Когда входишь в лабораторию, где синтезируют яды, чувствуешь себя не в своей тарелке. Вроде бы опасаться нечего — все надежно закупорено и укрыто от постороннего человека. И все равно движения твои скованны и напряженны. К этому обязывают черепа, скрещенные кости, восклицательные знаки после слов «яд», «смертельно», «опасно».

Не знаю почему, но думаю о совсем далеких вещах. Римские императоры и тайны мадридского двора, эпоха гугенотов и Медичи, иезуиты и Ришелье… В темных страницах истории яд не раз сыграл свою страшную роль. Перед его убийственной силой были равны все — короли, папы, министры, их слуги, враги и возлюбленные. Но за пиршественным столом были тоже равны все. Годами ждал убийца подходящего мгновенья, чтобы бросить отраву в кубок намеченной жертвы. «О, если был бы яд, которым можно потчевать всех, а убивать только избранных!..»

Яды, которые получают в современных лабораториях, преследуют гуманные цели — защиту человека, защиту домашних животных и растений от всяческих невзгод и напастей. Но действия их должны быть избирательными — убивать только намеченные жертвы.

Разное действие химических веществ на растения подмечено давно.

Рассыпая суперфосфат, каинит, цианамид кальция и другие удобрения на посевах зерновых, земледельцы подметили два взаимосвязанных явления. Одно — ожидаемое: хлеба крепнут. Другое — непредвиденное: сурепка, дикая редька и другие сорняки, осыпанные химикатами, вянут и даже гибнут.

Начались поиски селективных — избирательных — гербицидов. На чем они основывались? Прежде всего на внешней разнице между культурными и сорными растениями. Разная форма — это не просто разный внешний вид. Это различное отношение к окружающей среде. Каждая деталь играет свою определенную роль.

Форма и размер листа. Чем крупнее лист, тем больше яда попадет на его поверхность, тем больше шансов отравиться.

Восковой налет. Он защищает одни виды растений. У других его просто нет.

И так далее.

Морфологическая избирательность гербицидов основана на различиях внешнего строения растений — культурных и сорных.

Есть и другая избирательность — физиологическая. Одни гербициды поражают двудольные, широколиственные растения (к ним относится множество сорняков), не задевая злаков. Другие, например, убивают злаки однодольные, не повреждая двудольных.

Почему так происходит?

Совершим экскурсию на поле, только что обработанное гербицидом.

2,4-Д. Способ употребления первый

Присмотримся повнимательнее к тому, что происходит на поле после опрыскивания.

Вот пшеница. Ее листья, узкие, вытянутые вертикально вверх, почти не задеты гербицидом — капли химического раствора скатились вниз. Пленка воскового налета, покрывающая листья, также надежно защищает растение от яда. Растущая почка (точка роста) тоже прикрыта броней — она расположена внизу и защищена листовым влагалищем.

А вот голубая головка василька. Этот сорняк с лирическим названием чувствует себя много хуже. Широкие листочки его вытянуты горизонтально — отличная посадочная площадка для химического десанта. Они обильно смочены гербицидом. Препарат попал и на точку роста. Она находится на самом виду, на самом верху и подставлена, что называется, всем лихим ветрам.

Проходит всего несколько часов после обработки. На стеблях пшеницы никаких видимых изменений. Василек, лебеда, гречишка и другие сорняки уже сдают позиции: начинают вянуть листья, растениям, видимо, не хватает воды. Изгибаются верхушки стеблей. Проходит еще некоторое время: стебель становится твердым на ощупь, ломким, а листья желтеют и свертываются.

Через пару недель наступает гибель сорняков.

Чем же она вызвана? И к чему приводит вторжение гербицида в растительный организм? Физиологи тщательно проанализировали изменения обмена веществ после проникновения яда в ткани растения. Вот какая представилась им картина.

2,4-дихлорфеноксиуксусная кислота (сокращенно 2,4-Д) резко нарушает все жизненные процессы, протекающие в тканях, — дыхание, фотосинтез, транспирацию. Растение задыхается. Оно пытается бороться с удушьем: содержание крахмала в нем быстро падает — расщепляясь на простые сахара, он интенсивно расходуется при дыхании. Сахара в клетках становится все больше. Но вот крахмал полностью израсходован. Тогда начинает падать содержание сахара, который так необходим для поддержания сил организма. Наконец все внутренние ресурсы исчерпаны. Растение гибнет от углеводного голодания.

Объяснение вполне резонное. Так считали несколько лет назад. Так и учили студентов.

Но однажды профессор, поднявшийся на кафедру, чтобы прочитать очередную лекцию по физиологии растений, произнес:

— Все, что я рассказывал вам на прошлой неделе, забудьте. Я имею в виду проблему селективности гербицидов. На деле все обстоит по-иному.

Простейший опыт опрокинул гладко сформулированную теорию. Оказалось, что проницаемость тканей и у зерновых (однодольных) и у сорняков (двудольных) одинакова. Гербицид с легкостью проникает и в те и в другие растения. Очень быстро добирается он до точки роста и у злаков, как бы хорошо она ни была запрятана. Значит, углеводное голодание ни при чем?

Пораженные растения поместили под микроскоп. С первого взгляда ясно: сильно разрослись ткани стебля, содержащие сосудисто-волокнистые пучки. В местах вздутий стало много больше питательных веществ. В листьях — много меньше. Да, обмен веществ нарушился. Но из-за чего?

2,4-Д распространился по всему сорняку. И самые сильные изменения он вызвал в самом чувствительном месте — там, где происходит деление клеток, обеспечивающее рост стебля в толщину, — в камбиальном слое. Как только сюда попадает частица гербицида, клетки камбия начинают хаотично и стремительно делиться. Их становится все больше, и они все больше поглощают пищи, отнимая ее у других клеток. Камбий уродливо разрастается, закупоривает сосуды. Они лопаются! «Кровообращение» нарушено. Снабжение листьев водой и питательными веществами прекращается. Вздутия стебля и корня разрывают и покровные ткани — кору. Образовавшиеся трещины становятся очагами гниения. Наступает смерть…

Хорошо, но почему 2,4-Д не вызывает закупорки сосудов у ржи или пшеницы? Потому, что у злаков несколько другое анатомическое строение. У однодольных нет камбия. Стебель и корень растут в толщину не за счет деления, а благодаря увеличению объема уже существующих клеток. Нет деления — нет ненормального разрастания тканей. Хлеба могут развиваться спокойно. Ядохимикат никакого воздействия на них не оказал.

Так уж и никакого?

2,4-Д. Способ употребления второй

После обработки поля гербицидом в воздухе еще долго стоит легкий запах карболки. Хороший, здоровый запах. Он свидетельствует о том, что химические «санитары» выполнили свои обязанности. Дезинфекция произведена. Сорняки уничтожены. Яд сделал доброе дело. Он послужил, если так можно выразиться, лекарством для пшеничного поля. Впрочем, нужно ли здесь оговариваться? Яд приобретает целебную силу и в иных случаях (помните эмблему медиков — змеиное жало над круглой чашей?). Все зависит от дозы. Одно и то же вещество в сильной дозе — яд, в слабой — лекарство.

Не относится ли это к 2,4-Д? Относится. И в полной мере. Этот гербицид служит для хлебов лекарством. Отнюдь не в переносном смысле. Не потому только, что он избавляет посевы зерновых от сорняков.

2,4-Д оказывает на зерновые и прямое воздействие. Как стимулятор роста. Доказательства? Достаточно сослаться на эксперименты, проделанные Центральным ботаническим садом Сибирского отделения Академии наук. Но прежде сделаем…

…еще одно отступление. Можно ли убить одним выстрелом трех зайцев?

Вопрос вовсе не риторический. Можно и нужно, если речь идет о практике ведения современного сельского хозяйства. Тут частенько мы сталкиваемся с необходимостью поступать именно так.

Вспомним одного из наших неприятных знакомых — хлопковую тлю. Опаснейший враг! До ¾ урожая может она погубить, высасывая соки из растений. Мало того, тля эта выделяет липкий секрет, который склеивает волокно. На выделениях поселяются микроорганизмы, образуя «ширу». Такой хлопок трудно собирать и еще труднее очистить.

Когда этот вредитель появляется на посевах, в ход пускаются все доступные средства: карболинеум, анабазинсульфат, внутрирастительные фосфорорганические яды.

Но ведь мы знаем, откуда берется тля! Она начинает свое развитие на сорняках. Зеленый враг очень часто поднимает голову раньше, чем появляются всходы хлопчатника. И именно здесь вредитель занимает первый плацдарм.

Не дать насекомым перекочевать на посевы. Не защищаться, а наступать! Уничтожать врага в зародыше. Это значит: первый выстрел должен быть произведен по сорнякам — на обочинах полей и перелогах, на межах и краях оросителей. По сорнякам — по насекомым — по болезням. По трем зайцам сразу.

Триединая формула эта может быть расшифрована и другим образом. Ботаники — энтомологи — фитопатологи. Ученые трех узких направлений должны действовать вместе, разрабатывая единый комплекс защиты.

Идея комплекса в наше время все настойчивее заявляет о себе. Парадоксально, но факт: чем дальше развивается та или иная отрасль знания, чем уже становится специализация, чем глубже уходит ученый в проблемы той же энтомологии, тем острей он чувствует потребность сомкнуть свои усилия с ботаником или физиологом, с биохимиком или физиком. И все чаще биолог жалеет, что он, скажем, не физик, а энтомолог — что он не химик. Не здесь ли скрыто начало новых и новейших наук, возникающих на стыках старых? Биолог стал одновременно физиком — и родилась биофизика. Примеры можно продолжить. Принцип останется тот же. Отцом новейшей науки является новый — комплексный — подход к старым отраслям знания.

Идея комплекса диктуется и экономической необходимостью. Цифры, которые характеризуют затраты на открытие или синтез новых препаратов, уже приводились. Речь идет о миллионах. Затраты эти в конечном счете окупаются. И все же хочется попроще, подешевле, поэкономнее. Конечно, не стоит бросаться в крайности.

Препараты широкого спектра действия нередко оказываются с подвохом. Примеры? Да возьмите любой инсектицид. Одним концом он наносит удар по врагу, другим — по союзнику. Если, конечно, не соблюдать мер предосторожности. И даже если соблюдать.

Препараты избирательного действия, как правило, дороги. Они тоже имеют слишком узкую специализацию. Узкая сфера применения — малый объем производства. Малый объем — большая стоимость.

Вот почему так радуются химики, когда оказывается, что их новое детище осваивает сразу две или три профессии. Что показала история с меркаптофосом? Этот фосфорорганический яд при всей своей эффективности в борьбе с насекомыми опасен и для человека. Санитарные органы настояли на его замене. Нужно было найти менее вредный, менее токсичный препарат. Но разве химики отказались от идеи использовать фосфорорганические соединения? Нет! Что это? Желание идти по уже проторенной дорожке? Не совсем так.

Эти соединения называют препаратами внутрирастительного действия. Что это значит? Яд всасывается растением. Он входит в его ткани, клетки, смешивается с его соком. Листья, бутоны, стебель, корни, цветы — все становится ядовитым в растении.

Будучи ядом для насекомых, препарат в то же время становится лекарством для самого растения. В фосфорорганические соединения входят сера и фосфор, микроэлементы, необходимые для питания растения. Выходит, что, защищая хлопчатник от вредителей, мы одновременно подкармливаем его через листья. Простейший комплекс воздействия: борьба с насекомыми плюс удобрение. Результат? Урожай хлопка-сырца выше, чем там, где обработка была проведена препаратом, не включающим в свой состав фосфор.

Отказавшись поневоле от меркаптофоса, химики создали новый фосфорорганический препарат М-81. Значительно менее токсичный для человека, он не уступает своему предшественнику по инсектицидному действию.

Другой пример. Авиахимическая прополка. С того дня, как над Ходынским полем в Москве поднялся маленький самолет «Конек-Горбунок» и разбрызгал какую-то жидкость, прошло более сорока лет. Сегодня сельскохозяйственная авиация вошла в деревенские будни. На ее плечи, точнее на ее крылья, возложены борьба с вредителями, прополка полей, подкормка их удобрениями с воздуха — два десятка видов сельхозработ. Авиация позволяет провести все эти операции в сжатые сроки.

Опрыскивая виноградник из ранцевого аппарата рабочий способен за день обработать всего 0,3 гектара. Вертолет МИ-1 делает за то же время в 200 раз больше! Один самолет АН-2 может за день подкормить удобрениями 400 гектаров. А прополка зерновых? Она стала осуществимой только благодаря химической авиации. При этом очистка полей от сорняков облегчилась и ускорилась в десятки раз.

Сорок миллионов гектаров посевов, виноградников, садов, пастбищ! Таков масштаб авиахимработ в 1965 году. Себестоимость их примерно одинакова по сравнению с наземными операциями. Но не всегда. Иногда над одним и тем же местом летчику приходится пролететь и два, и три, и пять раз. Сорняки, удобрения, разные вредители… Обработка одного гектара с воздуха влетает тогда колхозу в копеечку.

Как удешевить ее? Нужен комплексный подход, совмещение различных операций…

Тут мы возвратимся к нашей основной теме.

В 1961 году самолеты Западно-Сибирского управления ГВФ обработали с воздуха примерно 80 тысяч гектаров. Подкормка посевов удобрениями и химическая прополка производились одновременно. Минус одна обработка — это экономия средств, времени, горючего. И — как совершенно отчетливо выяснилось — существенная экономия химикатов.

В качестве иллюстрации просмотрим результаты комплексной обработки посевов пшеницы. Контрольное необработанное поле. Урожай — 17 центнеров с га. Вес сырой массы сорняков — 100 единиц.

Поле, опрыснутое гербицидом (из расчета 1 килограмм 2,4-Д на гектар). Урожай — 19 центнеров с гектара. Вес сорняков — 32 единицы. Почему меньше сорняков — понятно: сработала химия. Почему больше урожай — тоже ясно: хлеба не были угнетены сорняками и получили лучшее развитие.

Третье поле. Комплексная обработка: гербицид (из того же расчета) плюс удобрение (17 килограммов сульфата аммония). Эффект наводит на новые мысли.

Урожай — 20 центнеров с гектара. Вес сырой массы сорняков — 23. Откуда прибавка в зерне — понятно: сработал сульфат аммония. Но почему стало меньше сорняков — неясно. Ведь доза гербицида не увеличена? Следовательно, ответ надо искать в совместном действии удобрения и 2,4-Д. Видимо, добавление туков в раствор увеличивает токсичность.

Это предположение было подтверждено десятками других опытов. Добавка любых питательных солей — фосфорных, калийных, азотных — к гербициду усиливает его воздействие на сорняки. А поскольку яд стал сильнее, дозу его можно уменьшить. Допустим, на 200–300 граммов. Вот и еще один неожиданный источник экономии. Гербициды пока еще дороги — килограмм пентахлорфенолята стоит 2600 рублей. Экономя на граммах, можно сберечь миллионы.

Еще более важна экономия самих гербицидов. Химическая промышленность выпускает 30 тысяч тонн препарата 2,4-Д. Если применить его только на хлебных полях, гербицида и тогда хватит всего на 30 миллионов гектаров. Это пятая часть пашни. Двадцать процентов экономии — это еще 6 миллионов гектаров прополотых посевов. При минимальной прибавке урожая и то лишних 120 миллионов пудов хлеба!

Исследуя материалы тех же комплексных обработок посевов, сибирские ученые пришли к убеждению, что 2,4-Д действует двояко. На сорняки как гербицид. На культурные растения как регулятор роста.

Об этом заставляло думать самое простое сравнение двух опытных делянок. Там, где сорняки пропололи руками, урожай вырос на 10 процентов. Там, где применили химическую прополку, — на 15! Выходило, что гербицид не простой «санитар», но и вполне квалифицированный «врач».

Эксперимент с меченым фосфором лишний раз подтвердил догадки. Кормовые бобы были опрыснуты раствором фосфорной соли. Листья стали поглощать радиоактивный изотоп фосфора (P32) с активностью 7996 импульсов в минуту. Стоило к раствору добавить гербицид — всего одну сотую процента 2,4-Д! — как активность поглощения выросла вдвое, до 15 883 импульсов в минуту.

Итак, второе лицо гербицида — стимулятор роста. У нас еще будет повод поговорить об этих его качествах. А пока вернемся к ядам.

«Химический топор», или снова 2,4-Д

Чудесная мотыга, подаренная химиками земледельцу, вызвала здоровую и не случайную зависть у лесников, животноводов и рыбаков. Люди этих профессий тоже сталкиваются с сорняками. Лесники — с сорными деревьями, животноводы — с сорными кустарниками на лугах и пастбищах, рыбаки — с сорной рыбой.

Загляните на вырубку, где был недавно сосновый лес, кедрач или ельник. Добрая половина молодых деревцев, поднявшихся возле пней, — ольха, осина, березка. Лиственные породы растут быстро, дружно. Хвойные возобновляются трудно, медленно. За десять лет кедр вырастает на каких-то полметра. Пока сосна укоренится и соберется с силами для быстрого роста, осина успевает стать взрослым деревом. Она затеняет хвойным дорогу к солнцу, глушит их и становится хозяйкой леса.

Деловая древесина уступает место сорной. Масштабы этого явления значительны. Каждый год площадь, занимаемая хвойными в нашей стране, уменьшается примерно на 2,5 миллиона гектаров. Даже если не рассчитывать на стихийное возобновление леса и засевать вырубки сосной или елью, все равно лиственные породы подбросят в хвойный лес своих крылатых диверсантов, свои семена.

Два с половиной миллиона гектаров — это 25 тысяч квадратных километров. Прополоть такой лес вручную — скажем, вырубить осину топором — немыслимое дело.

На помощь пришли арборициды (от слова «арбор» — «дерево»). Химики Ленинградского НИИ лесного хозяйства применили для «прополки» леса уже знакомое нам вещество — 2,4-Д. Способ употребления тоже знакомый — опрыскивание с самолета или обработка наземными аэрозольными генераторами.

Арборициды помогают наводить порядок не только в лесу. Область их действия может быть много шире. Пашня, луга и покосы, поймы северных рек — всюду, где дикие заросли кустарника вытесняют кормовые травы, самое место пройтись «химическим топором».

Возьмем, к примеру, Вологодщину. Здесь заросло кустами и малоценным лесом более миллиона гектаров кормовых угодий. В ольшанике не очень-то разойдется коса, здесь нет раздолья скоту, да и трава не та — чахлая, несъедобная. Наверное, реальной может быть такая картина. Над зарослями прошелся самолет-корчеватель. Минует неделя-другая, и в чащобе наступает осень, хотя на календаре пока что июль. Листья буреют, жухнут и осыпаются. Зато внизу, под оголенными деревьями, начинается весна. Поднимаются в рост кормовые травы: мятлик, овсяница, райграс, луговица. Пастбище возвращается в строй!

Чтобы лес и кустарник засохли на корню, нужны более внушительные дозы яда, чем для сорняков в поле. Но и 5 килограммов на гектар — это сравнительно немного. Против кустарников лучший результат дает другой препарат — 2, 4, 5-Т. Он уже испытан на площади 70 тысяч гектаров и неплохо зарекомендовал себя. Широкое применение химических «авиабомб» позволит быстро ввести в сельскохозяйственный оборот миллионы гектаров сенокосов, пастбищ и залежей.

И опять следует оговориться: «бомбометание» непременно должно быть прицельным! Под крылом самолета не только сорный кустарник. Там, внизу, — гнезда птиц, норы животных, полезные насекомые… Чтобы не задеть ненароком этих союзников земледельца, наука и создает «самонаводящиеся бомбы». Гербициды избирательного действия — сайфос, пропантид, карбин — настойчиво просятся на поля: ведь в конечном счете они обойдутся народному хозяйству дешевле, чем неразборчивые «фугасы», уничтожающие все живое.

Сорную траву с поля — вон!

Химическая прополка вносит буквально революцию в борьбу с сорняками.

Несмотря на сравнительно высокую еще стоимость, гербициды оказались очень экономичными со всех точек зрения.

Экономия времени прежде всего. Чтобы прополоть гектар льна вручную, требуется 20 и больше рабочих дней. Химическая прополка той же площади может быть осуществлена за 40–50 минут.

Экономия средств, во-вторых. Применение гербицида дикотекс на посевах льна обходится в 10–12 раз дешевле, чем ручная прополка сорняков.

Экономия труда, в-третьих. Препарат симазин, уничтожая сорные травы на кукурузных полях, сокращает затраты труда в 20–30 раз.

Но это не все преимущества гербицидов.

В большинстве случаев их применение приносит не только экономию, но даже прибыль. «Посеешь рубль — соберешь десять», говорят химики. Эта цифра средняя. В некоторых ситуациях рубль, затраченный на внесение гербицидов, приносит урожай дополнительной стоимостью в 200–300 рублей!

Особую ценность представляют препараты, которые применимы там, где ни человеческие руки, ни самая хитроумная агротехника не в состоянии бороться с зеленым врагом.

Повилика… Этот злостный сорняк-паразит резко снижает урожайность клевера, люцерны, сахарной свеклы. У повилики нет своих корней. Она впивается в стебель растения своими присосками и тянет из него соки. Выполоть ее нет никакой возможности.

Против повилики применяются гербициды контактного действия, допустим — нитрофен. Они обжигают листья растений, те желтеют и засыхают. Нитрофен не очень-то разборчив — от его ожогов страдают все растения подряд. Но есть одна тонкость в его действии. Он поражает листья, не трогая корневой системы. У повилики нет своих корней, и, когда засыхают ее листья, она погибает. Люцерна же быстро оправляется от ожогов и отрастает вновь.

Хлебные злаки тоже устойчивы к контактным гербицидам. Точка роста их в фазу кущения хорошо защищена. Даже если в результате ожога все листья пшеницы отомрут, растение переболеет и после некоторой задержки снова пойдет в рост.

Но мы все говорим о препаратах, которые защищают урожай хлебов. А как быть, если нужно защитить овощи или картофель, защитить от злаков, среди которых много сорных видов?

Злаки тоже могут быть уничтожены химическим путем.

Противозлаковые препараты сильнее всего действуют на корни растений и потому вносятся в почву. Они проникают в ткани злака и парализуют процесс деления клеток. Корешок пшеницы, встретившись в почве с раствором ИФК или другого химиката, перестает расти. Одна за другой останавливаются точки роста — и весь организм гибнет. Даже такой жизнеспособный сорняк, как пырей ползущий, не выдерживает натиска химии.

Значительно сложнее приходится земледельцу, когда посевы зерновых засоряются растениями из того же семейства. Применить в посевах пшеницы противозлаковый препарат — значит сгубить урожай.

Освоение целины идет уже более десяти лет. Из года в год на одних и тех же площадях сеется пшеница по пшенице. Из года в год на целинных полях все меньше урожайность хлебов. Почему? Истощение почвы? Не только и не столько.

Вглядимся внимательно в желтеющую ниву где-нибудь в Карагандинской области. Посмотрите, сколько здесь сорняков. Откуда они? Их вывел человек, отобрав самые жизнеспособные вредные растения. Ведя одной рукой борьбу с сорняками, другой рукой земледелец совершает бессознательную и неизбежную селекцию. Вот в поле идет авиахимобработка. Ее цель — уничтожить двудольные, чтобы дать простор злакам. Пшеница — злак. Но злак и овсюг. И заодно с пшеницей он тоже получает простор. На одном квадратном метре пшеничного поля в совхозе «Рассвет» я насчитал до тысячи сорняков. Овсюг настолько заполонил посевы, что урожай зерна составил чуть больше 4 центнеров с гектара.

Казалось, химия зашла в тупик. Применять против злаков противозлаковые препараты? Не бессмыслица ли? Нет. Тому пример действие карбина. Получить его было нелегко — 4 тысячи образцов химических соединений типа карбаматов были синтезированы и испытаны. И только один был допущен к эксперименту на больших площадях.

Карбин действует системно. Проникая в ткань растения, он угнетает его развитие. Карбин убивает и овсюг и пшеницу. Но у каждого из этих злаков своя смертельная доза. Овсюг начинает страдать, если внести на гектар всего 200 граммов карбина. При дозе в 500 граммов он гибнет. А пшеница не так чувствительна к этому яду. Она угнетается только при дозе выше чем полкилограмма на гектар.

Опыты двух последних лет в Целинном крае показали, что карбин может сберечь миллионы пудов зерна.

Использование гербицида на сотнях тысяч гектаров дало настолько большой агротехнический и экономический эффект, что необходимо позаботиться о применении их на миллионах и десятках миллионов гектаров, на посевах не только технических, но и продовольственных и кормовых культур. Это не только гарантирует высокий и устойчивый урожай, но и резко повысит производительность труда, высвободит колоссальное количество рабочей силы для других работ.

Наш брат журналист любит писать о гербицидах как о волшебных помощниках земледельца. Так оно, конечно, и есть. Не нужно забывать только, что эти волшебники — творение мозга и рук человеческих, что на пути их создания еще много «белых пятен».

Биологам, работникам сельскохозяйственной науки предстоит исследовать и понять, как и во что превращаются эти соединения в организме растений и как они влияют в дальнейшем на обмен веществ.

В проблеме гербицидного действия еще многое неясно, не решено и просто неизвестно. Это признают сами ученые. Академик Н. М. Сисакян пишет, например:

«Пока еще в большинстве случаев люди ищут новые регуляторы роста эмпирически, отбирая лишь на основании опытов химические соединения, которые оказывают влияние на рост и развитие растений. До сих пор нет удовлетворительного объяснения природы действия гербицида на растение. Неизвестно даже — общий ли механизм действия всех гербицидов или каждый из них действует по-своему».

В арсенале земледельцев появился недавно новый страж урожая — симазин. Он применяется для химической прополки кукурузы. Внесенный в почву до посева, он беспощадно уничтожает все живое, не трогая только кукурузы. Секрет иммунитета кукурузы скрыт в ней самой. В ее тканях содержится комплекс ферментов, разрушающих ядохимикат и обезвреживающих его действие. Ферменты — новое слово в нашем рассказе. Подобный разговор о них мы отложим до более удобного случая. А пока — об иммунитете и о болезнях растений.

«…Что значит золотуха в сравнении с тем голодом, который в 1847 году постиг в результате болезни картофеля Ирландию и который свел в могилу миллион питающихся исключительно — или почти исключительно — картофелем ирландцев, а два миллиона заставил эмигрировать за океан!» Я привожу эту цитату из «Диалектики природы» Ф. Энгельса для того, чтобы читатель представил себе, какое важное значение имеет организация борьбы с болезнями сельскохозяйственных культур.