Известно, что одним из открытий И. П. Павлова явилось обнаружение патологии поведения животных (а также человека) при чрезмерном напряжении высшей нервной деятельности. Большой вклад в исследование патологии высшей нервной деятельности был сделан также С. Н. Давиденковым, который вместе с И. П. Павловым, а затем Л. А. Орбели изучал патологические формы поведения и сделал оригинальные обобщения по ряду фундаментальных проблем высшей нервной деятельности в эволюционно-генетическом аспекте (Давиденков, 1947). Ряд широких обобщений, сделанных С. Н. Давиденковым, ставит его имя рядом с именами таких крупных теоретиков-биологов, как А. Н. Северцев, И. И. Шмальгаузен и др.
Из трех параметров, лежащих в основе всего многообразия типологических особенностей человека и животных, выделенных И. П. Павловым, С. Н. Давиденков наибольшую роль отводил подвижности нервных процессов как фактору эволюции. Эти представления лежат в основе его интерпретации явлений навязчивости и различных ритуальных действий.
Вполне понимая всю логическую бессмысленность последних, С. Н. Давиденков считает, что они оказывают в ряде случаев благотворное влияние (в результате отрицательной индукции) на патологические очаги застойного возбуждения, которые сформировались в результате тревожных мыслей и прямой опасности, угрожающей человеку. Конечно, человек прибегает к магии или ритуалам в основном в том случае, если не может дать причинного объяснения окружающим его явлениям природы. Появление ритуалов у некоторых народностей и ритуальных действий у больных людей вполне понятно, и оно прекрасно объяснено С. Н. Давиденковым на основе учения И. П. Павлова. Однако ритуальные действия, имеющие совершенно неуместный характер, широко распространены не только у людей, но и у животных. Например, при испуге или агрессии у многих видов животных внезапно появляется половая или пищевая реакция, вернее, ее имитация. Так, например, дерущиеся петухи в промежутках между агрессивными действиями обычно клюют траву или подбирают несъедобные предметы (которые тут же выкидывают из клюва). Этологами описаны самые разнообразные ритуальные действия животных, многие из которых приобрели биологическое значение.
Широко распространены у животных ритуальные движения. Они лежат в основе образование семейно-кастовых сообществ, а последние, в свою очередь, — в основе группового отбора.
Весьма вероятна гипотеза, что ритуальные движения у животных в значительной степени формируются на основе образования вторичных очагов возбуждения. Они весьма напоминают замещающие движения. Электрофизическое исследование показало, что во время действия сильного раздражителя возникает очаг повышенной возбудимости, обладающий свойствами доминанты. Из этого очага возбуждение распространяется в разные отделы мозга, в которых могут образоваться вторичные очаги возбуждения. Неуместные движения и являются внешним (поведенческим) выражением возбуждения тех центров мозга, которые в данный момент обладают низким порогом (Крушинский, Семиохина, 1973).
Ритуальные движения у многих животных приобрели весьма сложный и многообразный характер. Иногда они проявляются в сложной конструктивной деятельности. Так, беседковые птицы Австралии и Новой Гвинеи в период токования строят беседки, которые украшают цветками, камешками и раковинами улиток. Самцы некоторых видов даже разрисовывают стены шалашей «кисточками», которые они делают из листьев. В качестве краски используются сок из давленных ягод и собственная слюна, окрашенная древесным углем. Можно с большой вероятностью допустить, что принципиальное различие между ритуальными движениями животных и человека заключается в том, что у первых они возникают непроизвольно в результате иррадиации возбуждения из основного очага, возникшего в результате биосоциальных взаимоотношений, а затем отрабатываются естественным отбором.
У человека ритуальные движения появляются, видимо, по другому механизму. Вторичный очаг возбуждения возникает произвольно. Сам факт его формирования имеет чисто физиологическое значение, оказывая тормозящее влияние на первичный очаг возбуждения, который связан в основном с психофизиологическим состоянием страха. Нам кажется, что у истоков физиологического объяснения механизмов ритуальных движений как человека, так и животных должно быть поставлено имя С. Н. Давиденкова.
Уже при физиологическом анализе ритуальных движений, сделанном С. Н. Давиденковым, видна та огромная роль, которую он придавал степени и подвижности основных нервных процессов. Он считал, что если в объяснении механизма экспериментальных неврозов животных ведущую роль надо отдать слабости нервных процессов, то в отношении человека преимущественную роль играет их инертность.
Несмотря на то что функциональная пластичность мозга явилась огромным приобретением человека, она в то же время представляет собой источник того явления, которое было названо С. Н. Давиденковым парадоксом нервно-психической эволюции. Суть этого явления сводится к следующему. Все более совершенствуясь под действием естественного отбора, пластичность мозга достигла у современного человека высочайшей степени совершенства, что легло в основу поведения Homo sapiens. И тем не менее какие-то элементы инертности продолжают сохраняться в поведении людей. Этот феномен отмечался и рядом других исследователей. Так, Я. Я. Рогинский указывает, что кора больших полушарий головного мозга отличается, с его точки зрения, от подкорковых структур значительно большей ранимостью, неустойчивостью, истощаемостью и предрасположенностью к самым различным формам неврозов (Рогинский, 1938). С. Н. Давиденков, не во всем соглашаясь с тем, как трактует механизм нарушений нормальных функций мозга человека Я. Я. Рогинский, выдвинул свое объяснение тому явлению, которое он и назвал парадоксом нервно-психической эволюции. Одна из первых причин его, по мнению С. Н. Давиденкова, наиболее позднее развитие некоторых функциональных особенностей нервной системы.
Второе условие, способствовавшее появлению нервно-психического парадокса, — это уменьшение роли естественного отбора и увеличение значения различных форм преемственности в поведении, что способствовало накоплению мутаций. Высказав свою гипотезу, С. Н. Давиденков привлекает обширный материал основ эволюционного учения для подтверждения правильности этой гипотезы. Ссылаясь на Ч. Дарвина, А. Н. Северцева и И. И. Шмальгаузена, он приводит ряд положений и примеров из работ классиков эволюционного учения, подтверждающих правоту выдвинутой им гипотезы. В качестве одного из примеров ученый приводит корову Стеллера (Rhytina borealis Stellery) — крупное животное, обитавшее в районе островов Медного и Беринга и обнаруженное в XVIII в. русскими моряками. Коровы Стеллера были полностью истреблены за 2,5 десятилетия, так как они совершенно не боялись человека, охотившегося за ними. Совершенно иначе вели себя морские бобры (каланы), жившие в том же районе. Уже на следующий год после того, как за ними начали охотиться, эти животные стали пугливыми и не подпускали к себе людей на сотни метров. С. Н. Давиденков высказывает предположение, что основной причиной, погубившей корову Стеллера, явилась малопластичная, инертная высшая нервная деятельности этих животных.
В какой степени современные данные согласуются с гипотезой С. Н. Давиденкова о том, что основным путем прогрессивного развития мозга является повышение подвижности основных процессов нервной системы?
Исследования хотя и показали различия в обучаемости (переделка сигнального значения раздражителей и вероятностное подкрепление), тем не менее не позволили обнаружить существенного различия между крысами и приматами по этому параметру. Макбрайд и Хебб, одними из первых начавшие изучение поведения дельфинов, столкнулись при этом с большими трудностями. Авторы обнаружили, что в ряде случаев метод обучения нельзя положить в основу оценки высшей нервной деятельности; крысы обучались не хуже, чем дельфины. Таким образом, способность к обучаемости не может служить надежной характеристикой уровня развития высшей нервной деятельности и следует искать новые критерии.
Большие различия между разными таксономическими группами животных удается выявить при изучении их элементарной рассудочной деятельности, при помощи которой улавливаются логические связи между отдельными компонентами среды. Элементарная рассудочная деятельность животных — это способность к улавливанию простейших эмпирических законов, связывающих предметы и явления окружающей среды, и оперирование этими законами при построении программы поведения животного в новых ситуациях. Критерием наличия или отсутствия этой формы высшей нервной деятельности является решение предлагаемой задачи при первом ее предъявлении, без специального обучения. Животные способны улавливать следующие эмпирические законы: 1) закон движения, на основе которого проявляется способность к экстраполяции (т. е. вынесение известной функции на отрезке за его пределы); 2) закон вмещаемости, т. е. понимание того, что объемная приманка может быть вмещена только в объемную, а не в плоскую фигуру (оперирование размерностью).
Исследование способности животных к улавливанию и оперирование вышеуказанными законами среды выявило огромные различия между животными, стоящими на разных уровнях филогенетического развития. Эти различия оказались очень большими в пределах классов (голуби и вороновые) и даже в пределах близко стоящих в систематическом отношении групп. Проведенные исследования с несомненностью показали, что пластичность поведения претерпела существенные изменения в процессе эволюции. Однако увеличение пластичности поведения сопровождалось в какой-то степени и увеличенной предрасположенностью животных к развитию патологических нарушений их высшей нервной деятельности. Последние появляются при необходимости принятия решения и в момент самого решения. На поведенческом уровне они возникают в развитии ярко выраженной боязни обстановки опыта, появления стереотипных форм поведения, иногда резкого возбуждения или, наоборот, ступорозного состояния. Перерыв в работе или применение транквилизаторов нормализовало поведение животных.
Регистрация электрической активности мозга во время решения задачи на экстраполяцию, проводимая на крысах и черепахах, выявила значительные изменения ЭЭГ. У некоторых животных удалось зарегистрировать высоковольтные разряды (до 600 мкВ) и комплекс пик-волна, характерный для эпилептического припадка, после 2–6 правильных решений задачи подряд. Существенно отметить, что нарушение поведения и появление патологической активности в мозге были обнаружены после первого или первых предъявлений задачи. Изменения биопотенциалов появлялись как в коре, так и в подкорковых структурах.
Наши исследования показали, что решение предъявляемых задач — трудный для животного процесс, который может приводить к развитию ряда патологических сдвигов. В сущности, мы имеем перед собой в модельном опыте на животных то явление, которое было названо С. Н. Давиденковым парадоксом нервно-психической эволюции. Ведь по мере прогрессивного развития высших отделов переднего мозга животных у них появляется элементарная рассудочная деятельность, а ее напряжение при решении трудных задач, необходимое для быстрейшей адаптации к новым условиям среды, может приводить к срыву высшей нервной деятельности. Парадоксальность этого явления несомненна: чем на более высоком уровне филогенетического развития находится животное, тем больше вероятность появления патологического состояния в процессе адаптации при помощи поведения к многообразным условиям существования. Именно виды животных, способные быстро оценить ситуацию, в которой они находятся, наиболее предрасположены к развитию у них патологических форм поведения, имеющих четкое электрографическое выражение. Мы полагаем, что перед нами в яркой форме выступает парадокс нервно-психической эволюции (Крушинский, 1977).
Как С. Н. Давиденков, так и Я. Я. Рогинский основной акцент при рассмотрении нервно-психического парадокса делали на состоянии клеток коры полушарий головного мозга. Впоследствии нами было установлено, что при развитии патологических состояний в этот процесс вовлекаются как корковые, так и подкорковые структуры, т. е. мозг в целом, что хорошо отражает ЭЭГ (Крушинский, 1977). Поэтому мы сомневаемся в том, что нервно-психический парадокс является филогенетически недавним приобретением эволюции. Скорее, надо думать, что это явление имеет гораздо более древнюю природу. Очевидно, оно развилось параллельно со способностью животных к элементарной рассудочной деятельности.
Какова степень вреда для организма от развивающихся патологических симптомов, возникающих в результате напряженного решения какой-либо адаптивной задачи? Исходя из полученных нами на большом количестве различных животных данных, можно предположить, что она минимальна. Во-первых, уже в самом поведении животного нередко проявляется несомненный защитный механизм. После правильного решения задачи нередко у них возникает боязнь обстановки опыта. Это предохраняет животных от дальнейших попыток решения трудной для них задачи. Особенно ясно в наших опытах фобия обстановки опыта проявилась у птиц из семейства вороновых. После нескольких правильных решений совершенно ручные птицы вдруг начинали избегать экспериментальной обстановки, что делало невозможным последующее предъявление им задач. Кроме того, необходимо помнить, что в естественных условиях своего существования животным нет необходимости часто решать даже самые простые логические задачи. Несомнено, инстинкты и различные формы поведения, сформировавшиеся на основе обучения, имеют чрезвычайно большой удельный вес в их поведении. У животных, ведущих общественный образ жизни, решение какой-либо адаптивной нестандартной задачи выпадает на долю лишь отдельных членов сообщества; остальные выполняют уже принятые ими решения.
В одном из проливов Калифорнии был установлен плавучий барьер из вертикально расположенных алюминиевых трубок, необходимых для какого-то эксперимента. Случайно в этот пролив заплыла группа дельфинов. Обнаружив при помощи эхолокации заслон, дельфины остановились невдалеке. Один из них направился к заграждению и проплыл вдоль него; когда он вернулся, животные стали пересвистываться, затем к барьеру поплыл другой дельфин, и лишь после этого вся группа, выстроившись в ряд, миновала барьер. На этом примере видно, что принятие решения к выполнению определенных действий в сообществе животных осуществляется не всеми его членами, а отдельными особями. Характерной чертой поведения этих животных является не конкуренция, а взаимопомощь.
В последние годы накапливается большое количество новых сведений об огромной роли сотрудничества и взаимопомощи в общественной жизни животных. При этом отчетливо выступает связь между многообразием форм общественных отношений и степенью развития уровня рассудочной деятельности у позвоночных. Видимо, можно сделать вывод, что степень многообразия и пластичности форм общественных отношений, в которых взаимопомощь и сотрудничество играют существенную роль, определяется уровнем развития их рассудочной деятельности. Едва ли случайно, что у наиболее «умных» животных, какими являются приматы и дельфины, описаны и наиболее сложные формы общественных отношений, построенные на взаимопомощи, сотрудничестве и совместном контроле общественных отношений в кастово-групповых объединениях. Видимо, при отсутствии взаимопомощи и сотрудничества животные с высокоразвитым уровнем рассудочной деятельности находились бы под большим влиянием парадокса нервно-психического процесса эволюции, что могло способствовать развитию патологических состояний их нервной системы и поведения.
Таким образом, идеи, которые были высказаны С. Н. Давиденковым в книге «Эволюционно-генетические проблемы в невропатологии», нашли экспериментальное подтверждение.