Лет пятнадцать назад москвичи были поражены странным зрелищем. По Садовому кольцу двигалась колонна автомашин с необычным грузом. В каждом кузове стояло дерево. Дело происходило ранней весной. Кроны были без листьев. Из полуосыпавшихся комьев земли рваными клубками торчали корни. Машины сгружали липы возле ям, вырытых вдоль улицы Горького, вдоль Охотного ряда.

Прохожие останавливались и недоверчиво смотрели, как рабочие опускали дерево в яму, засыпали землей и поливали из леек, хотя было достаточно сыро и моросил дождь. Деревья были взрослые, и никто не верил, что они приживутся.

Но вопреки всем сомнениям, вопреки распространенному убеждению, что сорокалетние деревья пересаживать бесполезно, липы укоренились на московских улицах. Они и по сей день украшают их своей зеленью.

Почему корень растет вниз, а стебель вверх?

В самом деле: почему? Чарлз Дарвин, длительное время наблюдавший за развитием первых листочков злаковых растений, попытался дать ответ на этот вопрос в своей работе «Способность растений к движениям». Великий ученый поставил серию довольно простых опытов. Если свет падал на верхушку злака с одной стороны — она изгибалась. Если верхушку срезать, то листочки не реагируют на световые раздражения. Результаты исследований заставили Дарвина предположить, что в верхней части проростка есть какое-то вещество, на которое действует свет и которое стимулирует рост клеток.

Примерно в то же время, когда Дарвин поделился с научным миром своей догадкой, химики открыли бета-индолилуксусную кислоту. На новое химическое вещество, найденное в продуктах гниения мяса, почти не обратили внимания. А вот дарвиновская идея о передаче раздражения по растительным тканям вызвала яростную полемику в науке. Физиологи растений от Визнера до Тимирязева встретили эту идею в штыки.

Через тридцать лет после Дарвина серию блестящих экспериментов поставил академик Н. Г. Холодный. Он доказал, что стебель тянется вверх, а корень растет вниз под действием одного и того же вещества. Одновременно с голландцем Ф. Вентом советский ученый разработал гормональную теорию. Она гласила, что в процессах роста и в движениях растений большую роль играют физиологически активные вещества. Они были названы фитогормонами — по аналогии с гормонами роста, которое были известны науке из физиологии животных.

Прошел еще десяток лет, пока химик Кёгль, тоже голландец, сумел выделить эти удивительные вещества и распознать их структуру. В солоде Кёгль нашел вещество, названное им ауксином (от греческого «ауксо» — «расти»). А из культур плесневых грибов он извлек гетероауксин, который при ближайшем рассмотрении оказался… бета-индолилуксусной кислотой.

Поразительная способность этих веществ ускорять рост растений была по достоинству оценена.

Экспериментаторы получили в свои руки доступный синтетический препарат, который раньше с таким трудом добывался из сока живых растений. В короткий срок ауксины были испытаны в самых различных опытах и ситуациях. Они оказались не только стимуляторами роста. Находясь в точках роста стеблей в концентрации до миллиграмма на литр воды, они резко увеличивали скорость роста молодых стеблей. При концентрации в 100 раз меньшей они стимулировали развитие корней.

Механизм действия стимуляторов был таков. Попав в растущие клетки, они вызывали туда приток воды и питательных веществ. Ауксины стимулировали растяжение клеток, дыхание и обмен веществ в них, ускоряя движение протоплазмы и поступление в точки роста солей, сахаров.

Открытие гетероауксина в ряду давно известных соединений соблазнило химиков поискать стимуляторы среди других органических кислот. Один за другим синтезировались новые химические препараты. Бета-индолилмасляная кислота, альфа-нефтилуксусная и хорошо знакомая нам 2,4-Д. Эти вещества по своей физиологической активности нисколько не уступали ауксинам, найденным в природе.

Обнаружились и новые свойства стимуляторов. В больших дозах они становились не ускорителями, а тормозами жизненных процессов.

Действовали разные синтетические стимуляторы неодинаково. Одни ускоряли рост корней, другие — развитие семян и клубней, третьи — рост зеленой массы, четвертые — созревание плодов. Пятые даже увеличивали урожай.

И что особенно радовало, они требовались для нужд науки и практики в ничтожных количествах. Вымочив семена свеклы в растворе гетероауксина из расчета 2 грамма на гектар (всего 2 грамма!), земледелец получал урожай процентов на 10 побольше обычного. Повышалось и содержание сахара в корнях примерно на полпроцента. Прибавка будто бы небольшая. Зато ведь она получалась почти без всяких затрат!

Собрать дополнительный урожай, не внося удобрений, без лишних хлопот было весьма заманчиво.

Выяснялись все новые стороны механизма стимуляции. Такой препарат, как ТУ, вызывал образование бессемянных плодов. Разве плохо разрезать арбуз и найти там только мякоть, без единой косточки?

Стимуляторы предупреждали преждевременное опадение плодов в садах, задерживали прорастание клубней картофеля в хранилищах.

Выросшие, но еще не созревшие дыни, лимоны, апельсины, хурма созревали в присутствии газа этилена за 4–5 суток вместо обычных двадцати.

Новые вещества были взяты на вооружение и лесоводами. Они были использованы для ускорения процесса зарастания больших ран на ветвях и стволах деревьев. Раны эти не редкость. Их вызывают бактериальные и грибные болезни, наносят грызуны и сами лесоводы при обрезке старых сучьев.

Самый разительный эффект достигался при пересадке растений, деревьев, роз, кустарников. Стимуляторы применяются при черенковании вишни, сливы, смородины, маслины, лимона, винограда, жасмина. С их помощью успешно размножаются черенками сосна, дуб, клен.

Мне давно хотелось посадить в Москве сибирский кедр. Однажды летом я привез из Башкирии несколько деревцев. Время было выбрано самое неудачное — июль. Четырехлетние саженцы я высадил в грунт, не очень надеясь на успешный исход дела. Кедры действительно долго болели, хвоя желтела и понемногу осыпалась. Надо мною сжалился знакомый химик, дал мне четверть коричневой таблетки и сказал:

— Разведешь на ведро воды и польешь кедры. А потом посмотрим…

Я смотрю на эти кедры уже десять лет. Два с половиной метра высоты — это не так плохо, учитывая, что кедр дает первое время очень небольшой прирост — 10–20 сантиметров в год.

Палочка-погонялочка

Современная физиология растений все шире вовлекает в свой обиход физиологически активные препараты биологического и химического происхождения. Одни стимулируют жизнедеятельность, ускоряют рост живых существ и растений. Другие, напротив, ослабляют или тормозят биологические процессы. Третьи нарушают обмен настолько глубоко, что происходят необратимые явления и гибель организма.

Все эти вещества называют иногда стимуляторами. «Стимул» — слово латинское. Так называлась в древности палка, которой пастух подгонял скот. Стимуляторы — это своеобразные погонщики растений. Но у каждого пастуха свое стадо, своя узкая специальность. Ауксины подгоняют рост растений. Этилен ускоряет созревание плодов. Дефолианты вызывают листопад. Ферменты регулируют тысячи различных реакций в процессе обмена веществ. Одни стимуляторы будят растения, другие — укладывают их спать.

Существует одна общая закономерность в их действии. Как бы они ни вошли в жизнь растений — извне или изнутри, они не могут не учитывать внутренних ресурсов организма.

Палочка пастуха указывает стаду дорогу, торопит овец туда, где вдоволь травы. Сама она — эта палочка — не может заменить скоту корм.

Стимуляторы только усиливают жизнедеятельность организма. Они не заменяют ему питательных веществ. Ни ауксин, ни другие ростовые вещества не могут стать пищей. Но они могут помочь растению лучше усваивать удобрения, а животному — корм. Подстегнутая кнутом овца бежит в указанную пастухом сторону. Там больше травы — этот толчок пойдет ей на пользу. Ауксин тоже подталкивает растение, заставляя его интенсивнее питаться.

Если пастух собьется с верной дороги, палочка-погонялочка вряд ли выручит и стадо и его самого. Придется поголодать в поисках хорошего пастбища. Правильный севооборот и разумная агротехника — вот та надежная дорога, с которой не должен сбиваться земледелец.

Миллион поклонов

Хлопок царствует в республиках Средней Азии безраздельно. Это неумолимый тиран в пору уборки. Города и кишлаки пустеют, караваны автобусов и грузовиков отвозят на плантации добровольцев — мужчин, женщин и даже детей.

Каждое утро жители Ташкента, Душанбе, Ашхабада, Фрунзе открывают газету, чтобы прежде всего прочитать оперативную сводку с хлопкового фронта.

Сборщики подвязывают себе на шею канар — фартук и углубляются в поле, срывая с каждого куста несколько белоснежных клочков, выглянувших из раскрытых коробочек. Когда канар наполнится хлопком, его относят на весы. Опытный дехканин может собрать до 100 килограммов сырца в день. Горожане умудряются сдавать по 60–70 килограммов. В конце дня после этой работы непривыкший человек чувствует себя разбитым.

Композитор В. П. Соловьев-Седой побывал как-то в хорезмском колхозе. После шефского концерта он решил выступить в несколько необычном амплуа. Повязав канар, именитый песенник несколько часов, не разгибая спины, трудился на хлопковом поле. Десять килограммов сырца отнес он в конце концов на весы. Столичной знаменитости и в этой обстановке не удалось избежать интервью. Отирая соленый пот, композитор сказал: «Теперь я понимаю, каково женщине на хлопке. Понимаю, почему узбечка так упрямо стремится за руль хлопкоуборочного комбайна!»

Да, хлопок требует великих затрат человеческих сил. И лежит эта работа в основном на плечах женщин.

Опытные сборщицы собирают за сезон до 20 тонн сырца. Тонны складываются из граммов: каждый пушок хлопка в одной коробочке весит 3–3,5 грамма. Шесть-семь миллионов коробочек нужно опорожнить, чтобы набрать 20 тонн. Миллион раз женщине приходится нагибаться и разгибаться, присаживаться на корточки и вставать возле хлопкового куста. Десятки тысяч раз ей необходимо отнести на себе немалый груз на расстояние, которое к концу уборки достигает сотен километров.

Но, пожалуй, самое сложное заключается в том, что урожай нельзя собрать за один раз. Я вспоминаю время, когда пытались внедрить эту культуру у нас на Кубани. Хлопок был посеян по всем правилам агротехники. Обработан и полит. Несмотря на относительную прохладу климата, поздней осенью раскрылись белые коробочки. Казаки дружно вышли на уборку. Урожай — а он был весьма скуден — был собран и сдан. Все с облегчением вздохнули. С новой культурой было слишком много хлопот, и занимались ею с неохотой, под нажимом сверху. Наступил декабрь. Однажды утром, после трех теплых ясных дней, поле снова покрылось белоснежными хлопьями. То был не снег, а снова хлопок. Второй урожай собрали. Подсчитали казаки, сколько он стоит, а также сколько стоит уборка. И — отказались от хлопка!

Хлопковые коробочки созревают постепенно. На одном кусте можно увидеть сразу и цветы, и зеленые капсулы, и горсти «белого золота». Поэтому уборка длится до четырех месяцев — последний урожай собирается только в декабре.

Сбор хлопка в течение веков ведется руками, требуя мобилизации всех сил, всех транспортных средств. Еще не так давно трудно было вообразить, что одним прекрасным днем уборка будет механизирована. Да и можно ли создать машину, которая, пройдя по полю, сорвет только созревшие коробочки, оставив в покое еще не раскрывшиеся? Так или иначе, конструктивное решение было найдено, хотя хлопкоуборочный комбайн еще далек от совершенства.

Голубые корабли стали непременной деталью пейзажа на орошаемых землях. Величественно и неторопливо они движутся вдоль борозд, втягивая хлопок своими щупальцами и набивая огромные горбы белой ватой.

Борозда остается позади. «Растаяли» белоснежные хлопья, только что усыпавшие кусты хлопчатника. Да и кустов в привычном понимании этого слова больше нет. Остались торчать только голые стебли гуза-пая. Точность требует сказать, что на стеблях осталось еще немало нераскрывшихся коробочек. Серовато-рыжие, под цвет поля, они не очень-то различимы. Мы вернемся вместе с комбайном через некоторое время, когда коробочки раскроются и на плантации снова «выпадет снег». А пока разговор о листьях.

Листопад по заказу

Хлопчатник — растение многолетнее, листопадное. Он сбрасывает листья к концу своей вегетации. У себя на родине, в сухих тропиках Перу и Мексики, дикий хлопчатник вегетирует только в период дождей. Наступает засуха — листья осыпаются. Это предохраняет растение от гибели.

Культурный хлопок тоже иногда сбрасывает листву. Это случается при неблагоприятных внешних условиях — засолении почвы, пыльных бурях, заморозках. Недостаток воды, болезни вызывают ту же защитную реакцию у растения. Оно сбрасывает листья и переходит в состояние покоя. Резкое сокращение жизненных функций помогает ему безболезненно перенести неблагоприятные внешние воздействия.

У многолетних растений северных широт реакция на морозы та же — прекратить рост, сбросить листья, иногда даже побеги, и уснуть до следующей весны.

Каков механизм этого процесса? Кто управляет им?

Механизм опадения листьев — дефолиации — отчасти можно наблюдать невооруженным глазом. У основания черешка листа появляется полоска отделительного слоя. Черешок как будто перетянут ниткой, врезающейся в ткань все глубже и глубже. Вооружившись микроскопом, мы увидим, что происходит внутри ткани растения. Клетки ее одна за другой делятся, округляются и обособляются друг от друга. Они жадно всасывают воду, растут и разрывают покровные ткани.

Лист теперь держится только на сосудисто-волокнистом пучке. Малейший толчок, дуновение ветра, и он осыпается. Нечто похожее мы уже видели. Помните, как гербициды убивают сорняки?

Дефолианты действуют тоже избирательно. Только они убивают не весь организм, а часть его — листья. Потому они и называются «дефолианты», то есть «лишающие листьев».

Зеленые листья — серьезное препятствие для работы хлопкоуборочных машин. Рабочие органы комбайнов обрывают листву при сборе хлопка и выжимают из нее зеленый сок — он пачкает сырец. Зеленая масса забивает шпиндели — машину приходится останавливать для очистки и промывки. Попав в хлопок, листья быстро засыхают, крошатся — сырец засоряется.

Влага, испаряющаяся из листа, поглощается волокном — хлопок приходится лишний раз сушить.

Выход один — убрать листья, прежде чем пустить на плантацию машины. Еще одна уборка на том же поле? Да. Но иногда выхода нет. Путь на поля хлопкоуборочной машине прокладывает химия.

В 1938 году впервые был применен для предуборочного удаления листьев хлопчатника цианамид кальция. Вещество это давно известно сельскому хозяину. Уже около семидесяти лет цианамид используется как азотное удобрение. Азота в нем содержится значительно больше, чем, скажем, в аммиачной селитре. Но и стоит он соответственно дороже. Поэтому и применялся цианамид на небольших площадях.

Шаг за шагом агрохимики открывали цианамид заново.

Сначала было обнаружено, что он может быть не только удобрением, но и гербицидом. Применив однажды цианамид для подкормки трав, фермер заметил, что химикат заодно уничтожил все мхи на лугу. Потом оказалось, что цианамид — союзник лука, моркови и капусты. Он избавляет овощи от сорняков семейства крестоцветных.

Были обнаружены и фунгицидные свойства цианамида. Он стал применяться как лекарство против ржавчины хлебных злаков.

И наконец, он стал дефолиантом.

Дана команда «стоп!»

Еще со школы мы знаем, что растение дышит; что в зеленом листе непрерывно осуществляется фотосинтез: образуются углеводы, белки и другие необходимые для питания растения органические вещества; что в этом процессе поистине «космическую роль» (слова Тимирязева) играет пигмент хлорофилл. Он поглощает энергию солнечных лучей и трансформирует ее в химическую энергию органических соединений.

Зеленый лист — это огромный город. Тысячи его кварталов-клеток пересекаются во всех направлениях узкими улочками и широкими проспектами. Движение на улицах не прекращается ни на минуту. Оно затихает только ночью. Здесь господствуют свои правила уличного движения. За их неуклонным исполнением следит целая армия регулировщиков — и знакомые нам ауксины и еще незнакомые ферменты.

Частицы хлорофилла — это своеобразные гаражи, откуда начинают свое движение по разным маршрутам транспорты с пищей и строительным материалом. Летом поток их непрерывно поступает на новостройки города.

Осень включает стоп-сигнал на всех перекрестках города. Жители его не приспособлены к холодной зиме. Дома не отапливаются. Надо покидать обжитые квартиры. И начинается всеобщая эвакуация.

Представителей ОРУДа сменяют регулировщики «военного времени». Это так называемые антиауксины и прежде всего газ этилен. Перед осенним листопадом он занимает все перекрестки зеленого листа. Этилен и направляет эвакуацию. Он же стимулирует образование отделительного слоя у листового черешка, то есть ставит последний шлагбаум. Но прежде чем у черешка будет поставлен этот шлагбаум, палочка этого регулировщика направляет весь поток беженцев на новые квартиры. Питательные вещества и физиологически активные элементы протоплазмы, покинувшие клетки листа, — аминокислоты, продукты гидролиза белков, витамины, ферменты, сахар, органические кислоты — транспортируются в семена. Там они превращаются в крахмал, жиры и белки. Процесс созревания семян заметно ускоряется.

Так происходит в природе.

Тот же процесс искусственно вызывают дефолианты. Попав на увлажненные росой листья, цианамид кальция уже через час начинает хозяйничать в «зеленом городе». Прежде всего он отстраняет от работы регулировщиков. Ферменты, регулирующие фотосинтез, им разрушаются. Движение стройматериалов на новостройки прекращается. Крупные блоки белков «разбираются» на отдельные кирпичи — аминокислоты и отправляются за пределы города. Они поступают теперь на объект № 1. Это хлопковые коробочки, в которых идет процесс созревания волокна и семян.

Если обработать плантацию хлопчатника 1 сентября, то уже 20-го можно начинать уборку. К этому времени листопад почти закончится. Главная помеха на пути комбайна будет устранена.

За те же двадцать дней мы можем убедиться, что дефолиант дал мощный толчок и другим процессам. Как только начали опадать листья, изменился климат на плантации. Стало теплее. Коробочки, скрытые раньше в тени листьев, попали под действие солнечных лучей и стали быстрее созревать и быстрее подсыхать. Это очень важно: чем суше волокно, тем меньше с ним возни при дальнейшей обработке. Прежде чем направить свой комбайн в борозду, механизатор подсчитывает количество раскрывшихся коробочек. Арифметика простая: чем их больше сейчас, тем меньше останется для следующего захода.

На каждом кусту насчитывается примерно с полсотни бутонов. К 20 сентября обычно раскрыто всего 2–3 коробочки. Дефолиант резко сдвигает все процессы. Под его воздействием к тому же дню открывается 35–40 коробочек. И открывается зеленая улица хлопкоуборочным комбайнам.

При хорошей дефолиации механизатор убирает примерно 90 процентов урожая за два раза. Только десятая часть остается на долю ручного труда. С этим пока можно смириться. Но только «пока».

…Отступление четвертое. Пустое поле, хлопковый фронт и другие проблемы.

Каждый год, когда теплые апрельские дожди прибьют пыль на дорогах и смоют с неба скучную серую дымку, я еду в пустыню! Еду, как и многие жители Ташкента или Ашхабада в эту пору, собирать грибы. Да, да, по грибы. И не в лес, а в пески или такыры. Обычно бурая мертвая гладь их весной поражает буйством красок и жизненных сил. Зеленая отава трав, алые костерки маков. И белые степные грибы. Они вспарывают гладь такыра своими упругими телами и просятся в лукошко или заменяющий его нынче полиэтиленовый мешочек.

Возвращаешься не с пустыми руками.

Пестрые краски Голодной степи или Каракумов по мере приближения к городу сменяются унылым однообразием сероземов. Щемит сердце, когда после только виденного великолепия природы перед взором расстилается пустое поле. Только торчат на нем бодылки запаханной с осени гуза-паи.

Пустое поле… Нерадостен его вид, хотя и знаешь, что через день-другой, когда пообсохнет и потеплеет земля, здесь зашумят деловито машины и в пашню упадет добротное семя хлопка, джугары или люцерны.

Сев начинается в апреле. С ноября, чаще с декабря, поле стоит голым под солнцем, под ветрами. Реже под дождем или снегом.

Пустое поле… Оно и не может быть другим в это время. Ну что можно сеять в пору, когда землю схватывают заморозки и она звенит под ногами, как туго натянутый бубен? Сеять можно было бы пораньше, в октябре, когда зерна пшеницы или бобы еще успевают дать всходы и уйти под зиму сплошным зеленым ковром.

Но уборка хлопчатника тянется до конца ноября. Человеческие руки с трудом справляются с этим делом, доставая в иные годы хлопок прямо из-под снега в преддверии Нового года. Хлопковый фронт требует едва ли не полных мобилизаций. Посудите сами: чтобы собрать в 1964 году весь сырец Ферганы, потребовалось 300 тысяч сборщиков из городов области. Не дехкан, не жителей сел, а в помощь им еще и 300 тысяч человек из города. Студенты, рабочие, служащие вносят ежегодно свой вклад в сбор «белого золота». Но это становится слишком накладным для государства. Чтобы собрать весь урожай хлопка в стране, требуется ежегодно отрывать от работы на предприятиях, от учебы и даже от научной деятельности миллион горожан. Отрывать не на субботники и воскресники, а на целый месяц, а то и больше.

Выход один — химизация и механизация уборки. Создание более эффективных и дешевых дефолиантов и более совершенных машин.

Цианамид — неплохое средство. Но он хорош для Америки, где более влажный климат. В Средней Азии росное утро — редкость. Роса, если она выпадает, держится до восьми утра, и летчики, обрабатывающие поля дефолиантами, должны иной раз укладываться в эти часы и минуты.

Химики ищут — и находят! — новые препараты. В НИИУИФ изучено более 250 химических веществ. Некоторые перспективны. Назовем их: хлорат магния, эндотал. Они действуют резче и быстрее цианамида.

Эндотал ускоряет раскрытие коробочек в 2–3 раза. Уже на 6-й день созревают и готовы к уборке до 97 процентов коробочек! Это значит, хлопок можно значительно скорее убрать весь. И убрать машинами. Три-пять процентов урожая останутся только на долю ручного труда. Очень важно, что урожай будет снят до морозов. Доморозное волокно — это первый сорт. Из него ткутся лучшие хлопчатобумажные ткани. Коробочки, которые, не успев раскрыться, попали в заморозки, — это курак. Он годится только на химическую переработку — из него получают целлюлозу, гидролизный спирт, кормовые дрожжи. Тоже неплохо, но главная цель выращивания хлопка — получить волокно.

Новые препараты помогают ее добиваться с большим успехом. Они отлично действуют в меньших дозах. Расход цианамида кальция на гектар достигает 50 килограммов. Хлората магния — только 10. Эндотала и того меньше — 1,2 килограмма.

Допустим, что на одном гектаре растет 24 тысячи кустов. Значит, на каждый куст попадет вместе с раствором всего лишь пять сотых грамма химиката. Каких-то несколько пылинок! Но именно эти карлики приведут в действие гигантские силы. Я был на полях прославленного совхоза «Савай», когда там испытывались эндотал и другие препараты. Искусственный листопад был произведен здесь за неделю. Уборка проведена за две. Следом за голубыми кораблями на плантациях появились корчеватели. Они быстро собрали гуза-паю — стебли хлопчатника. И уже в начале октября поле было готово принять семена нового урожая.

Только месяц на всю уборку! По этому поводу можно было сказать много красивых и возвышенных слов. О техническом прогрессе. О новой агротехнике. О новых возможностях, которые открывает химия в хлопковом деле.

А я почему-то думаю о старине. Думаю о забытом. Есть такая культура, древняя, как сама земля. Шабдар, или персидский клевер. Дехканин, который возделывал хлопок — гузу, никогда не забывал о шабдаре. Как только кусты гузы покрывались белоснежными хлопьями, он бросал в борозду семена шабдара.

К тому времени, когда уборка сырца завершалась, семена прорастали.

Под зиму поле уходило зеленым, а весной, иногда уже в феврале, когда выпадали первые дожди, клевер принимался в рост. В апреле — укос. Урожай 100 и больше центнеров сена с гектара. Я не буду говорить о том, что шабдар — отличный медонос, что это великолепный белковый корм.

К нему в полной мере относится все то, что мы привыкли слышать о клевере.

Шабдар — культура особая. Земледельцу прошлого он служил зеленым удобрением: накапливал в почве азот подобно люцерне и другим бобовым. Если дехканин сеял после шабдара хлопок, то травы не скашивал. Попася на поле скотину, он запахивал клевер, который становился удобрением.

Если потом шла джугара (сорго), то и после укоса для нее кое-что оставалось в почве. Органические остатки шабдара удобряли землю и повышали урожаи зерна и силосной массы.

Дехканин ценил шабдар и за другое его свойство. Эта культура — надежный рассолонитель. Уже в наши годы Центральная мелиоративная станция «Золотая орда» провела посевы шабдара на старинный манер — в междурядья растущего хлопчатника.

Опыт проводился на засоленных землях. Осенью и зимой их обычно промывают, иначе нечего и думать о приличном урожае: соль, выступающая на поверхность почвы, безжалостно его съедает.

На каждый гектар тратятся тысячи кубометров воды. Воды, которую неплохо было бы запасти на лето, на засушливое время года. Что дает промывка? Вот расчет. Содержание хлор-иона в слое от 0 до 60 сантиметров уменьшается в 3,7 раза, плотный остаток солей — в 1,25 раза.

Шабдар, посеянный в хлопчатник, приносит еще больший эффект без расхода воды. Содержание солей в пахотном слое снизилось после шабдара соответственно в 5,1 и 1,8 раза!

Николай Иванович Вавилов как-то сказал, что новой культурой следует считать и старую, забытую, когда она опять внедряется в производство.

Дефолианты сократят сроки уборки хлопчатника и откроют дорогу на поля традиционным культурам — персидскому клеверу, люцерне, памирской ржи, бобовым… Великолепные карлики вызовут эти культуры к новой жизни. На новой основе, на новых просторах. На больших площадях.

Пустое поле… Оно, занимающее в орошаемых районах несколько миллионов гектаров, станет вечнозеленым! И хотя мы будем снимать с него два урожая в год, оно не оскудеет.

…Но вернемся к дефолиантам.

Применить их на всех хлопковых плантациях — это значит ликвидировать хлопковый фронт. Это значит — получить за счет быстрейшего созревания худо-бедно 250 тысяч тонн дополнительного сырца — урожай целой хлопковой республики Каракалпакии. Это значит — сберечь народному хозяйству 120 миллионов рабочих дней. Рабочий день всей страны! Посмотрите в справочниках, сколько он стоит, что дает нам один только рабочий день Страны Советов!

Совмещенные профессии химикатов

Мы видели, что дефолианты неплохо освоили профессию хлопкоробов. Добавим только, что на хлопковой плантации они выступают также и в роли санитаров. И цианамид и другие препараты уничтожают микроорганизмы на поверхности коробочек и предохраняют их от загнивания и болезней.

Садовод — вторая профессия дефолианта. Саженцы плодовых деревьев в питомниках выкапывают обычно до листопада. Чтобы деревце поскорее «уснуло» (а во сне, как мы знаем, оно будет устойчивее к холодам), листья отрывают вручную. Операция трудоемкая, долгая и несовершенная. Но ее можно преспокойно доверить дефолиантам.

Управлять листопадом полезно и на взрослых деревьях.

Позднее опадение листьев иногда вредно сказывается на подготовке сада к перезимовке.

Пока живут листья, живут и побеги. Они продолжают расти, и, если неожиданно грянут морозы, молодые побеги погибают. Листья, пока они живы, продолжают испарять влагу, поступающую в растение из почвы. Они иссушают и почву и растение. А иссушенные растения хуже переносят зиму.

В саду дефолиант снова выступает в роли санитара. Розы на зиму укрывают. Но прежде с них надо оборвать листья. Если этого не сделать, весной вы увидите, что листья покрылись белым войлоком, — это болезнетворные грибы. Болезнь нужно уничтожать в зародыше. И осуществить необходимую профилактику поручают дефолиантам.

Повышение дозы дефолианта повышает и его квалификацию. Точнее, перед ним открываются новые перспективы применения. Дефолиант становится дессикантом, или высушивателем. Нет, не только на хлопковом поле! Сушка зерна, сушка семян, высушивание ботвы. Сфера применения дессикантов может стать весьма обширной. Примеры? Пожалуйста.

Ботва картофеля. Перед уборкой ее очень неплохо было бы высушить. Ботва мешает работе уборочных машин. Она служит рассадником фитофторы, гнили и других грибных и вирусных заболеваний. Дессикант настолько уменьшает ботву в объеме и весе (в 12 раз!), что сгребать ее и убирать с поля нет смысла.

Дессикация семенников. Известно, что сельскому хозяйству северных районов остро не хватает семян кормовых культур. Люпин, клевер, люцерна, вика в условиях Смоленщины или Белоруссии вызревают с трудом — мешают ненастье, дожди. А если и вызревают, то крайне неравномерно, что затрудняет механизацию уборки семян. Положение меняется с приходом дессикантов. Люпин, обработанный роданидом натрия, поспел на 34 дня скорее обычного. Собранное зерно не потребовалось даже сушить — оно имело кондиционную влажность: всего 16 процентов. А влажность у зерна на необработанных участках оставалась в 4 раза выше.

Много хлопот дождливой осенью хлеборобам доставляет сушка зерна. Прежде чем засыпать урожай на хранение, надо понизить влажность его до 16 процентов. Дессиканты в состоянии справиться и с этой работой. Предварительный опыты показали, что они понижают влажность зерна до нужного уровня прямо на корню. Вот хлоратхлорид кальция — новейшее оружие в арсенале химиков. Опрыснутая им пшеница поспевает на неделю-другую раньше, чем на контрольном поле. Химикат этот сушит зерно даже в дождливую погоду. Получить в руки такой рычаг управления урожаем — мечта каждого земледельца. В зонах избыточного увлажнения дессиканты могут стать неоценимыми помощниками в борьбе с потерями урожая.

Но если можно подсушить урожай на корню, если можно с помощью дефолиантов и дессикантов ускорить созревание семян позднеспелых культур, значит эти культуры можно будет двинуть в новые районы — на север и в горы. Мы увидим дефолианты в новых, быть может, неожиданных ролях. На кукурузных плантациях, на рисовых и ячменных полях, на посевах льна, хмеля, сахарной свеклы, проса…

Бешеный рис, или о пользе болезней

По рисовым полям Японии, Тайваня, Филиппин кочует странная болезнь. Стебли некоторых растений невероятно вытягиваются, слабеют, а затем гибнут. Болезнь иногда охватывает целые плантации, и крестьяне остаются без урожая. «Баканае» (бешеный рис), или «болезнь дурных побегов». Так называют это бедствие в Японии.

Удивительное явление это не прошло мимо внимания науки, и тридцать лет назад японский фитопатолог Куросава установил причину странной болезни. Ее вызывал фузариевый грибок гибберелла фуйкурои. Открытие ученых помогло рисоводам найти и средства борьбы с «болезнью дурных побегов».

А самих ученых взволновал совсем другой вопрос: нельзя ли использовать заболевание одного на пользу другим растениям? Если гибберелла вызывает невероятный рост риса, то почему нельзя предположить, что она так же подействует, скажем, на табак? За предположением последовали опыты.

Через десять лет профессор Ябута и его сотрудники из выделений грибка получили в химически чистом виде вещество, которое было названо гиббереллином. Вещество это обладает поразительно высокой активностью. Уже при разведении одной его части на миллион частей воды оно приобретает свойство стимулировать рост риса, пшеницы, ячменя, табака и многих других растений.

Ученые заинтересовались этим явлением. Было установлено, что в выделениях грибка имеются три гиббереллина — A-один, А-два, A-три. Последний из них оказался наиболее активным и известен еще под названием гибберелловой кислоты.

Из-за сложности строения гиббереллины в химических лабораториях получить пока еще нельзя. Поэтому несколько лет тому назад был разработан биологический способ их извлечения. Он похож на метод получения пенициллина.

Грибок разводится на питательной среде, содержащей минеральные соли и сахар, а через несколько дней, в течение которых идет рост, из питательного раствора получают гиббереллины.

Исследования, произведенные главным образом в Японии, Соединенных Штатах Америки и Англии, показали, что при опрыскивании растений слабыми растворами гиббереллинов и даже при нанесении отдельных капель раствора на листья или верхушку стеблей резко ускоряется рост различных однолетних и многолетних культур.

Особенно заметно усиливается рост карликовых растений, кукурузы, гороха и других однолетников. Они начинают быстро вытягиваться и догоняют нормальные экземпляры. У многолетних же древесных пород не только усиливается рост обычных сеянцев, но в известной степени заменяется действие стратификации, то есть зимнего выдерживания плодов и семян при пониженных температурах.

Особенно широкий размах исследование гиббереллинов получило с 1956 года. Тогда было установлено, что гиббереллины вызывают зацветание многих растений в тех условиях, при которых они обычно не цветут. Впервые такие факты были установлены профессором Лангом в Калифорнии, а затем профессором Хардером и Бюнзовом в Геттингене, профессором Лона в Италии и другими учеными.

В Институте физиологии растений Академии наук СССР также проводились опыты по влиянию гиббереллинов на рост и цветение растительных организмов.

Все эти опыты, поставленные в разных странах и с различными видами растений, привели к совершенно одинаковым результатам.

Известно, что растения, обычно не цветущие в условиях короткого десяти-двенадцатичасового дня, остаются в фазе розетки или компактного куста. Однако, как показали опыты, такие растения под влиянием гиббереллинов успешно образуют стебли, цветы и плоды и при коротком дне.

Это было проверено на белене однолетней, смолевке, бриофиллуме, бородавнике, рудбекии, лесном табаке и других культурах. Иначе говоря, оказалось, что эти растения ведут себя так же, как если бы они находились в условиях длинного дня, дополнительно получая ежедневно шесть-восемь часов солнечного света. Таким образом, гиббереллин служит как бы заменителем действия длинного дня.

Не менее интересно влияние гиббереллинов на сеянцы двухлетних культур в первом году их жизни и на озимые формы, высеянные весной.

Известно, что сеянцы двухлетников в первом году жизни образуют корнеплоды с розеткой листьев или кочаны, как у капусты. Они приобретают способность к образованию стеблей, цветению и плодоношению только после яровизации. Так называют достаточно длительное воздействие холодной температурой, которую в естественной обстановке растения испытывают в течение зимы.

Обработка сеянцев-двухлетников гиббереллином приводит к тому, что они в первом году жизни могут образовать стебли, цвести, плодоносить и без яровизации. Так было в опытах с беленой двухлетней, морковью, капустой, репой, свеклой, брюквой и петрушкой. При этом рост семенных стеблей идет очень быстро. Иногда их высота достигает необычных размеров, как это наблюдалось у капусты.

Интересные результаты дали опыты М. Чайлахяна. Под влиянием гиббереллинов растения озимого рапса в условиях, исключающих воздействие пониженных температур, образовали стебли, цвели и плодоносили. В этом случае для сеянцев-двухлетников и озимых гиббереллин выступает уже в качестве как бы заменителя холода.

Иначе говоря, чего бы не хватало растениям — света или пониженной температуры, гиббереллин возмещает эту недостачу и создает условия для образования стеблей, цветков и плодов.

Так выяснилось, что с помощью гиббереллинов достигается яровизация и химическая стимуляция цветения растений.

Нужно, однако, отметить, что не у всех растений гиббереллины стимулируют цветение. Например, растения, не образующие цветков в условиях летнего длинного шестнадцати-восемнадцатичасового дня, даже обработанные гиббереллинами, так и остаются в вегетативном состоянии, хотя и дают большой скачок в росте. К этим растениям относятся табак «мамонт», соя, перилла, дурнишник и другие. Специально проведенные опыты показали, что для их цветения необходимы не гиббереллины, а какие-то другие вещества гормонального характера.

Применение гиббереллинов тесным образом связано с условиями корневого и светового питания, так как, образно выражаясь, они «повышают аппетит» растений. Сеянцы томатов, которые получали ежедневно только десятичасовую дозу света и находились на сравнительно бедной почве, под влиянием гиббереллина значительно вытянулись. При этом они имели несколько истощенный вид.

С другой стороны, выявляются большие потенциальные возможности роста растений, ранее остававшиеся неизвестными. Табак сорта «мамонт», который находился в условиях длинного дня и получал систематическую подкормку минеральными веществами, под влиянием гиббереллина достиг необыкновенно большой высоты.

Помимо влияния на рост и цветение растений, гиббереллины вызывают также ускорение прорастания семян, образование боковых ветвей и побегов, увеличение числа завязавшихся плодов, а также изменяют содержание таких веществ, как, например, белки, сахарá, алкалоиды.

По своему химическому строению и характеру действия на рост, развитие и обмен веществ у растений гиббереллины резко отличаются от ауксинов, известных синтетических ростовых препаратов, и представляют собой особую группу физиологически активных веществ.

Возникает вопрос: гиббереллины — это продукты только обмена фузариевого грибка, половой стадией которого является гибберелла, или они встречаются и у других растительных организмов?

Изыскания показали, что незрелые плоды и семена многих растений содержат вещества, подобные гиббереллину. В семенах фасоли и плодах дикого огурца этих веществ оказалось так много, что с помощью вытяжек из них удалось достичь почти такой же стимуляции роста и цветения растений, какая вызывается химически чистыми гиббереллинами. А совсем недавно уже совершенно точно было установлено, что в семенах фасоли декоративной содержится такой же гиббереллин, как и в выделениях грибка.

Изучение влияния гиббереллинов на растения проводилось советскими исследователями сначала на препаратах, изготовленных в Японии, США и в Англии.

В 1957 году Институт физиологии растений получил для опыта всего ½ грамма импортного гиббереллина. Но уже через два года был создан отечественный препарат. Профессор Н. А. Красильников и его сотрудники получили его из выделений грибка, взятого с пораженной виноградной лозы. Сравнительное испытание показало, что его активность соответствует активности гиббереллина, полученного в США. Растения рудбекии после полуторамесячной обработки отечественными и зарубежными препаратами (ежедневно по одной капле) в одинаковые сроки образовали высокие стебли и зацвели.

Теперь есть основания считать, что гиббереллины — продукт жизнедеятельности не только фузариевых грибков, но и некоторых других микроорганизмов.

Поразительное действие гиббереллинов на рост и цветение растений делает весьма перспективным их использование в практических целях. Уже предприняты многочисленные попытки использовать эти замечательные вещества для повышения урожайности различных сельскохозяйственных культур. В таком случае применяют, конечно, не метод ежедневного нанесения отдельных капель на растения, а способ опрыскивания их очень слабыми растворами. С этой целью кристаллический порошок гиббереллина растворяют в очень небольшом количестве спирта. Потом раствор разбавляют водой с таким расчетом, чтобы на миллион частей воды пришлось от одной до ста частей вещества (в зависимости от культуры). Опрыскивание проводится несколько раз с недельными интервалами.

Уже сейчас можно сказать, что при уточнении сроков и дозировки гиббереллины успешно можно применить в цветоводстве и овощеводстве.

Весьма заманчивы перспективы использования гиббереллинов для технических и прядильных культур, при выращивании кормовых трав и растений, идущих на силос, в лесном деле.

Конечно, внедрению новых препаратов в практику растениеводства должна предшествовать большая предварительная работа.

Открытие гиббереллинов и бурное развитие исследований, связанных с их физиологической ролью в жизненных процессах растительных организмов, изыскание новых активно действующих веществ, испытание влияния гиббереллинов на сельскохозяйственные культуры — все это свидетельствует о том, что в науке о жизни растений начался новый этап.

Активное действие советского гиббереллина проверено многочисленными опытами. Результаты их говорят о высокой эффективности нового ростового вещества. Обработанные им растения гороха, например, уже через 10–12 дней почти в 2 раза обгоняли в росте контрольные экземпляры и на 60 процентов увеличивали урожай зерна. Под действием гиббереллина примерно в 4 раза повышался урожай томатов в теплице, почти удваивался урожай укропа, салата, петрушки и других зеленых культур. Табак, опрыснутый раствором гиббереллина, в 2 раза увеличивал рост, зато содержание никотина в листьях снижалось. Удлинялись волокна хлопка и конопли. На 20 процентов увеличивался урожай зеленой массы клевера, на 14 процентов — вес початков кукурузы. Сирень и многие декоративные растения ускоряли рост примерно в 5 раз! Такие результаты достигаются ультрамикроскопическими дозами.

Нет сомнения, что гиббереллины, как и другие стимуляторы, в руках человека явятся новым могучим средством управления ростом и развитием растений.

Могучие гаммы

Выяснение химического состава и структурного строения гиббереллина показало, что он представляет собой органическую кислоту (точнее, девять довольно похожих кислот). Наиболее активным оказался гиббереллин А3. Его формула: C12H22O6.

Каков механизм его воздействия?

Шестилетние исследования физиологии и биохимии его показали, что он относится к новому классу растительных гормонов. По своему действию он близок к ауксинам. Факты говорят о взаимодействии гиббереллина с другими метаболитами (участниками обмена веществ в растении) — витаминами, минеральными соединениями и стимуляторами.

Гиббереллин тоже подстегивает рост. Если обработать им верхушечные почки «глухих побегов» чая (боковые ветви, находящиеся в состоянии покоя), они просыпаются и быстро растут. Это позволяет в летнее время получить прибавку урожая зеленого листа в пределах 10–20 процентов.

В объяснениях механизма действия гиббереллина ученые разделились на два лагеря. Одни предполагают, что сам гиббереллин на растение не действует. Он только повышает уровень природных ауксинов, а уже они вызывают ростовые реакции. Иными словами, палочка-погонялочка попадает в руки погонщика, которым в данном случае становится гиббереллин. Ее удар настолько силен, что она заставляет организм «подскочить» в росте.

Поступая в растение, гиббереллин подавляет вещества, разрушающие ауксин. Ауксины благодаря этому накапливаются и выступают в своей обычной роли регуляторов ростовых процессов.

Доказательством против этой теории обычно выдвигаются эксперименты, показывающие, что при подавлении природных ростовых гормонов антиауксином гиббереллин все равно вызывает интенсивное растяжение отрезков стеблей гороха. Поэтому связывать ауксин и гиббереллин в один гормональный комплекс нельзя. Можно лишь предположить, что гиббереллин и ауксин включаются в процесс регулировки такой сложной реакции, как растяжение ткани, и последовательно выключаются из него.

Итак, вопрос о механизме действия гиббереллина оказался спорным уже на самом первом этапе своей разработки. Неясно, участвует ли ауксин в том сложном ростовом эффекте, который вызывается гиббереллином. На этот вопрос попытался экспериментально ответить Н. П. Кеффорд. Он поставил серию опытов с проростками риса. Рис как объект был выбран не случайно. Дело в том, что проростки риса содержат ауксиноксидазу. Ауксиноксидаза — фермент, регулирующий уровень ауксина в тканях.

Если активировать этот фермент, ауксины будут разрушаться и рост проростков замедлится. Если подавить активность этого фермента, то уровень ауксинов, наоборот, возрастет и рост проростков усилится. Таким образом, искусственно меняя уровень ауксинов в тканях и вводя затем гиббереллин, можно проследить действие последнего на различном ауксиновом фоне. Погружая проростки риса в воду и тем самым затрудняя доступ кислорода, Кеффорд подавлял деятельность ауксиноксидазы. Ауксин накоплялся, вызывал вытягивание проростков, а введенный в воду гиббереллин в значительной мере усиливал этот процесс. Если же антиауксин — парахлорфеноксимасляная кислота — подавлял ауксины в проростках, гиббереллин все-таки усиливал рост, но это усиление было очень незначительно.

Кеффорд делает следующий вывод из своих экспериментов: путь действия гиббереллина лежит через ауксиново-ингибиторный обмен. Эта серия опытов поддерживает ауксиновый путь действия гиббереллина.

И все же механизм действия гиббереллина на растение еще далеко не раскрыт. Каким образом он так энергично вытягивает ткани?

Конопля, обработанная этим препаратом, достигает шести метров, капуста — пяти. Листья салата под влиянием одной гаммы препарата (0,01 грамма) вытягивается до 30 сантиметров в длину. Сельдерей достигает толщины человеческой руки. Всходы дуба поднимаются за год после обработки А3 на 80 сантиметров вместо обычных 10.

Ауксины такого интенсивного воздействия на ткани не оказывали.

Каким образом это осуществляет гиббереллин, пока еще загадка. Загадка, которую экспериментаторы постараются разрешить.

Мы уже упоминали о происхождении гиббереллина. Он порожден микроорганизмами, обитающими в почве. Микробы-активаторы широко распространены в природе. Они есть среди бактерий и актиномицетов, грибов и дрожжей.

Им посвящается наш следующий рассказ.