Какие нужны вещества для образования материальной основы жизни? Жизнь, которую мы все видим вокруг себя, основана на атомах углерода, соединенных с водородом, кислородом и азотом, наряду с некоторым количеством фосфора и серы. Используя эти немногие виды атомов, можно создать огромное количество различных мелких молекул, то есть молекул, в которых, скажем, менее пятидесяти атомов, и почти неограниченное количество различных макромолекул, каждая из которых содержит тысячи атомов. Важны также и другие атомы, такие как заряженные атомы (ионы) натрия, калия, магния, хлористых соединений, кальция, железа и ряд других, но в большинстве случаев они не входят в состав органических молекул, а существуют, главным образом, самостоятельно. Для зарождения жизни был необходим запас большей части этих атомов. Как они образовались? Существовали ли они отдельно или в простых соединениях?
Оказывается, что все атомы, найденные в органической химии, очень реактивны. Даже в атмосфере они существуют в соединениях. Простые химические доказательства говорят о том, что водород соединится сам с собой для образования молекулы Н2, кислород — О2, а азот — N2. Мы также можем рассчитывать на простые соединения, такие как H2O (вода), NH3 (аммиак), СO2 (углекислый газ), CH4 (метан), и ряд других. Сегодня наша атмосфера состоит, в основном, из очень инертного газа азота (N2), наряду с примерно двадцатью процентами кислорода (O2), а также небольшого количества водяного пара (H2O) и даже еще меньшего количества углекислого газа (CO2).
Привычным стало представление о том, что первозданная атмосфера на Земле была совершенно иной. Поскольку водород — безусловно, самый распространенный элемент во Вселенной, то естественно было считать, что в первозданной атмосфере преобладал водород. В настоящее время почти весь кислород в воздухе образуется в процессе фотосинтеза. В древнейшие времена на Земле жизни не было, и поэтому кислород не мог образоваться подобным образом. Такая атмосфера, богатая водородом и бедная кислородом, известна как восстановительная, в отличие от современной атмосферы, которая называется окислительной. Эксперименты по пребиотическому синтезу, которые следует кратко описать, по-видимому, подтверждают этот вывод.
В последнее время эти представления подверглись сомнению. Водород такой легкий, что силы земного тяготения недостаточно для его удержания, и он довольно легко улетучивается в космическое пространство. Точная его скорость зависит от ряда факторов, особенно от температуры в верхних слоях атмосферы, так как чем выше температура, тем быстрее перемещаются атомы или молекулы, и тем легче они улетучиваются в космическое пространство. Теперь считается вполне возможным, что значительное количество первоначально образовавшегося водорода улетучилось так быстро, что он никогда не преобладал в атмосфере.
А что же кислород? Если его нельзя было вырабатывать с помощью фотосинтеза, то есть ли какой-нибудь другой возможный механизм? Почти не вызывает сомнений, что на первозданной Земле было много воды, в частности, в ее атмосфере. В благоприятных условиях ультрафиолетовый свет может расщеплять воду на составляющие ее элементы. Если образованный таким образом водород затем улетучился в космическое пространство, то оставшийся кислород, вероятно, накапливался, и если процесс проходил в довольно большом масштабе, то атмосфера могла бы обогатиться кислородом. Сегодня, из-за химического состава современной атмосферы, этот процесс уже не вырабатывает кислород со значительной скоростью, но, по крайней мере, возможно, что в отдаленном прошлом условия настолько отличались, что кислород создавался более свободно.
Конечно, кислород и водород не были единственными элементами, которые содержались в воздухе. В нем, вероятно, было много азота, некоторое количество углерода и, возможно, немного серы, хотя последние два, скорее всего, входили в состав соединений. Может быть, в ней присутствовали газы N2 и СО2, а также в меньших количествах СН4, CO и, возможно, NH3 и H2S (сероводород). Что совершенно неясно, так это их точное количественное соотношение, в частности, количество H2 и O2.
Так как атмосфера взаимодействует с химическими веществами на поверхности Земли, то химический состав древнейших осадочных пород должен дать нам некоторые сведения о составе древней атмосферы. Некоторые из этих пород наводят на мысль, что они образовались в восстановительных условиях. Это восприняли как подтверждение гипотезы, что атмосфера тогда была восстановительной. С некоторых пор это также подвергают сомнению. Даже сегодня некоторые осадочные породы носят восстановительный характер, например, серные грязи, несмотря на весь кислород, содержащийся в воздухе вокруг нас. Такие условия обычно создает анаэробное гниение органических веществ в грязи. Сейчас утверждается, что если принять во внимание все имеющиеся в нашем распоряжении породы данного периода, то при усреднении, на основании этих данных, можно предположить, что атмосфера в прошлом была довольно похожа на современную. К сожалению, эти данные относятся лишь к периоду 3,2 миллиарда лет назад. Данные, относящие к более раннему периоду, слишком скудны, потому что в нашем распоряжении имеется слишком мало соответствующих пород. Вывод о том, что атмосфера 3,2 миллиарда лет назад была не восстановительной, не слишком удивляет, потому что мы считаем, что организмы, осуществляющие фотосинтез, уже существовали, по крайней мере, 3,6 миллиарда лет назад. К сожалению, сейчас мы не можем установить, сколько их было, поэтому трудно оценить, в больших или малых количествах они вырабатывали кислород.
Итак, нам хотелось бы знать приблизительный состав атмосферы Земли в период времени, предшествующий зарождению жизни, и, в частности, какой именно она была, восстановительной или окислительной. Сейчас, по-видимому, трудно прийти к какому-либо определенному выводу по этому вопросу.
Температура первозданной Земли также точно неизвестна, так как это в значительной степени зависит от того, насколько быстро она формировалась. Если температура падала одновременно с образованием Земли в течение короткого промежутка времени, то у тепла, порождаемого столкновениями, не было времени улетучиться, и, таким образом, на первой стадии Земля, вероятно, была очень горячей. Если процесс шел медленнее, то на первозданной Земле могла быть более умеренная температура, хотя, вероятно, были и неустойчивые локальные горячие точки, возникшие вследствие толчков во время последних этапов агрегации. Каким бы ни был характер процесса, по-видимому, в какой-то момент времени Земля успокоилась, создав достаточный запас жидкой воды для образования первозданных океанов, морей, рек, озер и заводей.
Каким бы ни был состав атмосферы, несомненно, что она получала большие потоки солнечной энергии. Точно неизвестно, какой именно была в то время температура Солнца, хотя возможно, что его излучение не отличалось значительно от того, что мы получаем сегодня. Одним возможным отличием воздействия излучения, достигавшего поверхности Земли, могло быть отсутствие современного озонового слоя (O3), так как если в атмосфере было немного кислорода (за исключением того, что входил в состав воды, CO и CO2), то, вероятно, озоновый слой отсутствовал. Сегодня этот слой во многом защищает от ультрафиолетового света, излучаемого Солнцем. Вероятно, тогда, как и сегодня, часто случались электрические бури (похожие на наши грозы) и велась довольно бурная вулканическая деятельность, как на суше, так и на дне океанов. Кроме того, происходили ионно-молекулярные реакции в ионосфере и верхних слоях атмосферы, поэтому существовало несколько источников энергии того вида, который необходим для активизации химического обмена. Все это предполагает, что первозданные океаны состояли не только из воды и немногих простых солей, но и накопили достаточное разнообразие мелких органических молекул, образованных из молекул в атмосфере и растворенных в океанах с помощью электрических разрядов, ультрафиолетового света или других источников энергии.
Мысль о том, что древняя атмосфера была не похожа на современную, а содержала намного меньше кислорода, по-видимому, получила впечатляющее подтверждение в 1953 году от Стенли Миллера, студента Гарольда Урея (Harold Urey), который пропускал электрический заряд через смесь CH4, NH3, H2 и H2O, помещенную в закрытую систему. Система состояла из фляги воды, которую кипятили для того, чтобы ускорить циркуляцию газов, и которая служила для поглощения любых летучих, растворимых в воде продуктов реакции и их защиты от разделения электрической искрой. Через неделю (или около этого) разряд прекращался. Оказывалось, что вода содержит ряд мелких органических соединений, включая значительное количество двух простых аминокислот, глицина и аланина, найденных во всех белках. С тех пор проводилось много подобных экспериментов с использованием различных смесей сазов и множества источников энергии и условий эксперимента, включая пропуск газов через нагретые неорганические поверхности. Их результаты слишком сложны, чтобы кратко их здесь описать, за исключением одного поразительного факта. Если смесь газов включает значительное количество кислорода, то мелких молекул, похожих на молекулы, имеющиеся в живых системах, не обнаруживали. Если газообразный кислород отсутствует, то такие мелкие молекулы образуются при условии, что смесь газов содержит, в том или ином виде, азот и углерод. Некоторые смеси газов создают большее разнообразие аминокислот по сравнению с другими, особенно если в них не содержится H2. На первозданной Земле H2 обычно терялся в космическом пространстве, тогда как в Первоначальном эксперименте Миллера, который проводился в закрытом сосуде, у любого образованного H2 не было такой возможности, и поэтому он накапливался в установке, пока шел эксперимент.
Таким образом, если атмосфера была восстановительной, то вода на первозданной Земле, вероятно, содержала довольно разбавленную смесь мелких органических молекул, многие из которых могли послужить исходным материалом для древнейших живых систем. Какие именно образовались молекулы, в каком количестве и где — в верхних ли слоях атмосферы, в океанах, около подводных вулканов или в приливных заводях, в небольших озерах, в горячих источниках, вблизи вулканических трещин или же во всех этих местах, — этот вопрос остается открытым. Многие из этих молекул неустойчивы в воде в течение очень длительных периодов времени, поэтому, в конечном итоге, окажется, что установленные их количества появились благодаря равновесию между их непрерывным образованием в течение тысяч или миллионов лет и их разрушением вследствие теплового движения. Большинство аминокислот имеют как отрицательный, так и положительный заряд, поэтому, несмотря на то, что они небольшие и в сумме электрически нейтральные, они скорее останутся в воде, чем попадут в воздух. По этой причине они обычно не терялись при испарении. Этот первозданный бульон, как его часто называют, «получился плохим» в обычном смысле, потому что тогда не было микроорганизмов, которые жили бы в нем и питались бы его молекулами.
Однажды я спросил своего коллегу Лесли Оргела, который работает над проблемой происхождения жизни: какой могла быть концентрация этого бульона. Он рассказал мне, что провел весьма приблизительные расчеты и что, судя по всему, этот бульон содержал примерно столько же органического вещества (хотя главным образом мелких органических молекул), сколько содержит куриный бульон. Я был поражен. Я хорошо помнил, что однажды в один из редких случаев, когда я вынужден был готовить себе сам, я открыл банку с куриным бульоном и что, кроме маленьких кусочков мяса, в ней была еще густая, жирная, питательная смесь. Существование целого океана подобной смеси представлялось мне крайне невероятным. Однако оказывается, что это вещество правильнее охарактеризовать как куриный отвар. Оргел имел в виду именно прозрачный, довольно жидкий куриный бульон. На самом деле ему удалось даже измерить количество органического вещества в отдельной его пробе. Возможно, не каждый согласится с его оценкой, но она дает самое приблизительное представление об общем количестве органического сырья, которое, вероятно, имелось на Земле до зарождения на ней жизни.
Если окажется, что древняя атмосфера была не восстановительной, а содержала значительное количество кислорода, то картина усложняется. На первый взгляд, может показаться, что, поскольку не было подходящего исходного материала, жизнь едва ли могла зародиться здесь. Если это действительно так, значит, это доказывает гипотезу о направленной панспермии, потому что где-нибудь в другом месте Вселенной планеты могли иметь более восстановительную атмосферу (что мы обсудим в главе 8), и поэтому там был более благоприятный пребиотический бульон. Однако даже в условиях окислительной атмосферы на Земле могло быть несколько мест, где были восстановительные условия, например, под горными породами и на дне озер и океанов. Возможно, на дне моря были горячие источники, которые обеспечили поблизости подходящие условия для пребиотического синтеза.
Еще одна возможность заключается в том, что значительное количество мелких молекул, найденных в космическом пространстве, тем или иным способом достигло поверхности Земли, может быть, на столкнувшихся с ней кометах, образовав локальные концентрации подходящих химических веществ. Даже если они составляли лишь небольшую часть поверхности Земли, на ней могло быть достаточно таких особых мест, чтобы начались эти процессы, если допустить, что жизнь при наличии подходящей окружающей среды может зародиться очень легко.
Несмотря на всю эту неопределенность, кажется вполне возможным, что на каком-то раннем этапе истории Земли на ее поверхности существовало значительное количество воды и что в таких местах она состояла из слабого раствора мелких органических молекул, многие из которых относились к исходным веществам, необходимым для создания белков и нуклеиновых кислот, наряду с различными солями, вымытыми из окружающих горных пород. Условия также могли быть вполне подходящими для появления некой очень примитивной формы жизни. Поэтому мы оказываемся в затруднении при принятии решения: на какой стадии этого непрерывного процесса химической эволюции нам следует признать такую очень простую систему живой.
Выбор какой-то конкретной стадии должен быть до некоторой степени произвольным, но есть один критерий, который мы можем с пользой применить, чтобы провести разграничение между живым и неживым. Действует ли естественный отбор, пусть даже довольно незатейливым образом? Если он есть, тогда редкое событие может стать распространенным. Если его нет, то любое редкое событие должно проявиться исключительно благодаря случаю и сложной природе вещей. Этот критерий важен, потому что, как мы увидим, зарождение жизни действительно могло быть весьма необычным событием, и нам очень хотелось бы знать, до какой степени необычным оно было.
Какова вероятность того, что при наличии той или иной разновидности бульона самопроизвольно зародилась система, которая могла развиваться с помощью естественного отбора? Здесь мы сталкиваемся с невероятно трудными проблемами. Чтобы ни произошло в те давние времена, мы можем быть уверены, что примитивная система, в конце концов, достаточно плавно развилась в систему, существующую в настоящее время. Репликация последней основана на нуклеиновых кислотах, а действие — на синтезе белка. Мы не можем быть уверены, что в основе древнейшей развивающейся системы не лежало нечто совершенно иное, что подготовило почву для развития современной, Даже если это не так и первая система репликации содержала некоторые элементы той, что мы имеем сегодня, мы не располагаем данными, появилась ли сначала нуклеиновая кислота, или же первым появился белок, или они оба развивались одновременно. Мое собственное пристрастное мнение заключается в том, что первой появилась нуклеиновая кислота (может быть, РНК), и за ней вскоре последовала простая форма синтеза белка. По моему мнению, это самый легкий путь развития, но даже он, по-видимому, чреват трудностями. Вероятно, фосфат был широко распространен, а сахарная рибоза (которая не содержит азота) могла легко образоваться в некоторых особых условиях, потому что известно, что формальдегид (НСНО) был одним из самых распространенных пребиотических химических элементов. Однако для синтеза оснований, таких как аденин, требовался несколько иной набор элементов, которые обязательно содержат азот. Затем возникает проблема связывания сахара как с фосфатом, так и с основанием в правильном порядке (возможны и несколько неправильных), и далее активирования этого соединения (называемого нуклеотидом), возможно, с помощью присоединения к нему еще одного или двух фосфатов, чтобы обеспечить необходимую энергию для связывания воедино двух нуклеотидов. Эта операция, если бы она повторялась, привела бы к возникновению цепочечной молекулы, которую мы называем РНК. Нелегко представить, как это могло произойти в смеси других, достаточно похожих соединений без частого присоединения к цепи не тех молекул, если там не было какого-нибудь достаточно специфического катализатора. Предположительно, им мог бы быть минерал или некий пептид, созданный случайным скоплением аминокислот, но даже если все происходило именно так, тому все еще нет достаточно убедительных доказательств. И если подобный процесс действительно происходил, пусть даже всего лишь в одной определенной заводи в одно определенное время, то он только привел бы к появлению РНК с довольно случайной последовательностью оснований.
Для того чтобы заработал естественный отбор, нам необходим достаточно точный механизм копирования. И здесь есть некоторый проблеск надежды. Если полимеризация РНК по какой-либо причине была довольно распространенной, то, вероятнее всего, она со временем привела к появлению какой-либо молекулы, похожей на молекулы транспортной РНК, которые повсеместно используются в современном синтезе белка. Петли такой молекулы могли помочь сгущению нуклеотидов в короткие цепочки, длина которых составляет лишь три остатка, и они могли быть лучшими предшественниками процесса репликации, чем единичные нуклеотиды.
Если бы нужна была только репликация, то РНК представлялась бы перспективным кандидатом, но, несмотря на то, что одна репликация может привести систему в действие, по мере усиления соперничества необходимо нечто большее. Действительно если ген должен значительно повлиять на свое окружение, значит, в ближайшее время он должен что- то сделать. Итак, РНК для этого не идеальна. Несомненно, в благоприятных обстоятельствах она может образовывать трехмерные структуры, но они, по-видимому, редко обладают какой-либо каталитической активностью. Возможно, ее обеспечивали того или иного рода мелкие органические молекулы, которыми изобиловал окружающий бульон. Может быть, некоторые из них изящно соединялись с определенными свернутыми молекулами РНК для того, чтобы создать примитивный «фермент» с небольшой и чрезвычайно простой каталитической активностью, хотя до сих пор еще никто не пытался обнаружить подобные организмы.
Более привлекательный вариант заключается в том, что примитивная система синтеза белка могла зародиться лишь при наличии информационной молекулы РНК и тРНК, то есть без рибосом или белка. Это еще один возможный вариант, но он все еще не подтвержден экспериментально. Такая система, если она действительно имела место, объяснила бы многие наши затруднения в понимании процесса, хотя некоторые проблемы остаются, например, как «притянуть» правильную аминокислоту к каждому виду транспортной РНК.
Как только начали действовать синтез РНК и репликация, можно считать, что появились простые катализаторы, которые заставляли все эти древние химические реакции протекать быстрее и эффективнее. С того времени мог начать работать естественный отбор для того, чтобы совершенствовать и развивать систему. Каким бы привлекательным ни был этот вариант, все еще обстоятельно не определен и не проверен экспериментально его механизм.
Поэтому существуют некоторые основания для поиска других возможностей. Вторым очевидным кандидатом в примитивные репликаторы является некий вид древнего белка. Этот вариант привлекателен, потому что бульон, скорее всего, содержал несколько аминокислот и. возможно, значительное количество различных их типов, хотя (не считая глицина, молекула которого не является разветвленной) в нем, вероятно, присутствовали примерно равные смеси молекул с двумя возможными разветвлениями. Трудность здесь состоит в том, что аминокислоты, по-видимому, не образуют изящную пару таким же образом, каким могут спариваться основания в нуклеиновых кислотах. В белке не обнаружено двойной спирали, хотя белковый коллаген (тот, что присутствует в сухожилиях, оболочках, коже и т.д.) состоит из трех полипептидных цепей, переплетающихся друг с другом и образующих тройную спираль. Каждым третьим остатком должен быть глицин, но здесь, по-видимому, нет очевидного взаимодействия, которое могло бы отобрать аминокислоты для двух других участков. Более того, коллаген имеет довольно регулярную структуру и, по-видимому, каталитически инертен. Если бы кто-то смог создать простую форму белка, может быть из четырех аминокислот, которые могли бы составить основу простого процесса копирования (как это могут сделать РНК или ДНК), то это было бы важным открытием. До тех пор к утверждению, что белок был примитивным репликатором, мы должны относиться с осторожностью.
Все это не означает, что случайная полимеризация не могла выработать молекулы протеиноида, которые, возможно, помогли в создании системы до появления, в конечном итоге, настоящей репликации, но необходим был именно этот более поздний процесс, если естественный отбор должен был происходить свободно.
Всегда есть вероятность того, что древняя система репликации была совершенно иной, и в силу своей чрезмерной топорности или недостаточной универсальности, в конце концов, уступила место современной. Подобную идею трудно опровергнуть. Нам, по крайней мере, следует научиться представлять, как мог бы осуществляться подобный переход от древней системы, какой бы она ни была, к современной, в основе которой находятся нуклеиновая кислота и белок. Было высказано предположение, что для этого могли бы подойти слоистые структуры глины, но нелегко представить особенности их функционирования, и до сих пор нет впечатляющих экспериментальных данных подобного поведения.
В целом, довольно правдоподобно выглядит версия, что первым репликатором была РНК. Эта гипотеза значительно выиграла бы, если бы мы могли собрать простую систему копирования в пробирке без использования белка. Для облегчения задачи мы могли бы начать с одной сформированной заранее нити РНК, имеющей несколько произвольную последовательность оснований, и попытаться создать ее комплементарную спутницу, доставив необходимые исходные материалы. Для проведения реакции нам обязательно понадобятся четыре их типа, а также химическая энергия в некоторой форме. Подобные эксперименты проводились до сих пор с довольно скромными успехами. Лучший по исполнению на сегодняшний день — это эксперимент, проведенный Лесли Оргелом и его коллегами, которые поли-Ц (полицитидиловую кислоту) в качестве шаблона (то есть РНК, каждое основание которой составляет цитозин) снабдили химически активированной формой Г, обычного комплемента Ц. В присутствии ионов цинка (Zn++) (ион, найденный во всех современных ферментах, которые полимеризируют нуклеиновую кислоту) Г медленно объединяются друг с другом в правильное соединение (называемое 3'-5') для образования поли-Г значительной длины. В инкубационной смеси можно обнаружить молекулы, насчитывающие До двадцати Г в ряд, а более длинные, вероятно, будут присутствовать в количествах, не поддающихся современным методам обнаружения. Более того, система достаточно правильна в том, что объединяет только довольно небольшие количества А и У (как «ошибки»), когда в смесь также добавляются их предшественники. Это многообещающее начало, но для того, чтобы оно оказалось полезным, нам следует суметь выяснить точную (комплементарную) репликацию конкретной последовательности Ц и Г. До сих пор этого еще не сделано. Между прочим, не обязательно, чтобы в первоначальной системе присутствовали все четыре основания, поскольку, имея только две их разновидности, РНК может содержать информацию в своей последовательности; однако для хорошей репликации они должны быть комплементарными.
Даже если эти трудности преодолены, система, даже простая, уже отчасти лишена естественности. Например, она необычайно чистая. Трудно представить, как на первозданной Земле мог образоваться маленький водоем, в котором присутствовали именно эти соединения и никакие другие. Нелегко также представить себе, как именно могли возникнуть их предшественники. По всей вероятности, ими могли быть нуклеозидтрифосфаты или, на более простом языке, молекулы, состоящие из основания, сахара (рибозы) и трех фосфатов в ряд, хотя это не совсем те соединения, которые использовались в описанных выше экспериментах. Можно представить, как, скорее всего, каждый из этих отдельных ингредиентов мог возникнуть в том или ином месте первозданной Земли; не так легко представить, как сложилось их правильное сочетание и как, по крайней мере, частично оно отделилось от других, несколько похожих молекул, которые, если таковые имелись, вероятно, могли запутать систему. Конечно, никто уже не в силах сварить примитивный бульон из воды, солей, нескольких газов и ультрафиолетового света (или какого-либо другого источника энергии) и оставить его настаиваться до тех пор, пока в результате в нем не образуется изящная система репликации РНК. Эта неспособность не слишком удивительна, так как природе, может быть, понадобилось много миллионов лет, во многих местах на поверхности Земли, прежде чем одно счастливое стечение обстоятельств создало систему, которая могла как положить начало репликации, так и продолжать в течение некоторого времени действовать.
Таким образом, мы находимся в одной из наиболее мучительных ситуаций. С одной стороны, мы считаем, что на поверхности Земли мог существовать довольно достаточный запас органических молекул, в частности, аминокислот, пусть даже в большинстве мест их концентрация могла быть довольно низкой. Кроме того, двойная спираль РНК и ДНК определенно говорит о том, что она могла образовать хорошую основу для примитивной системы репликации. С другой стороны, трудно представить, как могла из такой сложной смеси с легкостью появиться точная система, и еще труднее понять, какие именно ингредиенты были необходимы и какие именно действия за этим последовали. Более того, если даже мы могли бы представить, как могла начаться репликация РНК, нам все же необходимо решить, каким образом она соединилась бы пусть даже с примитивной формой синтеза белка, хотя мы можем начать строить некоторые научные догадки о том, каким образом все это могло произойти.
Модель представляет короткий расширенный полипептид, длиной лишь в девять аминокислот. Остов цепи регулярный, с боковыми группами, присоединенными через равномерные интервалы.
Но для нашей настоящей цели самым проблематичным является то, что, по-видимому, почти невозможно привести любое численное значение вероятности того, что представляется довольно маловероятной последовательностью событий. Возникающее затруднение можно более четко представить на основе следующей, довольно общей аргументации. Предположим, что событие произошло в некоем пруду или заводи, возможно, поблизости от берега моря. Мы могли бы легко представить, что подобные заводи находились примерно на расстоянии одной мили друг от друга вдоль береговой линии, не говоря уже о тех, что разбросаны по всей поверхности Земли Возможно, существовало 100000 подобных мест — их число, бесспорно, могло быть намного больше. Снова примем без доказательства, что при такой медленной скорости, с какой функционируют такие системы, понадобился, вероятно, период времени, равный сотне лет, чтобы система пришла в действие. Обозначим самую малую вероятность подобного события, происходящего через сто лет, за р. Вероятно, одна p приходилась на миллиард. Но поскольку мы, возможно, имеем 500 миллионов лет и 100000 водоемов, то понимаем, что в таком случае жизнь почти неизбежно должна была возникнуть. Однако если p была лишь одним шансом на миллиард миллиардов, то вероятность зарождения жизни была отнюдь не той же самой. Если же она составляла один шанс на 1015 (тысячу миллиардов миллиардов), то вероятность зарождения здесь жизни была очень мала. Точные цифры не имеют значения. Они приведены только для иллюстрации той дилеммы, перед которой мы стоим. Она вытекает из того факта, что мы не имеем представления, какое значение должно быть у р, за исключением того, что ему следует быть очень «малым». По этой причине мы не можем решить, было ли зарождение жизни здесь весьма необычным событием или событием, которое почти неизбежно должно было произойти. Несмотря на то, что иногда выдвигаются доводы в пользу последней точки зрения, они представляются мне очень несерьезными. Без какого-либо прямого экспериментального подтверждения они, вероятно, такими и останутся. А получить экспериментальное подтверждение того, что вполне могло быть последовательностью довольно необычных реакций, будет не легко. Только в случае, если жизнь зародилась очень легко, потому что, действительно, существует некий достаточно прямой путь по лабиринту возможностей, мы, вероятно, сможем воспроизвести его в лабораториях, по крайней мере, в ближайшем будущем.
Честный человек, вооруженный всем доступным нам сейчас знанием, может лишь утверждать, что, в некотором смысле, возникновение жизни представляется сейчас почти чудом, ведь для того, чтобы начался этот процесс, необходимо было выполнить так много условий. Но не следует это воспринимать как вывод, что есть все основания считать, что она не могла зародиться на Земле в процессе вполне допустимой последовательности довольно обычных химических реакций. Очевидный факт состоит в том, что прошел слишком долгий период времени; многие микросреды на поверхности Земли слишком разнообразны; различные химические возможности слишком многочисленны, а наши собственные знания и воображение слишком ничтожны, чтобы позволить нам точно объяснить, как это могло или не могло произойти в таком далеком прошлом, особенно если мы не располагаем экспериментальными данными из той эпохи, чтобы проверить свои идеи. Возможно, в будущем мы сможем узнать достаточно для того, чтобы строить обоснованные догадки, но в настоящее время можно только сказать, что мы не можем принять решение, было ли возникновение жизни на Земле исключительно маловероятным событием или почти неизбежным — или же любой возможностью между этими двумя крайностями.
Если его вероятность была высока, то нет проблем. Но если окажется, что оно было довольно маловероятным, тогда мы вынуждены рассмотреть, могло ли оно появиться в каких-либо других возможных местах Вселенной, где, может быть, по той или иной причине, условия были более благоприятными.