Наблюдениями за развитием микологических и энтомологических поражений на памятниках истории и культуры удалось четко выявить два периода: первый — осенне-зимний, когда температура окружающего воздуха менее +3° и второй — весенне-летний, когда температура окружающего воздуха выше ранее указанной температуры. Установить четкие временные границы не представляется возможным, т. к. переход температуры окружающего воздуха происходит достаточно быстро, а латентный период жизнедеятельности микроорганизмов может меняться в зависимости от интенсивности прогрева конструкций, пораженных обнаруженными микроорганизмами. Для уверенного контроля этого процесса необходима непрерывная запись численных данных о погоде и влажности, а также регулярная систематическая фиксация поведения конструкций в зависимости от температуры окружающего воздуха и тепловой инерции конкретного материала. Только при этом появится возможность строго учитывать влияние температуры объекта и окружающего воздуха на развитие патогенной микофлоры на объекте.
Рис. 71. Домовой грибок на древесине
http://www.sibwindows.ru/protection-wood/drevesina-gribokplesen-nasekomye-zhuki.html
Кроме переходов погоды в смену сезонов большое влияние может оказать серьезная засуха. При падении влажности окружающего воздуха ниже 40 % наблюдается сухость конструкций и доступной микроорганизмам влаги явно недостаточно для их нормальной жизнедеятельности, при этом необходимо учитывать, что повышенная сухость конструкций способствует переходу микроорганизмов в состояние летаргического сна.
Периоды активности микроорганизмов варьируются год от года.
Наблюдаемая поздней осенью 2013 года длительная влажная и достаточно теплая погода отсрочила наступление периода зимней неактивности патогенных дереворазрушающих микроорганизмов и требует при расчете активности последних обязательно учитывать этот период как оптимальный для развития всех видов разрушающих организмов.
Кроме погодных факторов, влияющих на влажность конструкций деревянных зданий и сооружений, в последнее время неожиданно для многих специалистов различного направлений на состояние подземных конструкций и непроветриваемых деревянных и металлических конструкций стали оказывать конденсаты активного испарения воды из грунта, имеющие возможность конденсироваться на незащищенных от испарений конструкциях. Далее будет представлен краткий обзор появления конденсатов.
Проведенные независимыми специалистами проверки появления конденсатов в различных районах области показали, что с квадратного метра грунта может быть собрано до 1,5 литра воды. Химический анализ кроме определения pH не проводили.
Определение кислотности показало, что из грунтов идет практически не опасная вода с нейтральной реакцией. Наблюдение за широким спектром увлажненных конструкций зафиксировали коррозию стальных конструкций, микологические поражения деревянных конструкций и повреждения конструкций из известняка и бетона.
В плане защиты от этого нового явления можно рекомендовать только одно: систематическое проветривание конструкций там, где есть техническая возможность и защита щитами от проникновения снега в проветриваемое пространство в зимний период.
Рис. 72.Грибок гнили в подвале деревянного дома
Выделение всеми видами патогенной микофлоры воды служит дополнительным свидетельством того, что все обнаруженные плесневые и дереворазрушающие грибы находятся в активном состоянии, т. е. непрерывно размножаются и выделяются на новые территории на внутренних помещениях объекта. Визуально определены колонии грибов: родов asperjillius, penicillium, сladosporium, fusarium и другие плесневые патогенные грибы средней степени опасности для находящемся в обследуемом здании. Дереворазрушающие грибы не были обнаружены, т. к. в силу конструктивных особенностей объекта они могли развиваться только на холодном чердаке, а из основополагающих работ по биологическому разрушению известно, что при температуре воздуха ниже плюс пяти градусов развитие микроорганизмов не возможно.
Конденсат воды и его влияние на стойкость деревянных конструкций
Важную роль в увлажнении строительных конструкций играет образование конденсата. Он осаждается на поверхности материала из водяного пара, который содержится в атмосферном воздухе. Особенно заметен этот процесс, когда температура конструкции ниже, чем температура воздуха. Но фактически конденсирование влаги протекает постоянно и обусловлено специфическим свойством поверхности сорбировать ее за счет физических и химических процессов.
В данном случае речь идет только о поступлении влаги из грунтовых вод. Они непрерывно испаряются в атмосферный воздух, переносятся им и осаждаются на строительных конструкция, которые обычно оказываются более сухими. Особенно интенсивно этот процесс идет на первых этажах и в подвалах зданий и сооружений. Образующийся каплевидный осадок является первой стадией увлажнения металлических и деревянных конструкций и штукатурок фундаментов.
Проведенные коллективом, в который входит автор, опытные проверки на песчаных грунтах Карельского перешейка показали, что за ночь в августе текущего года (2013) на куске полиэтилена, уложенного на грунт, cо стороны грунта образовалось около 1,5 литра конденсата (воды). При этом следует отметить, что осадков в виде дождей в предшествующую неделю не наблюдалось. Интересен тот факт, что специалисты сельскохозяйственного института, расположенного в Царском Селе, проводившие аналогичные работы более 20 лет на обширных территориях Ленинградской области и других территориях России, получили закономерности испарения влаги в пределах 0,75-1,5 литра в сутки в зависимости от состава грунтов. При переходе к зимним условиям наблюдается сокращение этих показателей до 0,1 литра в сутки. Проведенные проверки показали, что способность к поглощению воды с последующим ее испарением мало зависит от климатических условий и примерно одинакова в районах области, обладающих более-менее схожими грунтами. Анализируя результаты работ сельскохозяйственного института и других исследователей, можно сделать вывод: основная опасность развития биологических поражений нижних частей деревянных строений, не подверженных систематическому проветриванию, велика и является основной причиной микологического разрушения деревянных конструкций первых этажей зданий и сооружений различного назначения, в частности предметов дачного строения. Одновременно подвергаются коррозии металлические конструкции, плохо защищенные от образования конденсационного увлажнения.
Анализ существующих на данный период средств и методов защиты от гниения не модифицированных деревянных конструкций показывает, что единственным реальным способом защиты конструкций от избыточного увлажнения и создания оптимальных условий для развития патогенной микофлоры являются конструкции фундаментов и нижних частей зданий и сооружений, обеспечивающие систематическое проветривание зданий в весенне-летний период. В зимний период можно рекомендовать установку съёмных ограждений, исключающих попадание больших количеств снега под стены зданий и сооружений или при наличии подвалов, то в последние.
Разрушение древесины в памятниках истории и культуры
Известно несколько механизмов разрушения древесины. Одним из самых опасных для памятников истории и культуры является разрушение древесины под воздействием животных паразитов, которые разрушают ее механически просверливая и поедая образовавшийся стружки или опили.
Отдельную группу растительных паразитов образуют грибы и бактерии.
При благоприятных для роста условиях грибы распространяются по древесине в результате роста гиф. Обращаю внимание читателей, что гифы невидимы человеческим глазом. Самый простой путь для распространения гиф — люмены паренхимных и сосудистых клеток. Проникновение гиф происходит через поры или клеточные стенки. Гифы некоторых видов грибов способны также расти в сложных срединных пластинках или во вторичной стенке древесины. Длина гифов, находящихся в благоприятных условиях, может достигать 0,5 метра. Гифы выделяют ферменты, которые разлагают компоненты клеточных стенок древесины.
Микологические микроорганизмы, часто называемые грибами-паразитами, подразделяются на четыре группы:
— бурая гниль;
— белая гниль;
— мягкая гниль;
— грибы синевы.
БАКТЕРИИ разрушают древесину ограниченно, т. к. они в силу своей природы не способны передвигаться в древесине и могут разрушать полисахариды и лигнин в незначительной степени, ослабляя в местах увлажнения поверхностные слои.
Основным условием, способствующим активному разрушению древесины по биологическим вариантам, является увлажнение древесины до значительных показателей — выше транспортной влажности (22 % и более).
Отдельную группу вредителей древесины представляют собой насекомые-древоточцы, способные разрушать ослабленную длительным хранением древесину в неудовлетворительных условиях. Этим организмам посвящен самостоятельный раздел.
Микологические поражения древесины
Определяющим условием развития микологического поражения дереворазрушающими организмами является влажность древесины: — при влажности до 18 % и наличии дереворазрушающих организмов в воздухе первичное поражение не развивается даже при отсутствии обработки антисептиками или комплексными препаратами, обладающими био-огнезащитными свойствами; Окраска древесины специальными красками не производятся, т. е. она не нужна, т. к. отсутствие увлажнения гарантирует биостойкость конструкций; — при влажности 18–22 % и наличии инфекции (первичного заражения) древесины конструкций дереворазрушающими грибами начинаются процессы разрушения древесины, однако если влажность древесного материала не поднимется выше 24 % эти процессы остаются в стадии вялотекущих или затихают и ждут поступления новой порции влаги для стимуляции процесса.
Рекомендуется использовать традиционные антисептики, комплексные био-огнезащитые препараты и конструктивные методы защиты деревянных конструкций от дополнительного увлажнения; — при влажности 22–55 % происходит активное разрушение деревянных конструкций микологическими разрушителями. При обнаружении развития микологического поражения до стадии активного разрушения древесины необходимо немедленно определить виды дереворазрушающих грибов и стадию их жизнедеятельности. Одновременно следует определить источник увлажнения и удалить его из тела конструкции. Разработать конструктивный вариант срочного ремонта пораженных конструкций и приступить к ремонту. В специальной литературе о грибах описаны опыты по определению максимально возможной скорости деструкции древесины. Они показывают, что длительность этого процесса зависит от большого количества трудно учитываемых факторов и изменяется в зависимости от условий опыта от 25 суток до нескольких месяцев. Контрольные опыты тоже дают результаты с большим разбросом, в частности, вследствие невозможности определить в полевых условиях на объекте состав грунтов, на которых выросло дерево, из которого был получен материал для контрольного опыта. При проведении протезирования поврежденных конструкций обязательно применение обработки комплексными био-огнезащитными препаратами или обработки конструкций различными препаратами аналогичного назначения. Обязательно использование различных методов конструктивной защиты от возможного дополнительного увлажнения и обеспечивающих сушку объекта; — влажность древесины 55 % и выше, т. е. древесина находится в воде или в сильно увлажненной почве, где исключается доступ кислорода к лесоматериалам. В случае попадания воздуха к древесине, использованной в качестве свай или лежней, этот норматив является определяющим при проведении обследований, т. к. травмирование объекта запрещено РНиП и решениями Венецианской хартии.
Из многочисленных грибов, вызывающих разрушения растущей древесины, наиболее часто встречаются следующие: гниль дуба пестрая, гниль дуба полосатая, гниль ели пестрая, гниль лиственницы бурая, гниль лиственных пород полосатая, гниль сосны бурая и трещиноватая, гниль сосны красная. Гниль дуба пестрая развивается в ядровой части и проникает по стволу на длину от 6 до 12 м. Гниль дуба полосатая поселяется в ядровой и в заболонной части древесины и уходит вдоль ствола на длину от 3 до 5 м. Гниль сосны бурая распространяется по стволу от корня вверх на высоту 1,0–1,5 м, гниль сосны красная расселяется по всему стволу.
Все названные гнили в зависимости понижают качество древесины до полной утраты ее технических свойств.
На срубленном дереве гниль развивается сравнительно медленно, вызывая в начальной стадии развития изменение окраски древесины. Как только дерево подсохнет, грибы погибают. Эту группу образуют биржевые грибы, плесени, цветные окраски и синева.
Рис. 73. Дерево, пораженное гнилью
Грибы, поражающие растущее и срубленное дерево, обычно начинают разрушительную деятельность на живом дереве, и продолжает ее на мертвой древесине. Эти грибы разрушают древесину быстрее, чем описанные выше, причем по мере развития гриба вначале изменяется окраска древесины, затем она становится более рыхлой и распадается, образуя щели, в которых развиваются пленки грибницы. В конечной стадии разрушения обычно древесина расщепляется и легко растирается пальцами.
Зараженное этими грибами дерево продолжает разрушаться и в конструкциях, особенно в сырых местах. К этой группе грибов относятся гниль дуба белая, бурая, призматическая, гниль лиственных пород белая и мраморная, гниль хвойных и лиственных пород белая, заболонная и др.
Грибы, имеющие общее название домовых грибов, развиваются преимущественно на мертвой древесине. Это наиболее опасные грибы. При благоприятных условиях оптимальные условия влажности и температуры — они могут разрушить древесину в течение нескольких месяцев.
Домовые грибы размножаются спорами, которые чаще всего состоят из одной клетки. Прорастание гриба возможно при температуре от 0 до 45 °C и при наличии капельножидкой воды (влажность древесины 25–35 %).
При прорастании споры из нее вытягивается ростковая трубочка, которая по мере роста превращается в гифу (грибная нить). Образовавшиеся нити начинают разветвляться и образуют сплетения грибных нитей, которые называются грибницами, или мицелиями. Гифы, соприкасаясь с тканью древесины, выделяют фермент, который гидролизует клетчатку древесины, переводя ее в глюкозу, идущую для питания гриба.
Рис. 74. Бурая гниль.
1. БУРАЯ ГНИЛЬ — грибы, принадлежащие к подотделу базидиальных грибов (basidiomycetes), разрушающих главным образом полисахариды древесины. Однако они также изменяют и деструктируют лигнин. Древесина становится бурой и ломкой. После короткого периода инкубации (опыт исследований биологических поражений различных конструкций показывает, что инкубационный период длится от 1 до 2,5 недель) происходит резкое понижение механической прочности древесины и изменение ее внешнего вида — появление окрашенных пятен, как свидетелей химического поражения древесины. По российским стандартам различают 5 ступеней биологической деградации древесины под действием грибов бурой гнили.
Рис. 75.Белая гниль поражает не только древесину, но и пластик
2. БЕЛАЯ ГНИЛЬ — грибы также принадлежат к базидиальным грибам, разрушающим главным образом лигнин, но также и полисахариды. Древесина становится белой и мягкой. Большинство грибов белой гнили предпочитает древесину лиственных пород, в том числе ценные породы древесины. Поражения белой гнилью часто наблюдаются как комбинированные и приводят к резкому снижению прочности, сопровождаемому увеличением способности к набуханию. Общим свойством, характерным для грибов базидиальной гнили, является биологическое разложение древесины с образованием конечных продуктов гниения (углекислого газа и воды), что позволяет использовать методы аппаратурного контроля увлажнения древесины уже на начальных стадиях процесса.
Рис. 76.Мягкая гниль
3. МЯГКАЯ ГНИЛЬ — группа дереворазрушающих грибов, принадлежащих к сумчатым (аscomycetes) и несовершенным (Fungi imperfeti) грибам способным разрушать полисахариды и лигнин. Скорость деструкции древесины зависит от вида гриба. Мягкая гниль встречается в древесине хвойных и лиственных пород. Она вызывает понижение прочностных свойств.
Рис. 77. Грибы синевы
http://www.lesprominform.ru/jarchive/articles/itemshow/588
4. ГРИБЫ СИНЕВЫ — грибы, которые живут за счет остаточных белков в древесине хвойных пород. Они относятся к сумчатым или несовершенным грибам, т. к. способны в ограниченной степени разрушать полисахариды. Основное вредное воздействие на древесину — появление синей или черной окраски, обусловленной отложениями в гифах.
Кроме вышеперечисленных основных групп грибов в древесине развиваются и другие грибы, например плесневые, которые не окрашивают или очень слабо окрашивают древесину и вызывают незначительные потери массы.
Рис. 78.Настоящий домовой гриб.
Сильнейший разрушитель древесины — настоящий домовой гриб. Встречается в стенах, в полах, перегородках, редко — на чердаках. При благоприятных условиях гриб за 6-10 месяцев может разрушить крупные элементы и целые конструкции. Древесина, сгнившая от настоящего домового гриба, имеет бурый цвет, крупные продольные трещины.
Рис. 79 Белый домовой гриб
Белый домовой гриб называют белым пожаром. Он поселяется на древесине в подвалах, погребах, иногда в междуэтажных перекрытиях.
Рис. 80 Пленчатый домовой гриб
Пленчатый домовой гриб может очень быстро, в течение нескольких месяцев распространиться внутри деревянных перекрытий, сильно разрушая древесину, вызывая неожиданные обвалы. С увеличением влажность агрессивность гриба растет.
Кроме основных дереворазрушающих грибов существуют еще 4 группы так называемых грибов-паразитов, они реже встречаются на конструкциях объектов реставрации и отличаются более короткими объектами инкубации и снижением прочностных свойств древесины. К этим группам относятся:
— базидиомицеты, основным признаком поражения которыми является изменение цвета древесины до бурого, большая ломкость древесины, меры борьбы те же, что для древесины влажностью 1824 %;
— грибы белой гнили по видимым приметам поражений легко определяется, т. к. они соответствуют названию грибов. Меры борьбы инструментальные (удаление пораженных мест), применение средств химической консервации до удаления пораженных мест нецелесообразно;
— грибы мягкой гнили отличаются целевым понижением прочностным свойств, определяются с помощью контрольного инструмента. Меры борьбы с поражением инструментальные, применение средств химической консервации до удаления пораженных мест нецелесообразно. Возможно применение метода перевода композиции в композиционное состояние, но осуществление этого решения требует разработки конкретной композиции исходя из свойств применяемого связующего и степени разрушения древесины.
— грибы синевы и плесневые грибы легко опознаются на конструкциях по изменению цвета и являются грибами, создающими условия для других классов микроорганизмов. Применение консервационных средств для борьбы с возможностью микологического поражения и последующего энтомологического возможно только после механической расчистки пораженных конструкций.
Энтомология в реставрации
Необходимо остановиться на сути понятия энтомология, его дальнейшем развитии, правильности применения в современных условиях при оценке реставрационных процессов. Научный термин «энтомология» впервые введен П.П.СеменовымТяньшанским при исследовании членистоногих насекомых, обнаруженных им во время одной из экспедиций в пустыне Гоби в середине ХIХ века. Современное состояние науки о насекомых (начало ХХI века) позволяет сделать два вывода:
1) необходимо проводить разделение выявленных вредителей по многим чисто индивидуальным признакам каждой особи;
2) в многочисленном населении планеты насекомыми — разрушителями окружающей среды дереворазрушающие составляют менее 2 % и образуют малочисленную группу с весьма узкой базы питания — древесина и продукты ее переработки или транспортировки.
Реставраторов, как правило, интересуют повреждения, наносимые дереворазрушающими жуками экспонатам, ранее пораженным микологическими организмами или повреждения лесоматериалов на складах или при транспортировке от места первичной заготовки к месту будущей переработки. Одним из наиболее неприятных для реставраторов дефектов ценных пород древесины является невыполнение окорки, заготовленного на лесосеке материала. В этом случае древесина попадает на нижние склады заготовительных предприятий, откуда часто транспортируется с дальнего востока до западных границ России с расположением под корой типично дальневосточных вредителей, не повреждающих здоровую древесину, но часто питаются лубом, что приводит к признанию лесоматериалов пораженными и отказам от их переработки.
Рис. 81. Жук-короед
Повреждения музейных экспонатов дереворазрушающими насекомыми так же, как правило, связано с поражениями микологическими организмами, приводящими к потере последней природных защитных свойств или не проведение защитных обработок по графику объекта.
Рис. 82.Домовой точильщик
Жук — домовой точильщик — разновидность мебельного точильщика. Он поражает, в основном, влажную древесину. Как правило, встречается в несущих конструкциях крыш, на чердаках, предпочитает хвойную древесину. Излюбленные места — концы балок, которые периодически становятся влажными от протекающей воды, в кухне, под окнами и прочих влажных углах. В свежей древесине не обитает.
Рис. 83. Черный домовой усач
Черный домовый усач или дровосек имеет размеры от 7 до 21 мм, окрас тела — черный.
Среди древесины дровосек отдает предпочтение хвойным породам деревьев, обычно его интересует сухое прочное дерево деревянных построек, простоявших уже 10 — 15-лет, деревянные столбы, в период активного размножения жук перебирается на мебель
Рис. 88.Долгоносик-трухляк
Долгоносик-трухляк имеет темно-коричневую окраску и тельце, покрытое сверху волосками, и длину около 3 мм. Жучки поселяются во влажной древесине, предпочитая хвойные породы деревьев — в ваннах, кухнях, деревянных межэтажных перекрытиях, в полах.
Долгоносики разрушают древесину до стадии трухи, где уже практически невозможно найти отдельные ходы.
Рис. 89.Жук-мебельный точильщик
Жук мебельный точильщик является наиболее разрушительным вредителем сухой древесины. Эти насекомые могут повреждать как лиственные породы — дуб, клен и ясень, так и хвойные породы — сосну, пихту и ель. Они способны заражать относительно сухую древесину неоднократно в течение многих лет.
Второй причиной попадания дереворазрушающих насекомых на территорию музейных объектов является отсутствие кадров, знающих древесину и понимающих, что категорически нельзя принимать неокоренные лесоматериалы и размещать их на территории музейных комплексов.
Консервационные, точнее защитные обработки должны проводиться по индивидуальному для каждого объекта графику с обязательным составлением отчетных документов, подлежащих хранению до проведения плановых или внеочередных проверок, связанных с появлением насекомых в хранилище объекта или при осмотре объектов деревянного зодчества.
Бактериальные поражения конструкций и предметов ДПИ
Исследования показали, что разрушение древесины могут совершать также некоторые бактерии.
Эта группа микроорганизмов отличается ярко выраженными индивидуальными особенностями:
— бактерии не могут передвигаться по древесине за исключением случаев, когда она полностью затоплена, поэтому бактериальные поражения локальны;
— размножение бактерий происходит путем их деления.
Дереворазрушающие бактерии, как отдельный часто встречаются в природе вид и имеют стойкую тенденцию создавать колонии в паренхимных клетках, используя растительные белки в качестве источника питания, а так же в камерах, где они сами растворяют поровые мембраны. Бактерии аналогично могут разрушать клеточные стенки, так как они способны разрушать полисахариды и лигнин, хотя в ограниченной степени.
Из большого круга различных видов бактерий (общая численность превышает 100000 штук самых различных видов) особый интерес для строителей и реставраторов представляют кислотообразующие бактерии. Эти бактерии выделяют в процессе своей жизнедеятельности очень большой список кислот, за исключением галогенсодержащих. Образовавшиеся кислоты реагируют с неорганическими строительными материалами с образованием солей, изменяющих свойства базовых объектов и способствующих их дальнейшему разрушению.
Кроме традиционных средств борьбы (широкого списка антисептиков избирательно работающих только по бактериям) в последнее время появились новые препараты метатинового ряда, отличающиеся тем, что готовые препараты кроме чисто антисептических свойств обладают свойствами гидрофобизаторов.
Колонии бактерий легко смываются препаратами высокого давления, предназначенными для мытья больших поверхностей стен. Из опыта применения можно сделать вывод о достаточной скорости удаления бактерий и возможности применения метода раз в два или три года. Проведение фумигаций требует создания специальных условий, оговоренных в инструкциях к препаратам. Комплексная фумигация зданий и сооружений возможна только избирательными препаратами и требует разработки методики каждого для конкретного объекта.