Слово «радиация» чаще всего стоит рядом со словом «опасность». Бетонные стены, свинцовые экраны, красное стекло сигнальных ламп. На массивных дверях — цветок тревожной окраски. Три алых и три желтых лепестка. Будь осторожен! Крепость, которая зовется «Атом», еще не взята. Она посылает навстречу штурмующим ее невидимые разящие смертоносные лучи. Но уже целые «подразделения» этой крепости — гамма-лучи, нейтроны, радиоактивные изотопы — перешли на сторону атакующих, дав им в руки новое, грозное оружие. Ни одна позиция не сдается без боя. За каждой пробитой брешью перед исследователем возникает новая стена проблем и загадок. Плацдарм, взятый у атома наукой, чрезвычайно удобен и стратегически важен. Отсюда хорошо просматривается другая крепость — живая клетка.

Отсюда можно ударить по флангам, можно проникнуть в тылы и подойти к штурмуемой крепости с самой неожиданной стороны. Если уж применять военную терминологию, то, как известно, фактор неожиданности (внезапности) иногда становится решающим для исхода сражений. К тому же именно на флангах, на стыках соединений часто бывают самые уязвимые для атаки места.

В науке также. Последнее десятилетие было особенно характерным. Именно на стыках различных отраслей знания достигнуты самые неожиданные, самые замечательные и обнадеживающие результаты. М. Дельбрюк — физик, полностью переключившийся на изучение биологических проблем, — однажды сказал, что наступившее слияние химии, генетики и теории информации являет собой крупнейшее научно-культурное событие, сравнимое с прорывом в области атомной физики, который в 20-х годах привел к созданию квантовой теории.

Представим себе некое древо. Что-то вроде мичуринской яблони. Основной ствол его — обыкновенная антоновка. Верхушка усеяна плодами китайки. А вот под марлей ожидает своего часа совсем иной гибрид: опыление произведено пыльцой растения далеких краев, и еще неизвестно, что за плоды принесет это отдаленное скрещивание.

Нечто подобное происходит с ядерной физикой. Молодая, жизнеспособная наука, она с первых дней своего существования пустила глубокие корни и приняла в свою крону ряд других отраслей знания, оплодотворив их и породив новые ветви и отпочкования. Там, где ядерная физика тесно соприкоснулась с биологией, возникла группа гибридов, образующих ветви радиационной биологии. Радиационная биофизика, радиационная цитология, радиационная генетика, радиационная селекция…

Впрочем, приоткроем двери лабораторий.

Каково семя, таково и племя

Несколько лет назад началось строительство Института ядерной физики в Улугбеке. Площадка будущего научного центра, обнесенная рвом, казалась раскаленной сковородкой. На ней не было ничего, кроме развороченных котлованов и работающих механизмов. Но академик Убай Арифов водил гостей от котлована к котловану и объяснял:

— Это зал ядерного реактора, это физический корпус, тут, где укладывают трубы, — гамма-установка, а там, за лесопарком, жилой городок…

Те, кто стоял рядом с ученым, не видели ни лесопарка, ни домов. Рядом со строительной площадкой зеленели поля, засеянные хлопчатником.

Может быть, именно это соседство и оказалось виновным в том, что черенок ядерной физики потянулся к хлопковому полю, укоренился там и дал первые добрые всходы.

У колыбели этой только пошедшей в рост веточки науки стояли два молодых узбекских исследователя: однофамильцы Ахмед и Шукур Ибрагимовы. Один из них работает в Институте ядерной физики, другой — в Институте генетики и физиологии растений. Но свои научные исследования они связали с хлопком — проблемой № 1 для всей Средней Азии.

Опыты показали, что радиационное облучение сильно изменяет биологические свойства и химический состав семян хлопчатника. Но как будут семена вести себя дальше? Влияет ли облучение на урожайность? Не вредно ли оно? Какова будет всхожесть? Десятки вопросов встали перед исследователями.

Я видел маленькое опытное поле, где Ибрагимовы посеяли первую горстку облученных семян. Время мчалось, подгоняемое нетерпением ученых. Когда участок зазеленел и нежные стебельки потянулись к солнцу, по соседству, где были посеяны необлученные семена хлопчатника, еще по-прежнему чернела вспаханная земля.

Прошло несколько недель, и на растениях завязались коробочки. И опять это случилось раньше, чем на соседних участках.

Так, по мере того как рос хлопчатник, исчезали сомнения и крепла уверенность в удаче эксперимента. Урожай созрел почти на 2–3 дня раньше срока. А когда его сняли, выяснилось, что он выше, чем на контрольном участке. К тому же семена хлопчатника, обработанные перед посевом гамма-лучами, оказались будто заговоренными от насекомых-вредителей.

Не удивительно, что в первый же год слух об опытах разнесся по соседним колхозам. Приезжали агрономы, бригадиры, председатели. Удивлялись, дотошно расспрашивали исследователей. Но никто не решался сеять облученные семена. Впрочем, если даже кто-нибудь и решился, ученые бы не позволили.

— У нас очень много неясностей, — говорил Ахмед Поччаевич. — Не отработаны до конца дозы облучения, неизвестно, как будут вести себя семена во втором и в третьем поколениях, не выяснены химические изменения, происходящие под действием гамма-лучей в самом семени. Словом, вопросов у нас гораздо больше, чем ответов на них.

Так было осенью 1958 года.

А сегодня? Я снова поехал в Улугбек, чтобы встретиться со старыми знакомыми.

…Городок возник сразу, неожиданно, из-за поворота шоссе. Он оказался точно таким, как и представлял его академик Арифов. Высились дома с балконами и террасами, качались на ветру молоденькие фруктовые деревца. От рабочей территории Института ядерной физики, где властвовало высокое здание атомного реактора, город отделяла полоса зеленого парка.

Из ворот института выехал грузовик. В кабине рядом с шофером мелькнуло знакомое лицо.

— Шукур Ибрагимов!

Он по-прежнему работает в Институте генетики и физиологии растений и по-прежнему не забывает дорогу в Институт ядерной физики.

— Смотрите, — похвастался он, показывая на кузов машины, доверху нагруженный полными мешками, — это семена хлопчатника, облученные на гамма-установке, — заказ хозяйств Ак-Курганского района.

Семь лет доказали, что предпосевное обручение гамма-лучами в определенных дозах не только не вредно для семян хлопчатника, но оказывает на них благотворное влияние. Хлопок созревает на 2–3 дня раньше срока, урожай увеличивается в среднем на 3 центнера с гектара, содержание масла в семенах повышается на полтора процента. А 3 центнера с гектара и полтора процента масличности, помноженные на огромную площадь хлопковых полей Узбекистана, — это дополнительные сотни тонн хлопкового масла, это миллионы метров новых тканей…

Вот как выросла маленькая горсточка первых облученных семян! С опытного участка семена разбежались по колхозным полям, пересекли границы республики и поселились в Таджикистане и Киргизии, стали своими на Федченской, Бухарской, Самаркандской опытных станциях.

Ибрагимовы продолжают ставить новые эксперименты. Уже шестое поколение хлопчатника, выросшее из семян, обработанных гамма-лучами, заняло место на их опытном участке. Пятое поколение дает куст, облученный в той стадии, когда на растении завязываются бутоны. В прошедшие годы опытный куст дал удивительно крупные коробочки. Обычно их вес бывает 6–7 граммов, на этом же кусте коробочки весят все 10 граммов!

В лаборатории технологии хлопка досконально проверили качество волокна, полученного из облученного растения. И что же? Сеяли сорт хлопчатника, который должен был дать грубое волокно, а оно оказалось высшего качества — мягким и крепким.

Черенок атомной физики прочно привился на хлопковых полях.

Тормоза и ускорители «включения» жизни

Один из самых загадочных механизмов жизни — «включение» зародыша.

Семена прорастают по команде солнечных лучей, от химического и теплового толчка, под «давлением» солнечного света и других причин. Удивительна четкость, с которой действует механизм «включения» жизни в природе. Но давайте сначала удивимся и противоположному явлению. А почему семена спят всю зиму? Почему они всходят только в определенный, почти всегда в самый подходящий момент?

Это происходит, конечно, не по божественному предопределению. Просто в семени или плоде находится что-то препятствующее прорастанию. Вещества, тормозящие всхожесть, нами уже упоминались в предыдущей главе; носят они название ингибиторов. Значит, если мы пожелаем вызвать всхожесть, то нам придется заняться удалением ингибитора. Известно много подобных случаев.

Семена томатов не прорастают внутри плода. Если плод удалить — семена прорастают. Значит, всхожесть стимулируется удалением неблагоприятной для семян среды. Такое явление очень распространено в природе. Многие плоды тормозят всхожесть зародышей, находящихся внутри их. Семена растений пустынь прорастают только при условии, если выпадет обильный дождь. Очевидно, он смывает с них ингибиторов.

Стимулировать всхожесть могут многие весьма различные химикалии — тиомочевина, нитрат калия, кинетин и гибберелловая кислота. Так, тиомочевина действует в концентрации 0,1 процента, а кинетин и гибберелловая кислота — в концентрациях от 0,0001 до 0,1 процента. Эти стимулирующие вещества имеют мало друг с другом общего. Гибберелловая кислота представляет собой весьма сложную органическую молекулу, участвующую в очень многих физиологических процессах, происходящих в растениях. Тиомочевина имеет совсем простую структуру, и оказывает гораздо более ограниченное действие. Что особенно любопытно, вещество-стимулятор в определенных условиях может стать тормозом.

Самое малое изменение — молекулы тиомочевины превращает ее из стимулятора в ингибитор.

Возьмем другой способ «включения» всхожести — пучком дейтронов (ядер атомов изотопа водорода-2).

Здесь все зависит от дозы. Если энергии дейтронов хватает только для проникновения в наружные слои семян, лучи стимулируют всхожесть. Тогда скорость «включения» и скорость прорастания зависят от силы толчка, то есть от дозы. Если дейтроны обладают более высокой энергией и проникают глубже, они тормозят рост корня, расположенного близ центра семени. Пучки дейтронов, обладающих еще более высокой энергией, убивают семена.

Еще пример. Семена салата-латука находятся в состоянии покоя, только если они хранятся в темноте. Но включите в хранилище на полминуты 60-ваттную электрическую лампу, и вы произведете действие, равноценное включению зажигания у автомобиля. «Мотор» жизни «заведется», и зародыш двинется в путь. Скорость его будет зависеть не только от внутренних запасов горючего, но и от многих внешних причин.

В природе тоже действуют свои «правила уличного движения». Светофор представлен всеми цветами радуги. Красный свет — это значит путь открыт. Именно красный свет с длиной волны 6700 ангстрем стимулирует прорастание. Но свет с волнами другой длины, а значит и другого цвета, приостанавливает прорастание. Включен синий свет — происходит то, что делает автомобилист при виде желтого цвета, — начинается торможение прорастания. Но вот на пути зажегся инфракрасный свет (7300 ангстрем). Стоп! Включить тормоза!

Можно обработать семена салата-латука попеременно красным или инфракрасным светом с небольшими промежутками или без промежутков между освещениями. Оказывается, что во всех случаях цвет последнего освещения решает вопрос о том, произойдет ли прорастание или нет. Как видно, имеет место некая светочувствительная реакция. Красный свет превращает ингибитор — вещество А — в стимулятор — вещество Б. А инфракрасный свет превращает его снова в вещество А — ингибитор.

Несмотря на то, что проведена большая исследовательская работа, достигнуто лишь немногое в определении химической идентичности веществ А и Б.

Что же происходит при стимулировании всхожести? Возникает оно от какого-либо простого химического изменения под действием квантов света или от проникновения химиката в семя? Или же это физическое изменение, например стирание оболочки семени под действием химикалия?

Кратковременное прогревание также часто, между прочим, стимулирует всхожесть. Есть подозрение, что вследствие повышения температуры просто-напросто разрушается некий внутренний химический барьер; а возможно, это гораздо более сложный процесс, вызывающий ферментную реакцию, которая в известной мере изменяется под химическим воздействием.

Чтобы ответить на эти вопросы, необходимо узнать, все ли виды стимулирования всхожести действуют одинаково или же каждый из них функционирует с помощью уникального механизма. А это, в свою очередь, ставит другой вопрос: является ли сама по себе всхожесть результатом какой-то одной перемены в ходе событий или же результатом целого ряда перемен.

Были поставлены опыты, когда на семена воздействовали сразу включателем и тормозом — стимулятором и ингибитором. Статистическая обработка данных исследований привела к любопытным выводам.

Если семена обрабатываются одновременно и гибберелловой кислотой (стимулятор) и инфракрасным светом (ингибитор), то стимулирование встречает лишь частичное противодействие. Тормоза в этом случае «отказывают».

Любопытно и взаимодействие различных веществ, когда они одновременно попадают в зародыши. Ингибитор кумарин придает семенам, обычно не требующим светового стимулирования, чувствительность к свету. Семена, реагирующие на тиомочевину, кумарин делает еще более чувствительными к этому веществу. Аскорбиновая кислота — витамин С — тоже влияет на отзывчивость семян к тиомочевине. Но не к свету.

Изучение стимулирования всхожести дает сложную картину. Прорастание — итог большого числа реакций, происходящих в семенах. Очевидно, реакции, приводящие к нему, вызываются не какой-либо единственной, а многими причинами, которые дают один и тот же конечный результат.

Стимулирование всхожести может, следовательно, быть результатом многочисленных действующих сил. Оно может произойти благодаря блокированию реакции, выработке ингибиторов. Оно может быть результатом возникновения какой-либо жизненной реакции, необходимой для прорастания. Оно возникает и от смены уровня, на котором совершаются некоторые реакции внутри семян, и последующего изменения в обмене веществ.

Наименее изучен, но наиболее интересен тот механизм стимулирования семян, который приводится в действие радиоактивными лучами. При всей его относительной дороговизне в наши дни он может стать наиболее перспективным в будущем.

Почему?

Вернемся на некоторое время в Улугбек, чтобы в этом разобраться.

От атомных консервов до лучей-конструкторов

Ибрагимов-второй, которому я как-то помогал грузить мешки с облученными семенами (они предназначались для посева в новом месте), спросил меня, отдуваясь и стирая капли пота со лба:

— Чувствуете теперь, как нелегко дается новое? Гамма-лучи считаются пока достоянием теоретиков. Потому и грузим вручную. Механизацию погрузки мешков с семенным материалом пока никто не предусмотрел. Вот вам первая заминка на пути внедрения нового научного метода в практику.

Вторая нас ждет возле хлопкового поля. Все-таки люди еще с недоверием относятся к облученным семенам. Как бы чего не вышло? А вдруг да они радиоактивны? Косность мешает. Председатели колхозов не все охотно откликаются на наши предложения — испытать облученные семена. Боятся радиоактивности? Думаю, что нет. Просто мы не обещаем сверхъестественных приростов урожая. Ну, пять процентов — это уж точно. А разве этого мало, если посеять такие семена хотя бы на трети всех площадей республики или даже одной области? Десятки тысяч тонн! Но косность рядового земледельца объяснима. Это даже не косность. Это незнание. Вот косность ученого — страшная вещь. Некоторые исследователи бросили на полдороге исследования с атомной энергией в сельском хозяйстве, как только поняли, что сумасшедших прибавок и прочих выгод не будет.

Да, наши опыты показывают, что гамма-лучи дают эффект, сравнимый с эффектом других, так сказать, обычных стимуляторов урожайности. Но разве мы от тех отказываемся? Нет. Не будем же бросать и нашу работу. Радиоактивные изотопы — это отходы атомной промышленности. Наш реактор предназначен для научных исследований. В результате его работы образуется, как и в любом подобном урановом реакторе, много радиоактивных материалов. Почему-же их не использовать? Я понимаю, почему необходима особая осторожность, в опытах с атомными консервами, речь идет о пищевых продуктах, о здоровье людей. Но и в этой области достигнуты известные успехи…

Консервирование овощей, мяса, молока существует уже полтора века. Оно основано на тепловой стерилизации продуктов в герметически упакованной таре. Высокая температура при обработке уничтожает микроорганизмы и останавливает все процессы, которые могут привести к порче пищи — окисление, брожение и т. п. Тепловая стерилизация, кроме особой тары, требует создания особых условий для варки, упаковки. В результате тепловой стерилизации свойства консервированных продуктов заметно меняются. Часть витаминов разрушается, изменяется состав аминокислот.

Атомная технология стерилизации пищевых продуктов чрезвычайно упрощает дело. Доза облучении продуктов гамма-лучами невелика, хотя и она достаточна, чтобы уничтожить все возможные источники порчи пищи. Но допустимо ли применение атомных консервов в пищу человеком?

В Соединенных Штатах Америки были поставлены опыты по проверке вкусов и питательных качеств облученных продуктов. Тринадцать солдат в течение двух недель питались продуктами, стерилизованными радиоактивными лучами. В меню входило 18 продуктов: пять видов мяса и мясных продуктов, шесть видов овощей, столько же видов фруктов и хлеб. Калорийный состав продуктов изменялся мало. Большинство их оказалось столь же приемлемым для человека, как и замороженные продукты.

И все же эксперименты с атомными консервами пока приостановлены. Дело в том, что и в облученных продуктах возникают изменения исходных свойств вследствие побочных реакций. Уменьшить дозу облучения? Пробовали. Но тогда не достигалась стерилизация. Мы уже знаем, что некоторые организмы способны выдерживать чудовищную дозу радиации. Они-то и не подвергаются лучевой стерилизации.

Доза чуть бóльшая нарушала натуральные свойства продуктов — вкус, питательность, степень насыщенности витаминами. Изменения эти происходили в результате каких-то глубинных, еще не подмеченных и не познанных сдвигов внутри молекул, входящих в состав пищи.

Вот эти-то ничтожные сдвиги и представляют самый большой интерес для ученого, познающего тайну живого.

Какую роль играет замена одного лишь атома в огромной молекуле, мы видели на примере с бериллиевым отравлением ферментов. Это явление было долго скрыто от наших глаз.

Не происходит ли подобных явлений и в других случаях?

Вернемся к гамма-стимуляции семян. Ученые рисуют нам примерно такую схему этого процесса.

Есть элементарные частицы, обладающие высокой энергией. Фотоны, электроны, нейтроны мчатся, словно пули или снаряды. Попадая в облучаемый объект, они, понятно, вызывают изменение структуры его молекул.

Живая клетка находится под обстрелом кобальтовой «пушки». Град картечи сыплется на нее. Осколки попадают во все закоулки клетки. В ядро, митохондрии, микросомы и другие органелы. Вот снаряд попал в молекулу белка, «отколупнул» от нее кусочек, допустим, атом водорода. Равновесие нарушено. Измененная молекула (она называется свободным радикалом) стремится его восстановить. Свободные радикалы имеют огромную химическую реактивность. Они тут же стараются прореагировать со своими соседями. Жадно соединяются с молекулами воды, кислорода. Образуются новые соединения — гидроперекиси, перекиси, хиноны. Они тоже довольно активны. И тоже стремятся вступить в реакции. Прямое попадание атомного «снаряда» вызывает в клетке «взрыв» реакций. Новые вещества, новые необычные реакции, возникшие в ней, втягиваются в нормальный обмен веществ.

Опыты показали, что малейшая примесь перекисей может остановить деление клеток, вызвать глубокие изменения в их потомстве, в дочерних клетках. Другое вещество — хиноны, — появившись в клетке в ничтожном количестве, вмешивается в ход окислительных процессов клетки, действует в противоположном направлении. Жизнедеятельность клетки усиливается, деление ускоряется. В больших дозах хиноны сами становятся ядом. Они соединяются с ДНК, блокируют деление клеток.

Эта возможность — изменять ДНК — особенно привлекает экспериментаторов.

В самом деле: если при обстреле клетки гамма-лучами произойдет случайное столкновение ионизирующей частицы с молекулой ДНК, последствия этого события будут чрезвычайно важны и для данной молекулы, и для всей клетки, и для потомства этой клетки. Огромная молекула ДНК клеточного ядра воспримет энергию частицы и, деформируясь, прореагирует, например, с кислородом — в ней может нарушиться последовательность нуклеотидов, несущая закодированную программу для развития дочерней клетки.

«Если такое событие произойдет в половой клетке, — пишет член-корреспондент Академии наук СССР А. М. Кузин, — то может возникнуть изменение наследственно передаваемых свойств, связанных с данным (поврежденным) участком ДНК».

Если так, то почему не применять радиоактивное излучение для направленного изменения наследственности и получения нужных человеку форм полезных растений и животных.

Так-то оно так. Но обратите внимание на маленькую деталь: мы сказали, что столкновение ионизирующей частицы с молекулой ДНК случайно. В этом вся загвоздка. Мы обстреливаем цель вслепую. Мы еще долго не сможем вести прицельный огонь. Дело не только в несовершенстве оружия. Дело еще и в нашем незнании, куда именно надо стрелять. ДНК огромна. Упрощенно говоря, в каждом ее «отсеке» лежит план-чертеж на постройку определенной части будущего здания — живого организма. В одном заложена форма листа, в другом — махровость цветка и т. п. Но что именно и где именно, это нам пока неизвестно.

Идти вперед наугад? А почему бы нет?! Случайность — друг науки. Если мы, сознательно воздействуя на растение, случайно получим новый сорт, наука от этого нисколько не пострадает.

Первые опыты с лучами-конструкторами в нашей стране были проведены в лаборатории доктора биологических наук Л. П. Бреславец. Ей удалось вместе с сотрудниками выявить стимулирующий эффект лучей Рентгена на зерновках ржи. При дозе облучения в 1000 рентген число и вес зерен в ржаном колосе заметно увеличивается.

Намачивание семян в слабых растворах продуктов распада урана тоже привело к повышению урожайности.

Три десятилетия ушло у экспериментаторов на уточнение доз облучения, отработку условий опыта. И только совсем недавно удалось уяснить, как именно и почему гамма-лучи дают стимулирующий эффект.

При обстреле семян в них возникают свободные радикалы макромолекул. Возникают в оболочке семян, в эндосперме, в зародыше. Они сравнительно устойчивы. Их можно обнаружить в облученном семени через несколько суток после обработки.

Семя брошено в почву. Под влиянием тепла, воды и начавшихся окислительных процессов зародыш пробуждается. До этого времени были как бы заморожены и те радикалы, которые образовались в момент обстрела. Они готовы поспешить друг к другу, в объятья, но они находятся на разных сторонах глубокого ущелья. Перепрыгнуть его трудно. Нужен или мостик, или вода, по которой можно добраться вплавь. Таким мостиком обычно служит кислород, а рекой — вода. Однако в семени очень мало воды — 4–10 процентов, а доступ кислорода ограничен.

Но вот семя брошено в почву, перебрасываются мостки, начинается половодье. Свободные радикалы устремляются навстречу друг другу по мосткам и вплавь. Происходят короткие цепные реакции окисления. В результате их образуются гидроперекиси, перекиси и хиноны — соединения, активно вступающие в новые реакции.

Естественный процесс активации ферментов в этих условиях идет быстрее обычного. Ферменты следят за порядком в клетке. Появились перекиси и хиноны — надо их вовлечь в строго определенный поток движения веществ в клетке. Нарушителей задержать. Стройматериалы доставить на место назначения. Плохо, если нарушителей, появившихся после облучения, в клетке слишком много. Тогда ферменты не справятся. Наступит хаос и, вероятно, даже катастрофа.

Если же доза облучения подобрана верно, некоторое увеличение движения в клетке только на пользу общему строительству организма.

Особый вопрос — о соединениях, которым удается прорваться в штаб движения, в ДНК. Опытами доказано, что ортохины быстро проникают в ядра клеток, они входят в комплекс с ДНК и могут повлиять на те команды, которые отсюда исходят. Например, заставить существенно изменить интенсивность развития проростков.

Семя, зародыш — очень удобный объект для естествоиспытателя. Этого «ребенка» тоже надо воспитывать с первых дней. Тогда легче удается воспитать в нем желаемые качества.

Предпосевное облучение семян не только ускоряет рост и развитие растения. Оно вызывает и более глубокие изменения в организме.

На ВДНХ можно было как-то увидеть необычную кукурузу. На каждой «ветке» ее висело не один-два, а по четыре-пять початков. Предпосевная гамма-обработка семян капусты, моркови, редиса повышает витаминность овощей. В моркови больше содержится каротина, в капусте — витамина С. Гамма-облучение яиц, произведенное на Томилинской фабрике в дозе 1–2 рентген, повысило в последующем яйценоскость кур, выросших из этих яиц, на 10 процентов.

Глубинные причины этих удивительных явлений во многом еще не раскрыты и не поняты. Но уже сегодня делаются попытки проникнуть в святая святых жизни. Проникнуть и воссоздать ее в лучшем, чем это было до сих пор, виде.

Перед вторжением в эволюцию

Шел июнь двадцатого года. Третий поход Антанты. Голод. Разруха. В эти трудные дни в Саратове собрался III Всероссийский съезд селекционеров. Молодой профессор Саратовского университета Николай Вавилов прочитал собравшимся свой доклад о законе гомологических рядов в наследственной изменчивости. Теория Вавилова уложила в стройную систему всю флору земного шара.

Чтобы уяснить себе эту систему, обратимся к таблице мировых пшениц.

Пшеница распадается на восемь линнеевских видов: твердую, мягкую, английскую и т. д. В каждом из восьми видов бывают формы озимые и яровые, красноколосые и белоколосые, остистые и безостые. Все эти разновидности и образуют гомологические ряды.

Рожь со своими формами в таком же порядке повторяет пшеницу. Ячмень и овес повторяют друг друга, а также рожь и пшеницу.

В телеграмме, отправленной в Совнарком, съезд подчеркивал, что теория Вавилова представляет собой крупнейшее событие в мировой биологической науке и соответствует открытиям Менделеева в химии. Действительно, подобно менделеевской таблице, закон Вавилова позволял предсказывать существование, строение и свойства еще неизвестных или почти не изученных видов растений. К слову сказать, некоторые из предсказанных форм растений Вавилов и его соратники открыли в экспедициях по малоизученным местам земного шара.

Закон Вавилова оказался применим и для животного мира.

Успехи молекулярной биологии последних лет помогли понять механизм гомологичной (сходной) изменчивости у организмов. Закон гомологических рядов обогатился новым содержанием.

Раньше мы могли предсказывать особенности строения неоткрытых видов статистическим путем. Теперь мы начинаем понимать, почему будущие виды сходны со старыми.

Если мы заглянем в классический труд Н. И. Вавилова «Пшеница», то сразу же обратим внимание на его классификацию этого злака. Пшеница разделена им на три больших отряда: 14-, 28-, 42-хромосомную. Разница в числе хромосом, несомненно, определяет и разницу в особенностях каждого класса пшениц.

Если клетки организма содержат в своих ядрах полный набор хромосом, они называются диплоидами. Исчезни по каким-то причинам та или иная хромосома — и нормальная деятельность клетки и организма становится невозможной. Если в одной клетке соединятся полные наборы хромосом, получится новый организм.

В генетике под полиплоидией принято понимать более высокую степень повторения хромосомных наборов.

Внешне полиплоиды отличаются от растений того же класса, но имеющих меньший набор хромосом. Злаки диплоид имеют типичный остроконечный лист. У полиплоидов лист оканчивается тремя зубчиками. Полиплоиды медленнее растут. Среди них чаще попадаются растения-гиганты.

Иное внутреннее строение определяет иные свойства полиплоидов. Как правило, это более ценные сорта.

Интересные данные получил Леве, проанализировав, как чувствуют себя полиплоиды в плохую погоду. В 1939–1942 годах зимы в Швеции были на редкость суровыми. Анализ показал, что морозы перенесли только 5 процентов диплоидов, 90 — тетраплоидов и все 100 процентов гексаплоидов.

Неудача, ставшая открытием

Пионером экспериментальной полиплоидии был ученик Вавилова ленинградский генетик Г. Д. Карпеченко. Он провел смелый эксперимент. Карпеченко решил осуществить очень отдаленную гибридизацию — редьки с капустой. Разве не заманчиво получить растение, у которого будут капустные вершки, а корешки, как у редьки? И кочан и корнеплод сразу.

И у капусты и у редьки по 18 хромосом. Гибрид унаследовал по 9 хромосом от каждого родителя. Он оказался «растительным мулом» — потомства от него получить не удалось.

Карпеченко тщательно осмотрел половые клетки всех гибридных образцов. У нескольких из них хромосомы родителей сохранились полностью — по 18 от каждого предка. Тридцатишестихромосомный гибрид дал потомство. Он отлично размножался, но зато категорически отказался от своего прежнего родства. Он не скрещивался больше ни с капустой, ни с редькой. Возник совершенно новый вид растения, не существовавший в природе. Редько-капуста, или, как назвал его автор, рафанобрассика (по-латыни).

В 1927 году Карпеченко опубликовал теоретические обоснования синтеза новых видов с неограниченной плодовитостью.

Большая группа генетиков — советских и зарубежных — развернула поиски в этом направлении.

И хотя конкретная цель, которую ставил перед собой ученый, не была достигнута, — работы его показали путь к преодолению бесплодия отдаленных гибридов.

Полиплоидия коренным образом меняет природу растения. У него появляются совершенно новые свойства. Клетки полиплоидов крупнее, цветы и плоды их тоже увеличиваются. Физиологические процессы протекают активнее. Организм скорее приспосабливается к изменениям условий жизни.

Как получить полиплоидные клетки?

Лабораторная техника этого дела разработана за последние десятилетия довольно основательно. Клетку охлаждают приблизительно до 3 градусов. Это делается в тот момент, когда она готова к делению, то есть к размножению. Именно в этот момент легче всего вмешаться в процесс размножения.

Но каким инструментом осуществить эту операцию?

Русский биолог Н. К. Кольцов еще в 1917 году предложил применить для вторжения в эволюцию рентгеновы лучи и предсказал, что могут найтись и другие способы воздействия на хромосомы.

1925 год. Советские генетики Г. А. Надсон и Г. А. Филиппов, обстреляв кормовые дрожжи Р-лучами, получают новые формы этого микроорганизма.

Последовала целая лавина открытий в области экспериментальной полиплоидии. Работы Меллера и Дубинина, Астаурова и Жебрака, Цицина и Сахарова, Сапегина и Делоне, шведского генетика Мюнтцига и болгарского биолога Костова привели к созданию новых видов растений и животных.

В 1936 году было установлено, что алкалоид колхицин стимулирует образование полиплоидных клеток. Это сделали Блексли и его сотрудники (США). Правда, у них были предшественники — еще сам Дарвин пытался воздействовать на растения колхицином, но работы американцев охватывали такой широкий круг растений, а механизм действия колхицина ими так тщательно изучен, что их труды можно считать началом нового направления в генетике и селекции. Американские ученые дали обоснованную методику воздействия колхицина на определенных этапах развития растений.

Уже через два года благодаря этой методике биологи имели 40 видов искусственно полученных полиплоидов. А еще через несколько лет число полиплоидных растений увеличилось в 10 раз.

Увлечение полиплоидией подогревалось первыми успехами. Конечно, большую роль играл определенный азарт. В результате искусственно вызванных мутаций получались организмы с новыми признаками. Новизна — это уже хорошо. Но ведь важно получить ценные свойства. У полиплоидной гречихи Сахарова были крупнее зерна. Шведские генетики получили ячмень с прочной, неполегающей соломиной. Японские исследователи вывели тетраплоидный табак, содержавший на четверть больше никотина.

В полиплоидных растениях было больше витамина С (в томатах), больше рутина (в гречихе).

Но главного на первых порах не достигали. Все ждали от полиплоидов не только новизны, но и практической пользы. Надеялись немедленно получить новые, высокоурожайные сорта.

Из лабораторий выходили виды растений с крупными плодами или зернами. Но урожайность их практически оказывалась такой же.

Восемь лет — с сорокового по сорок восьмой — бились шведские генетики над получением полиплоидного сорта ржи. Он давал очень крупные зерна. Однако весил колос полиплоида столько же, сколько у обычного растения. Ни урожайностью, ни зимостойкостью, ни иммунностью новая рожь не отличалась. Правда, хлебопекарные качества ее и содержание белка в хлебе были повыше. Но стоило ли из-за такого малого эффекта тратить столько времени и трудов?

Увлеченные созданием новых форм растений — с большими плодами, с большим содержанием ценных веществ, — биологи воспринимали их как уже готовые сорта. Как годные для сиюминутного внедрения в практику. А практика иной раз подводила.

Авторы многих полиплоидов, охваченные вначале нетерпением увидеть свои сорта на полях, впали в пессимизм, увидев, что их труды не приносят ощутимой практической пользы.

Меллер и Фишер долго бились над тем, чтобы получить из растения «датура страмониум» тетраплоид с повышенным содержанием алкалоидов. Отступились. Сделали вывод, что эти попытки безуспешны.

Джексон и Роусон были более настойчивы. Из растений того же вида они получили тетраплоид, в котором процент алкалоида был в 3 раза выше.

Полиплоидия, наблюдаемая в природе, не давала поводов для пессимизма. Полиплоиды растительного мира — победители в борьбе за существование. Они составляют половину всех растений. Но природа, создавая полиплоиды, одновременно производила отбор их. Она работала на поприще селекции сотни тысяч лет. Почему же мы должны забывать об этой стороне работы?

Вывод очевиден: полиплоидия должна сопровождаться отбором.

«Мы в состоянии экспериментально вызывать появление новых наследственных свойств у организмов физическими, химическими и биологическими мерами. Изменение условий во внешней среде — еще один путь воздействия. Проверенный метод и скрещивание, отдаленная гибридизация, — говорит академик Н. П. Дубинин. — Однако во всех случаях основным является селекция, отбор для формирования пород и сортов. Все дело в том, что без направляющего влияния отбора сама наследственная изменчивость еще не поддается регуляции. Пока мы не можем получить поток направленных изменений».

Решить эту задачу — значит научиться управлять жизнью. Она еще кажется фантастичной самим ученым; но это самая насущная задача современного естествознания. Она поставлена в повестку дня Программой партии. Вспомним ее вдохновляющие строки:

«Крупные сдвиги предстоят в развитии всего комплекса биологических наук в связи с потребностями успешного решения проблем медицины, дальнейшего подъема сельского хозяйства. Интересы человечества выдвигают перед этими науками в качестве главных задач познание сущности явлений жизни, вскрытие биологических закономерностей развития органического мира, изучение физики, химии живого, разработку различных способов управления жизненными процессами, в частности обменом веществ, наследственностью и направленными изменениями организмов».

Научиться управлять этими изменениями — мутациями — значит научиться в какой-то мере руководить процессом эволюции, заставить ее идти быстрее, в ногу с веком и его задачами. Ускорить бег биологического времени — заветная цель селекционеров. Сегодня, когда в руках их находится такой мощный инструмент, как радиационная генетика, она вполне осуществима.

Мы говорим о необходимости сочетать полиплоидию и отбор. Это нужно. Но в результате гамма-облучения полиплоиды возникают не так часто. Зато, облучив, допустим, тысячу растений одного вида, мы получаем почти тысячу мутантов — образцов растений с новыми свойствами. Не беда, что большинство мутаций вредны. Иногда в результате облучения возникают полезные для нас формы. Их-то и надо использовать для выведения новых сортов.

Мутацию надо закрепить путем отбора.

То же делает селекционер и на опытном поле, отыскивая среди миллионов растений единичные образцы мутантов, обладающих ценными свойствами. Его поиск целеустремлен, хотя все же в какой-то степени случаен. На делянке, где растут искусственно созданные мутанты, у селекционера больше материала для размышлений. Здесь больше растений, из числа которых можно что-то отобрать. Чем больше найдется подходящих мутантов, тем быстрее пойдет процесс отбора.

Излучения повышают скорость естественных мутаций, ускоряют работу селекционера. При обычных методах на выведение нового сорта ржи, устойчивого к ржавчине, требуется до 10 лет. Радиационная селекция позволяет сделать это за 18 месяцев. Меняя дозу и приемы воздействия на исходный материал, селекционер может управлять количественной стороной мутационного процесса.

Качество, то есть получение определенных, целенаправленных мутаций, пока человеку неподвластно. Но он находится на близких подступах к решению этой задачи.

Существо по заказу

Лет десять назад по страницам газет и журналов метеором пронесся сенсационный заголовок: «Вещество по заказу!» Из разных мест, по разному конкретному поводу, с разной степенью достоверности репортеры торопились поведать читателю об удивительных вещах, творимых в лабораториях химиков. Из колб и реторт, из реакторов и растворов экспериментаторы начали извлекать одно за другим вещества с заранее заданными свойствами. Пластмассы, синтетические волокна, лекарства… Правда, подавляющее большинство этих творений так и застряло на стадии эксперимента. Из-за сложности технологии, из-за дороговизны. Но сам принцип уже восторжествовал! Выкладки и предположения химиков-теоретиков были блестяще подтверждены практикой. Многие теории, казавшиеся смелыми, если не безудержной фантазией, стали на твердую почву фактов.

Вещество по заказу получить не так-то еще просто. Но безусловно возможно. Мечта ученого-химика становится в наши дни реальностью.

Сокровенная мечта современных биологов еще более дерзка и фантастична. Существо по заказу! Вот к чему направлены вкупе усилия всей армии творцов науки о жизни. Может быть, это слишком громко сказано. Можно сказать проще: новый сорт растений, новая порода животных — по заказу.

Химики уже научились управлять процессами, которые приводят к созданию новых полимеров, обладающих желаемыми свойствами.

Биологи стоят пока на пороге аналогичных открытий. Стоят перед дверью, в которую надо еще хорошенько постучаться.

Они смогут проникнуть туда, только узнав пароль. Пароль — это пропуск. Пароль в данном случае — это знание закономерностей наследственности и ее изменчивости.

Принято считать, что наследственность определяется так называемыми генами. Но существуют ли гены? Наука спорит об этом уже добрых сто лет. Механизм деятельности генов до конца еще не выяснен. Выдвинуто много любопытных и весьма правдоподобных гипотез, до некоторой степени подтвержденных опытными данными. Серией опытов доказано, что в каждой хромосоме содержится множество генов, определяющих ряд отличительных признаков особи. Знаменитая муха дрозофила, ставшая притчей во языцех, помогла выявить порядок расположения генов по длине хромосом.

Как выглядит ген? Нарисовать его портрет покамест сложно, но некоторые черты «лица» начинают проясняться — считают, что ген представляет молекулу (или ее участок — локус) в форме длинной цепи. Вдоль нее расположены в строгом порядке боковые группы атомов. Молекула эта подобна печати. Она может дать любое число отпечатков.

Вероятно, портрет этот упрощен и далек от сходства. Для нас важно другое.

Мы видели, что облучение зародышевой клетки радиоактивными частицами — рентгеновыми лучами, нейтронами, быстрыми электронами — вызывает серьезные последствия. Попадая в молекулы гена, они либо откалывают от них какую-то частицу, либо меняют их структуру иным путем (ионизируя водную среду и повышая концентрацию заряженных атомов водорода и гидроксильных групп). Эти изменения — мутации — необратимы. Они передаются по наследству (в соответствии с законами Менделя!). Чаще всего мутации вредны, они порождают химеры, организмы, не достигающие зрелости. Должно ли это удивлять нас? Ни в коем случае. Представим себя в роли скульптора, который решил высечь из камня статую, обстреливая ее с приличного расстояния из пулемета. Получить нужную фигуру — это значит отсечь от камня лишнее. Добавьте к этому, что у скульптора завязаны глаза и он может определить, что попал в цель, только по звуку пули, чиркнувшей по камню. Однако повязка не вечно будет закрывать глаза ваятеля.

Произвольно вызываемые мутации осуществимы. Мутации, дающие необходимый эффект, станут когда-нибудь самым надежным и точным инструментом в руках селекционера.

Биолог будет знать наверняка: обстреливая данный участок молекулы, он получит сорт с повышенной урожайностью; попадая в соседнюю группу атомов, он получит засухоустойчивое растение. Существо по заказу станет реальностью. Не за горами время, когда секреты гена, особенности каждого участка его молекулы станут достоянием науки. Управление наследственностью растений, изменение ее в нужную сторону перейдет из области теории в практику сельского хозяйства. Радиационная генетика позволит отказаться от кустарщины и эмпиризма.

Электронная оптика и здесь сослужит свою службу.

Мы знаем, что быстрые электроны можно отклонять от их пути и конденсировать, подобно тому как увеличительное стекло конденсирует лучи света. В электронном микроскопе пучок электронов изгибается и фокусируется с таким расчетом, чтобы изображение предмета, через который прошли электроны, воспроизводилось с огромным увеличением. Этот замечательный прибор позволяет видеть мельчайшие детали молекулы, только в два-три раза превышающие диаметр обычных атомов, образующих живую материю. Представьте на минуту, что у вас в руках бинокль. Переверните его стекла наоборот. Предметы, которые оптика приблизила в несколько раз, теперь будут во столько же раз уменьшены. Так можно поступить и с линзами электронного микроскопа. Они позволяют создать тысячекратно уменьшенное изображение источника электронов. Значит, можно сконцентрировать электронный пучок на участке всего в три диаметра атома. Что это даст? Направим этот тончайший лучик на хромосому половой клетки, на какой-то определенный участок, и мы получим нужный генетический эффект. Мы сможем регулировать этот эффект, меняя время, дозу облучения. Мы будем обстреливать только те участки, мутации которых принесут нам желаемые изменения в наследственности всего организма.

Возможно, и в этом случае многие мутации окажутся неблагоприятными. Но зато теперь нам не придется в течение долгого времени выращивать тысячи новых особей, чтобы потом отбросить тысячи неудачных вариантов и отобрать единичные перспективные экземпляры. Лауреат Нобелевской премии Дж. Томсон считает, что такой метод можно было бы без особых затруднений применить к растениям и, пожалуй, даже к низшим животным.

Научимся ли мы когда-нибудь направлять электроны с точностью, достаточной, чтобы вызывать нужную мутацию? Это вопрос времени. Надо прежде проникнуть в механизм действия генов. Может случиться так, что мы всех тайн этого механизма не раскроем. Мы только будем знать, какой именно ген, какой именно участок молекулы претерпел изменения. Но и тогда перспектива выведения совершенных видов растений необычайно расширится. Возрастут и скорость выведения новых пород и размах изменчивости. Мы будем использовать эти мутации так же, как сегодня используем клубеньковые бактерии, не зная до конца механизма их действия. Как использовало человечество для своих нужд ферменты, тысячелетиями не подозревая об их существовании.

Гибридизация молекул

Метод гибридизации занимает прочное место в арсенале селекционеров. О том, какие необычайные перспективы он сулит, мы знаем со школьной скамьи. Помните мичуринский церападус — гибрид черемухи и вишни? Или пшенично-пырейные гибриды Цицина? Каждый оригинатор, выводящий новый сорт, ждет, что его детище унаследует лучшие качества отца и матери. Скрещивая черемуху с вишней, Мичурин надеялся, что гибрид будет плодовит, как черемуха, и крупноплоден, как вишня. Великий преобразователь достиг в данном случае своей цели. Но не всегда подобный эксперимент удается.

Вспомним знаменитый гибрид Карпеченко. От редьки — корешки, от капусты — вершки.

Но Карпеченко осуществил свой знаменитый эксперимент в те времена, когда мы еще не знали, что такое ДНК, когда полимерная химия еще не выбралась, по сути дела, из своей первой пробирки. Слова «полиэтилен» и «полистирол» появились много позже. Еще позже ученым удалось привить молекулу полистирола на молекулу полиэтилена. Так был получен гибрид двух полимеров, обладавший качествами обоих своих родителей. Но этот гибрид родился в «мертвой» природе.

А в живой?

Применить этот метод на уровне живых молекул оказалось делом чрезвычайно сложным, но все же осуществимым.

Чтобы «влезть» в клеточное ядро, особенно в хромосомы, экспериментаторы проявили много изобретательности и долготерпения. Хромосомы окрашивали в разные цвета и разными веществами. Их переваривали ферментами, исследовали ультрафиолетовым микроскопом, выделяли из клетки и изучали прямыми химическими анализами.

Хромосома устроена на первый взгляд просто. Она содержит три главные составные части — белок, ДНК и РНК. Все эти три вещества соединены в хромосоме в единую структуру — нуклеопротеид. Но ДНК при ближайшем рассмотрении представляет довольно сложную молекулу. Азотистые основания (числом до 30 тысяч), остатки сахара и фосфорной кислоты соединены в ДНК в двойную цепочку при помощи водородной связи.

Еще сложнее выглядит фермент рибонуклеаза, способный гидролизовать рибонуклеиновую кислоту — РНК. Он представляет собой биополимер, состоящий из 124 аминокислот.

Прежде чем научиться скрещивать подобные молекулы, нужно было распознать их структуру. Распознать — это значит разобрать по частям. Клеточное ядро пришлось растирать, дробить ультразвуком, замораживать и обрабатывать кислотами. Из полученной «каши» надо было выделить по очереди все ее компоненты. Только центрифуга, прибор необычайных возможностей, помогла это сделать.

Под действием центробежной силы в ней возрастает сила тяжести. Мелкие частицы, которые остаются обычно в растворе, осаждаются. Нужна огромная сила, чтобы оторвать одни частицы от других. В центрифуге сила тяжести примерно в 100 тысяч раз превосходит земное притяжение!

Наконец компоненты разделены. Можно приступить к скрещиванию живых молекул. Смешиванием различных нуклеиновых кислот удалось добиться спаривания их молекул. Гибрид получился довольно прочный. Он сочетал в себе свойства родителей.

Опыт за опытом — задача усложнялась. Скрещивание было проведено на уровне белковой молекулы. Взяли фермент, встречающийся у двух разных бактерий. Полипептидную цепь от одной скрестили с цепью бактерии другого вида. Потомок вполне походил на обоих «предков».

Гибридизация на уровне молекул открывает захватывающие перспективы.

Ученые, занимающиеся молекулярной биологией, любят говорить о двух важнейших задачах этой науки. Первая: синтез белков. Вторая: получение направленных мутаций. Гибридизация молекул работает в одном и другом направления одновременно. Практические возможности этого метода пока еще невозможно ясно представить. Но вот один из последних фактов, над которым читатель сможет сам поразмыслить.

Советские и чешские биологи сумели осуществить гибридизацию двух белков-антител. Антитела — это белки, образующиеся при иммунизации организма. Одно антитело было носителем невосприимчивости к одному заболеванию. Другое — обеспечивало иммунитет к иной болезни. Гибрид антител соединял в себе свойства своих родичей. Нужны ли пояснения к этому факту?

Наука идет вперед семимильными шагами. Жизнь сплошь и рядом ставит перед ней задачи, которые всего несколько лет назад вызвали бы усмешку. Столетиями, желая высмеять ученого, говорили, что он выращивает в колбе гомункулуса (по-латыни: человечка) или, на худой конец, что занимается химерами.

Опыты итальянских ученых с человеческим зародышем сегодня стали сенсацией дня.

Что касается химер, этот термин приобрел ныне вполне научное звучание.

Химические химеры доктора Раппопорта

Доктор наук И. А. Раппопорт занимается химерами вот уже тридцать лет. Я говорю об этом вполне серьезно. Упорство и жизнь этого самоотверженного исследователя кому-нибудь послужат еще темой книги. Книги, полной драматических ситуаций и психологических конфликтов, напоминающей по остроте сюжета детектив.

Алкалоид колхицин, применявшийся генетиками для получения искусственных мутаций, выделяется из семян безвременника. Извлекать его оттуда довольно трудно, да и семян это растение дает не много. Правда, для экспериментов нужны были микроскопические дозы алкалоида. Но для широкой постановки опыта требовались и соответствующие масштабы.

Начались поиски химических заменителей колхицина. Фенантренная основа молекулы колхицина подсказала академику И. Шмуку где искать. Он предположил, что в ряду карбоциклических соединений есть вещество, подобное колхицину. Так и оказалось. Из нафталина и бензола был выделен аценафтен. В растворе он вел себя достаточно инертно. Зато в кристаллическом состоянии производил мутагенный эффект. Правда, аценафтен действует медленнее колхицина. Но это было на руку исследователям. Можно было получше изучить процесс мутагенеза.

…Вот охлажденная клетка помещена во влажную камеру. Чем теплее в ней, тем скорее происходит деление клетки.

В камере растение обрабатывается колхицином или его производными — аценафтеном, хлористым сангуннарином, гаммексаном, линданом и другими. Они действуют быстро и весьма эффективно. В результате в камере образуется достаточно много полиплоидных клеток. Некоторые из них способны к размножению, большинство же погибает, так как колхицин и другие химические вещества — это яды для растительного организма.

Яды. Опять это слово. Но почему именно они мутагены? Ничего в этом удивительного нет. Яд, как мы видели, бывает и лекарством и стимулятором. Для большинства организмов мутаген — яд. Все же примерно пятая часть изменений, которые химический мутаген вызывает у растений и микроорганизмов, полезна.

Попадая в ДНК, мутаген поражает информационный центр, мешает ему отдавать распоряжения. Иногда он вносит хаос в построение новой жизни в клетке. А иногда неожиданно попадает в ее ритм, ускоряя ее и перестраивая, но не нанося смертельного удара.

Доктору биологических наук И. Раппопорту посчастливилось открыть несколько химических мутагенов — диэтилсульфат, этиленамин, нитрозоалкилмочевину и диазоцетилбутан.

Любопытно, что активные группы последних веществ входят и в состав природных ядов — митомицина, стрептозотоцина и азасерина.

Мутагены Раппопорта позволили осуществить поразительный эксперимент. На лабораторном столе в Институте химической физики была «прокручена» эволюция нескольких видов растений. Воздействуя на пшеницу сорта «украинка», ученые получили из нее сразу два новых подвида. Один из них по всем признакам походил на подвид «компактум». Другой ничем не отличался от индийской пшеницы. В третьем случае была получена химера. Химерный мутант сочетал в себе признаки сразу двух различных видов: лист и соломина короткие, как у «тритикум сферококкум», а колос как у иранских мягких пшениц.

Природе на это требовались тысячелетия. Химики воспроизвели процесс эволюции за год.

Химические мутагены оказались гораздо эффективнее такого физического метода воздействия, как радиация. Они меньше разрушают обрабатываемый материал, меньше поражают структуру хромосом. Последняя особенность способствовала развитию экспериментальной полиплоидии на новой основе.

Самый яркий пример — история с сахарной свеклой. Селекционеры Европы давно бьются над тем, чтобы «выжать» из этого корнеплода побольше сладкого сока. Оригинаторы долго не могли вырваться из заколдованного круга. Они старались вывести свеклу с крупными корнями. Когда это удавалось, выяснялось, что процент сахара в ней становится меньше. Общий выход конечной продукции не рос, а иногда даже падал. Выводили сорт с повышенной сахаристостью, но он обладал низкой урожайностью.

Полиплоидия вывела оригинаторов из тупика.

Самые серьезные достижения в этой области достигнуты венгерскими учеными. Благодаря химическому мутагенезу здесь получены высокопродуктивные полиплоиды сахарной свеклы. Они отличаются и высокой урожайностью, и сахаристость их на 5–10 процентов выше обычной. Общая стоимость ежегодной прибавки сахара за счет полиплоидии оценивается в ВНР в полмиллиарда форинтов. Это в два раза больше всех ассигнований на науку в республике. Семена венгерских полиплоидных сортов вывозятся в 11 стран. Почти весь сахар в ГДР, Польше, Чехословакии добывается именно из них.

Для наших условий эти сорта, к сожалению, не пригодны. Как и многие полиплоиды, они позднее поспевают.

Первый триплоидный гибрид сахарной свеклы создан в Советском Союзе в 1960 году А. Н. Лутковым, В. А. Паниным и В. П. Зосимовичем. У гибрида повышено содержание сахара в корнях на 15 процентов. Это будущее всей сахарной свеклы в нашей стране. Районированный на Кубани полигибрид-9 дает дополнительно 100 000 центнеров сахара.

На полиплоидный уровень будет со временем переведена и пшеница. Неплохо зарекомендовали себя в суровых условиях Сибири ржано-пшеничные амфидиплоиды лауреата Государственной премии В. Писарева. Огромную коллекцию полиплоидов пшеницы создал академик Академии наук БССР А. Р. Жебрак. Он вывел больше полиплоидов пшеницы, чем все исследователи планеты. Его сорт «тритикум советикум» — пшеница советская — проходит сейчас испытания.

Химический мутагенез, полиплоидия, радиационная селекция — это новые инструменты искусственного отбора. Они позволяют человеку активно вторгаться в жизнь природы, создавать новые виды животных, растений, микроорганизмов высокой продуктивности. Невиданные формы цветов, деревьев, кустарников, мхов, водорослей, птиц, рыб, зверей будут созданы нашими руками в ближайшем будущем.

Отступление седьмое. О генах, обскурантизме и монополиях в науке.

Доблестный Джон Тальбот — основатель британской аристократической династии Шрюбери — погиб на поле брани пять веков назад. Он оставил своим потомкам в наследство Шрюберийский собор и симфалангию — уродство руки. Это обнаружилось не столь давно при реставрации собора, когда был вскрыт склеп родоначальника династии. Потомок герцога в четырнадцатом поколении присутствовал при вскрытии. К великому удивлению собравшихся, он тоже страдал симфалангией. У него, как и у его далекого предка, были сращены первая и вторая костные фаланги на пальцах рук.

Загадка наследственности волнует человека, наверное, с того дня, когда он впервые — в глазах ли матери, или в зеркальной глади — увидел рядом себя и своего ребенка. Загадка эта казалась непостижимой едва ли не до нынешнего дня.

Каким образом из одной-единственной микроскопически малой клетки возникает огромный и сложнейший организм — миллиарды клеток, разумно и целесообразно соединенных в одно целое? Каким образом это целое наследует мельчайшие признаки — цвет глаз у человека или форму листа у клевера — своего родителя, своих праотцев? Где заложен механизм, который с такой точностью, тонкостью и последовательностью передает эти признаки из поколения в поколение?

Передаточная ступень поколений — половая клетка. Точнее, две — отцовская и материнская. Именно в ней, в клетке, заложено будущее и одного организма и сотен последующих поколений. Клетка — основа жизни. В ней сосредоточены важнейшие проявления жизни — синтез белков, нуклеиновых кислот, жиров, углеводов и других веществ. Основа клетки — ядро. Оно направляет синтез белков. В нем и содержатся те молекулярные структуры, в которых записана наследственная информация — гены.

Современные поколения исследователей уже со школьной скамьи пользуются такими понятиями, как клеточное ядро, цитоплазма, ДНК, хромосомы. Методы электронной микроскопии и меченых атомов представляются им простыми и очевидными. Применение их в практике лабораторных работ само собой разумеется. Но с каким трудом вырабатывались эти методы предшественниками нынешних пионеров науки! Как нелегко входили в научный обиход понятия, без которых сегодня немыслим ни один институтский и даже школьный учебник естествознания!

Сегодня вряд ли найдется биолог, который всерьез возьмется опровергать хромосомную теорию наследственности без опасений быть осмеянным. Вряд ли найдется человек со средним образованием, который не знает, что живая клетка состоит из ядра и цитоплазмы, который не слышал о ДНК, о хромосомах и о генах. А ведь каких-нибудь пятнадцать лет назад…

Впрочем, начнем лучше «от печки».

Пути познания сложны и тернисты. Физик П. Л. Капица как-то заметил, что хотя научная истина — в конце концов торжествует, но ее победа зависит от людей, которые, нередко противятся торжеству этой истины. История науки полна борьбы и трагедий. Борьбы материализма с идеализмом, борьбы передовых мыслителей с обскурантами. Мы знаем о кострах инквизиции и Джордано Бруно. Нам известны примеры преследований за научные убеждения и в нашем веке.

Обскуранты всех времен и народов пользовались слабостями естествознания. Они паразитировали на «белых пятнах» науки, на еще не доказанных гипотезах, на теориях, еще не подтвержденных практикой. Агностицизм — отрицание познания — был их главным аргументом. Их излюбленным лозунгом было выражение Дюбуа — Реймона: «Ignoramus et ignrabimus!» — «Не знаем и не узнаем!»

Они ухитрялись использовать в своих целях, в своих доказательствах даже открытия передовой науки. Каждая новая граница на пути познания, достигнутая исследователями, объявлялась ими последней и окончательной, за пределами которой ничего более нет. XIX век. Физическая картина мира рисуется поначалу с помощью молекулярной теории. Молекула — мельчайшая частица вещества — основа, всего сущего, утверждают ученые. Но вот открыт атом, часть молекулы. В картине становится больше деталей, но самая малая — это атом, ибо он (как явствует из его названия, заимствованного из греческого языка) неделим. Неделим — и все тут! Атомистическая теория объясняет все и вся. Но снова рывок науки. Открыт электрон. И тут происходит явление, которое Ленин назвал кризисом естествознания. Его вызвала ломка старых, установившихся понятий. Новую электронную теорию приняли далеко не все. Не все физики и философы смогли сделать верные, материалистические выводы из новых фактов науки. Зато идеалисты поспешили сделать свои. Реакционные поползновения были порождены самим прогрессом науки.

Открыт электрон? Чудесно, говорят агностики, электронное строение доказывает, что материя исчезает или, на худой конец, сводится к электричеству. Материалисты утверждают, что электрон — это форма существования материи. Но кто из них видел электрон? Никто! Существование электрона доказывается ими математически. Стало быть, электрон — понятие условное. Оно приблизительно верно отражает в нашей голове объективно реальное движение материи. Электрон — это граница познания, за пределами которой ничего нет. Проникнуть далее человек бессилен.

Подобные рассуждения Ленин следующим образом охарактеризовал в «Материализме и эмпириокритицизме»: «Это все — сплошной обскурантизм, самая отъявленная реакционность». Отрицание предвидения (и не узнаем!), неверие в новые научные концепции — первый признак обскурантизма. И случалось, что в ряды обскурантов попадали крупные ученые, известные крупными открытиями, сами создавшие новые концепции, попадали только потому, что считали свои открытия верхом научных достижений, а свои теории пределом научного мышления.

Фердинанд Кон, один из крупных микробиологов прошлого столетия, писал в свое время о бактериях: «Эти простейшие из всех живых форм образуют пограничную линию жизни, за пределами этих форм жизни не существует».

Однако прошло несколько лет, и Д. Ивановский открыл вирус табачной мозаики. Вирус был назван вирусом (проведем аналогию с наименованием атома!), потому что он показался исследователю ядом, то есть химическим веществом. Этот яд, как говорили опыты, обладал способностью размножаться. А значит, он был живым существом. Границы познания раздвинулись. Прошло еще несколько десятилетий, пока вирус не был по всем правилам сфотографирован. Но уже существовала вирусология, которая шла вперед вопреки скептицизму и мрачным предостережениям сомневающихся. О ее успехах мы говорили, и потому перейдем к главному примеру.

История генетики еще в большей мере, чем физика или химия нашего века, полна конфликтов и кризисов. Она еще ждет своего объективного и беспристрастного исследователя, который воздаст должное и Галилеям XX века и современным обскурантам. Мы наметим лишь некоторые вехи генетики, выделив оптимистическую линию ее развития.

Кто первым сказал слово «ген»?

Чтобы выяснить этот вопрос, мы должны обратиться прежде всего к Дарвину. Еще в 1868 году в своей работе «Изменчивость домашних животных и растений» великий естествоиспытатель делает попытку объяснить наследственность. Наследственное вещество Дарвин мыслил атомистически. Однако у него в руках не было фактов, не было точных данных. И он не без оснований писал А. Грею: «Глава, которую я назвал „Пангенезис“, вероятно, будет названа безумным бредом… Но в глубине души я считаю, что она содержит много правильного». В те же примерно дни Дарвин в письме Гуккеру надеется, что «наступит время, когда моя гипотеза найдет другого отца, который даст ей другое имя».

Одним из отцов этой гипотезы стал датский генетик Иоганссен. Он-то и сказал первым злополучное слово «ген», произведя его от дарвиновского «пангена» (он же создал учение о чистых линиях в селекции).

Голландец Гуго де Фриз, открывший замечательное явление скачкообразной изменчивости у энотеры, ввел в научную практику термин «мутация» для обозначения изменчивости, передающейся по наследству. Мутационная теория стала основой современной научной селекции растений и животных.

Эксперименты Фриза подтвердили в 1900 году гипотезу Иоганна Грегора Менделя, выведенную из наблюдений над гибридами гороха. Это же сделали Корренс в Германии и Чермак в Австрии.

Идея существования единиц наследственности — генов — была встречена в штыки многими учеными разных стран. На протяжении десятилетий генетиков громили, над ними публично глумились («муховоды», «умы гороховые»), их отстраняли от чтения лекций и ведения экспериментов. И все-таки объективная закономерность в науке неуклонно брала верх.

Еще в 1948 году обскурант от науки мог нагло спекулировать на человеческом незнании и мешать поиску естествоиспытателя, отождествляя его с богоискателями:

— А вы видели бога?

— Нет.

— А ген видели?

— Нет.

— То-то же…

Современные достижения генетики, цитологии, физики и химии выбили всякую почву из-под таких демагогических параллелей. Абстрактное представление о локализованном в клетчатом ядре носителе наследственности гене уступило место фактам. Сегодня генетика располагает точкой опоры для понимания материальной природы гена. В последние годы представления о нем уточнены и биохимиками и самими генетиками. Выкристаллизовалась основная единая точка зрения.

Преемственность жизни, воспроизведение в каждом поколении видовых и индивидуальных особенностей организмов связаны с молекулярной структурой дезоксирибонуклеиновых кислот — ДНК. ДНК, как известно, находится в хромосомах клеточных ядер. ДНК, РНК, белок — этот триумвират важнейших соединений является материальной основой главных свойств жизни. Физической же основой наследственности служит ДНК. Шаг за шагом наука подходила к этому выводу.

Абстрактное представление о гене как единице наследственности, как мы помним, родилось из наблюдений за гибридами. Распознать гены в их конкретных проявлениях помогли также опыты по скрещиванию. Сначала в 1946 году Ледерберг и Татум обнаружили, что бактерии могут давать гибриды. Затем тот же Ледерберг и другие ученые открыли явление трансдукции — перенос отдельных генов от бактерии к бактерии бактериофагом. Правда, тогда было еще не совсем ясно, где именно находятся — локализуются — гены. Но уже в 1959 году Жакуб и Моно пришли к выводу, что наследственный фактор у бактерий заключен в ДНК. Они обнаружили у молекул способность существовать и размножаться вне основной бактериальной хромосомы. Теория строения и редупликации — размножения ДНК, — созданная в пятидесятых годах Уотсоном и Криком, была тем лучом, который помог биохимикам и генетикам высветить самые темные и туманные закоулки наследственности. Уже в 1962 году был в основном расшифрован код генетической информации. Ведущие процессы, посредством которых заключенный в ДНК хромосом генетический код управляет синтезом молекул белка в клетке, были установлены конкретно. Доказано, что именно молекулы ДНК программируют жизнь.

Изучение процесса появления мутации — новых наследственных изменений — у бактерий и вирусов показало, что наследственность по своей природе корпускулярна. Гены — это сложные молекулярные системы, расположенные в линейном порядке по длине хромосомы… Было бы наивным, однако, представление, что каждому гену непосредственно и однозначно соответствует определенное свойство (скажем, окраска лепестков). Точными исследованиями доказано разностороннее (специалисты говорят, полифонное) действие каждого гена. Больше того, все гены действуют постоянно. И от того или иного состояния клеточной плазмы (оно зависит от внешних влияний) может зависеть, как действует ген в тот или иной момент времени.

Такова общепринятая точка зрения на ген. В теории наследственности ген занимает главное, но не единственное место. Говоря о передаче признаков из поколения в поколение, мы, разумеется, не будем забывать и о других факторах. О внеядерных — пластидомных и плазмонных — мутациях, изменениях наследственной основы, представленной вне ДНК, вне клеточного ядра. О геномных мутациях, наследственных мутациях, которые протекают с изменением числа всего набора хромосом.

Все эти факторы лежат в основе теории, которая со времен Дарвина и Менделя пробивала себе дорогу в практику, встречая немалое сопротивление и трудности. Дело не только в том, что теория эта не очень быстро обрастала фактами и неопровержимыми данными опытов.

Размышляя о том, почему даже в нашем веке прогресс биологии тормозился старыми препятствиями, которые физика встретила на своем пути еще в XVII веке, мы должны всегда помнить о близости этой науки к человеку.

Биология — это наука о живом, наука о нас самих. Грубо говоря, это наука о нашем здоровье и желудке. Она слишком близка нам, нашим личным и общественным интересам. Быть свободным от наших страстей, от влияния общественных форм и особенностей их развития невозможно не только обывателю, но и ученому. И если даже такая далекая от человека область, как физика, была в прошлом ареной самой ожесточенной полемики, то нетрудно понять бесконечные споры, дискуссии, всю ту упорную идейную борьбу, которой насыщена история биологии. Науке о живом и по сей день приходится расчищать себе дорогу от концепций, взглядов, унаследованных чуть ли не от средневековья, от времен магии, суеверий и предубежденности.

Расчистка эта трудна потому, что силы невежества нередко объединяются под флагом благочестия и традиций. Она особенно трудна потому, что под флаг обскурантизма становятся и некоторые ученые. Почему? Вопрос этот очень сложен. Ответ на него кроется не только в теории, которую проповедует тот или иной ученый, но и в его личных качествах, в его психологии, в неумении или нежелании отказаться от своих взглядов, подправленных другими исследователями и опровергнутых самой жизнью. Академик Н. К. Кольцов очень тонко подметил эту особенность науки. «Каждый выдающийся ученый обладает влечением к власти, которое выражается в пропаганде своего учения.

Работы ученого без этого влечения остаются незамеченными, и труды его пропадают даром. Это влечение, благородной формой которого является стремление убедить других, убедить весь мир в открытой истине, которое иногда вело великих ученых в тюрьму и на костер, нередко сопровождается и мелким тщеславием и честолюбием, в наших современных условиях смешным генеральством. В сильнейшей степени обладают влечением к власти фанатики определенного учения, стремящиеся покорить ему весь мир, пророки, основатели религий, самозванцы; отсюда постепенный переход к чудакам и параноикам, одержимым манией величия».

Безграничная вера в себя, в истинность и непогрешимость одного своего лишь учения приводит иных теоретиков к стремлению насадить свои взгляды во что бы то ни стало и повсеместно. Стремление к монополии — это не только стремление к самоутверждению. Это также стремление к подавлению инакомыслящих. Это отрицание других теорий, других научных школ даже тогда, когда в их работе есть рациональное зерно, даже тогда, когда объективная истина на их стороне, а не на стороне монополистов от науки.