частиц, и я ещё вернусь к ней в заключительной главе моей книги.
Итак, мы прошли путь от сферических коней в вакууме до солнечных нейтрино, после чего обратили свой взор на взрывающиеся звёзды и расширение Вселенной и, наконец, закончили наш путь на Шелтер-Айленде. Красная нить, проходящая через все эти вещи, соединяет всех физиков, независимо от их специализации. При взгляде сверху мир на поверхности представляется очень сложным. Где-то очень глубоко под этой поверхностью, как мы надеемся, существуют простые правила, управляющие этим миром. Одна из важнейших целей физики — выкопать эти правила. Единственная возможность сделать это — максимально сузить ареал поиска путём упрощения модели и отбрасывания несущественных деталей. Если мы не будем представлять коня в виде сферы, помещать сложную машину в чёрный ящик, выбрасывать бесконечное количество виртуальных частиц, а вместо этого попробуем понять всё сразу, мы не поймём ничего. Мы можем либо сидеть и ждать, что на нас снизойдёт откровение, либо идти вперёд, не обращая внимания на препятствия и второстепенные детали, сводя проблему к тем задачам, которые мы уже умеем решать, — и только так можно совершить очередной прорыв в науке.
Глава 2.
ИСКУССТВО ЧИСЕЛ
Язык — это человеческое изобретение, которое является зеркалом души. Именно посредством языка хороший роман, пьеса или стихотворение учат нас быть людьми. С другой стороны, математика — это язык природы, который служит зеркалом физического мира. Это точный, чистый, развитый и строгий язык. Несмотря на то что эти качества делают язык математики идеальным для описания явлений природы, они же делают его непригодным для отражения сугубо человеческих проблем и страданий. Так возникает центральная дилемма «двух культур».
Нравится нам это или нет, но числа являются главными действующими лицами физической драмы. Всё, что мы делаем в физике, в том числе всё, что мы думаем о физическом мире, в конечном итоге сводится к числам. Причём характер наших размышлений об этих числах полностью определяется тем, откуда они берутся. Таким образом, физики и математики думают о числах принципиально разными способами. В отличие от математиков, физики используют числа в дополнение к своей физической интуиции, а не вместо неё. Математики же занимаются абстрактными структурами, и их совершенно не волнует, могут ли придуманные ими математические объекты существовать в природе. Для математика число существует само по себе, как отдельная реальность, в то время как для физика оно, как правило, не имеет смысла в отрыве от физического мира.
Числа в физике несут на себе багаж связей с измеряемыми физическими величинами. А любой путешественник знает, что багаж имеет как плохую, так и хорошую сторону. С одной стороны, багаж тяжело тащить, его могут украсть, за него приходится дополнительно платить. С другой стороны, в багаже мы везём множество полезных вещей, необходимых нам в путешествии. С одной стороны, багаж сковывает вашу свободу передвижения, с другой — освобождает от необходимости стирать бельё каждый день. Точно так же и числа: с одной стороны, они усмиряют нашу фантазию, ограничивая её жёсткими математическими рамками, с другой — являются неотъемлемым атрибутом упрощения картины мира. Числа освобождают нас от груза несущественных деталей, показывая, что мы можем игнорировать, а что нет.
То, что я сказал, находится в прямом противоречии с преобладающим мнением, что числа и математические соотношения только усложняют понимание и их следует избегать любой ценой, даже в научно-популярных книгах. Стивен Хокинг в своей «Краткой истории времени» заявил, что каждое уравнение в популярной книге сокращает количество продаж вдвое. Выбирая между количественным и качественным объяснением какого-нибудь явления, большинство людей, вероятно, предпочтут второе. Мне представляется, что главная причина общего отвращения к математике лежит в области социологии. Математическая безграмотность в нашем обществе возводится едва ли не в достоинство — неспособность сложить пять чисел, чтобы проверить правильность счёта в ресторане, считается проявлением человечности, а не глупости. Но я считаю, что корни этого явления в том, что в начальной школе детям не показывают, что стоит за тем или иным числом, и числа представляются им не столь важными в повседневной жизни, как слова.
Я, помню, был поражён, когда несколько лет назад, читая курс физики для нефизиков в Йельском университете — храме литературной грамотности, — обнаружил, что 35% студентов, в числе которых были выпускники исторических и социологических факультетов, не могли назвать даже порядок величины населения Соединённых Штатов! Многие думали, что в США проживает от одного до десяти миллионов человек — меньше, чем в одном только Нью-Йорке.
На мой взгляд, это признак глубоких проблем в нашей национальной системе образования. И дело даже не в том, что, живя рядом с Нью-Йорком, люди не отдают себе отчёта в том, что население всей Америки не может быть меньше населения одного Нью-Йорка. И даже не в непонимании того, что страна с населением 1 миллион человек будет радикально отличаться от страны с населением 100 миллионов. Главная проблема в том, что для большинства из этих студентов такие числа, как 1 миллион или 100 миллионов не имели никакого объективного смысла. Они никогда не пытались сопоставить, например, миллион чашек кофе с количеством людей, которые их выпивают утром в миллионном городе. Многие не могли назвать мне даже приблизительно расстояние от восточного до западного побережья Соединённых Штатов — они не умели заставить свой мозг сделать простейшую прикидку: умножить расстояние, которое они проезжают за день на автомобиле (около 800 километров) на число дней (5–6 дней), которое необходимо, чтобы пересечь Американский континент, и понять, что это расстояние ближе к 4000–5000 километрам, нежели к 10 000 или к 20 000.
Размышления о числах в терминах того, что эти числа представляют, — самое захватывающее из всех занятий. Именно на этом специализируются физики. Я не возьмусь утверждать, что математические размышления доставляют чувство какого-нибудь особенного комфорта или являются магическим лекарством от математического бессилия, но играть с числами, выясняя, откуда то или иное число появилось в нашем мире и что за ним стоит, достаточно интересно, очень полезно и совсем не сложно. По крайней мере, необходимо научиться оценивать порядок физических величин, а это уже позволит делать важные выводы, не проводя точного количественного анализа. В этой главе я нарушу максиму Стивена Хокинга, очень надеясь, что не разорю своего издателя, и покажу, как физики манипулируют числами, чтобы сделать задачу более понятной, почему они делают это именно так, а не иначе, и что они ожидают получить от этого занятия. Основную идею можно сформулировать так: «мы используем числа, чтобы сделать вещи не сложнее, чем они должны быть».
Прежде всего следует отметить, что физические явления охватывают чрезвычайно широкий спектр возможных числовых значений и очень большие или очень маленькие числа могут появляться при решении даже простейших задач. Самое трудное при работе с такими числами — это подтвердит любой, кто хотя бы раз пытался перемножить столбиком два восьмизначных числа, — не запутаться в количестве цифр. К сожалению, часто самые трудные вещи являются одновременно и самыми важными, поскольку количество цифр определяет порядок числа. Допустим, мы умножаем 40 на 40. Какой ответ будет ближе к правильному: 160 или 2000? Ни одно из этих чисел не является точным значением произведения, но второе гораздо ближе к правильному ответу 1600. Если бы работодатель, пообещав платить вам по 40 долларов в час, заплатил за 40 часов работы только 160 долларов, тот факт, что он потерял всего лишь один нолик, был бы для вас слабым утешением, не правда ли?
Чтобы избежать подобных ошибок, физики придумали разделять числа на две части, одна из которых сообщает вам порядок числа, а вторая — точное значение в пределах этого порядка. Такая запись числа называется экспоненциальной. Она позволяет избежать записи огромного количества нулей, когда необходимо выразить в привычных нам единицах такие значения, как, например, размер наблюдаемой части Вселенной, составляющий около 1 000 000 000 000 000 000 000 000 000 сантиметров.
Глядя на это число, любой скажет, что оно очень велико, но насколько велико?
В экспоненциальной нотации используются степени числа 10. Запись 10n означает число, начинающееся с единицы, за которой следуют n нулей. Например, число 100 в экспоненциальной нотации записывается как 102, а запись 106 представляет число, начинающееся с единицы, за которой следуют шесть нулей, то есть один миллион. Оценивая величину таких чисел, достаточно помнить, что, скажем, число 106 содержит в своей записи на один ноль больше, чем число 105, и, следовательно, оно больше него в 10 раз. Для очень маленьких чисел, таких как размер атома, выраженный в сантиметрах — около 0,000000001 см, — учёные используют отрицательные показатели степени. Запись 10—n означает единицу, делённую на 10n, то есть число типа 0,000… 0001, где единица стоит на n-й позиции после запятой. Таким образом, одна десятая будет записана как 10-1, а одна миллиардная — как 10-9.
Любое произвольное числовое значение может быть записано как число в диапазоне от 1 до 10, умноженное на десять в какой-то степени. Число 100 записывается как 102, в то время как число 135 можно представить в виде произведения 1,35∙100 и в экспоненциальной нотации записать как 1,35∙102. Второй сомножитель в этой записи называется порядком числа, он даёт нам представление о количестве цифр в обычной записи. Таким образом, числа 100 и 135 имеют один и тот же порядок. Первый сомножитель называется мантиссой — он говорит нам о том, где именно находится число в пределах указанного порядка, то есть является оно, например, числом 100 или числом 135.
Для физика порядок числа является наиболее важной характеристикой, поскольку он показывает масштаб явления, и экспоненциальная запись в этом отношении очень удобна, не говоря уже о том, что она просто короче. Гораздо легче воспринять число в форме 1,45962∙1013, чем 1 459 620 000 000 или «один триллион четыреста пятьдесят девять миллиардов шестьсот двадцать миллионов». Я рискну сделать ещё более сильное утверждение: числа, представляющие физический мир, имеют смысл только тогда, когда они записаны в экспоненциальной форме.
Есть и другие несомненные преимущества экспоненциальной записи. В частности, она сильно упрощает манипуляции с числами. Например, вы хотите перемножить два числа, скажем, 100 и 100. Традиционная запись выглядит так: 100×100 = 10 000. В экспоненциальной форме нахождение произведения 100×100 сведётся к следующей манипуляции: 102х102 = 10(2+2) = 104 — фактически, мы заменяем умножение сложением. Аналогично и с операцией деления — вместо 1000:100 = 10 мы пишем: 103:102 = 10(3–2)= 101. Деление заменяется вычитанием. Эти простые правила оперирования со степенями десяти избавляют нас от необходимости постоянно считать количество знаков в перемножаемых числах, и единственное, для чего вам может понадобиться калькулятор, это для перемножения мантисс, то есть левых частей в экспоненциальной записи. Но поскольку мантиссы находятся в диапазоне от 1 до 10, то, помня таблицу умножения 10×10, вы всегда сможете сделать грубую прикидку результата в уме.
В мои задачи не входит научить вас искусству устного счёта, вместо этого я расскажу, как производить численные оценки. Если упрощение картины мира предполагает приближённое её описание, то экспоненциальная форма представления чисел лучше всего подходит для приблизительной оценки каких-то величин с точностью до порядка. Она позволяет быстро получить ответы на вопросы, которые при другом подходе были бы практически неразрешимыми. Грубые оценки помогают убедиться, что мы находимся на правильном пути. Они также позволяют сберечь время и силы, оберегая нас от выполнения ненужной работы. Одна известная байка рассказывает о некоем аспиранте, который потратил массу усилий, чтобы решить сложную систему уравнений, описывающую эволюцию Вселенной, чтобы получить в итоге один важный параметр. И на защите диссертации выяснилось, что этот же параметр получается за пару минут из общих соображений путём простой оценки.
Как сказал Энрико Ферми, «оценка по порядку величины позволяет вам ощутить почву под ногами». Ферми был последним из величайших физиков, который одинаково хорошо владел как теорией, так и техникой эксперимента. Он был одним из участников Манхэттенского проекта по созданию атомной бомбы и в числе прочего занимался проблемой получения управляемой цепной реакции деления атомных ядер. Он также был первым физиком, сумевшим построить теорию, описывающую цепную реакцию деления, за что удостоился Нобелевской премии. Его преждевременная смерть от рака, скорее всего, была вызвана воздействием радиации, изучением которой он занимался в те времена, когда её опасность для человеческого организма ещё не была установлена. Если когда-нибудь вы окажетесь в международном аэропорту имени Логана в Бостоне и по пути в город застрянете в пробке перед въездом в туннель, обратите внимание на мемориальную доску перед выездом на небольшой путепровод. Этот путепровод назван именем Энрико Ферми, и, на мой взгляд, очень показательно, что в то время как города называются именами президентов, а стадионы — именами спортсменов, именем Ферми названа дорога, поскольку в физике он был первопроходцем.
Я упомянул Ферми, потому что, будучи лидером группы физиков, работавших над Манхэттенским проектом в подвальной лаборатории, располагавшейся под футбольным полем Чикагского университета, он постоянно поднимал моральный дух руководимой им группы, разбавляя рутинную и тяжёлую работу интересными задачами, далеко не всегда имевшими отношение к физике. Энрико считал, что настоящий физик должен быть способен ответить на любой вопрос из любой области. Это не обязательно должен быть точный ответ — важно лишь разработать алгоритм, который позволил бы на основе имеющихся общих знаний оценить порядок величины. В качестве примера такой задачи можно привести вопрос, который часто задают на собеседовании в IT-компаниях: «Сколько настройщиков фортепиано проживают в настоящее время в Чикаго?»
Как бы подошёл к ответу на этот вопрос Энрико Ферми? Для начала он оценил бы численность населения Чикаго — допустим, пять миллионов человек. Из скольких человек состоит средняя чикагская семья? Предположим, что из четырёх. Тогда получается, что в Чикаго проживает (по порядку величины) около одного миллиона, или 106 семей. У какой части семей дома есть фортепиано? Допустим, у каждой десятой. Значит, в Чикаго ориентировочно 100 000 фортепиано. Как часто необходимо их настраивать? Пускай раз в год. Сколько времени тратит настройщик на настройку одного инструмента? Явно не менее половины рабочего дня. Тогда, учитывая, что в выходные настройщик отдыхает, получится, что он способен настроить 500 фортепиано в год. Для того чтобы в течение года настроить 100 000 инструментов, понадобится:
100 000/500 = 1/5∙105/102 = 1/5∙103 = 0,2∙103 = 2∙102 = 200 настройщиков.
Полученный результат не означает, что количество настройщиков в Чикаго в точности равно 200. Это оценка, полученная из общих соображений, но она даёт нам представление о порядке величины количества настройщиков. Если бы в реальности их оказалось менее 100 или более 1000, мы были бы сильно удивлены (на самом деле в Чикаго 600 настройщиков). Задумайтесь о том, что мы получили близкую к реальности оценку практически из ничего, из самых общих соображений, и снимите шляпу перед мощью этого метода.
Оценка по порядку величины может натолкнуть вас на новые идеи, которые в противном случае, возможно, никогда не пришли бы вам в голову. Чего больше: песчинок на пляже или звёзд на небе? Сколько людей на Земле чихают в течение одной секунды? За какое время вода и ветер смогут сточить до основания Эверест? Сколько человек в мире… (придумайте сами подходящий вопрос) за то время, пока вы читали эти строки?
Не менее важно и то, что оценка по порядку величины может принести вам озарение относительно тех вещей, суть которых вы пытаетесь понять. Человеческий мозг без специальной тренировки способен одновременно визуально зафиксировать в памяти не более двенадцати предметов, а чаще всего — не более шести. Когда вы видите шесть точек на грани игральной кости, вам нет необходимости их пересчитывать, вы и так понимаете, что их шесть. Но если бы у вас оказалась игральная кость с 20 гранями, то вы не сумели бы сразу определить, сколько точек находится на обращённой к вам грани: 17, 19 или 20, не пересчитывая их.
Даже если бы эти точки были нанесены в виде какого-нибудь регулярного узора, вы всё равно не смогли бы оценить их общее число, вместо этого вы оперировали бы, например, числом строк (4) и числом столбцов (5). Это происходит потому, что человек не способен легко и интуитивно представить себе число 20, несмотря на то что в повседневной жизни это число встречается достаточно часто: 20 пальцев на руках и ногах или 20 рабочих дней в месяце и т. д.
Оперируя очень большими или очень малыми числами, мы лишены способа наглядно представить, что они означают, не прибегая к оценке, которая позволила бы сопоставить исследуемое число с чем-то известным, что отличается от него не более чем в несколько раз, то есть с чем-то сравнимым по порядку величины. Один миллион может по порядку величины соответствовать числу людей, живущих в вашем городе, или количеству секунд, которые проходят за 10 дней. Миллиард по порядку величины соответствует населению Китая или количеству секунд, проходящих за 32 года. Сможете ли вы оценить, сколько раз вы слышите своё имя за время вашей жизни? Сколько килограммов пищи вы съедаете за десять лет? Удовольствие, получаемое от возможности шаг за шагом решать сложные, на первый взгляд, неразрешимые задачи, со временем вызывает сильное привыкание. Я думаю, что «кайф» подобного рода представляет собой большую часть удовольствия, которую получают физики от занятия физикой.
Экспоненциальная запись и оценка по порядку величины играют в физике неоценимую роль. Именно они в первую очередь и позволяют производить те самые упрощения, о которых я говорил в предыдущей главе. Если мы правильно представляем себе порядок величины, то мы уже понимаем большую часть из того, что нам необходимо понять. Я не хочу сказать, что вычисление всяких коэффициентов, входящих в уравнения типа 2π или 8/3, не важно, просто оценка порядка величины — это та самая лакмусовая бумажка, которая говорит, что мы на верном пути, а уже точно зная направление, можно начинать улучшать оценки, сравнивать предсказания с экспериментами и наблюдениями и совершенствовать теорию.
Теперь настало время пояснить, почему я сказал, что числа, отображающие реальные вещи в реальном мире, имеют смысл только будучи записанными в экспоненциальной форме. В первую очередь, потому что числа в физике, как правило, отражают то, что может быть измерено. Измеряя расстояние от Земли до Солнца, я могу выразить полученный результат двумя способами: 14 960 000 000 000 см или 1,4960∙1013 см. Для математика обе формы записи эквивалентны и представляют одно и то же число. Но для физика между числами 14 960 000 000 000 и 1,4960∙1013 существует принципиальная разница. Когда физик говорит, что расстояние от Земли до Солнца составляет 14 960 000 000 000 сантиметров, это означает, что оно в точности равно этому числу: не 14 959 790 562 739 и даже не 14 960 000 000 001 см, а ровно 14 960 000 000 000 см. Но это также означает, что мы знаем расстояние от Земли до Солнца с точностью до сантиметра!
Но это же абсурд, потому что расстояния от Аспена до Солнца (в полдень) и от Кливленда до Солнца (тоже в полдень) различаются на два с половиной километра — 250 000 сантиметров — из-за того, что Аспен и Кливленд располагаются на разной высоте над уровнем моря. Чтобы такое точное расстояние имело физический смысл, мы должны очень точно указать точку на поверхности Земли, в которой мы производим измерения. Даже если мы будем измерять расстояние между центром Земли и центром Солнца (самый разумный выбор), то это подразумевает, что мы предварительно измерили диаметры Земли и Солнца с точностью до сантиметра, не говоря уже о том, что произвести на практике измерения астрономических расстояний с такой точностью крайне проблематично, если вообще возможно.
Очевидно, что, написав число 14 960 000 000 000, мы на самом деле имели в виду приблизительное, а не точное значение. Но с какой точностью мы на самом деле знаем расстояние от Земли до Солнца? Подобного вопроса не возникает, когда мы записываем число в виде 1,4960∙1013 см. Принято считать, что в экспоненциальной записи в мантиссе сохраняются только достоверные цифры, и данная запись говорит о том, что реальное расстояние лежит в пределах между 1,49595∙1013 см и 1,49605∙1013 см. Если бы расстояние было известно нам с вдесятеро лучшей точностью, мы записали бы его в виде: 1,49600∙1013 см.
Таким образом, существует огромная разница между 1,4960∙1013 см и 14 960 000 000 000 см. Чтобы представить, насколько она огромна, подсчитаем абсолютную погрешность приведённого числа. Эта погрешность составляет 0,0001∙1013 см — один миллиард сантиметров, или десять тысяч километров, — почти диаметр Земли!
«И это физики называют точным результатом?» — спросите вы. Да. Несмотря на то что абсолютная величина погрешности — миллиард сантиметров — выглядит чудовищной, она составляет меньше одной десятитысячной расстояния от Земли до Солнца. Если бы вы с такой же точностью измерили свой рост, вы узнали бы его с точностью до двух десятых долей миллиметра.
Красота записи 1,4960∙1013 состоит ещё и в том, что множитель 1013 сразу же задаёт «масштаб» числа, а мантисса 1,4960 указывает на его точность. Чем больше десятичных разрядов содержит мантисса, тем точнее мы знаем физическую величину. Глядя на число, записанное в экспоненциальной форме, вы сразу же понимаете, чем можно пренебречь. Масштаб 1013 см говорит, что физические эффекты, проявляющиеся на масштабах в несколько сантиметров, метров, километров и даже тысяч километров, скорее всего, можно не учитывать. А как я говорил в предыдущей главе, самое главное в физике — это понимать, чем можно, а чем нельзя пренебречь.
До сих пор я игнорировал, возможно, наиболее важный факт, который придаёт числу 1,4960∙1013 см физический смысл. Это записанное после него сокращение «см». Без этих «см» мы бы не знали, к какой физической величине относится число, а сакраментальное «см» говорит о том, что это расстояние. Данная спецификация называется размерностью физической величины. Размерность связывает абстрактные математические числа с физическим миром реальных явлений. Сантиметры, дюймы, километры, световые года — это всё размерности длины, которые могут использоваться для измерения расстояний.
Вероятно, самым удивительным свойством окружающего мира, позволяющим упростить его картину, является то, что в природе существуют только три независимые размерные величины: длина, время и масса. Размерности всех остальных величин могут быть выражены через комбинацию трёх основных. Неважно, измеряете ли вы скорость в милях в час, метрах в секунду или стадиях в неделю, — всё это лишь различные способы выражения расстояния, делённого на время.
Это свойство имеет замечательные последствия. Из-за того что в природе существуют только три независимые размерные величины, количество комбинаций, которые можно из них сконструировать, ограничено. Это означает, что каждая физическая величина связана с любой другой физической величиной некоторым простым способом, и это существенно ограничивает количество различных математических соотношений, возможных в физике. Не побоюсь утверждать, что не существует более важного инструмента, используемого физиками, чем размерности физических величин. Размерности не только облегчают запоминание уравнений, но и существенно упрощают картину физического мира. Как я покажу позже, анализ размерностей даёт важный ориентир для разумной интерпретации той информации, которую мы получаем от наших органов чувств или измерительных приборов. Описывая физические величины, мы оперируем их размерностями.
Когда мы анализировали законы масштабирования сферического коня, мы работали с соотношениями размерностей длины и массы. Например, нам было важно установить, как соотносится изменение объёма коня с изменением его линейных размеров. Анализируя размерности, можно пойти дальше, чтобы понять, как оценить объём предмета произвольной формы. Как я уже говорил, неважно, какими единицами мы пользуемся для измерения объёма: кубическими дюймами, кубическими сантиметрами или кубическими футами, важно лишь, что все эти единицы кубические. Единицы, в которых измеряется объём, имеют размерность кубической длины, то есть [длина]×[длина]×[длина]. Таким образом, объём любого объекта может быть оценён путём выбора некоторой характеризующей этот объект длины d с последующим возведением её в куб: d3. Обычно этого достаточно, чтобы оценить порядок величины объёма. Например, объём сферы задаётся выражением V = π/6∙d 3 ≈ ½∙d 3 , где d — её диаметр.
А вот пример простейшего анализа размерностей. Предположим, что вы забыли, что следует сделать, чтобы найти пройденное телом расстояние: умножить скорость на время или разделить. Посмотрев на размерности входящих в формулу величин, вы мгновенно получите правильный ответ. Размерность скорости — [метр]/[секунда], размерность длины — [метр]. Для того чтобы получить расстояние, то есть [метр], необходимо [метр]/[секунда] умножить на [секунда], а именно скорость умножить на время. Поколение за поколением студентов безуспешно зубрит сложные формулы, вместо того чтобы просто составить входящие в них физические величины так, чтобы размерность справа от знака равенства была такой же, как и размерность слева.
Следует обратить особое внимание на то, что анализ размерности никоим образом не гарантирует, что вы получите правильный ответ, но он гарантированно подскажет, когда вы ошибаетесь. Он как слега при переходе через болото: не факт, что, пользуясь ею, вы не заблудитесь, но зато наверняка не утонете.
Говорят, что фортуна благоволит подготовленному уму. Ничто не может быть более справедливым в отношении физики, и анализ размерности поможет подготовить ум к неожиданностям. Результат простого анализа размерностей часто оказывается настолько потрясающим, что может показаться магией. Для большей убедительности я приведу пример из современной физики, в котором известное и неизвестное оказались очень тесно переплетены. В этой истории анализ размерностей помог прийти к пониманию одной из четырёх фундаментальных сил природы — сильного взаимодействия, которое связывает кварки в протоны и нейтроны, являющиеся основными компонентами атомных ядер. При первом чтении апелляция к размерностям может показаться вам не очень понятной, но не беспокойтесь. Я привожу здесь эту историю, потому что она позволяет увидеть, насколько эффективно анализ размерностей способен подтолкнуть физическую интуицию. В моём рассказе красота вывода более важна, чем полученный результат.
Физики, изучающие элементарные частицы, пытающиеся найти основные кирпичи мироздания и объяснить фундаментальные взаимодействия, разработали систему единиц измерения, которая идеально приспособлена для анализа размерностей. В принципе три основные размерности — длина, время и масса — независимы, но на практике между ними есть фундаментальная связь, осуществляемая посредством так называемых фундаментальных физических констант. Например, если бы существовала некая универсальная константа, связывающая время и расстояние, я мог бы выразить расстояние через время путём простого умножения времени на эту константу. Впрочем, почему «если бы»? Такая константа действительно существует — это скорость света в вакууме. Один из постулатов созданной Эйнштейном теории относительности гласит, что скорость света в вакууме не зависит ни от скорости источника света, ни от скорости наблюдателя: как бы мы её ни измеряли, мы всегда будем получать одно и то же значение — в этом и состоит её универсальность. Эту константу принято обозначать латинской буквой c, и, как нетрудно догадаться, она имеет размерность длины, делённой на время. Если я умножу некий промежуток времени на c, я получу нечто, имеющее размерность длины, а именно — расстояние, которое свет проходит за это время. Таким способом мы можем любое расстояние выразить через время, которое требуется свету, чтобы пройти это расстояние. Например, расстояние от вашего плеча до локтя свет проходит за 10-9 секунды, значит, вы можете считать, что расстояние от плеча до локтя составляет 10-9 секунды. Любой наблюдатель, измеряющий расстояние в «световых секундах», получит то же самое значение.
Существование такой универсальной константы, как скорость света, позволяет установить взаимно однозначное соответствие между расстоянием и временем. Это позволяет исключить одну из этих размерностей из системы единиц. А именно: мы можем либо оставить только единицу длины, а время выражать через неё, либо наоборот. При этом очень удобно выбрать такие единицы измерения времени и расстояния, в которых скорость света оказывается равной единице. Например, мы можем выбрать в качестве единицы длины световую секунду, тогда скорость света будет равна одной световой секунде в секунду. В такой системе единиц расстояние и эквивалентное ему время будут выражаться одним и тем же числом!
Пойдём дальше. Если численное значение световой длины и соответствующего ей светового времени в построенной нами системе единиц одинаковы, то стоит ли рассматривать длину и время как величины разной размерности? Вместо этого можно присвоить расстоянию и времени одинаковые размерности, тогда скорость, которая суть расстояние, делённое на время, станет безразмерной величиной. Физически это эквивалентно тому, что мы бы измеряли скорость в (безразмерных) долях скорости света, то есть если я напишу, что скорость равна 1/2, это попросту будет означать, что она равна половине скорости света. Очевидно, что для корректного построения подобной системы нам понадобится универсальная эталонная скорость, относительно которой мы будем измерять все остальные скорости, — ну так скорость света и является таким универсальным эталоном.
Итак, после приравнивания скорости света к единице и объявления её безразмерной величиной у нас остаются только две независимых размерности: время и масса (или, если так будет удобнее, расстояние и масса). Одним из следствий такого необычного подхода является то, что он позволяет, помимо расстояния и времени, приравнять размерности и других величин. Например, знаменитая формула Эйнштейна E = mc 2 устанавливает эквивалентность массы и энергии. В нашей системе единиц, где скорость света c равна безразмерной единице, размерность массы оказывается такой же, как и размерность энергии. Давайте подумаем, что формально делает формула Эйнштейна. Она устанавливает взаимно однозначное соответствие между массой и энергией, то есть если у нас что-то обладает некоей энергией, то это что-то обладает эквивалентной этой энергии массой, и наоборот. Если переводной коэффициент между массой и энергией становится безразмерной единицей, то величина массы становится тождественно равной величине энергии. Это освобождает нас от необходимости использовать для измерения массы величин типа килограмма или фунта, мы можем измерять её в тех же единицах, в которых измеряем энергию: в джоулях или калориях. Именно так и поступают физики, изучающие элементарные частицы: они измеряют массы частиц в электрон-вольтах. Электронвольт — это энергия, которую приобретает электрон, если его разогнать разностью потенциалов в один вольт. Вместо того чтобы записывать массу электрона как 10-31 г, физики записывают её как 0,511 МэВ (мегаэлектронвольт). Поскольку в физике элементарных частиц учёные постоянно имеют дело с процессами, в которых масса частиц преобразуется в энергию и обратно, то совершенно разумно и логично использовать для измерения массы те же единицы, что и для измерения энергии, и не брать в голову никакие переводные коэффициенты из джоулей в килограммы. Существует важное правило: всегда следует использовать такие единицы измерения, которые дают наилучшее представление о масштабе явления. В ускорителях частицы разгоняются до скоростей, близких к скорости света, поэтому использование системы единиц, в которой скорость света равна единице, для таких задач очень удобно и практично. Для описания же явлений повседневной жизни такая система, наоборот, оказывается непрактичной и неудобной, поскольку приводит к необходимости оперировать очень маленькими числами. Например, скорость реактивного самолёта в единицах скорости света составляет порядка 0,000001 = 10-6.
Но это ещё не всё. Существует ещё одна фундаментальная физическая постоянная, её принято обозначать буквой h и называть постоянной Планка. Немецкий физик Макс Планк был одним из отцов-основателей квантовой механики. Он ввёл эту константу, чтобы связать энергию кванта с его частотой, а значит, постоянная Планка устанавливает связь между энергией и временем или, если вам хочется, между массой и расстоянием. Действуя так же, как мы поступили со скоростью света, примем численное значение постоянной Планка равным безразмерной единице. Что получится? Из всех размерностей у нас останется только размерность энергии, поскольку теперь мы можем выразить через энергетические единицы, например через электрон-вольты, не только энергию, но и массу, и время, и расстояние — и все остальные физические единицы измерения. Постоянная Планка связывает энергию и частоту: Е = hν, частота имеет размерность [1/секунда], тогда время в энергетических единицах будет иметь размерность [1/электронвольт]. В физике часто вместо постоянной h используется постоянная ħ, которая равна h/(2π), просто потому что так удобнее. В системе единиц, в которой с = ħ = 1, одна секунда будет равна 1,5∙1015/эВ — обратите внимание, что электрон-вольты стоят в знаменателе, обычно в таких случаях используют отрицательные показатели степени и пишут: 1,5∙1015 эВ-1.
В итоге мы создали систему, в которой три основные размерности свели к одной. Теперь мы можем описать весь физический мир, используя только размерность массы, или только размерность длины, или только размерность времени — не принципиально, какую размерность мы выберем, это уже будет результат произвольного соглашения. В физике высоких энергий удобно использовать в качестве базовой размерность энергии. Например, объём, имеющий в привычной системе единиц размерность [длина3], в новой системе, в которой с = ħ = 1, будет иметь размерность [1/энергия3], потому что длина в этой системе имеет ту же размерность, что и время, а время имеет размерность, обратную размерности энергии. Численно 1 м3 будет равен 1,3∙1020 эВ-3.
На первый взгляд описанный подход выглядит непривычно, но вся его прелесть состоит в том, что, оставляя только один независимый размерный параметр, мы можем существенно упростить анализ и свести очень сложные явления к одной физической величине. Порой это выглядит как настоящая магия. Например, предположим, что мы обнаружили новую элементарную частицу, масса которой в три раза превышает массу протона, или в энергетических единицах составляет около 3 миллиардов электрон-вольт — 3 ГэВ (гигаэлектрон-вольта). Если эта частица нестабильна, то каково ожидаемое время её жизни? Может показаться, что, не зная никаких подробностей о структуре частицы, сделать подобную оценку невозможно. Однако, используя анализ размерностей, можно выдвинуть кое-какие предположения.
Единственная размерная характеристика, присутствующая в этой задаче, — масса, или, что эквивалентно, энергия покоя частицы. Поскольку размерность времени в нашей новой системе единиц эквивалентна обратной размерности массы, разумная оценка времени жизни частицы будет составлять k/(3 ГэВ), где k — некий безразмерный параметр.
В отсутствие какой бы то ни было дополнительной информации нам не остаётся ничего лучшего, как надеяться, что этот параметр не очень сильно отличается от единицы. Мы можем перевести электрон-вольты в привычные секунды, используя соотношение: 1/1 эВ = 6,5∙10-16 с. Таким образом, время жизни нашей новой частицы должно быть порядка k∙10-25 секунды.
Разумеется, в действительности никакой магии тут нет. Мы не получили что-то из ничего, просто анализ размерностей дал характерный масштаб нашей задачи. Этот анализ говорит, что «естественное время жизни» нестабильной частицы такой массы составляет порядка k∙10-25 секунды, подобно тому как «естественное время жизни» человека составляет порядка k∙75 лет. Все реальные физические (или в последнем случае биологические) оценки содержат неизвестный параметр k. Если вдруг этот параметр оказывается очень малым или очень большим, то перед нами встаёт новая интересная задача: понять, почему в каком-то конкретном случае параметр существенно отличается от единицы.
Анализ размерностей даёт нам очень важную информацию для размышлений. Если параметр k сильно отличается от единицы, это говорит о том, что за кулисами действует какая-то дополнительная сила — очень слабая или, наоборот, очень сильная, приводящая к тому, что реальное время жизни начинает отличаться от естественного, получаемого путём анализа размерностей. Допустим, мы обнаружили суперконя, размеры которого в 10 раз превышают размеры обычного коня, а вес составляет всего полкилограмма. Из приведённых ранее масштабных соображений суперконь должен весить в 1000 раз больше обычного коня, значит, — заключаем мы, — наблюдаемый сверхлёгкий суперконь состоит из очень экзотического вещества. И правда — многие из наиболее интересных физических открытий были сделаны в результате обнаружения несоответствия между наблюдаемыми фактами и результатами простой экстраполяции явлений на другие масштабы. Важно понимать, что, не обнаружь мы этого несоответствия, мы бы, возможно, не имели ни малейшего понятия о том, что тут можно найти что-то новое и интересное!
В 1974 году произошло одно знаменательное и драматическое событие. В течение 1950-х и 1960-х годов энергии, до которых разгонялись частицы в ускорителях, неуклонно росли. Помимо энергий росло и количество одновременно ускоряемых частиц, что позволило перейти от столкновений частиц с неподвижной мишенью к столкновениям встречных пучков, а это, в свою очередь, дополнительно увеличило энергии сталкивающихся частиц.
В ходе этих экспериментов было обнаружено множество неизвестных ранее типов частиц. Когда количество новых частиц перевалило за сотню, теоретики схватились за голову, но в начале 1960-х годов Мюррей Гелл-Ман в Калтехе разработал кварковую модель, позволившую навести некоторый порядок в открытом экспериментаторами хаосе. Согласно его предположению, все вновь открытые частицы можно составить из простых комбинаций фундаментальных объектов, которые Гелл-Ман назвал кварками. Частицы, получаемые в ускорителях, можно было разделить на состоящие из трёх кварков и на состоящие из кварка и антикварка. Новые комбинации, составленные из того же набора кварков, из которых состоят протон и нейтрон, согласно предсказаниям должны были образовывать нестабильные частицы с массами порядка массы протона. Таки частицы были действительно обнаружены, и их время жизни оказалось довольно близким к нашей оценке — 10-24 секунды.
Наша оценка была 10-25 секунды, значит, константа k составляет около 10 — не слишком далеко от единицы. Всё, казалось бы, хорошо, но оставались две неприятности. Во-первых, при распаде частиц всегда образовывались другие частицы, состоящие из кварков, но ни разу ни в одном процессе никому не удалось получить один свободный кварк, а во-вторых, из-за того, что силы взаимодействия между кварками были велики, никому не удавалось точно рассчитать, как они должны себя вести.
В 1973 году было сделано важное теоретическое открытие. Работая над теорией, которая позволила бы объединить электромагнитное и слабое взаимодействие, Дэвид Гросс и Фрэнк Вильчек из Принстона и независимо от них Дэвид Политцер из Гарварда разработали очень привлекательную теорию, которая претендовала на роль теории сильного взаимодействия. В этой теории каждый кварк мог иметь одно из трёх различных свойств, которые были в рабочем порядке условно названы «цветами», а сама теория получила название квантовой хромодинамики, или сокращённо КХД. Самым удивительным свойством взаимодействия между кварками оказалось то, что, когда они приближались друг к другу, сила притяжения между ними уменьшалась, а когда удалялись — увеличивалась. До сих пор ни в одной теории сила взаимодействия не вела себя таким странным образом.
Наконец появилась надежда, что кто-нибудь сумеет выполнить расчёты, на основании которых можно будет сравнить предсказания теории с экспериментом. Поскольку на близких расстояниях силы взаимодействия между кварками малы, то можно начать расчёт с невзаимодействующих кварков, а потом добавлять методом последовательных приближений всё более и более сильные взаимодействия и в конце получить относительно точное описание их взаимодействия.
В то время как теоретики начали исследовать особенность поведения кварков, получившую название асимптотической свободы, экспериментаторы из Нью-Йорка и Калифорнии разгоняли частицы в ускорителях до всё более и более высоких энергий.
И вот в ноябре 1974 года, с разницей в несколько недель, две разные группы экспериментаторов обнаружили новую частицу с массой примерно в три раза больше массы протона. Но привлекла к себе внимание частица не своей массой, а необычно большим временем жизни, которое в 100 раз превышало время жизни других частиц с похожими массами. Один из физиков сравнил этот факт с обнаружением затерянного в джунглях племени людей, продолжительность жизни в котором составляет 10 000 лет.
Пытаясь объяснить этот феномен, Политцер и его коллега Том Эпплкуист пришли к выводу, что обнаруженная тяжёлая частица состоит из нового типа кварков, предсказанных теоретически несколькими годами ранее и названных очарованными кварками. Большое время жизни связанного состояния этих кварков напрямую следовало из асимптотической свободы кварков в КХД. Если очарованный кварк и очарованный антикварк тяжелее кварков, из которых состоят протоны и нейтроны, то в связанном состоянии они находятся гораздо ближе друг к другу, а значит, силы взаимодействия между ними гораздо слабее.
Это приводит к тому, что им требуется большее время, чтобы «найти» друг друга и проаннигилировать. Грубая оценка времени жизни такого связанного состояния была получена путём масштабирования силы взаимодействия кварков от размера протона до предполагаемого размера новой частицы. Оценка по порядку величины совпала с экспериментальными данными. Так КХД получила своё первое экспериментальное подтверждение.
В последующие годы эксперименты, проведённые при ещё более высоких энергиях сталкивающихся частиц, показали, что используемое в расчётах приближение является достаточно надёжным, и многократно подтвердили существование предсказанной квантовой хромодинамикой асимптотической свободы. Несмотря на то что до сих пор никому так и не удалось выполнить полный и точный расчёт поведения кварков на таких расстояниях, когда их взаимодействие становится очень сильным, количество полученных экспериментальных доказательств уже настолько велико, что сегодня никто не сомневается в справедливости КХД. В 2004 году Гросс, Вильчек и Политцер были удостоены Нобелевской премии за предсказание асимптотической свободы, открывшей дорогу к экспериментальной проверке квантовой хромодинамики. Без ключевых соображений, основанных на анализе размерностей физических величин, это открытие, вполне возможно, могло и не состояться или, по крайней мере, задержаться на долгие годы. Анализ размерностей применим не только в физике элементарных частиц, он является универсальным методом, который даёт нам точку опоры, позволяющую протестировать наше представление о реальности.
Хотя физическое мировоззрение и начинается с чисел, используемых для описания природы, оно не останавливается на них. Помимо чисел физикам нужен язык, при помощи которого они могли бы оперировать числами, как словами, и этим языком является математика. Сразу предвижу чисто практический вопрос: почему бы не пользоваться более естественным языком? Но у нас нет выбора. Ещё Галилей 400 лет назад писал: «Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять её может лишь тот, кто сначала научится постигать её язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки её — треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречён блуждать в потёмках по лабиринту».
Сегодня утверждение, что математика является языком физики, воспринимается как банальность, наподобие той, что французский язык является языком любви. Но это утверждение никак не объясняет, почему мы не можем перевести на другой язык математические выражения так же легко, как стихи Бодлера. В вопросах любви даже те из нас, чей родной язык не является французским, разбираются достаточно хорошо и без перевода, чего нельзя сказать о математических вычислениях.
Дело в том, что математика — это больше, чем просто язык. Чтобы показать, насколько больше, я одолжу один аргумент у Ричарда Фейнмана. Помимо того, что Фейнман был харизматиком, он являлся ещё и одним из величайших умов среди физиков-теоретиков двадцатого столетия. Фейнман обладал редким даром просто и понятно объяснять сложные вещи, чем, мне кажется, отчасти объясняется тот факт, что у него всегда был собственный способ понимания и собственный способ вывода почти всех результатов классической физики.
Объясняя роль математики в физике, он, в свою очередь, приводил в пример Исаака Ньютона. Величайшим открытием Ньютона был, безусловно, закон всемирного тяготения. Показав, что та же сила, которая удерживает нас на поверхности Земли, отвечает за движения всех небесных объектов, Ньютон сделал физику универсальной наукой. Он показал, что у нас есть возможность описать не только управляющие нами законы и наше место во Вселенной, но и саму Вселенную. Мы сегодня склонны принимать это как должное, но один из самых замечательных законов во Вселенной говорит нам, что та же самая сила, которая управляет полётом бейсбольного мяча, управляет движением Земли вокруг Солнца, движением Солнца вокруг центра Галактики, движением Галактики относительно других галактик и эволюцией самой Вселенной, хотя относительно справедливости последнего утверждения — насчёт Вселенной — вопрос пока остаётся открытым.
Ньютоновский закон всемирного тяготения может быть сформулирован в словесной форме: сила гравитационного притяжения между двумя объектами направлена вдоль линии, соединяющей эти объекты, пропорциональна произведению масс объектов и обратно пропорциональна квадрату расстояния между ними. Словесное определение выглядит громоздким, но это не важно. В сочетании со вторым законом Ньютона, утверждающим, что тело реагирует на действующую на него силу путём изменения скорости в направлении действия силы, и это изменение пропорционально величине силы и обратно пропорционально массе тела, закон всемирного тяготения позволяет описать всё. Любое движение любого количества тяготеющих тел может быть выведено из этих двух законов. Но как? Я мог бы дать эту формулировку лучшему в мире лингвисту и попросить его вывести из неё возраст Вселенной, используя семантические правила, но подозреваю, Вселенная прекратит своё существование раньше, чем ему удастся получить ответ.
Суть в том, что математика представляет собой набор утверждений и выводов, подчинённых правилам логики. Например, Иоганн Кеплер в начале XVII века, проанализировав множество наблюдательных данных, пришёл к выводу, что планеты движутся вокруг Солнца особым образом. Если соединить планету с Солнцем отрезком прямой, то этот отрезок будет за одинаковые промежутки времени «заметать» одинаковые площади. Математически можно показать, что из этого утверждения следует, что, когда планета находится ближе к Солнцу, она движется по своей орбите быстрее, чем когда она находится дальше. Ньютон, в свою очередь, показал, что открытый Кеплером закон может быть строго математически получен из приведённых выше формулировок закона всемирного тяготения и второго закона Ньютона.
Попробуйте, если сумеете, вывести второй закон Кеплера из законов Ньютона, используя только правила английского (или русского) языка… Но при помощи математики, в данном случае на основе простых геометрических соображений, вы сделаете это за несколько минут. За подробностями обратитесь к «Математическим началам натуральной философии» Ньютона, а ещё лучше — прочитайте замечательную книгу Фейнмана «Характер физических законов».
Ключевой момент этой истории состоит в том, что Ньютон, возможно, никогда не сумел бы вывести закон всемирного тяготения, если бы не соединил при помощи математики открытый Кеплером закон движения планет с предположением, что между планетами и Солнцем действует сила притяжения. Этот момент является решающим для развития науки. Не имея математической основы под натуральной философией, к которой во времена Ньютона относили физику, невозможно построить логичную и согласованную теорию. Синтез математических выводов с наблюдаемой физической реальностью имеет основополагающее значение для построения научной картины реальности.
Я думаю, что вполне уместной будет литературная аналогия. Работая над этой главой, я читал роман канадского писателя Робертсона Дэвиса «Пятый персонаж». В нескольких предложениях он кратко суммирует то, что произошло с его персонажем: «Солдаты пришли в крайнее изумление, что я способен на такие вещи, чем привели в крайнее изумление меня самого… В их головах просто не укладывалось, что человек может иметь и другую, вроде бы совсем противоположную грань. Мне кажется, что я всегда считал самоочевидным, что каждый человек имеет по крайней мере две — если не двадцать две — грани…»
Позвольте теперь пояснить, к чему я привёл эту цитату, на личном примере. Одной из многих вещей, которые я приобрёл благодаря своей жене, было открытие новых способов видения мира. Мы вышли из совершенно разных слоёв общества. Она родилась в маленьком городке, а я — в мегаполисе. Те, кто, подобно мне, вырос в мегаполисе, склонны воспринимать окружающих не так, как те, кто вырос в небольшом городке. Подавляющее большинство людей, которых вы встречаете ежедневно в большом городе, фигурально выражаясь, «одномерны». Вы воспринимаете мясника как мясника, почтальона как почтальона, врача как врача и так далее. Но в маленьком городке вам не удастся встретить просто мясника или просто почтальона, потому что все они, помимо всего прочего, ещё и ваши соседи. Врач может по совместительству оказаться горьким пьяницей, а живущий напротив бабник — прекрасным учителем английского языка в местной школе. Подобно главному герою романа Дэвиса, я открыл для себя, что люди не могут быть легко классифицированы на основании какой-нибудь одной черты характера или рода занятий. Только когда осознаёшь всю многогранность человека, получаешь возможность понять его.
Аналогично, каждый физический процесс во Вселенной — «многомерен». Только охватив взглядом множество, на первый взгляд, различных, а на самом деле эквивалентных описаний какого-нибудь явления, можно понять, «как это работает». Мы не способны понять природу, наблюдая только одну её сторону. Хорошо это или плохо, но только математические соотношения позволяют нам увидеть целое на фоне частей, увидеть лес за деревьями. Математика позволяет представить сложный мир в виде простого сферического коня.
В каком-то смысле математика усложняет мир, открывая нам разные грани реальности. Но, поступая таким образом, она в действительности упрощает его для нашего понимания. Нет необходимости держать в голове одновременно все грани реальности, математика позволяет легко переходить от одной грани к другой. Если роль физики состоит в том, чтобы сделать для нас более понятной природу, то роль математики в том, чтобы сделать для нас более понятной физику.
Позволяя описать одно и то же явление разными способами, математика открывает для нас новые пути исследования природы, позволяя взглянуть на что-то давно известное с новой стороны. Кроме того, каждая новая грань реальности открывает возможность расширения наших представлений за пределы известного явления, приводя к новым открытиям. Было бы упущением с моей стороны не привести один известный пример, который не перестаёт восхищать меня вот уже двадцать пять лет, с тех пор, как я впервые узнал его от Фейнмана.
Речь пойдёт о таком всем знакомом, но вместе с тем загадочном явлении, как мираж. Любой, кто когда-либо ехал на автомобиле в жаркий день по длинному прямому участку шоссе, наблюдал, как впереди то и дело возникают, а при приближении пропадают лужи, в которых отражается небо и окружающий пейзаж. Это менее экзотический вариант того, что видят бредущие через пустыню путники, бросающиеся к иллюзорному озеру, которое исчезает при их приближении.
Существует стандартное объяснение возникновения миража, заключающееся в том, что световые лучи преломляются, проходя границу двух сред. Это, в частности, объясняет, почему, стоя в воде, вы выглядите меньше ростом. Лучи света преломляются, пересекая поверхность воды, и вы видите собственные ступни выше, чем они расположены на самом деле:
Когда свет выходит из более плотной среды в менее плотную, как показано на рисунке (проходит путь от ваших ног в воде до ваших глаз в воздухе), он всегда преломляется в сторону более плотной среды. Если угол, под которым свет падает на границу сред, слишком большой, то свет вообще не выходит из более плотной среды, а испытывает полное внутреннее отражение. В результате акула, собирающаяся перекусить вами, оказывается скрытой от вашего взора.
В знойный день воздух над поверхностью дороги сильно нагревается и становится гораздо менее плотным. По мере удаления от разогретого асфальта воздух становится холоднее, и его плотность увеличивается. Когда луч света, приходящего от неба, приближается к поверхности дороги, он попадает во всё более и более разрежённые слои воздуха и испытывает преломление, отклоняясь в сторону более плотного, то есть холодного воздуха, пока не отразится обратно вверх.
Таким образом, разогретая дорога представляется вам как бы зеркалом, отражающим голубое небо. Если вы внимательно присмотритесь к миражу, то увидите, что это «зеркало» на самом деле расположено не на самой поверхности дороги, а чуть выше неё.
Это стандартное объяснение миража, и оно является вполне удовлетворительным, хотя и не особо вдохновляющим. Но существует другое объяснение того же явления, которое математически эквивалентно первому, но рисует всю картину существенно иначе. Это объяснение основано на принципе наименьшего времени, предложенном французским математиком Пьером Ферма в 1650 году, который гласит, что свет всегда распространяется по пути, для прохождения по которому ему требуется минимальное время.
Этот принцип прекрасно объясняет, почему свет в однородной среде распространяется по прямой линии, но как с его помощью объяснить мираж? Допустим, нам известно, что скорость света в менее плотном воздухе больше, чем в более плотном. Поскольку воздух вблизи дороги более горячий и менее плотный, то и свет вблизи дороги движется быстрее, чем вдали от неё. Теперь представьте себе луч света, который собирается попасть из точки A в точку В. Какой путь он выберет, руководствуясь принципом Ферма?
Один из возможных путей — это отрезок прямой линии, соединяющий точки A и B. Однако в этом случае свету придётся проделать весь путь в холодном и плотном воздухе. Другой возможный путь показан на рисунке. В этом случае свет проходит большее расстояние, но он проводит большее время в менее плотном воздухе вблизи поверхности дороги, где он движется быстрее. Вычислив общее время, затраченное светом в каждом из двух вариантов, вы обнаружите, что кривой путь оказывается более быстрым, чем прямой.
Если задуматься, то всё это очень странно. Откуда свет заранее может знать, какой путь является самым быстрым? Не может же он «обнюхать» все возможные пути, прежде чем окончательно выбрать правильный? Разумеется, нет. Он просто повинуется локальным физическим законам, которые говорят ему, что следует делать в каждый конкретный момент, а математически (после интегрирования) это всегда оказывается путь, требующий минимального времени. В этом выводе есть что-то, вызывающее чувство глубокого удовлетворения. Он кажется более фундаментальным, чем альтернативное описание с позиции преломления света в различных слоях воздуха. Так оно и есть. Теперь мы понимаем, что законы движения любых объектов могут быть выражены в форме, похожей на принцип Ферма. Кроме того, эта новая форма выражения классических ньютоновских законов движения привела Фейнмана к разработке новых методов описания квантово-механического поведения частиц.
Путём предоставления различных, но эквивалентных способов описания мира математика открывает перед нами новые пути понимания природы. Новый способ описания — это больше, чем пересказ другими словами. Новая картина может помочь нам обойти препятствия, которые представлялись непреодолимыми с прежних позиций. Например, методы, основанные на принципе, аналогичном принципу Ферма, позволили применить квантовую механику в таких областях, в которых она до сих пор считалась неприменимой. В частности, стоит упомянуть недавние попытки Стивена Хокинга понять, может ли квантовая механика привести к переосмыслению общей теории относительности.
Поскольку математические соотношения играют ключевую роль в нашем понимании природы, открывая новые способы описания мира, то неизбежно возникает следующий вопрос, наедине с которым я хочу оставить вас в конце этой главы. Если описание природы является математической абстракцией, то какой смысл имеет утверждение, что мы понимаем Вселенную? Например, в каком смысле законы Ньютона объясняют, почему физические тела движутся? Обратимся снова к Ричарду Фейнману:
Что значит «понять» что-либо? Представьте себе, что сложный строй движущихся объектов, который и есть мир, — это что-то вроде гигантских шахмат, в которые играют боги, а мы следим за их игрой. В чём правила игры, мы не знаем; всё, что нам разрешили, — это наблюдать за игрой. Конечно, если посмотреть подольше, то кое-какие правила можно ухватить. Под основными физическими воззрениями, под фундаментальной физикой мы понимаем правила игры. Но, даже зная все правила, можно не понять какого-то хода просто из-за его сложности или ограниченности нашего ума. Тот, кто играет в шахматы, знает, что правила выучить легко, а вот понять ход игрока или выбрать наилучший ход порой очень трудно. Ничуть не лучше, а то и хуже обстоит дело в природе. Не исключено, что в конце концов все правила будут найдены, но пока отнюдь не все они нам известны. То и дело тебя поджидает рокировка или какой-нибудь другой непонятный ход. Но помимо того, что мы не знаем всех правил, лишь очень и очень редко нам удаётся действительно объяснить что-либо на их основе. Ведь почти все встречающиеся положения настолько сложны, что нет никакой возможности, заглядывая в правила, проследить за планом игры, а тем более предугадать очередной ход. Приходится поэтому ограничиваться самыми основными правилами. Когда мы разбираемся в них, то уже считаем, что «поняли» мир [10] .
В конце концов, мы никогда не сможем пройти дальше установления каких-то законов и никогда не сможем узнать, почему они именно такие. Но мы успешно открываем эти законы путём вычленения простого из сложного и отбрасывания несущественного, руководствуясь теми правилами, о которых я рассказывал в этой и предыдущей главах. И когда мы пытаемся понять мир тем способом, которым это делают физики, это всё, что мы можем надеяться сделать. Тем не менее, если мы очень постараемся и удача окажется на нашей стороне, мы сможем, по крайней мере, получить удовольствие от прогнозирования того, что произойдёт в ситуации, которую никто никогда раньше не наблюдал. Поступая таким образом, мы можем надеяться обнаружить новые скрытые физические закономерности, предсказав их при помощи математики, и надо признать, что это делает процесс познания мира чрезвычайно увлекательным занятием.