Медные рельсы
Путешествие по стальной колее… Кто из нас не ездил различными железнодорожными маршрутами? И с каким неподдельным интересом мы вглядывались в мелькающий за окном незнакомый нам мир! Ритмы конца XX — начала XXI в. стремительно меняют все вокруг. Современная стальная колея — это не только рельсы, вокзалы и станции, но и сложнейшие системы автоматики и телемеханики, сигнализации и связи, управления движением. Но сейчас речь пойдет не об этом.
Мы предлагаем совершить не менее увлекательное путешествие по "медной колее". Ведь именно по ней протянулись на десятки тысяч километров маршруты, которыми следуют… нет, не люди, а биты — эти неутомимые "почтальоны", разносящие информацию по всему свету, заглядывающие в самые отдаленные уголки нашей планеты. В путь, читатель!
Биты начали путешествовать еще в глубокой древности. Так, в эпоху тамтамов прародители битов — звуки мерных ударов по барабану, — оповещая племя об опасности, переносились через расстояния с помощью колебаний воздуха. В эпоху костров и факельных телеграфов переносчиками битов служили световые колебания. Вспомните, как общался с соседом узник замка Иф граф Монте-Кристо. Позже русские революционеры использовали для передачи сообщений в тюрьмах механические колебания в стенах, возникающие при постукивании по ним. Век, подаривший миру электрический телеграф, "пересадил" биты на новый вид "транспорта" — электрические колебания. Этот "экспресс" остается основным и в наши дни.
Чтобы представить, как биты передаются с помощью электричества, заглянем в школьный курс физики. В любом веществе всегда найдется некоторое количество атомов, потерявших электроны со своих внешних орбит. "Улизнувшие" от атомов электроны беспорядочно "слоняются" в межатомном пространстве, другими словами, движутся хаотично. В металлических проводниках таких свободных электронов настолько много, что они непрерывно сталкиваются с атомами и друг с другом.
Под действием внешних электрических сил (скажем, электродвижущая сила батареи в телеграфе Морзе) электроны, кроме этих беспорядочных движений, непрерывно смещаются в одном определенном направлении. Именно это упорядоченное движение в одну сторону и называется электрическим током.
Мы уже знаем, что биты, несущие информацию о тексте, речи, музыке или изображении, сначала превращаются в электрические импульсы. Скажем, для комбинации из 5 битов 10101 импульсная последовательность будет содержать только первый, третий и пятый импульсы. Второй и четвертый импульсы будут отсутствовать. Наоборот, для комбинации 01010 в импульсной последовательности будут присутствовать только второй и четвертый импульсы. Как же эти импульсы передаются по металлическим проводам? При воздействии электрического импульса на проводник электроны в нем начинают двигаться упорядоченно. Если импульса нет, электроны совершают лишь хаотические движения. Таким образом, электроны, перемещаясь скачкообразно (не напоминают ли вам эти перемещения прыжки кенгуру?), переносят информацию по металлическому проводнику. А если проводник очень длинный? Сколько времени пройдет, пока электроны "доскачут" от одного его конца до другого?
Известно, что электрический ток распространяется так же быстро, как и свет, преодолевая за I с расстояние около 300000 км. Однако не следует думать, что с такой гигантской быстротой перемещаются электроны в проводнике. Они за 1 с проходят путь, не превышающий всего несколько миллиметров. Процесс распространения тока вдоль проводника можно сравнить с процессом передачи кирпичей по конвейеру, составленному из людей. Всего один такт движения в начале конвейера приводит в движение весь конвейер и заставляет буквально через очень короткий промежуток времени сделать такой же такт в конце конвейера. Таким образом, если сравнить появление очередного импульса на входе из двух металлических проводников с подачей очередного кирпича на людской конвейер, то возникновение импульса на выходе цепи будет подобно выдаче кирпича с нашего конвейера. Хотя, заметим, сами кирпичи (так же, как и электроны) перемещаются несравненно медленнее.
И если уж продолжить образные сравнения, то провода нам представятся медными рельсами, по которым мчится электропоезд — электрический ток, а электрические импульсы — удобные полки в этом электропоезде: на них заняли свои места путешественники — биты. В мгновение ока они прибывают по нужному адресу.
Но почему "рельсы" — медные, а, скажем, не стальные?
Кстати, вначале они были стальными. Первые электрические импульсы, рожденные электрическим телеграфом в 40-х годах XIX в., переносили биты информации по неизолированным стальным проводам, подвешенным на столбах. Такие столбовые линии назывались воздушными. Хотя еще и сегодня кое-где можно увидеть, как вдоль дорог тянутся столбы с навешенными на них рядами проволок, но воздушные линии — это прошлое электрической связи. Прошлое, уходящее на наших глазах. А ее настоящее — прежде всего кабели, основой которых являются медные проводники, или жилы. Так почему же они все-таки медные?
Здесь нам вновь придется обратиться к школьному курсу физики. Электрический ток будет больше в проводнике из такого металла, где внешние электроны связаны с ядром очень слабо (и поэтому больше свободных электронов блуждает в межатомном пространстве) и где, кроме того, меньше размеры атомов и они дальше расположены один от другого (в этом случае электронам легче двигаться в межатомном пространстве). Говорят, что проводники из таких металлов обладают наименьшим сопротивлением току.
Для сравнения проводников из различных металлов пользуются понятием удельного сопротивления. Это такое сопротивление, которое оказывает току проводник длиной 1 м и сечением 1 мм2 (диаметр проводника при этом около 1,13 мм). Единицу сопротивления назвали омом в честь немецкого физика Г. Ома (1787–1854). Так вот, каждый метр стальной проволоки указанного диаметра оказывает току сопротивление, равное 0,138 Ом, а каждый метр такого же диаметра медной проволоки — 0.017 Ом, т. е. в 8 раз меньше.
Чтобы лучше представить ослабление тока в проводах из-за их сопротивления, предположим, что к линии, образованной двумя стальными проводами сечением 1 мм, подключена батарея напряжением 220 В (с таким напряжением мы имеем дело в наших квартирах). Размыкая и замыкая ключ, будем посылать в линию двоичные импульсы тока и регистрировать их на выходе участков линии различной длины.
Подсчитаем сопротивление, оказываемое току линией длиной, например, 1 км. Сопротивление провода определяется, как известно из школьного курса физики, по формуле R = ρ∙l/s (здесь l — длина провода, м; s — площадь его сечения, мм2; ρ — удельное сопротивление материала, из которого изготовлен провод). При l = 1000 м, s = 1 мм2 и ρ =0,138 Ом∙м/мм2 сопротивление R = 138 Ом. Так как линия состоит из двух проводов, ее сопротивление равно 276 Ом. Согласно закону Ома (установленному немецким физиком полтора столетия назад), амплитуда импульсов тока в ней будет равна 220 В/276 Ом = 0,8 А. Этого тока достаточно, чтобы заставить вспыхивать в такт импульсам обычную электрическую лампу, подключенную к проводам в конце линии.
Стальная линия связи, имеющая протяженность 10 км, оказывает сопротивление току в 10 раз большее, т. е. 2760 Ом. Естественно, в такое же число раз уменьшится амплитуда импульсов тока в линии: она будет равна 0,08 А, или 80 мА. Потери тока настолько ощутимы, что зарегистрировать передаваемую двоичную информацию с помощью обычной электрической лампы уже не удается. Для этой цели теперь подойдет, пожалуй, только лампочка от карманного фонарика.
Вспомним: сопротивление медного провода в 8 раз меньше, чем стального. Следовательно, с помощью лампочки от карманного фонарика мы сможем уверенно регистрировать импульсы в медной линии даже через 80 км. Становится понятным, почему "рельсы", по которым путешествуют биты, делают медными.
Есть еще одна причина, по которой жилы кабеля предпочитают делать из меди, а не из стали. Чтобы сделать сопротивление провода меньше, нужно увеличить его сечение. Провод из стали будет оказывать току такое же сопротивление, как и медный, если его диаметр увеличить в 2,8 раза. Забегая вперед, скажем, что существуют кабели, содержащие под одной оболочкой 500 и даже 1 000 медных жил. Легко представить, как "растолстеет" такой кабель (обычно он не толще человеческой руки), если заменить в нем медные проволоки стальными, каким неподъемным он окажется.
Мы уже несколько раз упоминали слово "кабель". Пора сказать что он из себя представляет. Кабель — это набор медных проволок (жил), которые изолируются друг от друга (для предо» вращения короткого замыкания между ними) и объединяются под общей оболочкой. Первые кабели появились во второй половине XIX в. Их история насыщена неожиданными, а порой и драматическими событиями.
#f.jpg_14 Август 1850 г. Oт берегов Англии из порта Дувр отплыл небольшой буксир, носящий имя "Голиаф". Пункт назначения порт Кале, Франция. Расстояние, по понятиям мореходов, небольшое, всего 40 км, но этому плаванию было суждено войти в историю: еще бы, с помощью "Голиафа" осуществлялась прокладка первого в мире подводного кабеля. Отныне пролив Па-де-Кале не должен служить препятствием для обмена срочной информацией между двумя странами (вспомните, в какой путь пришлось А.Дюма-отцу отправить храброго гасконца и его друзей-мушкетеров с важным государственным письмом французской королевы к небезызвестному английскому лорду).
Но хотя плавание и закончилось успешно — кабель был проложен, судьба кабеля оказалась печальной. Рассказывают, что один французский рыбак принял блестевшую на солнце медь, проглядывавшую сквозь изоляцию за золото и вырезал большой кусок кабеля.
Август 1857 г. Военный американский корабль "Ниагара" с огромным запасом кабеля на борту направился от берегов Англии к Америке: началась прокладка кабеля через Атлантический океан. Возглавлял экспедицию талантливый организатор, торговец по профессии, американец Сайрус Филд. Несколько дней ему сопутствовала удача, но затем — поворот судьбы и… несколько сотен километров оборвавшегося кабеля остались лежать на дне океана.
Июнь 1858 г. Сайрус Филд не собирается предаваться отчаянию. Теперь два корабля — американская "Ниагара" и английский "Агамемнон" — ведут прокладку трансатлантического кабеля с середины океана к берегам. Но и на этот раз экспедицию постигает неудача: кабель лопнул, потеряно около 400 км.
Июль 1858 г. Наконец Европа и Америка связаны телеграфом! Биты информации начали свое беспрерывное путешествие между двумя континентами. Однако уже в августе налаженная связь внезапно прекратилась. На долгие восемь лет.
Июль 1865 г. Красавец-пароход "Грейт Истерн" взял курс от Ирландии к берегам Америки. Вот уже уложено на дно океана около 2400 км. Казалось, успех близок. Но утром 2 августа кабель, не выдержав нагрузки, порвался и утонул.
Июль 1866 г. Наконец-то удача. На этот раз потребовалось всего две недели, чтобы телеграфные линии устойчиво связали Америку и Европу. Новый и Старый Свет стали "ближе" друг к другу.
О "скромной" судьбе кабелей связи, об их прошлом, настоящем и будущем увлекательно рассказывает в своей книге "По всему земному шару" известный советский специалист в области конструирования кабелей Д.Л. Шарле. Прочтите эту книгу, не пожалеете!
Давайте познакомимся поближе с некоторыми современными кабелями связи. Сразу же оговоримся, развитие кабельной техники никак не связано с развитием цифровой связи: ведь кабели существуют более 100 лет, а история "становления на ноги" цифровой связи едва ли насчитывает три десятилетия.
Основным назначением кабелей связи считалась передача обычных телефонных разговоров (не преобразованных в цифровой код). Естественно, что техника передачи двоичных цифр на расстояние вынуждена была "приспосабливаться" к существующим кабельным линиям.
Д.Л. Шарле приводит в своей книге любопытные данные. Число телефонов в мире в 1881 г. составило 60 тыс., а спустя 100 лет, т. е. в 1981 г., - уже 508 млн, т. е. более 12 телефонов на каждые 100 жителей планеты. Ожидается ежегодный прирост числа телефонов почти на 40 млн. Для обеспечения возрастающих потребностей в телефонной связи в ближайшие годы нужно будет изготовить миллионы километров телефонных кабелей.
Ошеломляющие цифры! Пожалуй, можно без преувеличения сказать, что наша Земля опутана густой сетью кабелей связи, причем львиная их доля лежит под землей. Это так называемые подземные кабели. Существуют также подводные и подвесные кабели.
Старейшие среди современных кабелей связи — городские телефонные кабели. Да и самой разветвленной кабельной сетью является городская телефонная сеть (не секрет, что большая часть телефонов находится у жителей городов).
Городские телефонные кабели бывают разные. Они могут содержать от 10 пар проводов (такие кабели заводят в подъезды домов и подключают к распределительным коробкам, откуда телефонные провода тянутся в каждую квартиру) до 500, 1 000 и даже 3000 пар (а такие кабели используют для того, чтобы собрать воедино тянущиеся от жилых массивов к АТС более мелкие кабели).
Каждая жила кабеля изолируется кабельной бумагой или бумажной массой, получаемой из целлюлозы. Жилы скручиваются определенным образом вместе и помещаются в прочную свинцовую оболочку. В последние годы благодаря успехам химии на смену бумажной изоляции и свинцовой оболочке пришли различные пластмассы (полиэтилен, поливинилхлорид, фторопласт). Прокладываются городские телефонные кабели в подземной канализации в асбестоцементных трубах.
Для связи между городами выпускаются специальные междугородные кабели — симметричные и коаксиальные (об особенностях их конструкций расскажем позже). В отличие от городских кабелей они содержат намного меньше пар проводов: не более одного-двух десятков. Лежат эти кабели прямо в земле. Для повышения механической прочности междугородные кабели "одевают" в броневые покровы (обычно это стальные бронеленты).
Казалось бы, совсем нехитрые эти изделия — кабели связи. Ну в самом деле, что в них такого: пучки изолированных проволок под общей оболочкой! Однако не торопись, читатель. Оказывается, вовсе не так уж и легко путешествовать битам по этим "медным рельсам"…
Можно ли обмениваться по кабельной линии связи видеопрограммами или музыкальными записями? Насколько безграничны такие возможности внутри города? А между городами?
Другими словами, позволяют ли существующие кабели связи передавать все многообразие цифровой информации? Чтобы ответить на эти вопросы, нужно понять, чем отличается передача битов, несущих информацию о тексте, от передачи битов, несущих информацию, например, о подвижном изображении. Ведь и в том, и в другом случае биты (0 и 1) превращаются в электрические импульсы. Отличие состоит лишь в одном: в количестве битов (или импульсов), передающих за один и тот же промежуток времени (например, за секунду). В самом деле, мы уже знаем, что на протяжении 1 с разговорной речи ЛЦП вырабатывает 64000 бит информации (т. е. двоичных цифр 0 и 1, а точнее, соответствующих им импульсов), а за 1 с передачи подвижного изображения — 104000000 бит. Значит, можно говорить о скорости передачи двоичных цифр. Уточним: скоростью передачи цифровой информации специалисты называют количество битов, переданных в течение 1 с.
Итак, мы можем сказать, что скорость передачи речи в цифровом виде составляет 64000 бит/с = 64 кбит/с, а скорость передачи переведенного в цифры подвижного изображения — 104000000 бит/с = 104 Мбит/с. Текст с помощью цифр передастся обычно со скоростью 100 бит/с (это. пожалуй, самая низкая скорость передачи, исключая, разве что, передачу телеграмм — 50 бит/с); "цифровая" музыка — со скоростью 96 кбит/с; фотография в виде последовательности цифр — 16 кбит/с, а газета — 1,6 Мбит/с.
Как вы думаете, из чего состоят импульсы? Оказывается, из синусоид. Да-да, из тех самых синусоид, которые описывают колебание струны, давление звуковой волны на мембрану, а также образуют основные тоны и обертоны в речи.
Хотите убедиться в этом? Тогда взгляните на рисунок.
В качестве исходной синусоиды выберем такую, у которой период колебаний совпадает с периодом прямоугольных импульсов. Следующая синусоида имеет частоту колебаний в 3 раза большую, а амплитуду — в 3 раза меньшую. Сумма этих двух синусоид пока еще мало похожа на прямоугольные импульсы. Но если мы добавим к ним синусоиды с частотами колебаний в 5, 7, 9 и 11 раз большими, а с амплитудами соответственно в 5, 7, 9 и 11 раз меньшими, чем у основной синусоиды, то сумма всех этих колебаний будет не так уж и сильно отличаться от прямоугольных импульсов. Таким образом, степень "прямоугольности" импульсов определяется тем, сколько синусоид со все более и более высокими частотами колебаний мы будем суммировать.
Тот факт, что сигнал произвольной формы (а не только прямоугольные импульсы) можно "разложить" на сумму обыкновенных синусоид, впервые доказал в 20-х годах XIX в. французский математик Ж. Фурье. Такой набор синусоид получил название спектра сигнала. Каждый сигнал (отличающийся от других по форме) имеет свой сугубо индивидуальный спектр, т. е. может быть получен только из синусоид со строго определенными частотами и амплитудами.
Слово "спектр" нам хорошо знакомо из других областей техники. Если, например, пропустить солнечный свет через призму, то получим цветные полосы (помните, как знакомая со школьной скамьи фраза "каждый охотник желает знать, где сидит фазан" помогала легко запомнить, на какие цвета разлагается белый свет — красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый!). Набор цветов, на которые разложили солнечный свет, и называется его спектром. Заметим, что луч какого-либо цвета — это электромагнитное колебание со строго определенной частотой. Другой цвет — другая частота колебания. Таким образом, солнечный свет представляет собой сумму простейших электромагнитных колебаний с различными частотами.
Может показаться, что представление прямоугольных импульсов в виде совокупности синусоид есть не более чем математический прием и не имеет никакого отношения к реальности. Однако это не так. Если бы вам удалось подобрать струны с частотами колебаний, кратными числам 1, 3, 5, 7…., и, расположив их рядом друг с другом, привести в движение так, чтобы амплитуды колебаний соответствующих струн соотносились как 1, 1/3, 1/5, 1/7 то вы бы увидели, что форма кривой звукового давления на мембрану микрофона (а значит, и форма тока в его цепи) была бы прямоугольной. Радиоинженерам хорошо знакомы приборы (они называются анализаторами спектров), которые позволяют выделить каждую входящую в сложный сигнал синусоиду.
Теперь займемся несложными подсчетами. Предположим, со скоростью 100 бит/с передается последовательность импульсов, соответствующая чередованию единиц и нулей: 10101010… Ее спектр будет содержать основную синусоиду с частотой колебаний 50 Гц (поскольку в одном периоде синусоиды укладываются два импульса, ее частота численно равна половине скорости передачи), а также синусоиды с утроенной, упятеренной и т. д. частотами колебаний, т. е. 150, 250, 350 Гц… В то же время для этой же последовательности, но передаваемой со скоростью 64 кбит/с, частота колебании основной синусоиды будет равна 32 кГц, а остальных синусоид — 96, 160, 224 кГц… Для скорости передачи, скажем, 104 Мбит/с картина спектра будет иная: частоты колебаний синусоид составят 52, 156, 260, 354 МГц…. Обратите внимание, они почти в 1 000 раз выше, чем во втором случае, и в 1 млн раз — чем в первом!
Итак, совершенно очевиден вывод: чем выше скорость передачи импульсов, тем более широкую полосу частот занимает их спектр. Можно сказать, что импульсы, передаваемые с большей скоростью, являются более высокочастотными.
Но вернемся к кабелю, а точнее, сначала к одному его проводнику (жиле). Когда по проводнику протекает синусоидальный ток, вокруг движущихся в металле электронов возникают электрическое и магнитное поля. Чтобы убедиться в существовании электрического поля, достаточно поместить вблизи проводника пробный электрический заряд (например, заряженный листок или бусинку). Если поле есть, то заряд сдвинется с места. Обнаружить магнитное поле можно с помощью пробной магнитной стрелки: она будет поворачиваться. Электрическое и магнитное поля часто рассматривают вместе как единое электромагнитное поле.
Попробуем увеличить частоту синусоидального тока в проводнике. Десятки герц… Сотни герц… Килогерцы… Сотни килогерц. Мы вдруг начинаем с удивлением обнаруживать (естественно, с помощью приборов), что ток с ростом частоты все сильнее и сильнее вытесняется из толщи проводника к его поверхности. Электромагнитное поле вне проводника возрастает, и вот на очень высоких частотах (превращающих сотни и даже тысячи мегагерц) ток полностью вытесняется из проводника. Проводник начинает излучать всю электромагнитную энергию в пространство. Передача ее по проводу прекратилась. Провод превратился в антенну! Описанное явление — вытеснение тока к внешней поверхности проводника — получило у специалистов название поверхностный эффект. И оно не столь уж загадочное. Существует довольно простое объяснение поверхностного эффекта.
В 30-х годах XIX в. английский физик М. Фарадей (1791–1867) обнаружил, что в проводнике, помещенном в переменное магнитное поле, возникает ток. Так вот, все дело в том, что наш проводник оказался помещенным в собственное магнитное поле и под его воздействием в толще проводника образовалось множество замыкающихся по кольцу вихревых токов. У поверхности проводника эти токи направлены так же, как и основной ток, и поэтому увеличивают его. В толще же проводника вихревые токи оказываются направленными против основного тока и, следовательно, уменьшают его.
Мы рассмотрели один провод, тогда как для передачи сигналов используют два провода — прямой и обратный (нужно, чтобы цепь тока замкнулась). Каждый из проводов образует свое электромагнитное поле. Их взаимодействие дает несколько более сложную картину поля, однако эффект излучения поля вне проводов остается практически неизменным — с ростом частоты излучение увеличивается.
В городских телефонных кабелях под одной "крышей" — оболочкой — собрано большое число нар проводов. Представим себе, что цифровые сигналы (импульсы) передаются только по одной паре проводов (или, еще говорят, по одной цепи), а по другим парам в это время ничего не передается. Тем не менее и в остальных "нерабочих" парах можно зарегистрировать те же самые сигналы, правда очень слабые. И чем дальше "нерабочая" пара расположена от "рабочей", тем слабее в ней сигналы.
Однако чем выше скорость передачи импульсов (помните, это означает, что сигнал состоит из синусоидальных токов более высоких частот), тем увереннее мы будем их регистрировать в "нерабочих" парах. Виной тому — увеличивающееся на высоких частотах электромагнитное излучение. Может оказаться и так: при большой скорости передачи влияние одной цепи на другую будет столь велико, что когда по этой второй цепи будут передаваться "свои" сигналы, их будет очень трудно отделить от "чужих".
Вот эти-то взаимные влияния между цепями и не дают возможности беспредельно увеличивать скорость передачи импульсов по городским телефонным кабелям. Практически она ограничена значением 2 Мбиг/с. Отсюда вывод: такие кабели не позволяют обмениваться видеопрограммами, ведь при передаче подвижного изображения биты "мчатся" со скоростью в 50 раз большей.
Иное дело междугородный коаксиальный кабель! Но, стоп…
Сначала нужно сказать об особенностях его конструкции. Один проводник коаксиальной пары является обычным сплошным проводом, а вот другой (но которому ток "возвращается" обратно) — это полый медный цилиндр. И сплошной проводник помещен внутрь полого. Отсюда и название — коаксиальная пара, что означает "имеющая общую ось" (coaxis — соосный). Чтобы строго выдержать соосность проводников, пространство между ними заполняют изолирующим материалом (сплошным полиэтиленом, полиэтиленовыми шайбами и т. п.). Придумал такую конструкцию нары проводников еще в 1912 г. профессор Петербургского электротехнического института П.Д. Войнаровский (1886–1913), а использовать ее в кабелях связи предложил в 1934 г. американский изобретатель С.А. Щелкунов.
Коаксиальная пара — это поистине замечательное изобретение! Она не излучает электромагнитную энергию в пространство, а следовательно, не будет оказывать влияние на соседние цепи связи. Такое "тихое" соседство имеет, как мы знаем, принципиально важное значение, поскольку позволяет повысить скорость передачи цифр.
Ток во внутреннем проводнике с ростом частоты также вытесняется на его поверхность. Этот процесс не отличается от описанного выше. Но вот внешний проводник… Магнитное поле внутреннего проводника наводит в его металлической толще вихревые токи. На наружной стороне полого проводника они направлены против основного тока ("срабатывает" знакомое из школьного курса физики правило буравчика) и тем самым уменьшают, ослабляют его. На внутренней поверхности полого проводника вихревые токи совпадают с основным и, естественно, увеличивают его. Таким образом, ток в полом цилиндре вытесняется не наружу, а вовнутрь коаксиальной пары. Этот эффект ученые назвали эффект близости. Он-то и является причиной, по которой электромагнитное поле концентрируется внутри коаксиальной пары и не излучается вне ее.
С ростом частоты действие эффекта близости увеличивается и поле все сильнее и сильнее концентрируется между внутренним и внешним проводниками. Именно поэтому по коаксиальным парам потоки информации могут "нестись" с колоссальной скоростью, превышающей сотни миллионов бит в секунду.
Междугородные симметричные кабели связи имеют такую же конструкцию пар, как и городские телефонные (два скрученных изолированных проводника). Однако за счет небольшого количества пар и более тщательной их изоляции удается ослабить влияние между цепями и повысить тем самым скорость цифрового потока. По междугородным кабелям связи цифры передаются со скоростью порядка 8 Мбит/с.
Растет население Земли. Строятся новые города. Нужна электрическая энергия. Возникают все новые и новые линии электропередач. Их протяженность уже превысила сотни тысяч километров. Появились сверхмощные линии электропередач с напряжением в 1 млн вольт. Растут темпы электрификации железных дорог. Более половины грузооборота в железнодорожном транспорте страны приходится на долю электровозов. Расширяется сеть таких мощных средств массовой информации, как радиовещательные станции: длинно-, средне-, коротковолновые. Их число постоянно увеличивается.
Что ж, цивилизация не стоит на месте. Но какое отношение это имеет к теме нашего разговора — к кабелям связи? Оказывается, самое непосредственное. Все эти сооружения: и линии электропередач, и электрифицированные линии железных дорог, и радиовещательные станции — излучают электромагнитные колебания. Оказывая влияние на кабельные цепи, они мешают нормальной передаче импульсов — "забивают" их. Вот уж, поистине, нелегко битам путешествовать по "медной колее"!
…Около 100 тыс. лет назад на Земле произошло великое оледенение. Затем ледники отступили: началось потепление. Но на севере Земли под слоем оттаивающей каждое лето почвы сохранилась на века мерзлота. В северном портовом городе Игарка существует весьма любопытная шахта, спускаясь в которую можно увидеть вечную мерзлоту "в разрезе". Сначала вы увидите поверхностный слой почвы (около 1,5 м), она оттаивает в летнее время и промерзает в зимнее. Затем в бурых пластах земли перед вами предстанут голубые прожилки ископаемого льда. А еще ниже — сплошные массивы льда. В этом слое обнаруживаются неожиданные находки: останки давным-давно вымерших животных, иногда даже с мясом, кожей и шерстью. Своего рода холодильник планеты, хранящий животный мир прошлого.
Вечная мерзлота, особенно ее верхние слои, оттаивающие и вновь промерзающие, — это весьма коварная и обманчивая вещь. Сила замерзающей воды огромна. Попробуйте наполнить до отказа металлический сосуд (например, домашний сифон) водой, закройте плотно пробку и выставьте на мороз. Как только вода в сифоне начнет замерзать, он взорвется подобно бомбе! Неудивительно, что даже дома в районах вечной мерзлоты строят особым способом: они лишены фундамента, их ставят на сваях.
Связистам также хорошо знакомо "коварство" вечной мерзлоты. При промерзании и оттаивании грунт, где лежит кабель, может вдруг вспучиваться или сжиматься, причем с огромной силой, достигающей 100–150 кН (10–15 т). Появляются трещины, сдвиги грунтов, которые буквально рвут подземный кабель на части. Для того чтобы кабель был прочнее, его покрывают сверху круглой проволочной броней. Но и это не всегда помогает. Велика сила стихии! Это особенно чувствуется в начале зимы и весны.
Вечная мерзлота — не единственная "смертельная" опасность для "медной магистрали". Знаете ли вы, как часто на земле бывают грозы? Ежедневно до 45 тыс. гроз! И 8 млн раз сверкает молния!
Известно, что воздух — плохой проводник электричества. Поэтому молния чаще всего ударяет в какой-либо высокий предмет, а также в металлические предметы, которые хорошо проводят электрический ток. Во все времена удары молнии приносили много бед людям. Сила атмосферных разрядов буквально поражает воображение. Ток в молнии может достигать сотен тысяч ампер (в обычной электрической лампе он не превышает 0,5 А). Во время разряда воздух в молниевом канале разогревается до 30000 °C (температура на Солнце — в 5 раз меньше!).
Не обходит молния стороной и кабель, особенно в районах интенсивной грозовой деятельности. Попадая прямо в кабель, молния может разорвать ленточную броню, расплавить свинцовую оболочку, обуглить изоляцию, наконец, просто испепелить куски кабеля. При этом "очаги поражения" можно обнаружить не только в месте удара молнии, но и на значительном расстоянии — до десятка километров в каждую сторону от места удара молнии в кабель. Поистине — грозная стихия. Известны случаи, когда молния "била" не непосредственно в кабель, а в землю на значительном расстоянии от него, и все же кабель повреждался: возникала могучая электрическая дуга, которая и служила причиной повреждения.
С давних пор люди пытаются защитить себя от молнии.
В мифологии существует легенда о том, как древнеримский языческий бог полей и лесов козлоногий Фавн научил второго царя Рима Пуму Помиилия искусству отводить гнев громовержца Юпитера от храмовых кровель. У дверей храмов ставили высокие шесты, обитые медью. Их сверкающие вершины притягивали стрелы Юпитера, ибо сами имели сходство с огнем, и грозные молнии спокойно уходили по металлу в землю, не причиняя вреда строениям. Но затем богиня памяти Мнемозина заставила людей забыть, зачем им нужны дорогие шесты, окованные медью, перед зданиями дворцов и храмов.
Такова легенда. Но только ли легенда? В истории культуры сохранились сведения, что свыше 3 000 лет назад в Древнем Египте у храмов стояли высокие мачты, обитые медью. Такие же мачты стояли и около знаменитого храма царя Соломона в Иерусалиме. Просуществовав тысячу лет, он ни разу не был поврежден молнией, хотя находился в месте, которое известно частыми грозами.
Но прошли века, и в мракобесной средневековой Европе умение людей отводить молнию было предано забвению. Лишь в середине XVIII в. громоотвод был заново изобретен американским ученым Б. Франклином.
В наши дни ни одно строение не обходится без громоотвода (а, может, правильнее — молниеотвода?). А как же кабель? Кабель тоже снабжают своеобразным молниеотводом. Им служит медный или стальной трос, прокладываемый в земле над кабелем и отводящий токи молнии в землю. "От греха подальше", — говорят в шутку связисты. Применяют и другие меры, чтобы защитить кабель от ударов молнии. Но увы… Статистика повреждения кабелей во время грозы неумолимо свидетельствует о том, что не до конца еще научился человек побеждать силы природы. Да, нелегко битам путешествовать по "медным рельсам", когда повсюду опасности и препятствия!
Вы решили проехать по городу на трамвае? Из его окон не разглядеть городские кабельные трассы, они скрыты от взоров, располагаются глубоко в земле, в подземной канализации. Только наметанный глаз обратит внимание на множество обозначенных крышками кабельных колодцев, в которых соединяются нити различных кабелей.
Трамвай и кабель… Казалось бы, между ними не существует никакой связи. Между тем именно трамвай является "злейшим врагом" городских кабелей связи. Также, как и электровоз — для междугородных кабелей. В эту "компанию" следует зачислить и метрополитен.
Катит по рельсам трамвай… "Дорога Трама" (Tram’s Way — так называли первый рельсовый путь, построенный английским инженером Дж. Утрамом) причудливой лентой извивается по городу, встречаясь много раз на пути с подземными коммуникациями. В их числе и кабели связи. Постоянный ток, вращающий электромотор трамвая (он поступает из контактной сети через дугу трамвая), "отработав", возвращается по рельсам к тяговой подстанции (с тем чтобы снова попасть в контактную сеть). Однако часть токов растекается с рельсов в землю (вспомните, рельсы не так уж тщательно изолированы от земли). Эти токи блуждают в земле (их так и называют — блуждающие), проникая в металлическую оболочку или броневой покров кабеля, если поверх оболочки наложена броня. В тех местах, где блуждающие токи втекают в кабель, не происходит ничего страшного. Зато там, где токи вытекают из кабеля, они разрушают его, унося с собой в землю частицы металла. Так творят эти "бродяги" свое черное дело. В местах повреждения образуются углубления, а иногда и дыры.
Катит по рельсам трамвай. Мчится по рельсам электровоз. Гремит, несется по рельсам голубой экспресс метрополитена. И все они "уносят с собой" частицы металла из оболочки или брони кабеля. И "уносят" немало! Так, ток в 1 А, стекая со свинцовой оболочки кабеля, может разрушить в течение года 35–36 кг свинца, а со стальной брони — до десятка килограмм стали. Увы, за преступления подобного рода некому предъявить обвинение.
Процесс разрушения кабеля блуждающими токами называется электрокоррозией. Конечно же, с ней, как и с любым другим нежелательным явлением, борются. Для предотвращения коррозии кабель в наиболее "опасных" местах соединяют проводом с рельсами, чтобы блуждающие токи не стекали в землю, а уходили снова в рельсы; подключают к кабелю так называемый протектор — цилиндр из легко разрушающихся сплавов (токи, перетекая на этот цилиндр, уносят металл из него, а не из кабеля); компенсируют стекающие с кабеля токи встречным током от специальной малогабаритной электрической станции.
Не слишком ли дорогой ценой приходится расплачиваться за то, чтобы биты благополучно достигли конечной цели своего путешествия? Затрачиваются немалые средства на проектирование "медной магистрали" (а оно включает в себя и изыскательские работы по выбору будущей трассы кабеля, которые проводятся зачастую в нелегких условиях: труднопроходимая тайга, топкие болота и т. п.). Кабельным заводам приходится изготавливать поистине "драгоценную" продукцию (1 км междугородного кабеля стоит не менее тысячи рублей, а протяженность магистрали может составлять тысячи километров). Строительные организации выполняют дорогостоящие работы по сооружению магистрали. Построенную кабельную магистраль нужно обслуживать. Для этого создают огромный штат работников, "населяющий" многочисленные эксплуатационные предприятия и организации.
Кабель "капризен" в эксплуатации. Его "рвет" на куски вечная мерзлота, "испепеляет" молния, "съедает" коррозия. Еще один "вечный враг" кабеля — влага. Проникая в кабель, она ухудшает изоляцию проводников. Чтобы поставить заслон на ее пути, приходится нагнетать в кабель газ под избыточным давлением, а для этого нужны компрессоры, газопроводы и прочее специальное оборудование. На кабель влияют электромагнитные поля радиостанций, линий электропередач, электрифицированных железных дорог. Симметричные пары в кабеле сами оказывают такое же влияние друг на друга.
На изготовление "медных рельсов" расходуется один из самых дефицитных металлов — медь, запасы которой в природе весьма ограничены. Любопытные данные приводит Д.Л. Шарле: во всем мире уже "закопано" в землю около 15 млн т меди, а добывается ее во всех странах капиталистического мира лишь 7–7,5 млн т в год. А ведь медь идет не только на производство кабелей связи.
Шли годы. Проходили десятилетия. Уже минуло столетие, но по-прежнему кабели связи — подземные и подводные, речные и морские, городские и междугородные — продолжают подобно паутине опутывать нашу планету. И по-прежнему биты продолжают свои путешествия по "медным рельсам"!
Неужели так и суждено кабелям "господствовать" во все века? Научно-технический прогресс не стоит на месте. Уже в конце XIX в. начались поиски путей передачи электрических импульсов вообще без проводов. Но об этом — следующая глава.
"Перепрягайте лошадей"
Изнуренные, покрытые пеной кони подтащили к почтовой станции кибитку. Послышались крики: "Перепрягайте лошадей!", "Живо!". Ловкие кучера быстро сменили лошадей, станционный смотритель сказал вслед: "С богом". И почтовая кибитка со свежей упряжкой покатила к следующей станции…
Минуло чуть более 100 лет с той поры, как русский поэт Л.Н. Трефолев воспел нелегкий труд почтовых работников XIX в.:
Сейчас это лишь строки известного старинного романса. А тогда… Это был "труд подневольный", ямщики страдали от того, что "замучила страшная гонка". И все ради одной цели: как можно быстрее доставить информацию в пункт назначения.
Век почтовых лошадей и век радио. Их разделяет всего 100 с небольшим лет, а какой грандиозный скачок сделало человечество в ускорении доставки информации. Импульсы радиотелеметрической информации, несущие сведения о самочувствии космонавтов, в считанные мгновенья поступают на Землю с борта космического корабля. Импульсы, посылаемые радиолокационной станцией, тут же возвращаются обратно с информацией об обнаруженном объекте.
Конечно, ночной разговор по радио с Полярной звездой — это не более чем поэтическая фантазия испанского стихотворца Рафаэля Альберти. Но не так уж далека она от истины. Людей уже давно перестали удивлять творимые их руками чудеса. Совершенные когда-то, со временем они становятся обыденным явлением.
Так случилось и с радиоволнами. Мы не только не относим их к разряду "рукотворных чудес", по они давно уже перестали представляться нам чем-то очень сложным. Скорее, они стали привычными. В самом деле, что уж тут сложного и непривычного? Включили радиоприемник — радиоволны донесли до нас музыку, речь. Включили телевизор — радиоволны превратились в изображение. Любой школьник скажет сегодня, что радиоволны — это электромагнитные колебания, а излучает и принимает их антенна, где они преобразуются в электрический ток, который и создаст звук в громкоговорителе или изображение в кинескопе.
Но, для того чтобы радиоволны оторвались от антенны и понеслись со скоростью света в открытое пространство, потребовались долгие годы мучительных поисков и короткие мгновения гениальных озарений великих умов человечества. Давай, читатель, перелистаем бережно хранимые потомками страницы истории радиотехники.
#f.jpg_15 Страница не помеченного датой морозного зимнего дни 1819 г. Аудитория Копенгагенского университета. Профессор Ханс Христиан Эрстед показывает студентам опыты по нагреванию проволоки под действием электрического тока. Вдруг один из студентов замечает, что при включении и выключении электрической цепи стрелка компаса, случайно оказавшегося на столе, заметно отклоняется. Не может быть! Профессора охватывает волнение. Сколько времени он ждал этого момента! Ведь это великое открытие — обнаружена связь электричества с магнетизмом.
Страница 18 дня сентября 1820 г. Зал заседаний Парижской академии наук. Слушается доклад академика Андре Мари Ампера. С трибуны в притихший зал несутся слова: "…Мое открытие заключается в том, что когда по двум параллельным проволокам электричество движется в одном направлении, они притягиваются, а когда направления токов противоположны, они отталкиваются… Только электрический ток определяет магнитные свойства тела…" Итак, еще одно блестящее открытие: вокруг проводника с током образуется магнитное поле.
Страница 29 дня августа 1831 г. Лаборатория Королевского института в Лондоне. Профессор Майкл Фарадей со своим помощником отставным сержантом Андерсоном в который раз проделывают один и тот же опыт: включают и выключают электрическую цепь с катушкой и наблюдают толчки стрелки гальванометра, включенного во вторичную обмотку катушки. Но что это? Быстрое введение в катушку железного сердечника также вызывает толчки тока. Значит, ток в замкнутом проводнике наводится при изменении магнитного поля! Отставной сержант Андерсон с явным осуждением смотрит, как почтенный профессор пускается в пляс. Но ведь открыт еще один закон природы — электромагнитная индукция! Переменное магнитное поле рождает переменный ток.
Страница неустановленного дня и месяца 1873 г. На книжных прилавках появился "Трактат об электричестве и магнетизме" члена Лондонского королевского общества, английского математика и физика Джеймса Кларка Максвелла. Этот солидный фолиант — около тысячи страниц текста и формул — содержал гениальнейшее открытие века. Открытие, сделанное за письменным столом в тихом кабинете лишь с помощью карандаша и листков бумаги. Максвелл предсказал существование электромагнитных волн, порожденных взаимодействием переменных электрического и магнитного полей. Введенные им в середине прошлого столетия четыре уравнения электродинамики за 100 с лишним лет не претерпели ни малейшего изменения, они и сейчас в том же виде используются для расчетов любых сложных электромагнитных полей.
Страница вновь не помеченного датой дня 1888 г. Лаборатория Политехнического института Карлеруэ в Германии. Только что успешно завершилась серия опытов, проводимых немецким профессором Генрихом Герцем. Возбужденная искровым разрядом электромагнитная волна "поймана" в другой комнате: в специальном приемном резонаторе проскакивала такая же искра. Наконец-то экспериментально подтверждена теория Максвелла! Генрих Герц изобрел первую в мире антенну (сейчас ее называют диполем Герца), измерил длину волны и рассчитал скорость распространения электромагнитных волн. Он был в шаге от изобретения радио. Но не сделал этого шага. Более того, сохранилось письмо Герца мюнхенскому инженеру Губеру, в котором он отвергал проект беспроволочного электромагнитного телеграфа, считая его реализацию невозможной.
Страница 25 дня апреля 1895 г. (7-й день мая по новому стилю). Самая яркая страница в истории радиотехники! Зал заседании Русского физико-химического общества. Наш выдающийся соотечественник А.С. Попов демонстрирует прибор, обнаруживающий и регистрирующий "лучи Герца" (как тогда называли электромагнитные волны) на расстоянии до 30 км. Этот день вошел в нашу жизнь как день рождения радио. Спустя год Попов осуществил передачу азбукой Морзе и прием на телеграфную ленту сообщения на расстоянии 250 м. Оно содержало два слова: "Генрих Герц". Это была первая телеграмма, отправленная по телеграфу без проводов! Она увенчала интернациональные усилия ученых.
Что же представляет собой радиоволна? Обратимся к проводнику, по которому протекает ток, изменяющийся во времени подобно синусоиде. Мы уже знаем, что вокруг проводника с током создается переменное магнитное поле. Его интенсивность в каждой точке пространства будет меняться по такому же закону синусоиды. Переменное магнитное поле рождает в пустом пространстве переменное электрическое поле (тоже меняющееся в каждой точке пространства по синусоидальному закону). Обнаружить это поле можно с помощью другого проводника: электроны в нем придут в движение, появится переменный синусоидальный ток. В свою очередь, меняющееся электрическое поле вновь рождает магнитное поле, а оно, в свою очередь, — электрическое и т. д. Причем возникающие электрические и магнитные поля, распространяясь, охватывают все новые и новые области пространства. Чем дальше расположена точка пространства от проводника с током, тем позднее достигнут ее колебания полей.
Взаимодействие электрического и магнитного полей не есть нечто обособленное, независимое друг от друга. Оно — проявление единого целого, которое носит название электромагнитного поля.
В физике изменяющееся во времени, т. е. движущееся, пространственное чередование максимумов и минимумов любой физической величины называется волной. Волны мы наблюдаем при бросании камешков в воду. Волну можно пустить по натянутой веревке. Звуковые волны испускает колеблющаяся струна. Распространяющееся в пространстве электромагнитное поле образует электромагнитную волну.
Самые разные по своей природе волны имеют одну и ту же общую характеристику — длину волны. Пояснить ее можно на простом и знакомом примере движения волны на поверхности воды. Длина волны (обозначается греческой буквой λ — лямбда) — это расстояние между соседними гребнями. Время, за которое один гребень сменяет другой, составляет период колебания волны Т. Если знать скорость с, с какой происходит эта смена, то легко вычислить расстояние между гребнями, т. е. длину волны, как произведение скорости на время: λ = с∙Т. Величина, обратная периоду колебания волны, — это частота колебания f = 1/T. Поэтому λ = с/f.
Скорость распространения электромагнитной волны равна скорости света с = 300 000 км/с. Следовательно, ток, колеблющийся с частотой, например, 300 000 Гц, создает электромагнитную волну длиной 1 км, а с частотой 300000000 Гц — 1 м.
Чем с большей частотой колеблется ток в проводе, тем интенсивнее излучаемые им волны. Вот почему в антеннах радиостанции возбуждаются колебания с частотами от сотен тысяч до сотен миллионов герц. Поля таких радиостанций могут быть обнаружены на значительных расстояниях от антенны. Промышленный же переменный ток (частота 50 Гц, длина волны 6000 км) практически ничего не излучает.
Взгляните на шкалу любого радиоприемника. Вы увидите там хорошо знакомые сокращения: ДВ, СВ и КВ — длинные, средние и короткие волны. В современных моделях приемников еще одно обозначение: УКВ — ультракороткие волны. Давайте включим радиоприемник и совершим путешествие по диапазонам радиоволн.
Во всем диапазоне длинных волн нам встретились лишь несколько радиостанций. Почему? Ведь благодаря большой длине (10-1 км) эти волны легко огибают все препятствия в виде оврагов и гор, огибают и сам земной шар. На них не влияют ни грозы, ни штормы, ни дожди, ни снега, ни электрические, ни магнитные бури (из радиоприемника всегда льется громкий и чистый звук), так как распространяются они преимущественно около поверхности Земли, их так и называют — земные или поверхностные волны.
Дело в том, что длинные волны сильно поглощаются землей и нижними слоями ионосферы, поэтому мы слышим лишь расположенные близко радиостанции. Для работы длинноволновых радиостанций требуются передатчики очень большой мощности. Так, уже в 1933 г. в Москве была построена 500-киловаттная радиовещательная станция (для сравнения: электрическая лампочка потребляет мощность всего 100 Вт). В то время это была самая мощная радиостанция в мире.
Из теории известно: для эффективного излучения электромагнитной волны антенной ее размеры должны быть соизмеримы с длиной волны. А теперь представьте, что вы слушаете передачи на волне 2 000 м. Ясно, что построить антенну даже в 2 раза меньшей высоты вряд ли удастся. Сейчас в радиовещании применяются антенны высотой 75-300 м. Надо сказать, что это довольно дорогие и громоздкие сооружения в виде стальных башен, установленных на изоляторах, или стальных мачт, поддерживаемых оттяжками.
Длинные волны возбуждаются колебаниями с частотами 30-300 кГц. В этом диапазоне не могут работать, не мешая друг другу, много радиостанций. Действительно, если частоты, на которых они вещают, разнести друг от друга на 10 кГц (чтобы не прослушивались соседние радиостанции), то в отведенный диапазон "влезет" всего 26 радиовещательных станций.
Продолжим наше путешествие. Следующий диапазон — средневолновый. Но и здесь в дневные часы прослушивается мало радиостанций. Зато ночью их число возрастает: мы начинаем слышать дальние станции. Это объясняется тем, что средние волны имеют меньшую длину (1000-100 м) и, распространяясь поэтому не только по поверхности Земли, но и во все стороны, "наталкиваются" на ионосферу, отражаются от нее и перекрывают тем самым большие расстояния. Днем же под воздействием лучей Солнца нижний, отражающий слой ионосферы разрушается и радиоволны поглощаются верхними ее слоями.
Вещание на средних волнах мало чем отличается от вещания на длинных волнах. Так же требуются мощные радиопередатчики, применяются те же громоздкие антенные сооружения, по-прежнему "тесным" оказывается частотный диапазон 0,3–3 МГц.
Короткие волны (100-10 м) могут многократно отражаться от ионосферы и поверхности Земли и огибать нашу планету. Поэтому на коротких волнах даже сигнал маленькой радиолюбительской станции при благоприятных условиях можно принять в любой точке земного шара. Для вещания на таких волнах требуется значительно меньшая мощность передатчика. Существенно уменьшаются размеры антенн. В диапазоне частот 3-30 МГц. соответствующем коротким волнам, даже в дневное время мы ловим десятки радиостанций, а ночью, когда прохождение волн лучше, прослушивается так много станций, что эфир начинает казаться "тесным".
В то же время всем нам хорошо знакомы внезапные ухудшения качества радиоприема на коротких волнах. Бывает даже, что радиостанции исчезают на время от нескольких секунд до нескольких минут. Это дает себя знать неприятное явление — замирание. Передающая антенна излучает волны не в одном направлении, а во многих, поэтому на ионосферу падает не один луч, а как бы пучок лучей. В приемную антенну приходят волны, которые распространялись разными путями. Взаимодействуя, они то "гасят", то усиливают друг друга.
Последний диапазон радиоволн — ультракоротковолновый. В нем размещаются волны длиной от 10 м до 0,3 мм. Это очень широкий диапазон. Поэтому ультракороткие волны подразделяют на метровые, дециметровые, сантиметровые и миллиметровые. Первые из них занимают частоты 30-300 МГц, а последние — 30 000-1 000 000 МГц. Для таких сверхвысоких частот (принято сокращение СВЧ) введены специальные обозначения: гигагерцем (ГГц) называют каждую тысячу мегагерц, а терагерцем (ТГц) — каждую тысячу гигагерц. Таким образом, миллиметровым волнам соответствуют частоты 30 ГГц-1 ТГц.
Ультракороткие волны не отражаются от ионосферы и почти не поглощаются ею. Они ведут себя подобно лучам света: пронизывают ионосферу и уходят в космос. В атмосфере Земли существует всего два "окна". Одно из них — в области видимого света. Им человечество пользуется уже тысячи лет, изучая звезды в телескоп. Второе — "радиоокно" в области УКВ. Оно обнаружено только в XX в. благодаря развитию техники радиосвязи. Именно с помощью этого "окна" осуществляется связь с космическими кораблями.
Из-за "прямолинейного" характера распространения ультракоротких волн связь на них возможна только до тех пор, пока антенна приемника "видит" антенну передатчика. Если на пути волны встречается препятствие (высокий дом, гора, лес), связь становится невозможной. "Зачем же тогда наносить на шкалы современных радиоприемников волны этого диапазона, — спросит наблюдательный читатель, — если их невозможно принимать так же, как длинные, средние и короткие? Дело в том, что "необъятный" частотный диапазон ультракоротких волн очень привлекателен для радио- и телевизионного вещания. Во-первых, в нем могут работать с большим разносом частот, не мешая друг другу, сотни радиостанций. При этом чем большая полоса частот отводится радиостанции, тем легче сохранить все самые тончайшие оттенки транслируемых звуков. В настоящее время на ультракоротких волнах ведется высококачественное стереофоническое вещание на обычные радиоприемники. Во-вторых, только в таком широком диапазоне и можно организовать телевизионное вещание. Что же касается выполнения условия "прямой видимости", то не остается ничего иного, как поднять антенну как можно выше. Например, Останкинская телевизионная башня "вытянулась" вверх на 525 м.
Системы радио- и телевизионного вещания служат для доставки информации от одного ее источника сразу к большому числу потребителей. В системах же связи информацию нужно доставлять от каждого конкретного источника к каждому конкретному потребителю. Подходят ли для этого радиоволны? Ведь их можно принять в любой точке земного шара.
Вывод один: энергия радиоволн не должна рассеиваться в пространстве, ее нужно сконцентрировать в очень узкий луч. Однако хорошо концентрируют энергию только антенны достаточно больших по сравнению с длиной волны размеров. Это напоминает оптику, где размеры зеркал и линз во много раз превышают длину световой волны.
Вот еще одно неоспоримое преимущество ультракоротких волн: для них легко сделать не очень большие и исключительно направленные антенны, которые, условно говоря, фокусируют, "собирают" волну.
О, эти удивительные ультракороткие волны! В конце XIX в. английский физик Д.У. Релей (1842–1919) математически доказал, что их можно передать… по полым металлическим трубам. В 1936 г. американскому ученому Саутсворту удалось передать волны длиной 9 см по трубе на расстояние 260 м. Не правда ли, такая линия передачи больше похожа на… водопровод, чем на электрическую линию?
Сейчас эти трубы — их называют волноводами — можно встретить повсюду, где нужно подвести к антенне ультракороткие волны или передать их от одного узла радиоаппаратуры к другому. Чем меньше длина волны, тем меньше и диаметр трубы. Часто эти грубы делают не круглого, а прямоугольного сечения. Внутренние стенки волноводов полируют до зеркального блеска, иначе часть энергии волны будет поглощаться в них. Если сделать в стенке такой трубы щель и припаять к ней в этом месте другую трубу, то часть волны побежит по второй трубе. Чтобы вывести волну из трубы, ее конец делают расширяющимся, в виде рупора.
Вы обращали внимание. как концентрируется луч света в электрическом фонарике?
Лампочка помещается в фокусе зеркального отражателя. Подобно этому рупор, излучающий электромагнитную волну, помещают в фокусе параболической антенны. Она, как рефлектор, собирает электромагнитные волны в узкий параллельный пучок лучей и направляет его на приемную антенну. Принимаемые волны, в свою очередь, "стягиваются" металлическим зеркалом приемной антенны на рупор и далее через рупор и волновод направляются к приемнику.
Итак, уже не трудно представить себе основные контуры радиолинии, работающей на УКВ. Передатчик — в основе его лежит специальный квантовый генератор, использующий внутреннюю энергию атомов или молекул, — вырабатывает СВЧ-колебания, которые по волноводу передаются в антенну. Посылаемый в эфир радиолуч достигает приемной антенны и по волноводному тракту добирается до приемника.
А не мало ли это — всего один луч между двумя пунктами? Ведь тот же коаксиальный кабель содержит несколько коаксиальных пар, и по каждой из них можно передавать цифровые потоки с огромными скоростями — сотни мегабит в секунду. Следует заметить, что "пропускная способность" у УКВ-луча во много раз больше, чем у коаксиальной пары. Скорость цифрового потока, как вы помните, зависит от частотного диапазона, в котором "работает" линия связи. А у радиолинии на УКВ он значительно шире, в результате эти волны могут перенести, как мощные "тяжеловозы", большее количество бит в одну секунду — свыше тысячи мегабит.
Что же касается увеличения числа лучей, то делают так: несколько передатчиков, генерирующих волны различных длин, заставляют работать на общую антенну. Антенна, таким образом, излучает одновременно несколько лучей с различными длинами волн. В приемной антенне каждая волна отфильтровывается и, не путаясь, точно в соответствии со своей длиной поступает в свой приемник. Говорят, что каждый такой луч образует ствол радиолинии. Обычно число стволов не превышает 4–5.
До сих пор речь шла о волнах, изменяющихся по синусоидальному закону. Такие волны, как и синусоидальный ток, не несут в себе никакой информации. О какой новой информации можно говорить, если она каждый период повторяется?
Электромагнитная волна — это лишь новый вид транспорта. Только более "скоростной", чем электрический ток, так же как самолет или ракета по сравнению с поездом. Как же пересадить биты на этот транспорт?
Представьте, что вы в такт с поступлением битов включаете и выключаете СВЧ-генератор передатчика. Пришла 1 — включили генератор, пришел 0 — выключили. При этом антенна то излучает электромагнитную волну, то нет. Таким образом, в эфир уходят один за другим импульсы электромагнитных колебаний. Такие действия над радиолучом называют амплитудной модуляцией (от латинского modulatio — изменение), так как изменяется амплитуда излучаемой волны. Ясно, что даже при очень низкой скорости передачи вы не будете успевать включать и выключать СВЧ-генератор вручную. Это делается автоматически, "по команде" самих битов, специальным устройством — модулятором.
К сожалению, амплитудная модуляция страдает серьезным недостатком. Если в радиолинии имеют место замирания, вследствие чего амплитуда волны резко уменьшается, то при этом бывает трудно распознать что передавалось в данный момент — 1 или 0. Чтобы избежать этого неприятного явления и нейтрализовать действие замираний, применяют другой прием. В передатчике используют два СВЧ-генератора: один из них генерирует колебания с частотой f1, а другой — с частотой f2. Если на вход модулятора поступает 1, то к антенне подключается первый генератор, если же поступает 0, то — второй генератор. В этом случае антенна вместо электромагнитного колебания с переменной амплитудой излучает два колебания разных частот. Такому радиосигналу замирания не страшны: даже при малой его амплитуде легко разобраться, какая частота излучается — f1, или f2. Этот вид модуляции получил название частотной, поскольку под воздействием цифр 1 или 0 изменяется частота излучаемой электромагнитной волны.
Ну что же, пожалуй, все основные проблемы передачи цифровой информации по радиолиниям мы обсудили. Впрочем, нет! Осталась без внимания еще одна проблема — дальность связи. И тут нас ждет разочарование. Оказывается, при установке антенн на мачтах высотой до 100 м расстояние "прямой видимости" между ними составляет чуть более 50 км. Но ведь требуется устанавливать связь на расстоянии тысяч километров. Есть ли выход? Выход есть. Здесь нам хочется провести любопытные исторические параллели. Вернемся в XIX в.
…Изнуренные, покрытые пеной кони подтащили к почтовой станции кибитку. Послышались крики: "Перепрягайте лошадей!"… Во Франции XIX в. замена уставших лошадей свежими называлась "реле", а почтовые станции — "релейными"…
А теперь Америка начала XX в. В 1935 г. между Нью-Йорком и Филадельфией вступила в строй радиолиния на ультракоротких волнах. Она имела протяженность 150 км. Чтобы перекрыть это расстояние, через 50 и 100 км были построены две промежуточные "релейные" станции, которые принимали ослабленные радиоволны, "заменяли" их новыми и посылали дальше. Сама радиолиния была названа "радиорелейной" линией. Опыт человечества — великое дело, и, поистине, ничто на земле не происходит бесследно.
Мы не знаем, что подсказало конструкторам первой в мире радиорелейной линии дать ей такое название. Ностальгия по старине? А может, за основу было взято английское слово relay — эстафета? Или отдана дань заслугам английского физика Релея (помните его трубы — волноводы)?
Да и не в этом дело! Идея "перепрягать радиоволны" оказалась весьма перспективной. Отныне во все концы земного шара потянулись цепочки радиорелейных линий. Строительство первой такой линии в нашей стране было осуществлено в 1953 г. между Москвой и Рязанью. Однако еще в начале 30-х годов советские инженеры М.И. Греков и В.М. Большеверов провели опыты по направленной радиосвязи на дециметровых волнах между Москвой и Люберцами.
Современная радиорелейная линия (часто пишут сокращенно — РРЛ) состоит из двух основных и цепочки промежуточных радиорелейных станций. Каждая станция — это приемник, передатчик и высокая мачта (или башня) с антеннами. Для мачты выбирают возвышенные участки местности. С каждой из них видны две соседние мачты. Расстояние между промежуточными станциями обычно составляет 40–70 км. Протяженность линии может быть несколько тысяч километров. Радиоволны узким направленным лучом идут от одной станции к другой, принимаются там приемником, усиливаются передатчиком (как лошади подкармливались овсом) и отправляются к следующей станции.
Думается, нет необходимости пояснять, что радиоволны от одной оконечной станции до другой добираются почти мгновенно.
В 50-60-е годы ожидалось, что преимущества радиорелейных линий откроют перед ними широкую дорогу и заставят существенно потесниться кабели связи. Однако время расставило все на свои места, и сегодня радиорелейные и кабельные линии связи мирно сосуществуют, переходя порой одна в другую.
Дело в том, что и радиорелейным линиям присущи недостатки. На распространение ультракоротких волн влияют и рельеф земли, и обширные водные глади, встречающиеся на пути радиорелейной линии, и ионосфера, "капризы" которой приводят к замираниям волн, и внутренние шумы в генераторе СВЧ-колебаний, приемнике, антенне. Кроме того, не всегда удастся построить промежуточные станции строго в расчетных местах — мешают естественные преграды: водные, горные и т. п.
Конечно, нетрудно представить себе местность, где строительство радиорелейной линии является единственно возможным. Однако в каждом конкретном случае проектировщики должны принять решение: какую магистраль — кабельную или радиорелейную — выгодно строить с экономической точки зрения и какая из них обеспечит лучшее качество передачи информации.
Мост через… космос
Шел 1865 год. Еще не будут связаны телеграфной линией Америка и Европа — Новый и Старый Свет. Еще год не будет покоряться американскому предпринимателю Сайрусу Филду "кратчайший" 3 500-километровый путь через бурный и глубокий Атлантический океан. Еще год многим будет казаться, что прокладка этой телеграфной линии просто нереальна. И тогда рождается еще один — не менее фантастический по тем временам — проект. Изобретатель первого в мире пишущего телеграфа и знаменитых "точек" и "тире" С. Морзе предложил соединить Нью-Йорк и Лондон… воздушной линией, проходящей через Аляску и Сибирь и пересекающей лишь две узкие водные преграды — Берингов пролив и Ла-Манш. Длина такой линии, на строительство которой было даже получено согласие американского правительства, составила бы 25000 км! И хотя этому "проекту века" не суждено было осуществиться (через год вступила в строй телеграфная линия, проложенная по дну Атлантического океана), его масштабы и сегодня поражают наше воображение.
Представьте хотя бы на минуту, что вам предложили реализовать проект Морзе в наши дни, но на основе современных средств — радиорелейной линии связи. Это означало бы, что на длине трассы должно быть построено около 500 промежуточных ретрансляционных станций, с приемопередающим оборудованием, башнями, антеннами. Даже по современным понятиям это очень дорогой проект. Поэтому усилия ученых многих стран направлены на то, чтобы увеличить расстояние между радиорелейными станциями.
Как-то одному из авторов этой книги довелось участвовать в испытаниях ультракоротковолновой радиоаппаратуры, передающей в цифровой форме физиологические параметры: частоту пульса, дыхание, кровяное давление и пр. Испытания проводились в горах Ала-Тау — аппаратура предназначалась для исследования адаптации человека к высокогорным условиям.
Автор хорошо помнит, как на высоте остро ощущался недостаток воздуха: затруднялось дыхание, ухудшалось самочувствие. До середины XVII в. воздух считался невидимым и невесомым. Только в 1642 г. итальянский ученый Э. Торричелли впервые доказал, что воздух имеет вес и давление. В 1646 г. француз Перье обнаружил, что на вершине горы давление меньше, чем у ее подножия. Сейчас даже школьники знают, что воздух — это смесь газов. Воздушная оболочка Земли — атмосфера — защищает растительный и животный мир от пагубного воздействия ультрафиолетовых солнечных и космических лучей. Без нее наша планета была бы такой же безжизненной, как Луна.
Хотя атмосфера простирается вверх на многие сотни километров (до 2 000 км), основная масса воздуха сосредоточена в нижнем, довольно тонком слое — до 10–12 км. Выше уже наблюдается значительное разрежение воздуха. Этот слой называют тропосферой. Именно в нем бушуют ветры (иногда сверхураганные — со скоростью 300 км/ч), возникают облака, выпадают дожди, снег и град. В результате слои воздуха все время перемешиваются, образуются завихрения (турбулентности). Все это свидетельствует о том, что тропосфера неоднородна по своей структуре.
Нельзя ли использовать эти свойства тропосферы для дальней радиосвязи? Ведь, как известно, диэлектрическая проницаемость воздуха у неоднородных слоев различна. Значит, эти слои будут в разной мере поглощать и отражать радиоволны.
Если сконцентрировать радиолуч и направить его под небольшим углом в тропосферу, то он почти полностью потеряется в пространстве за ее пределами. Но на пути луча обязательно встречаются воздушные неоднородности, которые частично отражают и рассеивают радиоволны. Часть из них возвращается на землю и попадает в приемную антенну. Радиомост начинает действовать!
Выстраивая цепочку таких приемопередающих станций, получают тропосферную радиорелейную линию связи. Ее основное преимущество перед радиорелейной линией "прямой видимости" состоит в том, что расстояние между промежуточными ретрансляционными станциями удастся увеличить до 300–500 км. Почти в 10 раз!
Казалось бы, изобретение тропосферной УКВ-радиосвязи должно стать началом "конца" радиолиний, антеннам которых необходимо "видеть" друг друга. Но не спешите восклицать "эврика!". Как сказал однажды знаменитый гражданин города Рима, оратор и писатель Марк Туллий Цицерон (106-43 гг. до н. э.): "Ничто не бывает одновременно и изобретенным, и совершенным". Так и здесь. Из-за того, что в тропосфере теряется значительная часть энергии радиоволны, передатчик должен иметь весьма приличную мощность (в сотни раз большую, чем в обычных РРЛ), а приемная антенна должна быть достаточно больших размеров (применяют параболические зеркала диаметром до 30 м, установленные на высоте 10–20 м). Кроме того, отразившись от тропосферы, радиолуч расщепляется на множество лучей, взаимодействие которых в приемной антенне приводит к сильным замираниям радиоволн. Как следствие, ухудшается качество передачи информации. Часть ее во время глубоких замираний может пропасть вообще.
Конечно, с замиранием борются всеми доступными способами: "ловят" сигнал не одной, а двумя разнесенными в пространстве антеннами (какой луч лучше, тот и выбирают); "дублируют" передачу информации на нескольких радиоволнах разной длины. Однако широкого распространения тропосферные РРЛ все же не получили. Их строят обычно в труднодоступных районах, где нельзя проложить кабель и не удается ставить часто (через 50 км) станции обычных РРЛ (например, в полярных широтах).
Посмотрите ночью на звездное небо. Вы обязательно заметите, как на несколько секунд "вспыхивает" слабосветящаяся тонкая ниточка. Но это не "звезда со звездою говорит". Это след метеора. Бывают ночи, когда можно увидеть особенно много метеоров. Они появляются один за другим и кажутся разлетающимися во все стороны из одной точки на небе. Этот рой метеорных частиц образует метеорный поток. Иногда их бывает так много, что наблюдается настоящий "звездный дождь".
Метеорные потоки возникают в процессе распада комет. В межпланетном пространстве твердые частицы комет движутся с огромной скоростью — до 70 км/с. Врываясь в земную атмосферу, они нагреваются до нескольких тысяч градусов, вскипают и испаряются. Раскаленный и светящийся газ мы и наблюдаем в виде "падающей звезды" — метеора. Большинство метеоров сгорает на высоте 80-120 км. Протяженность следа достигает 10–25 км, а время его существования — от 5 до 20 мс.
Оказалось, что следы метеоров хорошо отражают радиоволны. А что если с помощью антенны направить радиолуч на метеорный след? Когда ученые сделали это, то они увидели, что сигнал, улавливаемый приемной антенной, настолько сильный, что можно использовать передатчик небольшой мощности и несложные антенны. Такая линия связи получила название метеорная. Вот только есть у нее один недостаток: передавать биты удается лишь в те промежутки времени, когда на небе появляются метеоры. До этого биты хранятся в памяти, а в момент появления пригодного для связи метеорного следа они "выстреливаются" радиолучом в пространство. Поэтому "коэффициент полезного действия" метеорной линии связи очень мал: передача информации занимает только 10–20 % всего времени.
Космические гости — метеоры — живут мгновения. Постоянные обитатели Вселенной — звезды — существуют вечность. Сколько же всего звезд на небе? Фотографический атлас неба состоит почти из 900 листов. В нем собраны "портреты" почти 2 млрд звезд. И среди них наша ближайшая спутница — Луна.
— А ведь Луну можно использовать в качестве промежуточного ретранслятора, — догадается наш проницательный читатель.
Да, притом "бесплатного" и вечного. Радиолуч направляется на Луну, отражается от ее поверхности и возвращается на Землю. Поскольку на Луне нет приемника и передатчика, то она будет выступать в роли пассивного ретранслятора. Ничего невозможного в организации такой "лунной" радиолинии нет. В 60-х годах XX столетия "роль" пассивного ретранслятора "сыграла" другая звезда — Венера, которая расположена от Земли еще дальше, чем Луна. Правда, не нужно забывать, что до ближайшей нашей спутницы примерно 400000 км. Поэтому отраженные от нее радиоволны вернутся на Землю очень ослабленными и для их приема потребуются громадные чувствительные антенны. Да и передатчики наземных станций придется делать очень мощными. Немаловажно, что космический радиомост Земля-Луна-Земля может существовать лишь в те часы, когда Луна видна на Земле.
…"Бип… бип… бип". Эти сигналы услышал 4 октября 1957 г. весь мир. Наступила эра освоения космоса. Совсем небольшой срок отделяет нас от этой даты, а на космические орбиты уже запущены тысячи искусственных спутников, исправно служащих человеку. Они помогают предсказывать погоду, разведывать недра, составлять подробные карты Земли, осуществлять навигацию самолетов и кораблей и т. д.
Еще задолго до начала космической эры, в 1945 г., английский писатель-фантаст Артур Кларк описал в одном из своих произведений систему связи через космос с помощью искусственного спутника Земли, неподвижно висящего над экватором на высоте 35 880 км и отражающего радиоволны.
Не прошло и полутора десятков лет, как научное предвидение фантаста блестяще осуществилось. В конце 50-х годов сотрудник американской фирмы "Bell Laboratories" Джон Пирс предложил установить на первом англо-американском спутнике "Эхо-1" пассивный ретранслятор (отражатель) в виде тонкого пластмассового шара с алюминиевым покрытием диаметром 30 м и массой 200 кг. Такой шар надувается от баллона со сжатым газом после вывода спутника на орбиту. Просуществовал он недолго, сгорев в верхних слоях атмосферы.
Какие только идеи создания космического радиомоста с тех пор не высказывались? Предлагалось, например, выбрасывать из контейнера искусственного спутника Земли на высоте 4 тыс. км множество металлических иголок для создания из них отражающих поясов. Другая идея состояла в распылении из контейнера ракеты на высоте в несколько сотен километров облака металлических частиц. Однако идеи пассивной ретрансляции сигнала космическими объектами до сих пор не нашли широкого применения.
Советские ученые предложили иной путь развития спутниковых линий связи. Они создали первый в мире космический мост с использованием на спутнике активного ретранслятора.
Так, 23 апреля 1965 г. в СССР был запущен искусственный спутник Земли "Молния-1", на борту которого находилась приемопередающая ретрансляционная станция. В таком спутнике радиолуч, посланный с Земли, принимается антенной, усиливается, затем "меняет" длину волны и на этой новой длине излучается той же самой антенной в направлении Земли.
Вы обратили внимание, что спутниковая линия связи по существу схожа с радиорелейной? Отличие, пожалуй, лишь в том, что на ней имеется только одна промежуточная станция и поднята она высоко над Землей. На спутниковой линии тоже организуют несколько радиостволов, по каждому из которых цифровая информация переносится с огромной скоростью — десятки и сотни мегабит в секунду.
Вдумайтесь, читатель, биты, несущие людям телевизионное изображение, газетную полосу, телеграфное сообщение, телеграмму, данные от ЭВМ, для того чтобы быстрее и надежнее доставить эту информацию нам, совершают сначала путешествие… в космос.
Давайте и мы с вами совершим небольшую "прогулку" по космическому радиомосту. Начнем с космической станции. Она находится на спутнике. Связной спутник — это, как правило, цилиндрический герметичный корпус с несколькими антеннами. Так, на советском спутнике связи "Молния-1" установлены две антенны (одна из них резервная), а на международном спутнике связи "Интелсат-4" — целое антенное хозяйство из шести антенн. Раскрываются они после вывода спутника на орбиту по команде бортового вычислительного комплекса или по команде с Земли. Вместе с антеннами раскрываются панели солнечных батарей, питающих аппаратуру космической станции. (На некоторых зарубежных спутниках солнечные батареи представляют собой огромное число маленьких зеркал, буквально "обклеивающих" весь корпус.)
Как навести антенну спутника на Землю? Процедура непростая. Вот как это происходит на спутнике типа "Молния". Когда спутник выведен на орбиту, специальные двигательные устройства останавливают его вращение. После этого оптический датчик, размещенный на днище спутника, управляет двигателями так, чтобы поймать в поле своего зрения Солнце. В результате операции "захвата" солнечные батареи оказываются ориентированными на Солнце. Но найденное положение нужно еще и сохранить. Тогда в работу вступает специальный маховик — гироскоп. Он и удерживает станцию в требуемом положении.
Осталось теперь навести на Землю антенны. Это делает другой датчик, которому поручено "следить" за Землей.
В процессе полета спутника неизбежно возникают отклонения от требуемого положения спутника относительно Солнца и Земли. Если же учесть, что необходимо периодически корректировать и саму орбиту спутника, то легко представить, какой сложный комплекс технических проблем приходится решать при организации космического моста.
Но это еще не все. Если поставить на спутнике антенну с очень узким лучом, например шириной 1° или даже 0,5°, то, дабы не "промахнуться" и попасть лучом в район приемной станции, нужно очень точно осуществлять ориентацию спутника на Землю и очень тщательно стабилизировать положение спутника. Чтобы понять сложность задачи, приведем только одну цифру. В этом случае стабилизация должна быть такой, при которой отклонение спутника от требуемого положения не превышало бы 0,1° за 7 лет! Между тем иметь узкий луч выгодно, так как чем он уже, тем более сконцентрирована энергия радиоволны вблизи земной станции и, стало быть, тем проще ее приемная антенна. На современных спутниках связи встречаются антенны, формирующие лучи шириной от 22° до 0,6°.
Вы еще не забыли, что мы с вами находимся на "экскурсии" на космической станции? Тогда давайте "заглянем" внутрь ее. Здесь расположена приемопередающая аппаратура. Электромагнитное колебание той частоты, которую излучала земная станция, от антенны по волноводному тракту передастся в приемник. Но что это? Приемник, оказывается, настроен совсем на другую частоту. Представьте, что будет, если у вашего домашнего радиоприемника установить ручку не на ту частоту, на которой вещает радиостанция, — вы просто ничего не услышите! В чем тут дело?
Случалось ли вам наблюдать, когда вы едете в поезде, как меняется звук свистка локомотива встречного поезда? Свисток слышится недолго, может быть 2–3 с, но и за это короткое время можно уловить, что сначала его звук высокий, а когда встречный локомотив, промелькнув мимо вашего вагона, удаляется от вас, звук становится низким. Изменению частоты колебания волн, когда наблюдатель и источник волн движутся либо навстречу друг другу, либо в разные стороны друг от друга, дали название эффект Доплера, по имени австрийского физика и астронома Христиана Доплера. Он первый открыл и объяснил это явление в 1842 г.
При перемещении спутника относительно земной станции также возникает эффект Доплера. Электромагнитные колебания, излучаемые земным передатчиком на частоте f0 воспринимаются на борту спутника как колебания с частотой f0 + Δf. Этот набег частоты Δf для спутника типа "Молния", работающего на частоте 4 ГГц, может составить через час после прохождения апогея 60 кГц. Вот потому-то приемник космической станции и настроен на другую частоту, отличающуюся на величину доплеровского сдвига.
Надо сказать, что эффект Доплера наблюдается только для тех спутников, которые имеют эллиптическую орбиту. Спутник "Молния-1", о котором вели речь, выведен как раз на такую орбиту. Траектория его движения вокруг Земли является эллипсом, верхняя точка (апогей) которого удалена от нашей планеты на расстояние около 40 тыс. км, а нижняя (перигей) — на расстояние около 500 км. Орбита спутника наклонена к плоскости экватора под углом 63,5°. Спутник, выведенный на такую орбиту, имеет период обращения 12 ч и, совершая за сутки два полных витка, появляется над одними и теми же районами Земли в одно и то же время. Скорость перемещения спутника максимальна в перигее и замедляется в апогее. С территории нашей страны он виден в течение 8 ч. Чтобы космический мост работал круглосуточно, нужно иметь три спутника, сменяющие друг друга.
Но можно сделать так, что спутник "повиснет" над Землей и будет оставаться все время неподвижным. Для этого нужно вывести его на орбиту, лежащую в плоскости экватора и удаленную от Земли на 35800 км (вспомните гениальное предвидение Артура Кларка!). Период обращения спутника на ней равен 24 ч. Вот почему спутник, вращающийся в том же направлении, что и Земля, будет казаться земному наблюдателю неподвижным. Такая орбита называется геостационарной, а спутник на ней — стационарным.
Теперь "спустимся" на Землю и завершим нашу "экскурсию" на земной станции. Земная станция — это прежде всего здание, где размещается приемопередающая аппаратура, и большая (диаметром 12–25 м) параболическая антенна, которая может одновременно передавать и принимать радиоволны (разных частот или длин, разумеется). Такая антенна очень чувствительна и может улавливать сигналы из космоса, ослабленные в сотни тысяч и даже миллионы раз. Устанавливается она на специальном опорно-поворотном устройстве. Любопытно, что масса антенны составляет 5,5 т, а вместе с опорно-поворотным устройством — 50 т. Потому здание земной станции делают обычно железобетонным.
На станции имеется устройство наведения антенны на спутник. Если он находится на геостационарной орбите, такое наведение делается только один раз. Если же спутник движется по эллиптической орбите, то необходимо еще и следить за его положением. Такое наведение и слежение осуществляются с помощью компьютеров.
Земные станции строят, как правило, за несколько десятков километров от города и соединяют их кабельной или радиорелейной линией с телецентрами, междугородными телефонными станциями, телеграфами, вычислительными центрами.
Необходимо иметь в виду, что "космический радиомост" вообще может быть только частью длинной магистрали, в которую на равных правах входят и кабели, и радиорелейные линии. Словом, биты, которые вы с нетерпением ожидаете, скажем, на экране своего дисплея, могут "мчаться" к вам, "ныряя" под землю, "выскакивая" на поверхность и "пересаживаясь" на радиолуч, "проносясь" в спутнике и вновь возвращаясь в подземную магистраль. И не забудьте, что все это делается в одно мгновенье! Что и говорить, лихие "наездники" эти биты.
Мирная профессия гиперболоида
"Первый удар луча пришелся по заводской трубе, — она заколебалась, надломилась посредине и упала… Почти сейчас же влево от трубы поднялся столб пара над крышей длинного здания, порозовел, перемешался с черным дымом. Еще левее стоял пятиэтажный корпус. Внезапно все его окна погасли. Сверху вниз, по всему фасаду, побежал огненный зигзаг. Еще и еще… Здание осело, рухнуло, его костяк закутался облаками дыма…
Теперь был виден весь завод, раскинувшийся на много километров. Половина зданий его пылала, как картонные домики. Внизу, у самого города, грибом поднимался серо-желтый дым. Луч гиперболоида бешено плясал среди этого разрушения, нащупывая самое главное — склады взрывчатых полуфабрикатов. Зарево разливалось на полнеба. Тучи дыма, желтые, бурые, серебристо-белые снопы искр взвивались выше гор…"
Вспомнили? Так в романе А.Н. Толстого "Гиперболоид инженера Гарина" описана чудовищная разрушительная сила светового луча. Возомнивший себя сверхчеловеком и мечтающий поставить на колени весь мир авантюрист Петр Гарин изобрел прибор — гиперболоид, концентрирующий свет в виде чрезвычайно тонкого, нерасходящегося луча невероятной мощности.
Стало чуть ли не традицией начинать рассказ об оптических квантовых генераторах — лазерах — с эпизодов из этого фантастического романа. Не удалось избежать этого соблазна и нам.
Тому есть веское объяснение. Роман А.Н. Толстого — предупреждение человечеству. Писатель показал, какими бедами могут обернуться новые открытия, если попадут в руки агрессивных сил. И хотя в наши дни также существует угроза применения лазерного оружия (например, в космосе), вот уже почти три десятилетия лучи лазера несут мирную службу людям. С его помощью делают тончайшие хирургические операции, ведут сварку металлов, измеряют расстояния, создают интегральные микросхемы, управляют химическими процессами, исследуют строение атома.
Расскажем еще об одной уникальной способности лазера. История того, как его "научили" передавать цифровую информацию.
Световой поток… Над его тайнами размышляли многие поколения ученых. Еще в III в. до н. э. замечательный математик и механик древней Греции Архимед пытался сконцентрировать поток солнечного света в тонкий луч. До наших дней дошла легенда о том, как во время осады Сиракуз римлянами он сжег неприятельский флот при помощи зажигательных зеркал. Английский физик, механик, астроном и математик Исаак Ньютон (1643–1727) обнаружил, что белый свет не так прост, как кажется. Он сложен и с помощью призмы разлагается на простые цвета. Голландский механик, физик и математик Христиан Гюйгенс (1629–1695) высказал предположение о волновом характере света, а английский физик Джеймс К. Максвелл (1831–1879) доказал, что световая волна — это электромагнитное колебание. В 1900 г. немецкий физик Макс Планк (1858–1947) выдвинул теорию, по которой свет излучается порциями — квантами. Это противоречило всем сложившимся представлениям о волновой природе электромагнитного излучения.
Так что же такое свет? Кванты или электромагнитные волны?
И то, и другое — таково мнение современной науки. Свет состоит из мельчайших частиц — фотонов. Впервые если не отдельные фотоны, то, во всяком случае, малые их группы (до 5–7 фотонов) удалось увидеть 1933 г. замечательному советскому физику академику С.И. Вавилову (1891–1951). Оказалось, что фотоны света обладают массами, правда, по нашим понятиям, более чем скромными. Так, масса "красного" фотона всего 3,16∙10-33 г, а фотон фиолетового цвета чуть увесистее — 5,15∙10-33 г. Как говорится, рукой не ощутишь.
Обладая свойствами частицы, свет в то же время является и волной, простирающейся в бесконечность. Для объяснения связи между электричеством, радиоволнами, светом и квантовой механикой предлагается, призвав на помощь воображение, проделать такой опыт: зажать в тиски пластмассовую линейку, потереть ее выступающий конец кошачьей шкуркой (чтобы вызвать электростатический заряд) и затем придавать ей колебательные движения, меняя частоту, т. е. число колебаний в секунду. Так как всякое колебательное движение электрического заряда порождает электромагнитные волны той же частоты, что и движение, то наша линейка станет излучателем электромагнитных волн.
Начнем с частоты колебаний 50 Гц. С такой частотой подается переменный ток в наши квартиры. Именно им питаются бытовые электроприборы. Пропуская частоты в сотни и тысячи герц, с которыми переменные токи переносят цифровую речь в городских и междугородных кабелях связи, поднимаемся сразу в диапазон частот до миллионов герц (мегагерц). Здесь мы попадаем в мир радиоволн. На них ведут передачи радиовещательные станции. При 100 МГц мы попадаем в область цифрового кабельного телевидения, а при 10000 МГц (10 ГГц) — в область радиолокации. В диапазоне 430–700 ГГц нас встречают цвета радуги: мы попадаем в область видимых электромагнитных волн, проще говоря — света. Увеличивая частоты колебаний, мы оказываемся в области рентгеновских и гамма-лучей. Это диапазоны частот 1018 и 1023—1024 Гц. Показатель степени — число нулей, которые надо поставить после единицы, чтобы получить частоту в герцах. За ними следуют самые высокочастотные из известных нам волн — космические лучи. Они приходят к нам из таинственных глубин Вселенной.
Как видите, и электричество, и радиоволны, и свет, и рентгеновское излучение, и гамма-частицы — все они одной природы. Только разные частоты отличают их и придают им "индивидуальность".
В СВЧ-генераторах радиорелейных и спутниковых линий передачи длины используемых электромагнитных волн составляют caнтиметры. В оптических же генераторах длины электромагнитных волн сократились с сантиметров до десятитысячных долей миллиметра. Частотам видимого света (4,3∙1014-7∙1014 Гц) соответствуют длины волн 0,7–0,43 мкм (1 микрометр — это одна миллионная доля метра).
Так зачем же нам нужно, чтобы "радиосигнал" засветился всеми цветами радуги? Почему потребовались электромагнитные волны все большей частоты? Ответы на эти вопросы довольно просты. Во-первых, чем выше частота электромагнитных колебаний, тем шире может быть рабочая полоса частот. Это, в свою очередь, позволяет передавать цифровую информацию с большей скоростью (по аналогии с автострадой: чем она шире, тем легче по ней гнать). Для иллюстрации этого факта напомним, что для передачи цифровой речи (скорость 64000 бит/с) необходимо, чтобы в рабочей полосе частот "укладывались" гармоники с частотами 32, 96, 160, 224 кГц…., а для передачи цифрового телевидения (скорость 104000000 бит/с) — гармоники с частотами, большими в тысячи раз: 52, 156, 260, 364 МГц…. Таким образом, для цифрового телевидения нужна ширина рабочей полосы, превышающая сотни мегагерц.
Если взять, к примеру, средневолновый радиовещательный диапазон, лежащий, как вы знаете, в пределах 0,3–3 МГц, то его ширина составляет всего 2,7 МГц. Ясно, что цифровое телевидение в нем передать не удается. В то же время для этого вполне подходят сантиметровые волны СВЧ-диапазона, в котором "разместились" радиорелейные и спутниковые линии передачи. Поскольку рабочая полоса частот световых волн намного шире, в ней легко расположить десятки и даже сотни программ цифрового телевидения.
Вторая причина, по которой предпочтительнее использовать световые волны, заключается в следующем. Угол расходимости пучка радиоволн пропорционален длине волны и обратно пропорционален размеру передающей антенны. Это означает, что для получения более узкого луча нужно уменьшать длину волны колебания. Вот несколько примеров. Радиолуч с длиной волны 3 см (частота 10 ГГц), сфокусированный антенной двухметрового диаметра, через 100 км разойдется настолько сильно, что его диаметр будет равен почти 3 км. Если принимать этот луч на трехметровую антенну, она "уловит" лишь 1/1000000 часть энергии передаваемого радиосигнала. Диаметр радиолуча с длиной волны 3 мм (частота 100 ГГц), излучаемого этой же передающей антенной, через 100 км будет значительно меньше — всего 300 м, и та же трехметровая приемная антенна получит уже 1/1 000 часть энергии. Для луча с длиной волны 2 мкм (частота 300 ТГц — инфракрасное излучение) достаточно использовать "оптическую" антенну (фокусирующую линзу) диаметром всего 10 см, чтобы через 100 км луч разошелся не более чем на 2 м.
Для дальней радиосвязи особенно выгодно пользоваться оптическими генераторами. Подсчитано, что для освещения с Земли на Луне площадки в 1 км" в оптическом диапазоне волн понадобится "прожектор" диаметром 20–30 см. В сантиметровом же диапазоне радиоволн, в котором работают радиорелейные и спутниковые линии связи, для этого потребуется антенна диаметром более 1 км.
Итак, использование светового луча сулит нам немалые выгоды: передачу цифр с огромной скоростью и на очень большие расстояния.
Но всякий ли луч света годится для этого? Давайте попробуем построить световой телеграф. На передающем конце включим последовательно телеграфный ключ, батарею питания и обычную электрическую лампочку. Чтобы лучи света от нее не рассеивались, установим зеркальный отражатель. Передатчик световой линии готов. Кладите руку на ключ и начинайте телеграфировать — лампочка будет вспыхивать в такт вашим нажатиям на ключ и импульсы света полетят в пространство. Роль приемника поручим выполнять уже знакомому нам фотоэлементу. Под воздействием импульсов света в его цепи будут возникать импульсы тока. Пропуская их через электромагнит, можно получить отпечатки точек и тире на бумажной ленте, как это делается в телеграфе Морзе. Световой телеграф работает!
К сожалению, дальность действия такого телеграфа ограничена расстоянием в несколько метров, в лучшем случае, в считанные десятки метров. Дело в том, что электрическая лампочка излучает свет во все стороны и никакая оптическая система не может собрать его в одну точку. Посмотрите на свет прожектора со стороны. Чем дальше уходит он от прожектора, тем больше расходятся лучи. Пучок света обязательно будет "размазан" в пространстве.
— Как же удалось получить тонкий и в то же время очень мощный луч в гиперболоиде, описанном в романе А.Н. Толстого? — спросит читатель.
Ну что же, вернемся к изобретению инженера Гарина:
«— Вот мой аппарат, — сказал он, ставя на стол два металлических ящика: один — узкий, в виде отрезка трубы, другой плоский, двенадцатигранный — втрое большего диаметра.
…Лучи, собираясь в фокусе зеркала, попадают на поверхность гиперболоида и отражаются от него математически параллельно, — иными словами, гиперболоид концентрирует все лучи в один луч, или в "лучевой шнур", любой толщины… При этом я могу довести его (практически) до толщины иглы… Вся задача — в нахождении компактных и чрезвычайно могучих источников лучевой энергии».
В романе А.Н. Толстого нет прямых сведений об используемых источниках лучевой энергии. Мы знаем только, что Петр Гарин сжигал в гиперболоиде какие-то таинственные угольные пирамидки. Достоверно можно сказать одно: Гарин пытался превратить тепловую энергию в энергию светового луча. Однако современная наука считает такой путь создания генераторов оптических колебаний бесперспективным. И дело не только в трудности фокусировки света, излучаемого нагретым телом. По законам оптики концентрация энергии в фокусе не может быть больше потока света, испускаемого источником с каждой единицы поверхности. Чтобы обычным лучом света пробить, например, пакет из десяти бритвенных лезвий, температура источника должна быть доведена до 10 млрд градусов. А ведь это в полтора миллиона раз горячее Солнца! Гиперболоид сжег бы сам себя. Нет, тепловой источник света, использованный Гариным, явно не годится для прибора, излучающего остронаправленный свет. Но фиаско научного предвидения не умоляет достоинств романа.
Вам не терпится узнать, на каком принципе основана работа лазера? Тогда приглашаем вас в очередное путешествие в необыкновенный и удивительный микромир элементарных частиц. Именно там, в его недрах, и рождается свет.
Атом… Само его имя переводится как "неделимый". Так считали очень долго. Пока в 1911 г. английский физик, член Лондонского королевского общества Эрнест Резерфорд (1871–1937) не перевернул все существовавшие до того времени представления об атоме. По Резерфорду, строение атома подобно Солнечной системе: в центре ядро — Солнце, вокруг по орбитам движутся электроны — планеты. Простейший пример — атом водорода. Вокруг его ядра вращается всего один электрон.
В 1913 г. другой великий ученый, датский физик Нильс Бор (1885–1962), используя модель атома Резерфорда и теорию квантового излучения света Планка, приоткрыл завесу над тайной излучения атомом порций света. Бор предположил, что в атоме электроны могут двигаться только по определенным орбитам, которые называют разрешенными. С орбиты на орбиту электрон переходит только скачком. Чем ближе орбита электрона к ядру, тем меньшей энергией обладает атом. Обычно атом находится в своем основном (или, говорят, невозбужденном) состоянии, когда электроны водорода расположены на своих ближних орбитах.
Представьте, что в атом водорода ударилась с разбега какая-то частица (например, пролетающий мимо свободный электрон). При ударе атому водорода будет сообщена дополнительная энергия, за счет которой электрон будет отброшен на одну из дальних орбит. Физики говорят, что в этом случае атом поглотил квант энергии и перешел в возбужденное состояние. Поскольку каждой из орбит электрона соответствует определенная энергия атома, то можно считать, что возбуждению атома соответствует переход его на новый энергетический уровень.
Атом не может долго находиться в возбужденном состоянии. Подобно тому, как брошенный вверх камень стремится упасть обратно на землю, так и попавший на другую орбиту электрон стремится вернуться на свою орбиту, "домой". И это вполне естественно.
И что будет с той энергией, которой электрон "зарядился" при ударе? Спускаясь обратно, он вынужден будет ее отдать. И он отдает ее — в виде порции света. Эту порцию (квант) света физики и называют фотоном.
Но свет — это электромагнитное колебание, которое характеризуется длиной волны, или частотой. На какой же длине волны будет происходить излучение нашего атома? Какие цвета радуги мы увидим?
Ответ на этот вопрос дает знаменитая формула Планка, согласно которой частота излучения зависит только от энергии фотона: f = 2,3∙1014ε. Здесь буквой ε (эпсилон) обозначена энергия, измеряемая в электрон вольтах (эВ). Например, для того чтобы атом испустил фотон красного цвета (частота 4,3∙1014 Гц), нужно предварительно возбудить его порцией (квантом) энергии в 1,97 эВ, а для испускания фотона фиолетового цвета (частота 7∙1014) атом должен поглотить сначала квант энергии в 2,05 эВ.
Заметим, что можно вообще "вырвать" электрон из атома, сообщив ему соответствующий квант энергии. Для атома водорода это 13,55 эВ.
Давайте заглянем мысленно внутрь раскаленного куска металла. Атомы в нем энергично колеблются и сталкиваются друг с другом и со свободными электронами. В результате соударений возникает много возбужденных атомов. В состоянии возбуждения атом находится миллионные и даже миллиардные доли секунды. Становясь нормальным, он испускает фотон. Такой самопроизвольный процесс испускания фотона физики называют спонтанным.
Родившийся фотон — материальная частица, сгусток энергии, несущийся с колоссальной скоростью. Он может покинуть раскаленное тело, но может и натолкнуться на нормальный невозбужденный атом. В этом случае произойдет поглощение фотона атомом. Фотон исчезает, зато атом, который поглотил его, оказывается возбужденным. Через миллионные доли секунды этот возбужденный атом выбросит фотон.
Но несущийся в нагретом веществе фотон может налететь и на возбужденный атом. Что же произойдет при этом? Пролетающий мимо возбужденного атома фотон заставит его превратиться в нормальный и выбросить свой фотон. Таким образом, вместо одного окажется два фотона. Обратите внимание, возбужденный атом реагирует не на любой пролетающий мимо фотон, а только на такой, подобный которому он может излучить. Следовательно, оба фотона — и пролегающий, и вновь рожденный, — как братья-близнецы, имеют одинаковые частоты колебаний (одинаковый цвет) и летят в одном направлении.
Если на их пути попадутся два возбужденных атома с такими же, как у фотонов, запасами энергии, то родятся еще два фотона. Теперь уже фотонов четыре — целая "семья". Они, в свою очередь, "выбьют" восемь фотонов, а эти восемь — шестнадцать и т. д. И все фотоны, подчеркнем это еще раз, имеют одинаковую частоту колебаний и направлены в одну сторону. Поток фотонов порождает монохроматический, т. е. одноцветный направленный свет.
Такое излучение фотонов называют вынужденным или индуцированным. Его впервые описал еще в 1917 г. великий ученый физик Альберт Эйнштейн (1879–1955). Но вся беда в том, что в нагретом теле выделить индуцированное излучение оказывается невозможным. И вот почему.
Напомним, что для каждого атома существуют свои "разрешенные" уровни энергии. Невозбужденный атом находится на основном, самом нижнем уровне. Атом, поглотивший порцию энергии, переходит на более высокий уровень. Однако "населенность" различных уровней, (т. е. число атомов, имеющих энергию данного уровня), далеко не одинаковая. Больше всего атомов на самом нижнем уровне, на следующем их меньше, дальше еще меньше.
Конечно, если повышать температуру тела, то населенность верхних уровней начинает быстро расти. Но все же на нижнем уровне атомов будет всегда больше. Это-то и является причиной того, что даже если произойдет индуцированное излучение, то родившиеся при этом фотоны будут немедленно поглощены невозбужденными атомами. Их постигнет та же судьба, что и фотоны, испущенные самопроизвольно. Так что сколько ни нагревай тело, создать на нем современный гиперболоид — лазер — не удастся.
Вывод ясен: нужно уметь каким-то образом искусственно "переселять" атомы с нижних уровней на верхние. Только в том случае, когда верхние уровни будут заселены достаточно плот но. а нижние — гораздо реже, индуцированное излучение будет преобладать над поглощением.
Однако реализовать эту идею практически удалось только в 60-е годы XX столетия, после того как появились труды советских ученых В.А. Фабриканта, Н.Г. Басова, А.М. Прохорова и американского ученого Ч. Таунса по разработке принципов молекулярных генераторов и усилителей. В 1964 г. за эти работы последние трое ученых были удостоены Нобелевской премии.
Первый лазер был создан в 1960 г. американским ученым Т. Мейманом — сотрудником фирмы "Radio corporation of America". В нем он использовал кристалл рубина. Когда-то рубин был очень редким камнем, теперь его получают искусственно в больших количествах. Искусственный рубин — это окись алюминия. Сам по себе кристалл прозрачен. Столь характерный для рубина красный цвет объясняется присутствием небольшого количества атомов хрома (0,05-0,5 %). Чем больше хрома, тем краснее кристалл. Это связано с тем, что атомы хрома поглощают ультрафиолетовый, зеленый и желтый свет, а красный и синий свет они не поглощают. Смесь последних двух излучений выходит из рубина и придает ему специфическую "рубиновую" окраску.
Источником индуцированного излучения в рубине являются именно атомы хрома. Они могут находиться на одном из трех разрешенных энергетических уровней. На самом нижнем располагаются невозбужденные атомы. Переселение атомов на верхние уровни осуществляется путем облучения рубина мощным потоком света от импульсной лампы накачки (похожей на ту, которая применяется в фотовспышке, но гораздо мощнее). Обычно она, как змея, обвивает рубиновый стержень. Этот поток света вторгается в глубь рубина. Но полезными в нем являются лишь зеленые лучи. Они возбуждают атомы хрома и забрасывают их сразу на третий уровень. Правда, там атомы хрома задерживаются недолго: через одну стомиллионную долю секунды они "спрыгивают" на второй уровень. Но фотонов при этом атомы хрома не излучают, а отдают небольшую часть энергии кристаллической решетке рубина.
Второй уровень — самый замечательный. На нем атомы могут находиться длительное время, не переходя в основное состояние. По обычным представлениям это время невелико — всего несколько тысячных долей секунды, но в "атомных" масштабах оно огромно и сродни человеческому долгожительству.
Конечно, атомы хрома будут "скатываться" спонтанно, самопроизвольно и с третьего, и со второго уровней на первый, но для этого им требуется значительно больше времени, чем перейти с третьего уровня на второй. Ясно, что число атомов, переходящих на второй уровень, будет во много раз больше числа атомов, возвращающихся "домой" на первый уровень.
Цель световой накачки состоит как раз в том, чтобы перенаселить второй уровень. Это тот трамплин, прыжки с которого приводят к индуцированному излучению. Физики называют этот уровень метастабильным.
Как происходит индуцированное излучение, вы знаете. Находящиеся на метастабильном уровне атомы хрома испускают спонтанные фотоны красного цвета. Когда спонтанный фотон идет в сторону от оси рубинового стержня, он покидает кристалл. Но если рождается фотон, идущий вдоль оси, он вызывает фотонную лавину. Число фотонов резко возрастает, как число камней в горном обвале.
Очевидно, чем длиннее путь, тем больше возбужденных атомов встретится на пути фотонной лавины и тем мощнее будет поток индуцированного света. Значит, нужно увеличить длину рубинового стержня! Но обычно поступают не так. В лазерах применяют сравнительно небольшие стержни — длиной 5-30 см и диаметром 3-20 мм. Длину же пробега луча внутри стержня увеличивают при помощи зеркал. Для этого торцы рубина тщательно полируют и покрывают серебром. Получается два отражающих зеркала, причем одно из них делают полупрозрачным для вывода потока света наружу. В результате лавина фотонов многократно проходит тело рубинового стержня, отражаясь от торцевых зеркал и наращивая свою мощь.
Заметим, что несмотря на малую примесь хрома его атомов в рубиновом кристалле очень много. Их количество исчисляется единицей с 19 нулями. Так что материал для образования фотонной лавины есть. Как только концентрация фотонов в лавине достигает некоторой критической степени, кристалл начинает генерировать свет и ослепительная рубиновая молния пронзает пространство.
Твердотельные лазеры в настоящее время распространены достаточно широко. Но не только твердое тело может давать лазерный свет. Древнегреческий философ Эмпедокл (490–430 гг. до н. э.) считал, что мир состоит из четырех стихий: земли, воды, воздуха и огня. Удивительно, как верно древние видели природу. Ведь эти четыре стихии, по существу, признаются и современной физикой. Нетрудно догадаться, что земле соответствует твердое состояние вещества, воде — жидкое, воздуху — газообразное. А что соответствует четвертой стихии — огню? Четвертое состояние вещества — это плазма.
Мы живем в плазменной Вселенной. Солнце — это гигантский шар горячей плазмы. Земля, начиная с высоты более 100 км, окружена слоем плазмы — ионосферой. Яркая линия, прочерчиваемая метеором на небе, — это свечение плазмы. Плазму порождает молния. Человек сам научился создавать плазму: в пламени газовой горелки, сопле ракеты, огненных буквах рекламных надписей, дуговых электропечах… Невозможно даже перечислить все примеры, где существует естественная или искусственно рожденная плазма.
"Работает" плазма и в лазерах. Плазма — "родная сестра" газа, так как получается из него путем нагрева или под воздействием электрического поля. Поэтому часто плазменные лазеры называют газовыми.
Мы с вами повседневно видим на улицах "неоновую рекламу" и любуемся ярко-красным цветом ее надписей. Это светится газ неон. Точнее, не газ. Под действием электрического поля в трубках, заполненных неоном, зажигается тлеющий разряд и образуется плазма. Ее свечение мы и наблюдаем.
Неон используется и в плазменных лазерах. Только не в чистом виде, а в смеси с другим газом — гелием, причем атомов гелия в 10 раз больше, чем атомов неона. Гелий попал в этот лазер не случайно. Именно в его взаимодействии с неоном состоит весь секрет возникновения индуцированного излучения.
#f.jpg_10 Любопытна история открытия гелия. В середине прошлого века в небольшом немецком городке жил изобретатель, профессор химии Роберт Бунзен (1811–1899). Одним из его изобретений была горелка, в которую снизу по трубке поступал газ. Стоило только поднести спичку к верхнему концу трубки, и над горелкой вспыхивало пламя высокой температуры. Сейчас эта горелка называется бунзеновской. Профессор вносил в пламя горелки различные вещества и по цвету пламени определял их химический состав. Но так как разные вещества могли окрасить пламя в один и тот же цвет, Бунзен уже собирался бросить эту затею. Выручила случайность. Как-то во время опыта к Бунзену зашел его коллега по университету профессор физики Густав Кирхгоф (1824–1887). Он принес с собой ящик с линзами и стеклянной призмой, который называл спектроскопом. Когда почтенные профессора решили пропустить окрашенное пламя через линзы и призму, они увидели на стенке ящика разноцветные линии. И каждое вещество, сгорая в пламени горелки, давало на экране только свои линии, не похожие на линии других веществ. Так был открыт спектральный анализ веществ. По календарю шел 1859 год.
Спустя почти десять лет, 18 августа 1868 г., в индийский городок Гунтар приехал французский астроном Жюль Жансен. Сюда съехались многие ученые наблюдать полное солнечное затмение. Жансен захватил с собой спектроскоп. Направив его на светило, он увидел разноцветные линии — спектр плазмы, которую извергает Солнце. Одна линия оказалась неузнаваемой: ни одно из известных веществ на Земле не имело ее в своем спектре. Значит, открыто новое вещество! На Земле оно неизвестно, поэтому назвали его гелием — "солнечным веществом" (по гречески "солнце" — "гелиос"). Через два месяца, ничего не зная об открытии Жансена, английский астроном Норман Локьер повторил его.
После этого открытия прошло еще 27 лет. И вот английский химик Уильям Рамзай обнаружил в минерале клевеита неизвестный газ. Поместив его в трубочку и подав высокое напряжение, Рамзай превратил газ в плазму и стал исследовать ее свет. Оказалось, что неизвестный газ был гелием. Налицо один из парадоксов науки — сначала газ был найден за 150 млн км от нашей планеты, а уже потом, спустя много лет, обнаружен на Земле, что называется "под носом".
Вернемся к гелий-неоновому лазеру. Он появился в 1961 г. Его автором был сотрудник Массачусетского технологического института в США А. Джаван. Лазер состоял из заполненной газовой смесью трубки длиной 80 см и диаметром 1,5 см. На концах трубки были установлены плоские зеркала (их назначение такое же, как в рубиновом лазере). С помощью электродов в трубке создавалось электрическое поле и зажигался тлеющий разряд.
В чем же отличие неоновой рекламы от лазера? В трубке рекламы только газ неон. Электроны, разогнанные силами электрического поля, ионизируют атомы неона, превращая его в светящуюся плазму, но они не в состоянии перевести эти атомы на самые верхние уровни энергии. А вот атомы гелия в трубке лазера легко возбуждаются электронами и перескакивают на второй уровень, самый высокий для них. Но не атомы гелия излучают индуцированный свет. Они сталкиваются с "обыкновенными" атомами неона и, отдавая им свою энергию, возбуждают их. Полученная от гелия энергия столь велика, что атом неона оказывается сразу на своем четвертом уровне, совпадающем со вторым уровнем атома гелия.
Помните, мы упомянули, что в трубке атомов гелия намного больше, чем атомов неона? Поэтому в результате "бомбардировки" почти все атомы неона окажутся на четвертом уровне. Как только этот "четвертый этаж" станет перенаселенным, любой пролегающий мимо фотон вызовет лавину подобных ему фотонов, и из торца трубки через полупрозрачное зеркало вырвется тонкий лазерный луч.
Если в затемненной комнате включить гелий-неоновый лазер, то на фоне полумрака его сочный красный луч будет смотреться необычайно эффектно. Он почти не расходится. Можно поставить на пути луча отражающие зеркала и заставить его проделать сложный и запутанный путь в пространстве комнаты. Возникнет очень красивое зрелище — комната, "перечеркнутая" в разных направлениях ярко-красными прямыми нитями.
"Обучать" лазеры передаче на расстояние информации стали вскоре после их изобретения. Первые лазерные линии связи появились в начале 60-х годов XX в. В нашей стране первая такая линия была построена в 1964 г. в Ленинграде. Затем стали появляться другие лазерные линии. Правда, использовались они для передачи обычных телефонных разговоров, а не двоичных цифр.
Москвичам хорошо знакомы такие уголки столицы, как Ленинские горы и Зубовская площадь. В 1966 г. между ними засветилась красная нить лазерного света. Связывала она две городские АТС, находящиеся на расстоянии 5 км друг от друга. В Армении есть гора Арагац. Она примечательна тем, что на ней расположилась знаменитая Бюраканская астрофизическая обсерватория. Ученые решили связать эту обсерваторию со столицей Армении городом Ереваном оптической линией связи с использованием гелий-неоновых лазеров. Длина этой линии составляла уже несколько десятков километров.
На другой горе — Мтацминде (это уже в Грузии) — в конце 1970 г. установили телевизионный передатчик (ретранслятор)с антенной, который должен был "обслуживать" грузинские селения, разбросанные в долинах. Телевизионные же программы для этого передатчика "доставлял" с Тбилисской телестудии лазерный луч.
Весьма перспективно использование лазерной линии связи для передачи на Землю из космоса или от одного космического аппарата к другому больших объемов информации.
Нам осталось познакомиться с тем, как "пересадить" биты информации на световой луч. В световом телеграфе (или семафоре, как его называют на кораблях) включается или выключается источник света. Прерывать генерацию в лазерных источниках не всегда удобно хотя бы потому, что на образование новой лавины фотонов требуется дополнительное время — "раскачка". Может оказаться, что при очень высоких скоростях передачи время раскачки превысит длительность светового импульса. Поэтому воздействовать на лазерный луч стараются тогда, когда он уже вырвался наружу.
Фотолюбителям знакомо устройство, пропускающее свет при внешнем воздействии на него. Это затвор фотоаппарата.
Нажмите на спуск, и затвор на мгновение откроется. В лазерах применяют не механические, а специальные электрооптические затворы. Один из них называется ячейкой Керра и представляет собой кювету с жидкостью — нитробензолом. Внутри кюветы расположены две обкладки конденсатора. Если менять на них напряжение, то прозрачность жидкости для лазерного луча будет меняться. Это объясняется тем, что, когда атомы нитробензола находятся в невозбужденном состоянии (на нижнем энергетическом уровне), они поглощают фотоны света. Если же перевести возможно большее число возбужденных атомов нитробензола на верхний уровень, то они уже не в состоянии будут поглощать фотоны.
В исходном состоянии ячейка Керра непрозрачна — оптический затвор закрыт. Приход очередного бита (импульса) изменяет напряжение на обкладках конденсатора ячейки так, что жидкость в ней становится прозрачной. Оптический затвор на время действия импульса оказывается открытым. Возникает световой импульс лазерного излучения.
В настоящее время используются и другие типы электрооптических затворов, например ячейка Поккельса с изменением плоскости поляризации световой волны. Добавим, что электрооптический затвор играет роль модулятора светового луча, поскольку он изменяет (модулирует) интенсивность потоков света.
Приемная антенна в лазерной линии связи — это сферическое зеркало диаметром 0,5–1 м, собирающее и концентрирующее световые лучи в пятно размером всего в несколько миллиметров. В фокусе зеркала помещают приемник светового излучения — фотоэлемент. Падающие на него импульсы света преобразуются в импульсы тока. Таким образом биты "снимаются" со светового луча и "пересаживаются" на свой привычный вид транспорта — электрический ток.
Надо сказать, что созданию надежных лазерных линий связи препятствует погода. Оказалось, что дождь, пыль, снег, туман, облачность и другие атмосферные явления резко ограничивают видимость, снижают качество передачи и могут вообще сорвать оптическую связь. Поскольку связь с помощью лазеров задумывалась сначала как беспроволочная оптическая связь, в которой луч лазера пускается в открытом пространстве, то многие стали сомневаться, что оптические линии связи найдут широкое применение в условиях земной атмосферы. Вот в космосе — это другое дело. Так бы, наверное, и случилось, если бы на сцену не выступили стеклянные "путепроводы", или световоды, которые надежно защищают луч от воздействия атмосферы. О них мы и поведем рассказ в следующей главе.
Стеклянный тоннель
Путешествие продолжается. Наш суперсовременный световой "экспресс", до отказа "набитый" необычными пассажирами — битами, бесшумно влетает в стеклянный тоннель. Но почему в тоннеле темно? Разве наш "экспресс" не озарит все вокруг лучистым светом? Ведь наблюдаем же мы, скажем, при подсветке фонтана, как свет переливается в его струях. И это довольно красивое зрелище. Так куда же пропал свет в световоде?
Все объясняется очень просто. По световоду распространяется… "невидимый" свет. Это может показаться несколько неожиданным, тем более что в рекламных журналах можно увидеть красочные фотографии, на которых свет эффектным веером льется из стеклянных нитей — оптических волокон. Но это так!
— А разве свет бывает невидимым? — спросите вы.
Если быть точным, то следует сказать, что светом называют электромагнитное излучение, воспринимаемое человеческим глазом. Длина волны этого излучения заключена, как вы знаете, в интервале 0,4–0,75 мкм. Но часто физики называют светом и невидимые электромагнитные волны, длины которых лежат далеко за пределами этого интервала: 0,01-340 мкм. Академик С.И. Вавилов указывал, что существует бесконечное разнообразие явлений, которые нам придется назвать световыми и которые невидимы. На память приходит роман Герберта Уэллса, и по аналогии с его героем мы можем сказать — свет-невидимка.
Сейчас в технике связи по оптическим волокнам широко используется длина волны 0,85 мкм, которая находится за пределами зримого диапазона. Чем это вызвано?
Чуть позднее мы ответим на данный вопрос, а пока взгляните на оконное стекло. Вам кажется, что ничего более прозрачного для света придумать нельзя? Однако если сделать из этого стекла тонкую нить и ввести в нее луч лазера (например, гелий-неонового, λ = 0,63 мкм), то окажется, что даже при достаточно короткой ее длине свет настолько ослабится, что не будет излучаться из противоположного торца нити. Значит, обычное стекло не так уж прозрачно, как хотелось бы, и луч в нем, "спотыкаясь", не доходит до финиша. Действительно, пачка из нескольких стекол кажется уже не прозрачной, а зеленой, а торец ее — вообще черным.
Прозрачность стекла зависит от наличия в нем примесей различных элементов. Чем меньше примесей, тем оно прозрачней. При изготовлении световодов из стекла нужно обеспечить очень высокую степень его очистки. Получить сверхчистое стекло удалось в 1970 г. Это сделал инженер американской фирмы "Corning glass company" по фамилии Капрон. Он и его сотрудники изготовили тонкую стеклянную нить очень высокой (по тем временам) степени прозрачности: в такой нити свет на расстоянии в 1 км ослаблялся "всего" в 100 раз.
Дальнейший прогресс в технологии получения сверхпрозрачных оптических волокон позволил уже в 1972–1973 гг. уменьшить ослабление света: теперь на таком же расстоянии он ослаблялся только в 3 раза. В лучших образцах современных световодов, изготовленных из сверхчистого кварцевого стекла, интенсивность света на длине 1 км уменьшается всего в 1,05 раза.
Вам интересно, как получают сверхчистое стекло? Это очень трудоемкий процесс. Чтобы иметь о нем хотя бы отдаленное представление, мы расскажем, как делается стекло из кварца.
Знаете ли вы, какие самые распространенные элементы в природе? Правильно, кислород. И еще кремний. В земной коре его 27,6 %. В свободном виде кремний в природе не встречается. Он входит в состав различных соединений, которые попадаются нам на каждом шагу: кварца, песчаника, глины, многих других горных пород и минералов. Свою историю кремний отсчитывает с 1811 г., когда французские химики Ж.Л. Гей-Люссак и Л.Ж. Тенар получили его в свободном виде. Однако они не описали кремний как элемент. Сделал это шведский химик И.Я. Берцелиус в 1823 г. Новый элемент назвали силицием (от латинского слова, обозначающего "кремень").
Кварц — это окисел кремния SiО2. При температуре выше 1710 °C кварц плавится и переходит в жидкое состояние. Можно было бы варить из кварца стекломассу и затем вытягивать из нее волокно. Однако в данном случае трудно избавиться от примесей и изготовить сверхчистое стекло. Поэтому поступают следующим образом. Сначала получают с помощью химической реакции "газообразный" кварц (или, еще говорят, его газовую фазу), в таком состоянии примесей в кварце почти нет. Затем путем охлаждения осаждают его в твердом виде на внешней или внутренней поверхности цилиндрического стержня. Этот метод так и называют — "химическое осаждение из газовой фазы".
Рассмотрим случай, когда осаждение кварца происходит на внешней поверхности стержня (его называют затравочным).
В горелку наподобие бунзеновской подают газообразную смесь: горючий газ — для создания высокотемпературного пламени; газ в виде соединения кремния с хлором (хлорид SiCl4) — как основной "держатель акций" кремния; кислород (О2) — для получения реакции окисления хлорида. В жарком пламени горелки (до 1 600 °C) кремний и кислород воссоединяются и рождаются мелкие порошкообразные частицы высокочистого кварцевого стекла (SiO2), а "отделившийся" в самостоятельный газ хлор (2Сl2) улетучивается через вытяжной колпак.
На расстоянии 15 см от горелки вращается и перемещается вдоль нее затравочный стержень, к поверхности которого и прилипают эти порошкообразные частицы. За 1 мин на стержне осаждается 0,5–1,0 г стекла. После того как толщина слоя стекла достигает нужного размера, процесс останавливают и стеклянную заготовку снимают с затравочного стержня. Получается стеклянная трубка, а нужна сплошная цилиндрическая заготовка. Как быть? Что делать дальше?
Следующая стадия процесса состоит в нагревании трубчатой заготовки пламенем приблизительно до 1900 °C. За счет сил поверхностного натяжения, возникающих в размягченной трубке, происходит "схлопывание" (есть такой специальный термин) трубчатого цилиндра в сплошной. Полученную стеклянную заготовку вытягивают в тонкое оптическое волокно. Например, из заготовки длиной 1 м и диаметром 1 см можно вытянуть стеклянную нить диаметром 100 мкм и длиной 10 км.
Конечно, описанный способ изготовления оптического волокна не единственный. И материалы для него используются разные, не только кварц. Мы ограничились описанием (да и то в самых общих чертах) процесса, разработанного американской фирмой "Coming glass company", чтобы читатель смог составить представление о технологии производства прозрачных стекол для световодов.
И все же как ни стараются сделать стекло сверхчистым, свет в нем ослабляется. Происходит это по двум причинам: свет рассеивается за пределами стеклянной нити и поглощается в ней молекулами и атомами "вредных" примесей, находящихся в стекле. Установлено, что рассеяние света зависит от длины волны передаваемого излучения. Чем короче длина волны, тем выше рассеяние света.
Помните, в нашем мысленном эксперименте мы заставляли линейку вибрировать и излучать электромагнитные колебания разных частот? Вы, вероятно, обратили внимание, что по мере увеличения частоты мы попадали сначала в область инфракрасного излучения, затем — видимого, а потом — ультрафиолетового и т. д. Так вот, рассеяние ультрафиолетовых лучей намного больше, чем видимых, а рассеяние последних в несколько раз выше, чем инфракрасных. Но вместе с тем инфракрасные лучи гораздо интенсивнее поглощаются веществом стекловолокна.
Если посмотреть на график ослабления света в стеклянном волокне, построенный для различных длин волн, то на нем можно увидеть так называемое "окно прозрачности", в котором ослабление сравнительно небольшое. Запомним это.
Следует сказать, что в технике связи ослабление измеряют обычно не в "разах", а в специальных единицах — "белах" (в честь изобретателя телефона А.Г. Белла). Чтобы получить "белы", нужно прологарифмировать "разы". Эти единицы особенно удобны, когда речь идет об ослаблении в огромное число раз. Например, если ослабление в "разах" составляет миллион, то в "белах" — это всего 6 (надеемся, вы не забыли, что lg 1000000 = 6). Ослаблению в 1000 раз соответствует 3 Б (снова напомним, что lg 1 000 = 3). Дальше все понятно: 100 раз — это 2 Б, 10 раз — 1 Б. Перевод в белы величины "3 раза" даст 0,5 Б, а величины "1,05 раза" — 0,02 Б. Для практики бел — слишком крупная единица, поэтому чаще используют более мелкую — децибел (1 Б = 10 дБ подобно тому, как 1 м = 10 дм). Децибелы многим знакомы: соответствие производственного или уличного шума санитарным нормам устанавливается в децибелах. Рев двигателя самолета на старте — 100 дБ, шумная улица — 90 дБ, громкий разговор — 70 дБ, шелест листьев — 10 дБ. Как видим, громкий разговор действует на уши с интенсивностью звука, в 1 000 раз меньшей, чем взлетающий лайнер.
Таким образом, и завоевания в области прогрессивных стеклотехнологий можно в полной мере оценивать децибелами (на сегодня ослабление света, или потери его интенсивности, в волокне составляет 0,2 дБ/км).
Однако взглянем еще раз на "окно прозрачности". Оно охватывает длины волн, расположенные в диапазоне ближнего инфракрасного излучения (0,85-1,8 мкм), т. е. в области "невидимого" света. Правда, внутри "окна" для некоторых излучений (0,95; 1,24; 1,39 мкм) наблюдаются всплески ослабления. Это вызвано тем, что колебания света "попадают в такт" (в резонанс) с колебаниями ионов "вредных" гидроксильных групп ОН — непрозрачной компоненты стекла, от которой, как правило, не удастся избавиться даже при изготовлении сверхчистых стекол. Возникает резонансное поглощение света ионами этих групп (вероятно, вам известна история о том, как полк солдат, дружно шагавших "в ногу" по мосту, "попал" в резонанс с его собственными колебаниями и был "поглощен" рухнувшим в реку мостом).
Теперь становится понятным, почему в световодах предпочитают иметь дело с волнами невидимого света, за исключением, конечно, тех волн, которые сильно поглощаются.
— Но ведь в этом случае свет, излучаемый лазером, должен быть также "невидимым", а не красным, как это было в рубиновом или гелий-неоновом лазере? — воскликнет нетерпеливый читатель, опережая наши намерения рассказать и об этом.
Разумеется, при организации световодной (или, по-другому, волоконно-оптической) линии связи от данных лазеров придется отказаться. Для такой линии больше подойдет лазер на кристалле граната (официальное его название — лазер на алюмоиттриевом гранате с присадкой неодима), излучающий лучи-невидимки с длиной волны 1,064 мкм. Работает гранатовый лазер так же, как и рубиновый. Впрочем, есть одно отличие: "лампой" накачки здесь служит обычный светодиод (выше как-то упоминалось о полупроводниковых диодах, излучающих свет), помещаемый в торце кристалла граната.
Однако от услуг твердотельных лазеров, а кроме гранатового известны несколько их типов, при проектировании волоконно-оптических линий связи (ВОЛС) предпочитают все же отказываться. Посудите сами, лазер с его большими габаритами выглядит этаким "динозавром" по сравнению с тоненькой нитью оптического волокна. Его трудно стыковать с волокном. Это напоминает ситуацию, когда с помощью 25-тонного самосвала пытаются засыпать маленькую канавку. Кроме того, твердотельные лазеры довольно неэкономичны: на каждый милливатт мощности излучения они требуют 2–3 мВт мощности от внешнего источника питания. Дорогое и неэкономичное, согласитесь, удовольствие. Наконец, чтобы "пересадить" биты на луч лазера, к нему надо "приделать" электрооптический затвор — модулятор.
Что же предлагают ученые взамен? Лазеры, но только полупроводниковые. Напомним, что в свое время в радиосвязи полупроводниками были вытеснены электронные лампы. Позже и в оптической связи настал черед твердотельных лазеров "уступить дорогу" более современным их собратьям.
Полупроводниковый лазер появился в 1970 г. Предложил его И. Хаяси — специалист американской фирмы "Bell telephone laboratories". Современная технология позволяет делать такие лазеры очень миниатюрными. Любопытен факт, когда однажды сотрудники одной лаборатории несколько часов подряд искали полупроводниковый лазер, который кто-то нечаянно уронил на пол. Найти иголку в стоге сена было намного легче. Не удивляйтесь! Выполненный в виде монолитного кристалла, он имел размеры (без корпуса), не превышающие 0,4 мм. Этот лазер можно соединять встык с волоконным световодом.
Существует еще один полупроводниковый прибор, который излучает свет. Мы несколько раз упоминали о нем. Это светодиод. Правда, в отличие от лазера он излучает не узконаправленный, а рассеянный свет (конечно, вы помните, что речь идет о "невидимом" свете с длинами волн 0,8–1,6 мкм, соответствующими ближнему инфракрасному излучению). Светодиод имеет малые размеры, долговечен, не требует больших расходов энергии на излучение, а самое главное — стоит очень дешево. Последнее обстоятельство, по-видимому, в значительной мере и предопределило широкое использование наряду с полупроводниковыми лазерами светодиодов. Что-что, а считать деньги в наше время умеют.
— Как же так, — воскликнет читатель, — несколько раньше авторы утверждали, что на основе обычной электрической лампочки невозможно построить линию оптического телеграфа: никакая оптическая система не сможет собрать ее свет в один луч, и здесь же предлагают использовать такой же источник рассеянного света, хотя и очень миниатюрный?
Дело в том, что ранее речь шла об атмосферной оптической связи, где свет, сильно поглощаясь, просто не доходил до светоприемника. Но иное дело, когда для передачи света используется световод. Тут важно, чтобы все излучение попадало в волокно и как можно меньше рассеивалось в нем при распространении. Остановимся на этом вопросе подробнее.
Известно, что скорость света v в прозрачном веществе меньше скорости света с = 300000 км/с в вакууме. Отношение с/v обозначили буквой n и назвали показателем преломления света в веществе. По разве можно сломать световой луч? Оказывается, можно. Опустите в стакан с водой ложку. На границе раздела между воздухом и водой ложка покажется вам сломанной. Это случилось потому, что на границе воздуха и воды световые лучи из-за разных скоростей распространения (в воде скорость в 1,33 раза меньше, чем в воздухе) преломились.
Итак, когда луч света попадает на границу раздела двух веществ с показа гелями преломления n1 = с/v1 и n2 = с/v2 (у воздуха этот показатель равен 1), возникают отраженный луч (помните, "угол падения равен углу отражения"?) и преломленный луч. Первый, отражаясь от границы, остается в веществе, а вот второй выходит за его пределы. Для вещества это — потери, рассеяние света.
В оптике существует формула, по которой, зная показатели преломления n1 и n2 веществ и угол θ падения (отражения) луча, можно найти, под каким углом θпр он преломляется:
Конечно, при передаче света по волокну хотелось бы, чтобы свет только отражался от границы и не рассеивался за пределы вещества в виде преломленных лучей. Это начинает происходить с того момента, когда угол θпр достигает 90°: наступает полное отражение. Приведенная выше формула позволяет вычислить, под каким углом луч должен при этом падать на границу раздела веществ. Например, волокно из стекла с показателем n1= 1,46, помещенное в воздухе (n2 = 1), будет полностью отражать те световые лучи, которые-попадают на его боковую поверхность под углом в θ > 45°.
Не следует забывать, что свет вводят в торец волокна. Здесь картина иная: на боковую поверхность волокна будет падать луч, преломленный его торцом. И падать он должен так, чтобы полностью отражаться от боковой поверхности. Возникает вопрос: под каким же углом надо вводить луч в волокно? Так вот, оказывается, что в стеклянных волокнах, показатель преломления которых равен или больше 1,46, все световые лучи, попадающие на торец, направляются вдоль волокна и рассеяния света не происходит. К ним относятся и волокна из кварцевого стекла, показатель преломления которого как раз равен 1,46.
Однако "голые" волокна в оптических кабелях не используются. И вот по какой причине. Для сохранения оптических свойств волокна в условиях эксплуатации необходимо защищать его поверхность от влаги и от истирания во время операций намотки и изготовления кабеля. Кроме того, голые стеклянные волокна при образовании на их поверхности микротрещин могут самопроизвольно обрываться, что связано с концентрацией механических напряжений на поверхности волокна. Поэтому стеклянную нить помещают внутрь защитного пластмассового покрытия. Чтобы не нарушить условия распространения световой волны в волокне (ведь пласт масса — это не воздух), его делают из двух слоев стекла: внутренний слой образует сердцевину волокна, а внешний слой является оболочкой. Показатель преломления оболочки делают ниже показателя преломления сердцевины, так что практически все световые лучи распространяются внутри сердцевины.
Сделать двухслойное волокно с различными показателями преломления не так уж сложно. Когда на затравочном стержне наращивают слой кварцевого стекла, в нужный момент (т. е. при получении его толщины, соответствующей сердцевине волокна) в газовую смесь, подаваемую в горелку, добавляют присадки, которые изменяют показатель преломления следующего слоя — оболочки. Таким путем можно получить и волокно, состоящее из нескольких слоев с различными показателями преломления.
Оптические волокна, у которых показатель преломления меняется скачком (ступенькой) при переходе от сердцевины к оболочке (или к оболочкам, если их несколько), назвали ступенчатыми.
Обычно показатели преломления сердцевины и оболочки различаются незначительно. Например, если показатель преломления сердцевины n1 = 1,465, то показатель преломления оболочки n2 = 1,460. Расчет по приведенной ранее формуле показывает, что в сердцевину войдут не все лучи, а только те из них, которые подходят к торцу под небольшим углом. Если к тому же сделать сердцевину очень тонкой, скажем 5-10 мкм (это тоньше человеческого волоса), то по ней сможет распространяться всего один луч или, говорят, одна мода. Весь же волоконный световод вместе с оболочкой имеет стандартный диаметр — 125 мкм. Называется он одномодовым и в него лучше направлять острый луч полупроводникового лазера, так как рассеянный поток света от светодиода ввести в тонкую сердцевину очень трудно.
На практике широко применяются также волокна с толстой сердцевиной (50–80 мкм), внешний их диаметр оставляют неизменным (125 мкм). С такими световодами могут уже без особых сложностей "работать" недорогие и изготавливаемые в массовом количестве светодиоды. В связи с тем что в толстую сердцевину волокна может войти (и будут распространяться по ней) сразу много лучей (или мод), а не один, как в одномодовом волокне, световод такой конструкции получил название многомодового.
У читателя может сложиться впечатление, что использовать многомодовое волокно гораздо выгоднее, чем одномодовое: и высокая точность изготовления сердцевины не требуется, и дорогостоящий источник света — полупроводниковый лазер — не нужен, и меньшие сложности возникают при соединении волокон друг с другом и волокна с источником (можно обойтись без специальных разъемов, изготовленных с очень высокой точностью и потому стоящих баснословные деньги). Однако это не так. У многомодовых светодиодов есть один существенный недостаток, сводящий на нет все их преимущества. Но прежде чем сказать о нем, посмотрим, как "вводятся" в световой поток биты информации.
Напомним, что модуляция света в открытых оптических линиях связи, использующих мощные лазеры, осуществлялась с помощью специальных электрооптических затворов — ячеек Керра или Поккельса. Преобразованные в импульсы биты управляли прозрачностью затвора: передается 0 — затвор закрыт; передается 1 — затвор открыт — и луч света вырывается в пространство.
Полупроводниковым источникам — лазеру и светодиоду — не нужен электрооптический затвор. Интенсивностью излучения здесь можно управлять с помощью тока, подводимого к полупроводнику. В лазерах управляющий ток называют током накачки (чтобы лазер '’засветился*', он должен превысить несколько сотен миллиампер), а в светодиодах — током возбуждения (мощность излучения последних плавно растете увеличением тока).
Теперь ясно: чтобы вызвать излучение источника, нужно в качестве управляющего тока использовать информационные импульсы. Есть импульс тока (передача 1) — "вспыхивает" импульс света; нет импульса тока (передача 0) — нет и излучения.
Импульсные вспышки света на приемном торце световода регистрируются знакомым нам "фотоглазом" — фотоэлементом. Только сделан он тоже из полупроводника и называют его фотодиодом.
А сейчас мы можем вернуться к недостатку многомодового волокна. Представьте, что по такому волокну передаются импульсы с очень высокой скоростью, например 1 Гбит/c (миллиард бит в секунду). Каждому импульсу соответствует очень короткая вспышка света длительностью 1 нс (миллиардная доля секунды — ее трудно себе даже представить!). Так должно быть. И так было бы, если бы вдоль волокна распространялся всего один луч. Но в многомодовом волокне распространяется много лучей: один из них проходит более короткий путь — вдоль оси сердцевины, а другие, которым приходится отражаться от боковой поверхности бесконечное число раз, — самый длинный путь. И эта разница в пути возрастает с увеличением длины волокна. За счет опоздавших к "выходу на сцену" лучей световой импульс "размажется" во времени. Сложится такая ситуация: уже давно пора передавать следующий импульс, а еще не "погасли" вспышки света от предыдущего. Наступит невообразимая мешанина. Чтобы этого не случилось, придется уменьшать скорость передачи до тех пор, пока вспышки света не будут четко отделены одна от другой интервалами времени.
Ограничение скорости передачи цифровой информации — вот основной недостаток многомодовых световодов, а роскоши "не торопиться" наш век себе позволить не может. Предельная скорость передачи по ним — 20 Мбит/с. Зато по одномодовым световодам можно "гнать" информацию со скоростью 100 Гбит/с, т. е. в 5 000 раз быстрее.
Для того чтобы реализовать достоинства многомодовых световодов и в то же время повысить скорость передачи информации по ним, ученые предложили делать эти световоды не ступенчатыми (т. е. не со скачкообразным изменением показателей преломления сердцевины и оболочки), а, как говорят специалисты, градиентными — с плавным изменением показателя преломления сердцевины от одного края до другого. Такой "маневр" позволяет в какой-то мере выровнять время хода различных лучей и уменьшить "размывание" (специалисты сказали бы: дисперсию) световых импульсов. Скорость передачи по таким волокнам возрастает по сравнению со ступенчатыми волокнами в 100 раз, т. е. до 2 Гбит/с. При изготовлении градиентных волокон нужно следить за тем, чтобы количество присадок в газообразной смеси горелки, "отвечающих" за показатель преломления, при осаждении слоя сердцевины непрерывно менялось по нужному закону.
Итак, вы познакомились с различными типами оптических волокон. Но волокна не применяются отдельно. Их объединяют в оптические кабели. Мы оставим в стороне подробности их многообразных конструкций — на эту тему много написано популярных книг и брошюр. Скажем лишь, что по внешнему виду они очень похожи на электрические кабели и могут содержать от одного до нескольких сотен волокон.
Оптические кабели ни в чем не уступают электрическим! Их можно прокладывать в земле и под водой, подвешивать на опорах, протягивать в кабельных канализациях. Они легко изгибаются — световоды не ломаются даже тогда, когда радиус изгиба очень мал, меньше 1 см; прочны на разрыв — само волокно из-за его однородности оказалось крепче стальной струны того же диаметра, да и в кабель вводятся специальные упрочняющие (армирующие) элементы; хорошо защищены от влаги и сырости — иначе бы стекло помутнело и изменило свои оптические свойства.
Оптические кабели во многом превосходят электрические! Они имеют большую пропускную способность. При одинаковой же пропускной способности они в 5–6 раз тоньше и в 10 раз легче электрических. Оптическим кабелям не страшны удары молний, их не разъедает коррозия; на них не влияют ни радиостанции, ни электропоезда, ни трамваи, ни метрополитен; в них не рождаются взаимные помехи. А сколько дефицитной меди экономят эти кабели! Между тем запасы кварцевого стекла в природе практически не ограничены. Без риска ошибиться предречем: за ними будущее.
Сейчас оптические кабели каждый день находят новые применения: связывают между собой города и континенты, соединяют АТС разных районов одного города, приходят в квартиры жителей. В скором времени любой из нас сможет передавать из своего дома не только речевые сообщения, но и компьютерные данные, и даже видеоизображения. Доступ к базам данных, электронным музеям и библиотекам, покупка товаров по кабельному телевидению, организация деловых телеконференций — все эти услуги помогут предоставить пользователю оптические кабели.
Ну, что же, наше небольшое путешествие в увлекательный мир электричества, радиоволн и света подошло к концу. Пусть наши неутомимые пассажиры — биты — совершают свои ближние и дальние "круизы" по медным рельсам, космическим радиомостам, стеклянным тоннелям, а мы с вами задержимся и побродим немного по станции, где формируются потоки этих неугомонных пассажиров. Здесь ведь тоже так много интересного!