Так, датчики высоты, подвергавшиеся летным испытаниям, разрабатывались на барометрическом, радиотехническом и временном принципах. В свою очередь, источники питания, барометрические датчики и радиодатчики высоты испытывались в нескольких проектах опытных образцов. Вследствие достаточной сложности автоматики и разнообразия опытных образцов приборов и датчиков, летные испытания их проводились при бомбометании изделиями в различных комплектациях. Летные испытания таких изделий требовали применения средств объективного контроля работы приборов непосредственно на траектории падения. Поэтому необходимо было вводить систему телеметрических измерений, взаимоувязанную с внешнетраекторными измерениями. К сожалению, готовых к применению в изделиях телеметрических систем не было разработано, заимствовать было негде, так как в то время для испытаний обычных систем вооружения они не требовались. В качестве первого варианта «телеметрии» были использованы термитные пиротехнические шашки различных цветов горения. Они размещались на корпусе изделия, а их запалы подключались к контролируемым цепям автоматики. Моменты возгорания шашек фиксировались операторами на пунктах внешнетраекторных измерений с помощью секундомеров, включаемых по сигналу «отрыва» изделия от самолёта-носителя.
Этот метод просуществовал недолго — не более одного или двух испытательных полетов. В одном случае эксперимент мог закончиться катастрофой. Так, при выруливании самолета Ту-4 на взлетную полосу экипажем было обнаружено возгорание термитных шашек на изделии, форсы огня которых были направлены на стенки бомбоотсека самолета. Руление было прекращено, бомболюки открыли, двигатели выключили и принятыми мерами пожар на самолете был предотвращен. Поэтому полеты с изделиями при таком контроле были запрещены и больше не повторялись. Взамен «шашечного» контроля специалисты КБ-11 срочно разработали радиоконтрольную аппаратуру. На изделии смонтировали радиопередатчик с антенной системой. Передаваемые по радиоканалу сигналы формировались электромеханическим коммутатором, ламели которого подключались к контролируемым цепям автоматики. Прием радиосигналов осуществлялся приемниками ПАР-1, заимствованными у метеорологов из комплекса радиошаропилотных зондирований атмосферы. Принимаемые радиосигналы регистрировались на ленте так называемого ондулятора от обычного телеграфного аппарата, что позволяло определить факт срабатывания контролируемых цепей, но не обеспечивало согласования моментов их появления с траекторными измерениями. На смену телеграфному аппарату в систему радиотелеметрических измерений был включен разработанный в ИХФ АН СССР под руководством Шнирмана Г.Л. шлейфовый многоканальный осциллограф с записью на аэрофотопленку. Это позволило измерения радиотелеметрической системы (РТС) увязать со службой единого времени, траекторными измерениями, что и обеспечило возможность оценивать работу элементов автоматики на траектории с приемлемой точностью.
Источники питания
Одной из задач при испытаниях была отработка и выбор наиболее подходящих источников питания. Подвергались испытаниям два типа источников питания — генераторного типа и химический источник постоянной готовности. Источники питания генераторного типа располагались на корпусе изделия и приводились в действие на траектории падения набегающим потоком воздуха, запараллеливанием нескольких генераторов и преобразователей в группы должна быть обеспечена энергопотребность каждого канала автоматики. Этот вариант интересен тем, что давал возможность повысить безопасность изделия: на всех этапах жизненного цикла оно было обесточено до движения на траектории падения после отделения от самолета-носителя. Источники питания генераторного типа из-за недостаточной надежности работы на траектории падения испытания не выдержали.
В состав автоматики по результатам испытаний был рекомендован постояннодействующий химический источник питания (аккумуляторные батареи — по одному на каждый канал). Аккумуляторные батареи, имеющие ограниченный срок службы, обладали стабильными характеристиками и достаточной энергоемкостью. При этом обеспечивалась возможность контроля их состояния при сборке изделия, после подвески его на самолет-носитель и непосредственно в полете с пульта управления перед бомбометанием. Одновременно с источником питания были испытаны электрозамки и чеки, надежно отключающие питание от основной схемы:
— электрозамки (с криптостойкостью замков автомобильного типа) включались после подвески изделия на самолет перед вылетом на задание; ключи от электрозамков каждого канала передавались командиру экипажа для использования их при вынужденных посадках;
— чеки, как элемент предохранения, действовали до момента физического отделения изделия от самолета. Обеспечивалась возможность аварийного сбрасывания изделия на «не взрыв»: по команде экипажа изделие отделялось от самолета с неизвлеченными чеками и обесточенной схемой автоматики.
Датчики высоты
По схеме автоматики предусматривалось применение датчиков пусковой высоты, вырабатывающих команды на промежуточных высотах падения изделия, и датчиков критической высоты, дающих команду на взрыв изделия при достижении заданной высоты срабатывания над целью.
В качестве датчиков пусковой высоты испытывались два прибора: один барометрического типа, а второй — временного. В датчике барометрического типа использовалась закономерность распределения атмосферного давления по высотам. Учитывая значение пусковой высоты, исчисляемой несколькими километрами, в барометрическом датчике была принята постоянная уставка, соответствующая среднестатистическому значению давления на этой высоте. Естественное отклонение реального давления на заданной высоте от принятого в конструкции барометрического датчика с учетом ошибок приема давления на изделии и инструментальных собственно прибора оказалось вполне допустимым. Для временного датчика пусковой высоты с электромеханическим приводом была принята переменная уставка, значение которой определялось по высоте полета самолета-носителя относительно цели и вводилась в полете с пульта управления изделием. По результатам испытаний оба датчика пусковой высоты нашли применение в разных каналах схемы автоматики.
Датчики критической высоты, к которым предъявлялись повышенные требования по точности отработки заданной высоты, разрабатывались двух типов: радиолокационный и барометрический.
Барометрический датчик критической высоты в конструктивном отношении был более сложным, чем датчик пусковой высоты, из-за необходимости обеспечения введения переменной уставки давления срабатывания. Исследованиями, проводившимися в КБ-11 и специалистами 71-го полигона, было установлено, что при постоянной уставке барометрического давления отклонения в высотах срабатывания могут достигать недопустимо больших величин. Поэтому для барометрического датчика критической высоты потребовались методические разработки по прогнозированию давления над намеченной целью на момент применения изделия, а в конструкции давления в бародатчик — разработка механизмов дистанционного введения установки с пульта управления самолета в полете.
После многократных летных испытаний барометрического датчика критической высоты с переменной уставкой давления были получены вполне удовлетворительные результаты. В отработке барометрических датчиков высоты много умения и старания было проявлено работниками КБ-11 Хаймовичем И.А., Авилкиным М.М., работавшими в творческом содружестве со специалистами полигона Беловым Б.А., Ибрагимовым К.И., Сперанским В.М.
С разработкой радиодатчиков, в принципе суливших высокую точность отработки критической высоты, возникли непреодолимые в то время трудности, хотя к их созданию были привлечены известные фирмы и специалисты: от СКБ-326 Скибарко А.П. и Курячьев В.П., от НИИ-885 МРТП Геништа Е.Н., от НИИ-17 МАП Тихомиров В.В. и от КБ-11 Алексеев В.Г. Было проведено много полетов на самолетах-лабораториях в целях определения характеристик отражения радиосигналов от различных подстилающих поверхностей и промышленных объектов, влияния шумов и вибраций на работу радиодатчиков. Непосредственно для проверки работы радиодатчиков в реальных условиях на траектории падения было проведено более 15 сбросов специально созданных для этого комплектаций изделий. Однако ни по одной из разработок положительных результатов не было получено. Поэтому в составе «изделия 501-М» (и на первом воздушном испытании РДС-3) радиодатчик не применялся. В последующем реальный сдвиг в оснащении ядерных боеприпасов радиодатчиками был достигнут после создания специального конструкторского бюро, где главным конструктором стал Тремасов Н.Э. В отработке и испытаниях радиодатчиков весьма полезными были участие и советы талантливого специалиста полигона Хренова И.М.
Высоковольтная часть системы автоматики
Важнейшая часть автоматики — высоковольтная система подрыва и синхронного инициирования в условиях полигона отрабатывалась с особой тщательностью под руководством известного ученого-физика Комелькова В.С.
Особое внимание уделялось вопросам надежности высоковольтных узлов и точности (одновременности) срабатывания капсюлей-детонаторов (КД) при обеспечении мер безопасности. Летным испытаниям соответствующей комплектации изделия предшествовала лабораторная проверка всех блоков на работоспособность и точность срабатывания системы инициирования. От каждой партии КД, предназначаемых для установки в испытываемое изделие, определенная их часть проверялась на разновременность срабатывания по реальной схеме задействования. Измерения проводились с использованием высокоскоростной фотохронографической установки. В летных условиях система подрыва и синхронного инициирования проверялась по методу «Дотриша» — в изделии вместо заряда монтировалась массивная стальная плита с нанесенной на нее разметкой и монтажом разводки КД в специальной измерительной сборке. После сбрасывания изделия в заданной точке по команде датчиков критической высоты происходило срабатывание системы инициирования. После раскопок и извлечения плиты по образовавшимся на ней меткам определялась разновременность срабатывания КД и соответствие этой разновременности требованиям синхронного инициирования.
Заключительная оценка системы проводилась по результатам испытаний изделия в так называемой контрольной комплектации. Она включала «штатные» (отработанные) корпус изделия, систему автоматики с ее низко — и высоковольтной частями и системой инициирования, заряда с ВВ полностью снаряженного КД. В заряде при этом вместо центральной части с ДМ устанавливался «керн».
Вопросы безопасности
Изделия, имеющие в своем составе ВВ и ДМ, в принципе являются потенциально опасными, в том числе и ядерно-опасными, что обуславливается наличием в их составе автоматики, содержащей все компоненты для инициирования взрыва заряда. Это, как отмечалось выше, диктовало необходимость принятия таких схемных решений, которые гарантированно исключали несанкционированное инициирование заряда. Наряду с решениями, реализуемыми через построение схемы автоматики, рассматривался также комплекс организационных и технических мер безопасности для этапов подготовки и проведения ядерных испытаний. Не рассматривая всех аспектов этой проблемы, остановлюсь на испытаниях, проводимых в подтверждение безопасности полетов самолетов-носителей с выполнением взлетов и посадок с изделием. При этих полетах проверялась прочность бомбардировочной установки самолета-носителя и узлов подвески изделия, отсутствие нарушений в электрических стыковках и надежность выполнения функций предохранения элементами автоматики. Особое внимание уделялось проверкам высокочувствительных капсюлей-детонаторов, находящихся непосредственно в контакте с ВВ заряда.
Полеты проводились в несколько этапов: на первом этапе — в комплектации изделия, соответствующей штатному изделию с установкой КД на инертном заряде; последующие полеты проводились уже с зарядом, содержащим ВВ. Такой вид испытаний проводился на всех последующих разрабатываемых изделиях. Эти накопленные материалы оказались так необходимы для принятия решения на вынужденную посадку самолета-носителя Ту-16 с термоядерной бомбой в 1955 г.
Совершенно неизведанной областью были вопросы безопасности экипажей и самолетов в полете при воздействии поражающих факторов взрыва, что требовало более углубленного изучения, в том числе и на основе постепенного накопления экспериментальных данных. Об этом в следующих разделах.