КВ-приемник мирового уровня? Это очень просто!

Кульский Александр Леонидович

Часть I

ВСТРЕЧИ И БЕСЕДЫ

 

 

Глава 1. Досужий разговор

«Незнайкин»: Привет, дружище! Ну как твоя простуда? Все еще никуда не выходишь? А зря, а зря…

«Аматор»: Взаимный привет! Простуда выветривается! На данный момент, как видишь, веду оседлый образ жизни! А насчет зря или не зря — что за приколы? И почему, собственно, зря?

«Н»: Приколи! Иду, значит, я себе по улице. Хопа, зырнул, а там — магазин новый открылся! Компьютерный! Фирмовый! Ну я туда и вошел! А там, гляжу, «Ноутбуки» и «Пеньки» в ряд, новейшие модели. CD — ну вообще! Видаки, ну я так и засел! А качество, а сделано!.. Платы, там, разные, фирмовые, продаются! А дальше у них полки до потолка, телики клевые! Цвет!.. Качество изображения — ну вообще атас! Видеокамеры, центры!.. Плейера, батарейки, там, разные, фирмовые… Ну, смотрятся!..

«А»: Тих, тих, тих… Сбавь темп. Не грузи так мою простуженную голову! Давай помалу. Я так понял, что ты был в том самом навороченном электронном маркете, куда мы, было, собирались заглянуть вместе?

«Н»: Ну-да!..

«А»: «Пеньки» в переводе на обычный язык — это «Пентиумы» вторые и третьи. Я все четко понимаю?

«Н»: Да, ты все четко понял!

«А»: Твой язык, Незнайкин, настолько сочный, что я почти как побывал там вместе с тобой!..

«Н»: Издеваешься?… Да я тебе и десятой доли того, что там видел, не рассказал!

«А»: А вот здесь, дружище, ты слегка не прав! Я, понимаешь, предпочел бы, чтобы ты рассказывал мне об увиденном с использованием хоть каких-то технических терминов! А без них, ты, ну при всем желании, не расскажешь мне и тысячной доли о тех технических новинках, которые ты видел только за стеклом и на расстоянии!

«Н»: Да я и сам хотел бы узнать больше! Ну, нравятся мне все эти приколы, вся эта техника! Но, ты ж понимаешь, стоит она ой, сколько! Ну нет у меня таких бабок! Были бы — все бы купил! Вот было бы классно!

«А»: Ну ладно, не причитай! А вообще-то давай поговорим. Ты ведь уже в девятом классе! Техникой, вон, шибко интересуешься!.. Это правильно! Нет вопросов! Здесь я тебя приветствую. Но, Незнайкин, ведь техника — это не только красивые витрины! Неужели тебе не хочется всю эту электронику знать и понимать?

«Н»: Ну-ты, вообще! Нормально? Я вон говорил с одним!.. Тоже стоял все, смотрел… Так он говорил, что нам уже их электронику нипочем не догнать! Рассказывал, что япошки, например, на вопрос какого-то профессора, на сколько лет мы отстали, вообще сказали, что навсегда! Ну что, не так разве?

«А»: Да я недавно коснулся этой темы в разговоре со Спецом! Так ты его знаешь, он в нашем доме живет! Отличный мужик. Умница. Электронику здорово просекает! Так вот он как-то заметил, что все не так плохо! Да, мы сильно отстали! И по компонентам тоже. А, главное, в схемотехнике. Ты понимаешь, заводы ведь стоят! И потом, даже когда работали, ну разве можно было сравнить, например, телевизоры PHILIPS, SONY, SHARP, PANASONIC, DAEWOO и наши?

«Н»: Вот видишь! Так чего же твой Спец утверждает, что все не так плохо? Ну я, конечно, не Спец, но хорошего что-то не секу!

«А»: А ты не спеши!.. Я тоже, как услышал эти слова Спеца, так очень даже удивился и переспросил. А он говорит, что японская, американская, голландская и прочая забугорная электроника не на Центавре клепались. А на нашей родной планетке! А, значит, всю эту электронику можно и нужно изучать, осваивать. Подтягиваться к этому уровню. Кстати сказать, другого выхода нет. Ну чего скис? Есть вопросы?

«Н»: Есть!.. Я как-то в библиотеке нашел одну книжонку. Истрепанную, как тряпку. Зачитанную до дыр. Ну раскрыл, ну посмотрел. Так там автор все очень классно рассказывал! О радио, о телевизорах. Начал было читать, да отложил. Очень клевая книга! Подожди, как она называлась? Дай бог памяти! «Простое радио»? Нет. «Просто радио»? Тоже нет.

«А»: Не напрягайся так! Расслабься! Так сосредоточенно думать — вредно для здоровья! А может она называлась «Радио — это очень просто!»?

«Н»: Точно, ну ты в самую точку попал! Именно «Радио — это очень просто!». А ты что, тоже ее знаешь?

«А»: Само-собой. Мне ее когда-то Спец показывал. Говорил, что написана отлично! Однако безнадежно устарела! Я как раз об этом со Спецом, перед тем как свалиться с гриппом, говорил.

«Н»: Ну и что он еще говорил?

«А»: А много всего интересного! Профессионал! А это, Незнайкин, что-нибудь да значит. Сказал он, между прочим, что электроника нуждается в значительном количестве людей, которые в ней разбираются. В общем, меня он уговорил почти что!

«Н»: Так ты что, в институт поступать собираешься?

«А»: Ну, это уж как получится! Загадывать не любил и не люблю. Помнишь, что О. Бендер сказал?

«Н»: Он, кажется, сказал: «Судьба играет человеком, а человек играет на трубе!» Нет?…

«А»: Все правильно, Незнайкин. Именно эту его фразу я и имел в виду!..

«Н»: Слушай, а ты как скоро опять будешь беседовать со Спецом?

«А»: А вот завтра — послезавтра выходить начну. Спрошу у Спеца, когда он посвободнее будет и пойду на разговор.

«Н»: Слушай, а может ты меня тоже прихватишь? Понимаешь, ведь я совсем не против об электронике послушать…

«А»: Ну ты, Незнайкин, даешь! Может думаешь, что мы там «вообще» разговариваем? Нет, дорогой, у нас разговоры специфические! Ты там, со своей подготовкой, как мебель сидеть будешь! Слова не сможешь вставить! А я, как ты знаешь, к тебе очень неплохо отношусь! Поэтому подставлять ни тебя, ни себя не собираюсь! Ты уж не взыщи!..

«Н»: Ладно, все понятно! Не хочешь! Ну извини!.. Я пойду!

«А»: Да погоди, Незнайкин! Нормальный ты парень, только, гляжу, обидчивый очень… А чего, собственно, обижаться? На что?

«Н»: Ну что я вашему разговору так сильно помешаю? Я просто хотел тихонько посидеть, послушать… Интересно ведь!

«А»: Ладно, как говорят в Одессе: «Слушай сюда!». Я ведь и не думал отказывать тебе в твоей просьбе!

…Но пойми, что в том виде, какие они есть на сегодняшний день, твои знания для серьезного технического разговора совершенно недостаточны! Поэтому я предлагаю следующее. Вон там, на столе бумага, ручка… Бери то, бери другое, садись сюда и, помолясь Богу, начнем! Полагаю, что через несколько встреч ты уже вполне созреешь для подобных бесед со Спецом.

«Н»: А с чего начнем?

«А»: Да с самого начала!.. И, прежде всего, с основ электричества!..

«Н»: Ну, тогда, будь так добр, излагай…

«А»: Как ты, безусловно, знаешь, все вещества состоят из атомов. Атомы, в свою очередь, имеют сложное устройство. И даже очень. В середине атома расположено ядро…

«Н»: …Вокруг которого вращаются электроны. Которые заряжены отрицательно. А само ядро заряжено положительно. Обычно эти заряды равны…

«А»: Нормально! Добавлю, что разные атомы имеют разное количество электронов. А, следовательно, различный заряд ядра. А отсюда — различную массу и размеры… На уроках химии вам должны были все это рассказывать…

«Н»: Да нам и рассказали! Кстати и о том, что ядра состоят из протонов и нейтронов. Что заряд электрона мало того, что всегда отрицательный… Его нельзя ни увеличить, ни уменьшить! И еще то, что при одинаковом по величине, но не по знаку, заряде электрона и протона, их массы отличаются почти в 2000 раз!

«А»: Точнее, в 1800 раз. Но это сейчас не важно! Ну, давай дальше!..

«Н»: Ну, что дальше… Изучали молекулы. Химические реакции… Таблицу Менделеева. Рассказывали об электронных оболочках и все такое…

«А»: А насчет кристаллических решеток говорили что-нибудь?

«Н»: Само-собой!

«А»: А что же представляет собой электрический ток?

«Н»: Движение электронов…

«А»: Соберись, Незнайкин! Сосредоточься! Где и как движутся электроны, образуя электрический ток?

«Н»: В куске металла. Например меди, железа… Даже серебра и золота… Ядра у атомов массивные, они остаются в узлах кристаллической решетки, а электроны маленькие и легкие, поэтому они свободно движутся внутри кристалла…

«А»: Все правильно, но ведь я спрашивал, Незнайкин, об электрическом токе! А нюанс здесь такой… Электроны, действительно, беспорядочно движутся внутри кристалла. И скорость их довольно велика. Она зависит, в значительной степени от температуры кристалла. При комнатной температуре средняя скорость электронов составляет несколько метров в секунду! Но представим себе некий кусок металла в виде отрезка проволоки, например, медной… Впрочем, давай лучше изобразим это на рисунке (рис. 1.1). Смотри, Незнайкин, мы как бы условно рассекли отрезок медной проволоки (1) плоскостью, которую я обозначил, как (2)…

«Н»: А что означают эти кружочки, снабженные стрелками?

«А»: Да только то, что кружочки — это электроны. А стрелки представляют из себя ВЕКТОРЫ, иллюстрирующие тот факт, что средняя скорость электронов примерно одинакова при данной температуре. А вот направление движения — неупорядоченное, хаотическое. А это значит, что за некоторую единицу времени, например, за ОДНУ СЕКУНДУ количество электронов, которые пересекли плоскость справа-налево и слева-направо — ОДИНАКОВО! Иными словами, Незнайкин?…

«Н»: Я почему-то думаю что в этом случае никакого тока не будет!.. Или я ошибаюсь?

«А»: Ты совершенно прав! Если количество электронов, которые пересекли плоскость с различных сторон за единицу времени — одинаково, то в этом случае говорить об электрическом токе просто не приходится!

«Н»: Ну, а как же появляется электрический ток? Можно ли себе его как-то представить и что для этого необходимо сделать?

«А»: Для начала, просто вернуться к нашему рисунку. Правда, слегка модернизировав его (рис. 1.2).

«Н»: Привет, а что это за маленькие пунктирные стрелки появились?

«А»: А это признак появления некоторой дополнительной составляющей средней скорости. Да, это именно дополнительная составляющая средней скорости КАЖДОГО из свободных электронов кристаллической решетки! Ну а правило сложения векторов, Незнайкин, ты знать просто обязан… Итак…

«Н»: А я и знаю! Не зря по геометрии «пятерку» схватил! Выходит, что средние скорости электронов, которые движутся на рисунке слева-направо, будут БОЛЬШЕ, чем средние скорости электронов, которые движутся справа-налево! Так?

«А»: Ну, Незнайкин. молоток! И какой вывод ты из этого можешь сделать?

«Н»: Да только один! Количество электронов, которые пересекут плоскость (сечение) в направлении слева — направо, будет БОЛЬШЕ, чем количество электронов, которые за то же время пересекут эту плоскость в направлении справа-налево!

«А»: Точно так! То есть в этом случае мы можем смело утверждать, что имеем дело с электрическим током! Кстати, учти, что для простоты картины я нарисовал пунктирные стрелки со значительным нарушением масштаба! В действительности, абсолютные величины векторов, характеризующих средние скорости хаотического движения, в десятки раз превышают абсолютные величины векторов, обозначенных пунктиром!

«Н»: И какой же при этом получается электрический ток? Наверное, очень малый?

«А»: Представь себе, что как раз далеко не малый! Правда, на нашем идеализированном рисунке изображены только шесть электронов, в то время как их, например, в куске обыкновенной меди…

«Н»: Постой, я припоминаю, что нам рассказывали, что в каждом грамме металла, содержится не то 1021 не то 1022 атомов! И даже если каждый атом обеспечит только один свободный электрон, который способен «путешествовать» внутри кристалла, то это будет…

«А»: Расслабься дружище! Я тоже не помню точного числа атомов в грамме металла, но это сейчас абсолютно неважно. А важно то, что даже, скажем, 1020 атомов — это ведь сто миллиардов миллиардов! Проволока — медная. Значит, каждый атом обеспечивает два электрона, которые могут перемещаться в кристалле! Поэтому нам более важно сейчас некое иное число.

«Н»: Это какое же?

«А»: Могу сказать! Это — 6,28 на 10 в восемнадцатой степени! Именно такое количество электронов содержит в себе электрический заряд, равный ОДНОМУ КУЛОНУ! А теперь запомни, что если через поперечное сечение проводника, а в качестве такового сейчас выступает кусок обыкновенного медного провода, проходит ОДИН КУЛОН электронов В СЕКУНДУ, то говорят, что по этому проводнику течет ток, равный ОДНОМУ АМПЕРУ! Вопросы есть?

«Н»: Естественно… Ты употребил слово — проводник. Я полагал, что это чисто железнодорожный лексикон…

«А»: Ты неправильно полагал!.. Но ты совершенно правильно сделал, что заострил на этом внимание! Все вещества в природе, с точки зрения электротехники и электроники делятся на три основные категории. А именно: ПРОВОДНИКИ, ДИЭЛЕКТРИКИ (иначе — ИЗОЛЯТОРЫ) и ПОЛУПРОВОДНИКИ. И, поверь мне на слово, мы к этому вопросу будем возвращаться еще не раз!

«Н»: Верю… И согласен подождать… Но ты ничего не сказал о том. по какой причине мы вправе были пририсовывать пунктирные стрелки к электронам на рисунке? А главное, почему они направлены СТРОГО В ОДНУ СТОРОНУ?

«А»: Верно сказано!.. Ну тогда, маэстро, позвольте предложить Вашему вниманию еще рисунок (рис. 1.3)?

«Н»: Отчего же… Извольте… Так, приехали… А это еще что за «Мистер Икс»?

«А»: Поскольку в школе ты еще не добрался до раздела «Электричество», я позволил себе «дополнить» наши научные рассуждения вот этим самым персонажем. Тем более, что это исключительно серьезный персонаж, несмотря на его улыбку.

«Н»: А в чем заключается его роль?

«А»: А именно в том, что «Мистер Икс» обеспечивает нам возможность, а значит и право, пририсовывать к электронам пунктирные стрелки. Иначе говоря, «Мистер Икс» является той СИЛОЙ, тем самым источником, которая ГЕНЕРИРУЕТ ТОК в проводнике! Не зря я пририсовал слева от него МИНУС, а справа ПЛЮС!

«Н»: А это принципиально?

«А»: Безусловно!.. Ты ведь, очевидно, слышал, что одноименные заряды взаимно отталкиваются, а разноименные — притягиваются! Поэтому направление результирующих составляющих средних скоростей электронов может быть таким, как представленно, только в том случае, если у «Мистера Икс» и ПЛЮС и МИНУС расположены именно так, как показано на рисунке! Поскольку, если их поменять местами, то…

«Н»: …Направление электрического тока изменится на противоположное!

«А»: Верно! И, кстати, Незнайкин, интересная вещь… Хаотические скорости электронов в кристалле, как мы выяснили, имеют порядок метров в секунду!

«Н»: Тогда получается, что упорядоченная составляющая соответствует всего лишь сантиметрам в секунду?

«А»: Именно так! ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, генерируемое «Мистером Икс», обеспечивает каждому электрону постоянную составляющую, имеющую величину не более единиц сантиметров в секунду даже при очень сильных электрических полях!

«Н»: Тогда я что-то не могу взять в толк… Получается, что скорость электрического тока всего десятки сантиметров в секунду?!..

«А»: Ну, дружище, на этот раз не только в яблочко, а вообще в мишень не попал! Иначе говоря — мимо цели! Да если бы дело обстояло так, то не имело бы человечество не только электронных чудес, но даже обыкновенной электрической лампочки! Поскольку ток шел бы к нам от электростанции недели, а то и месяцы! Не боись. Природа щедра! Действительно, избыточная составляющая скорости электронов, которую они приобретают при участии «Мистера Икс» — не более единиц сантиметров в секунду! Но вся штука заключается в том, что в различных участках проводника (проволоки) электроны начинают двигаться, практически, одновременно! Даже если эта проволока имеет длину сотни или тысячи километров! Электрическое поле сообщает вышеупомянутое приращение составляющей средней скорости каждому электрону ПОЧТИ ОДНОВРЕМЕННО!

«Н»: То есть с бесконечной скоростью?

«А»: Ну-ну, дружище, не так круто!.. Скорость распространения электрического поля в проводнике составляет величину порядка ДВУХСОТ ТЫСЯЧ КИЛОМЕТРОВ В СЕКУНДУ, что несколько меньше скорости света в вакууме! Вот почему на рисунке я изобразил толстой стрелкой НАПРАВЛЕНИЕ ВОЗДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ на все свободные электроны в кристалле.

«Н»: А тебе не кажется, что пора бы сорвать маску с «Мистера Икс»? Что он вообще из себя представляет? И как его настоящее имя?…

«А»: Иными словами, «Кто вы, доктор Зорге?» Ответ прост! «Я — Шаповалов Т.П.!»

«Н»: Ценю твой юмор! Но, видите ли?…

«А»: «… Достаточно, расстрелять, следующий…» Ладно, шутки в сторону!.. «Мистер Икс», Незнайкин, является ничем иным, как ИСТОЧНИКОМ ТОКА! Этот источник, как оказывается, способен сообщать, посредством генерации электрического поля, избыточную скорость свободным электронам. Двигаясь по ЭЛЕКТРИЧЕСКОЙ ЦЕПИ, эти электроны СПОСОБНЫ ВЫПОЛНЯТЬ НЕКОТОРУЮ РАБОТУ! Поскольку, ВНИМАНИЕ, абсолютная величина пунктирных стрелок находится в прямой зависимости от источника тока! Или, если угодно, от генератора электрического поля. Так вот, любой источник (или генератор) электрического поля характеризуется величиной ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ, которую он посредством генерируемого электрического поля сообщает перемещаемым по цепи электрическим зарядам.

«Н»: А что представляет собой электродвижущая сила? Чем она характеризуется?

«А»: Электродвижущая сила (или ЭДС) характеризуется единицей измерения, которая называется — ВОЛЬТ!

«Н»: Знаешь, я все это, лучше, запишу…

«А»: Запиши, это не помешает. Кроме того, наглядность — это сила! Кстати, запомни, что при перемещении электрического заряда в 1 КУЛОН, источник тока выполняет работу в 1 ДЖОУЛЬ. Но только в том случае, если этот источник обладает ЭДС в 1 ВОЛЬТ!

«Н»: А если его ЭДС, например, пять вольт?

«А»: Тогда выполненная работа соответствует ПЯТИ ДЖОУЛЯМ! Кстати, один джоуль — это работа по поднятию груза весом в 109 грамм на высоту в ОДИН МЕТР!

«Н»: Ты употребил еще такое выражение, как «электрическая цепь». Верно? Объясни, что это такое?

«А»: Смотри, Незнайкин и слушай… Источник тока, а им может быть, например, батарейка, аккумулятор, солнечный элемент и т. д., уже сам по себе, в силу внутренних, порой очень сложных электрических процессов, на своих внешних выводах (или электродах) имеет некоторую разность электрических состояний. А это и есть ЭДС! Но когда мы соединяем какой-либо проводящей системой эти электроды, по этой системе начинает протекать электрический ток. Так вот, эта внешняя, проводящая электрический ток, система именуется ЭЛЕКТРИЧЕСКОЙ ЦЕПЬЮ.

«Н»: Ты бы попроще! Я же тебе не Спец… Не отрывайся от земли.

«А»: Ладно, не бурчи… Соедини выводы батарейки лампочкой и вот тебе простейшая электрическая цепь! Ток идет, лампочка светит! Красота! Кстати, как ты думаешь, что будет характеризовать такая вот дробь:

ЭДС/Ток =?

«Н»: …Если не ошибаюсь, эта величина называется — СОПРОТИВЛЕНИЕ?

«А»: Ты не ошибаешься! Заодно, раз уж об этом зашел разговор, давай переходить на стандартную, международную систему электротехнических символов. В ней вышеприведенная формула запишется так:

U/I = R.

Здесь R — сопротивление, U — напряжение, I — ток.

Запомним еще, что:

1 вольт = 1000 милливольт = 1000000 микровольт (мкВ);

1 ампер = 1000 миллиампер = 1000000 микроампер (мкА);

1 Ом = 0,001 килоом = 0,000001 мегаома (МОм).

Или, что более привычно:

1 МОм = 1000 кОм = 1000000 Ом.

«Н»: А больше никакие единицы для токов, напряжений и сопротивлений не применяются?

«А»: Напротив, достаточно часто применяются. Да вот, например:

1 микроампер = 1000 наноампер (нА) = 1000000 пикоампер (пА);

1 гигаом (ГОм) = 1000 мегаом = 1000000 кОм = 1000000000 Ом;

1 киловольт (кВ) = 1000 вольт.

Полагаю, что вышеперечисленными единицами мы с тобой вполне обойдемся. Ну вот, а теперь прошу вопросы.

«Н»: Неужели вся электроника, по большому счету, базируется на применении закона Ома, как это мне приходилось слышать?

«А»: Один широкоизвестный литературный герой произнес фразу, которая как нельзя более кстати подойдет в качестве краткого ответа на поставленный тобой вопрос. Вот она: «Ни в коем случае и никогда!» И хотя закон Ома прочно лежит в фундаменте электроники, но только как ОДИН из ее краеугольных камней! И потом, в представленном виде, закон Ома описывает только цепи постоянного тока.

«Н»: А какие еще бывают цепи?

«А»: В общем случае — частотно-зависимые цепи переменного тока! А там и математическое описание, и физическая суть много сложнее! Но… давай торопиться медленно.

«Н»: А мы уже в состоянии перейти к рассмотрению цепей переменного тока?

«А»: Да еще не совсем, дружище! Нам еще осталось рассмотреть так называемое параллельное и последовательное соединение. И еще кое-что исключительно важное для понимания сути происходящих процессов… Вот мы говорили об электрической цепи и упоминали об электрической лампочке. Давай теперь изобразим это на бумаге.

«Н»: Только я сам нарисую! У тебя там где-нибудь не найдется лампочки?

«А»: Зачем она тебе?

«Н»: Да чтобы изобразить ее на рисунке, конечно же!

«А»: Да, но для этого совершенно необязательно заканчивать художественный институт! Весь мир уже много десятилетий как изображает электротехнические цепи любой сложности с помощью условных обозначений! Вот я зарисовал несколько простейших цепей. Смотри (рис. 1.4)!

«Н»: Где-то я уже что-то подобное видел. Слева, очевидно, изображена цепь с электрической лампочкой. Верно? А справа я не знаю. И потом, что это за разрыв в цепи?

«А»: Верно, слева обозначена цепь обыкновенного карманного фонарика. Она как видишь, может быть реализована с помощью всего трех элементов! Собственно лампочки, изображенной в виде кружка с двумя заштрихованными секторами, батарейки и выключателя, который ВСЕГДА изображается в виде разрыва цепи. То есть в выключенном состоянии.

«Н»: Понял. С левым рисунком вопросов нет…

«А»: И последнее… Никогда не называй подобные изображения рисунком! Ни простые, ни сложные! Тебя «не поймут»! Так как это не принято ни в электротехнике, ни в электронике. Только — ПРИНЦИПИАЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СХЕМЫ! Усек?

«Н»: Вполне! Так что же за элемент изображен справа?

«А»: А самое обыкновенное электрическое сопротивление, о котором мы уже говорили! То самое R!. Кстати, в электронике этот элемент именуется исключительно — РЕЗИСТОР!

«Н»: А для чего он нужен? Ведь, как я понял, он не светит и не греет?

«А»: Светить, он конечно, не светит! А вот относительно того, что он не греет, согласиться с тобой никак нельзя! А ну давай-ка этот рисуночек, то есть я хотел сказать — эту принципиальную электрическую схему нарисуем отдельно (рис. 1.5)!

«Н»: Эта стрелка, судя по всему, должна символизировать прохождение электрического тока. Так?

«А»: Так! Закон Ома мы с тобой уже усвоили. Потому ответь мне, что это значит, если, на резисторе R имеет место падение напряжения, равное U? И, кроме того, через этот резистор течет ток, равный I?

«Н»: Постой!.. Какое падение?

«А»: Ах да, я забыл упомянуть, что выражение «падение напряжения» эквивалентно выражению «между выводами резистора А и В приложено напряжение U». В данном случае, когда замкнута электрическая цепь, все напряжение, которое вырабатывает батарейка (она же ИСТОЧНИК НАПРЯЖЕНИЯ) приложено к выводам резистора А и В. Но мы отвлеклись, а ты так и не ответил на мой вопрос!

«Н»: Ну, это, очевидно, просто значит, что через соответствующий резистор течет и соответствующий ток!..

«А»: Не догоняешь, Незнайкин! Это значит слегка больше, чем ты думаешь! А именно, что ПРОИЗВЕДЕНИЕ ТОКА И НАПРЯЖЕНИЯ соответствует ЭЛЕКТРИЧЕСКОЙ МОЩНОСТИ, которая, выделяясь на данном резисторе, преобразуется в ТЕПЛОТУ!

I x U = Р;

1 АМПЕР х 1 ВОЛЬТ = 1 ВАТТ!

Говорят также, что если по резистору R протекает ток I, то выделяется электрическая мощность, равная:

I2 x R = Р.

«Н»: И это все, на что способен резистор?

«А»: Далеко не все! А теперь, Незнайкин, я жду от тебя разумных пояснений относительно принципиальной схемы, которую предлагаю твоему вниманию теперь. Вот на этом рис. 1.6.

«Н»: Попробую… Как заметил однажды т. Сталин — «Попытка не пытка, не так ли, товарищ Берия?» Итак, пойдем простым логическим путем… На схеме я вижу два резистора, включенных один за другим…

«А»: Насчет логического пути — пойдем лучше вместе! Кстати, в технике подобное включение именуется ПОСЛЕДОВАТЕЛЬНЫМ.

«Н»: Принято… Постой, но ведь через оба резистора течет один и тот же ток! А отсюда следует, что на каждом из этих резисторов имеет место падение напряжения. ПРОПОРЦИОНАЛЬНОЕ величине сопротивления данного резистора!

«А»: Молодцом! А теперь даю еще одну вводную. Объясни, как работает принципиальная электрическая схема, изображенная теперь (рис. 1.7)?

«Н»: У меня возникли проблемы с подсчетом напряжения U2, которое падает на резисторах, включенных параллельно…

«А»: Я тебе помогу. Следи за ходом моей шахматной мысли! В точке «С» ток I разветвляется на два тока, соответственно I1 и I2:

I 1  + I2 = I

С другой стороны:

U 2 = I x R экв

R экв = (R 1 ∙R 2 )/(R 1 + R 2 ),

I 1 R 1 = I 2 R 2 = U 2 .

При этом резисторы R1 и R2 образуют, так называемое ПАРАЛЛЕЛЬНОЕ соединение. Значит, чем БОЛЬШУЮ величину будет иметь, например, резистор Rэкв — тем МЕНЬШИМ будет ток I! Ну вот, после этого можно перейти и к более интересным вещам!

«Н»: Ну теперь эту легкотню я всегда расколю! Последовательное и параллельное соединение вопросов уже не вызовут!

«А»: Ой не говори так! Поскольку в электронике, кроме резисторов, в изобилии и значительно более экзотические компоненты! И потом, ты забыл, что мы собрались коснуться темы о проводниках, изоляторах и полупроводниках?

«Н»: Я просто стеснялся напомнить…

«А»: Ты ли это?… Так вот, электрическое сопротивление того или иного элемента электрической цепи, а значит и материала или вещества, из которого этот элемент изготовлен, зависит от количества в нем свободных электрических зарядов. Поэтому еще на заре электротехники все вещества разделили на две основные группы, а именно: ПРОВОДНИКИ и ИЗОЛЯТОРЫ (или ДИЭЛЕКТРИКИ). К числу проводников, кстати, относится целый ряд растворов и даже газы в определенном состоянии.

«Н»: Ну, а изоляторы?…

«А»: Это, например, стекло, эбонит, бумага, резина и т. д. Следует заметить, что атомы изоляторов устойчивы. Для того, чтобы их внешние электроны перешли в состояние проводимости, иначе говоря, оторвались от своих атомов, нарушив свою связь с ядром, требуется приложение прямо-таки отчаянных усилий! Строго говоря, даже в самых совершенных изоляторах в одном из миллиарда или в одном из сотни миллиардов атомов электрон, в силу некоторых причин, покидает свой атом и становится «пилигримом». Вот этим самым «ИЛИ» и определяется — «плохой» это изолятор, или «хороший»!

«Н»: Ну и как поясняет наука факт существования подобных «пилигримов»?

«А»: Несколькими причинами. Например, как результат тепловых колебаний атомов. Ведь чем выше температура, тем энергичнее колеблется атом на своем месте в кристаллической решетке. А, следовательно, вероятность того, что электрон покинет атом — возрастает. При температуре абсолютного нуля (или — 273 °C) тепловые колебания атомов полностью прекращаются! В этом случае в любом изоляторе, даже самом никудышном, вообще не оказывается свободных электронов… А теперь, Незнайкин, давай поиграем в кубики. Не возражаешь?

«Н»: …Дружище, да что с тобой?! Нормально?!.. Вот дела!..

«А»: Да не переживай так! Я в порядке. Но вот от кубиков нам с тобой сейчас никуда не деться… Это вовсе не моя прихоть, поверь! Таково повеление Великой Электроники!

«Н»: Что, «а токмо волею пославшей мя жены?».

«А»: Литературную викторину сообразим как-нибудь в другой раз. Лады?… А пока… вырежем из проверяемого изоляционного материала кубик со стороной равной ОДНОМУ САНТИМЕТРУ. Затем… подведем к нему напряжение ОДИН ВОЛЬТ и будем измерять ток в этой электрической цепи. Эксперимент этот, такой простой на первый взгляд, проделаем мысленно, в силу многих причин. Итак…

«Н»: Ну вот, начинается! Ты хочешь сказать, что в твоем хозяйстве не найдется обыкновенного тестера, батарейки и ножовки?

«А»: Раз ты так настаиваешь, то знай!.. Ни «обыкновенный» тестер, ни батарейка с ножовкой нам не помогут! Вот смотри — самая чувствительная шкала моего тестера имеет предел — ШЕСТЬДЕСЯТ МИКРОАМПЕР! И это позволяет отнести данный тестер к разряду высокочувствительных! Но для «игры в кубики» с изоляторами нужна чувствительность в МИЛЛИОН раз более высокая! А еще лучше — в ДЕСЯТЬ МИЛЛИОНОВ раз! Кроме того, напряжение для подобной «игры» берется вовсе не от батарейки, а от специального высокостабильного источника напряжения.

«Н»: «Я понял все — к чему слова…» Итак, давай мысленно сделаем кубик из стекла?

«А»: Нет проблем… Включили в цепь кубик из стекла и выяснили, что через него течет ток равный ста пикоамперам! Иначе говоря, ОДНА ДЕСЯТИТЫСЯЧНАЯ МИКРОАМПЕРА. Иными словами — 630000000 электронов в секунду!

«Н»: Так много?! Ничего себе — изолятор!

«А»: Дружище, это совсем немного! Будь у нас кубик из такого проводника, как СЕРЕБРО, ток в цепи достиг бы почти МИЛЛИОНА АМПЕР! Однако отметим, что подсчитывать число свободных электронов не принято. Обычно просто вычисляют электрическое сопротивление кубика. С использованием всё той же формулы Ома. Но есть и нюанс! Поскольку в действительности в этом эксперименте мы измеряем важнейшую величину — УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ. Эта величина имеет размерность (ОМхСМ). Для наглядности составим таблицу (табл. 1.1).

«Н»: Очень наглядная разница! Но я вижу что ПОЛУПРОВОДНИКИ выделены в «особое производство»!

«А»: А вот здесь ты абсолютно прав! Как в прямом, так и в переносном смысле! И дело совсем не в том, что их удельное сопротивление «особь статья»! А в том, что их ПРОВОДИМОСТЬ носит особый характер.

«Н»: Ты сказал — проводимость. Это еще что за параметр?

«А»: Ну, это совсем просто. Проводимость есть величина ОБРАТНО ПРОПОРЦИОНАЛЬНАЯ сопротивлению! Иными словами:

G = I/U,

R = U/I.

Единица измерения проводимости — ОДИН СИМЕНС. Ну, пожалуй, на сегодня достаточно. А в следующий раз поговорим на тему ПЕРЕМЕННЫХ напряжения и тока.

 

Глава 2. Волны электрического моря

«Н»: Ну, поздравляю с выздоровлением. А теперь, может, перейдем к электронике? Кстати, объясни мне разницу между электротехникой и электроникой. Она вообще существует?

«А»: За поздравление благодарю! Но ты задал интересный вопрос. Не претендуя на академическую формулировку, я отвечу так, Спец рассказывал, что в ВУЗах по электронике ключевой является дисциплина под названием «Радиотехнические цепи и сигналы». Так вот: электротехника — это просто наука о функционировании и методах расчета различных электрических цепей, которые, даже будучи достаточно сложными, способны нормально функционировать сами по себе. Например, лампочка, электромотор, трансформатор и т. д. Но если цепь способна самостоятельно реагировать на внешнее воздействие, имеющее в той или иной степени электрический характер (то есть на СИГНАЛ) — то это уже электроника!

«Н»: Так, может, для экономии времени перейдем сразу к рассмотрению сигналов?

«А»: Это уже будет совсем в стиле О. Бендера — «потеря качества при выигрыше темпа!».

Нет Незнайкин, электроника для успешного ее усвоения, требует определенной последовательности изложения. А потому возвращаемся к электрическим цепям. Но уже переменного тока.

«Н»: Объясни мне толково и вразумительно — что такое переменный ток?

«А»: Переменный ток имеет (что естественно) свою причину. И эта причина — переменное напряжение! То есть это такое напряжение, величина и полярность которого имеют периодический характер в функции от времени. Да вот, посмотри на рисунок (рис. 2.1).

На этом графике представлены НЕ ВСЕ, но многие важнейшие характеристики переменного напряжения. Заметь, что зависимость амплитуды U a переменного напряжения от времени t носит СИНУСОИДАЛЬНЫЙ характер. То есть мы имеем дело с колебательным, ВОЛНОВЫМ процессом.

«Н»: А можно сказать, что этот волновой процесс состоит из положительных и отрицательных полуволн, отмеченных на рисунке, соответственно, плюсами и минусами в кружочках?

«А»: Безусловно, но обрати внимание на характер изменения амплитуды! В течение каждого ПЕРИОДА, то есть временного промежутка, вмещающего в себе одну отрицательную полуволну и одну положительную или, иначе говоря, ОДИН ПОЛОЖИТЕЛЬНЫЙ ПОЛУПЕРИОД и ОДИН ОТРИЦАТЕЛЬНЫЙ ПОЛУПЕРИОД — амплитуда переменного напряжения проходит через НУЛЬ не менее (но и не более) ТРЕХ РАЗ!

Физический смысл этого такой. В точке 0 (см. рис. 2.1) никакого напряжения, а значит и тока в проводнике нет! Затем появляется ПОЛОЖИТЕЛЬНОЕ напряжение, достигающее своего максимума через промежуток времени t1.

«Н»: Этот момент на временной оси соответствует точке А.

«А»: Верно! После этого, в течение временного промежутка t2 напряжение плавно уменьшается до нуля.

«Н»: …Затем оно возникает снова, но полярность его уже ОТРИЦАТЕЛЬНА!

«А»: Максимум отрицательной амплитуды достигается в точке Б. Затем следует снова плавное уменьшение до нуля (промежуток времени t4).

«Н»: Судя по рисунку, весь процесс занимает временной промежуток, равный:

t 1 + t2 + t 3 + t 4 ?

«А»: Естественно, или просто — Т! Это и есть ПЕРИОД!

«Н»: А величина обратная периоду называется ЧАСТОТА?

«А»: Совершенно верно! Частота показывает, сколько раз в течение ОДНОЙ СЕКУНДЫ переменное напряжение изменило свою полярность! Или же сколько периодов (циклов) переменное напряжение претерпело за одну секунду.

«Н»: Понял! Но почему ты ранее оговорил, что на графике отображены НЕ ВСЕ характеристики переменного напряжения?

«А»: Нарисуем новый рисунок (рис. 2.2). На нем изображен ТОЛЬКО один период…

«Н»: Но я сразу вижу отличие! Что такое Uэфф? И что это за участки, покрытые штриховкой?

«А»: Да в них-то все и дело!.. Заодно отметим равенство двух величин: Uа+ и Uа-. Оно означает, что амплитудные значения напряжения в положительный и отрицательный полупериоды РАВНЫ ПО МОДУЛЮ!

«Н»: Ясно! А заштрихованные части?

«А»: Заштрихованная часть положительного полупериода РАВНА по площади заштрихованной части прямоугольника, в который «вписан» этот полупериод.

«Н»: Что это означает?

«А»: Дело в том, что новый прямоугольник, образованный произведением величин Uэфф и Т/2, по площади ТОЧНО РАВЕН положительному полупериоду! Иными словами, переменное напряжение, имеющее амплитуду U a , проходя по резистору R выделяет столько же теплоты, сколько ее выделяет за то же время постоянное напряжение, величина которого равна Uэфф!

«Н»: То есть это означает, что для оказания одинакового теплового эффекта, переменное напряжение всегда должно быть больше по максимальной амплитуде, чем постоянное?

«А»: Именно так! Поэтому, когда ты слышишь, что напряжение в электрической сети равно 220 вольт, то не забывай, что речь идет об эффективном напряжении — Uэфф!

«Н»: А какое соотношение между максимальным амплитудным и эффективным напряжениями?

«А»: Вот оно:

U эфф = 0,707∙U a

«Н»: Отлично, с переменным напряжением разобрались! Все ясно!

«А»: Прошу прошения, сэр! И что же Вам так ясно?

«Н»: Это элементарно. Ватсон! Взгляни на рис. 2.3. Вот эта вторая синусоида и есть иллюстрация переменного тока. На графике представлена зависимость амплитуды переменного тока от амплитуды переменного напряжения.

«А»: …И все?

«Н»: «Чего же боле… Что я могу еще сказать?»

«А»: Ты, Незнайкин, нарисовал совершенно правильный график! И рассуждал ты при этом достаточно верно, но до определенного момента. А вот дальше…

«Н»: Ну, ты говоришь прямо-таки загадками! Здесь рядом я пририсовал небольшую принципиальную схемку. Я даже обозначил на ней направление течения тока в положительный и в отрицательный полупериоды!

«А»: Действительно, в моменты, когда напряжение на электродах источника (генератора) переменного напряжения будет равно НУЛЮ, то и ток будет равен НУЛЮ!

«Н»: А когда на электродах будет максимальное напряжение, то и ток будет МАКСИМАЛЬНЫМ! Так что же тут неправильного?

«А»: Не кипятись, ты не чайник! Остынь! Хотя, если исходить из лексикона компьютерщиков, то ты именно ЧАЙНИК — т. е. НАЧИНАЮЩИЙ!

Вспомни лучше знаменитый анекдот про человека, который искал потерянное золотое кольцо ночью рядом с фонарем. Хотя потерял его совершенно в другом месте! Помнишь его главный аргумент в отношении неадекватного места поиска?

«Н»: Он сказал, что ищет кольцо под фонарем потому, что здесь светлее искать! Но при чем эта история к нашим делам?…

«А»: Так ведь ты сделал сейчас то же самое, дружище Незнайкин! Ты рассмотрел случай, когда в цепи переменного тока находится АКТИВНОЕ СОПРОТИВЛЕНИЕ!

«Н»: …И то слава Богу! А что же там может находиться еще?

«А»: А вот хотя бы такая штуковина, которую я сейчас изобразил (рис. 2.4).

«Н»: Я видел мельком на принципиальных схемах такие изображения во множестве. Но «видеть» и «знать» — это ведь не одно и то же!..

«А»: …Рядом с изображением я проставил английскую букву С! Этот элемент — один из важнейших в электронике. И называется CAPASITOR — КОНДЕНСАТОР!

«Н»: А как он устроен?

«А»: Расположи две металлические пластинки на некотором расстоянии друг от друга. Подсоедини к каждой из них металлическую проволоку. Получишь элементарный конденсатор!

«Н»: А что он нам может дать?

«А»: Конденсатор — вещь замечательная! Соберем простейшую цепь (рис. 2.5), содержащую конденсатор. Замкнем переключатель S. На обкладках (пластинах) конденсатора установится тот же потенциал, что и на батарейке. А ток будет течь?

«Н»: По-моему, нет! Ведь между пластинами конденсатора — обрыв! Разве нет?

«А»: Не совсем… Дополним нашу схемку! Здесь я изобразил те самые пластины, снабдив их электродами. Как видишь, расстояние между ними равно r. Площадь каждой пластины равна D. А теперь скажи мне, что это за пунктирные стрелки я изобразил?

«Н»: Пока что не догадываюсь.

«А»: Это ни что иное, как СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ! А вот теперь, Незнайкин, внимание. То, что я тебе сейчас расскажу, в школьных учебниках не упоминается.

«Н»: Это Спец рассказал?

«А»: Да, он обратил мое внимание на тот факт, что в конденсаторе имеет место удивительный физический эффект! Смотри, пластина А присоединена к отрицательному электроду. Это означает, что в объеме кристаллической решетки пластины А «растекаются» ИЗБЫТОЧНЫЕ электроны, поступающие на нее от МИНУСА батарейки.

Но, подсоединенная к ПЛЮСУ пластина В оказывает на них удивительное влияние! Электроны, накапливающиеся на пластине А, как-бы перестают «замечать» друг-друга! Их взаимоотталкивание становится минимальным!

«Н»: Как это можно объяснить?

«А»: А так, что сферообразные электростатические поля электронов преобразуются в нитевидные! Теперь они достигают пограничного слоя пластины В. По масштабам микромира, пластина В находится на колоссальном расстоянии от пластины А!

Эти электростатические поля электронов пластины А воздействуют через межпластинчатый промежуток с атомами кристаллической решетки пластины Б, которые перед этим «потеряли» свои электроны.

«Н»: Поскольку они ушли с пластины В к ПЛЮСУ батарейки!..

«А»: Следовательно, при данном напряжении U «плотность» электронов на пластине А высока. На этой пластине размещается электрический заряд, который при определенных условиях способен… преобразоваться в ток!

Но и это еще не все! Представь себе, что мы поместили эти пластины в космическом пространстве, иначе говоря — в вакууме! Тогда условно обозначим ПЛОТНОСТЬ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ, как количество силовых линий, отнесенных к единице площади поверхности. И в случае, если между пластинами А и В — вакуум, примем, что эта плотность равна некоторой условной единице…

«Н»: Не возражаю…

«А»: А теперь вернемся на Землю. Поместим между пластинами А и В листик из слюды. Великолепный изолятор, между прочим! В этом случае плотность электростатического поля возрастает в ДЕВЯТЬ РАЗ!

«Н»: Это предельное значение?

«А»: Нет, это далеко не предел! Есть такой хитрый диэлектрик — ТИТАНАТ БАРИЯ. Так в нем плотность электрического поля возрастает в ДЕСЯТКИ ТЫСЯЧ РАЗ!

«Н»: Ну и дела! Но не припомню, чтобы мне встречалось такое понятие, как плотность электрического поля…

«А»: Потому что это больше физический, а не технический термин. А такое понятие, как ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ встречал?

«Н»: Да что-то такое слышал.

«А»: Так эти два понятия — синонимы! А вот и формула, которая является основной для расчета емкости конденсатора:

здесь S — площадь пластин в см2, а — расстояние в сантиметрах, ε — диэлектрическая проницаемость.

«Н»: А нам чем он может помочь? Я имею в виду именно конденсатор?…

«А»: Сейчас… Смотри сюда. Справа я зарисовал уже знакомую нам эпюру (график изменения во времени) напряжения на обкладках конденсатора. А теперь представим себе, как пройдет эпюра токов (рис. 2.6)?

«Н»: А исходить будем из эпюры напряжений?

«А»: Естественно! Итак, рассмотрим участок АВ. В момент А напряжение генератора МАКСИМАЛЬНО. На обкладках конденсатора оно такое же. Но это ведь означает, что все электроны, которые могли быть «втиснуты» источником на одну из пластин — уже там!

«Н»: Конденсатор, иначе говоря — заряжен! То есть ток в этот момент… не идет.

«А»: Правильно! Итак, в момент А напряжение на обкладках конденсатора — МАКСИМАЛЬНО, а ток в цепи — МИНИМАЛЕН! А теперь обрати внимание на то, что участок АВ характеризуется еще и тем, что СКОРОСТЬ ИЗМЕНЕНИЯ НАПРЯЖЕНИЯ на конденсаторе отточки А до точки В — постоянно возрастает! А это соответствует тому, что ток заряда (разряда) постоянно возрастает тоже! В момент В эта скорость — МАКСИМАЛЬНА. Следовательно и ток — МАКСИМАЛЕН. А вот напряжение в момент В равно НУЛЮ!

«Н»: Это удивительный факт! То есть можно сказать, что ток конденсатора отстает от его напряжения?

«А»: Вполне, хотя обычно говорят иначе. А именно, что в конденсаторе ток ОТСТАЕТ ПО ФАЗЕ от напряжения на 90 градусов!

«Н»: Теперь мне понятна разница между резистором и конденсатором!

«А»: Отрадно слышать, но заметь, что если мы УВЕЛИЧИМ частоту генератора, то ОДИН И ТОТ ЖЕ электрический заряд будет заряжать или разряжать конденсатор за МЕНЬШЕЕ ВРЕМЯ!

«Н»: Значит зарядный ток УВЕЛИЧИТСЯ?

«А»: Конечно же! Но удивительно то, что этот ток НЕ ВЫЗЫВАЕТ ТЕПЛОВОГО ДЕЙСТВИЯ!

«Н»: То есть в идеальном конденсаторе не выделяется электрическая мощность!? А сопротивление конденсатора носит совершенно особый, не имеющий ничего общего с активным сопротивлением характер?

«А»: А разве это не так? Кстати, «давайте не будем» применять по отношению к конденсатору термин — сопротивление! Электротехники всего мира говорят, что конденсаторы характеризуются РЕАКТИВНЫМ СОПРОТИВЛЕНИЕМ! И еще — электрической ЕМКОСТЬЮ.

«Н»: А в каких же единицах оценивается эта емкость?

«А»: Основная единица электрической емкости называется ФАРАДА!

Фарада — это такая емкость, при которой для изменения напряжения на пластинах конденсатора на ОДИН вольт, требуется электрический заряд, равный ОДНОМУ КУЛОНУ!

Должен заметить, что это настолько большая емкость, что в обыкновенной электронике она не используется! А теперь, может ты сам распишешь мне более мелкие единицы?

«Н»: Уже пишу:

1 фарада = 1000 миллифарад = 1000000 микрофарад;

1 микрофарада = 1000 нанофарад = 1000000 пикофарад.

«А»: Мне вспомнилась история, которая произошла осенью 1944 года во время битвы в Арденнах. Германская армия наносила мощный контрудар по союзникам. Со стороны немцев действовала знаменитая 150 моторизованная бригада. Это были эсэсовцы, переодетые в американскую и английскую форму, хорошо владеющие языком. И сперва они успели нанести союзникам немалый вред, совершая крупные диверсии и нападения в тылу англо-американских войск! А потом их быстро раскусили и обезвредили…

«Н»: Я тащусь — до чего интересно… Но какое отношение это имеет к конденсаторам?

«А»: Я вспомнил эту историю потому, что немцев подвело незнание американского армейского сленга! На автозаправках (а они, естественно, заправлялись американским горючим) диверсанты обращались так: «Петролеум, плиз!» В то время, как сами американцы употребляли словосочетание: «Гас, плиз!» Не правда ли, мелочь?

«Н»: А причем здесь я?

«А»: Расслабься, Незнайкин! Я никогда не держал тебя за немецкого диверсанта! Но то, что ты написал, сразу подтвердило, что в электронике ты ЧАЙНИК! Хотя ты все написал абсолютно верно!

«Н»: А в чем промашка?

«А»: А в том, что такая единица, как МИЛЛИФАРАДА в электронике не встречается. Хотя конденсаторов подобной емкости в любом приемнике, телевизоре или магнитоле не меньше десятка!

«Н»: Час от часу не легче! «Ваши слова звучат парадоксом», как выражался Пашка Эмильевич.

«А»: Электроника вообще полна парадоксов! Вразумительно ответить, почему так вышло, я не в состоянии. Но на электрических конденсаторах большой емкости ты не встретишь обозначения, например, ПЯТЬ миллифарад или ДЕСЯТЬ миллифарад. На таких конденсаторах написано: 5000 микрофарад или 10000 микрофарад. Так что о существовании подобного нюанса помни!

«Н»: Спасибо, помнить буду, не забуду! А больше таких простых, но хитрых деталей в электронике нет?

«А»: Как не быть. Вот, например, как ты думаешь, что произойдет, если взять тонкий изолированный медный провод и намотать, скажем, на корпус шариковой ручки? А после этого подключить его концы к генератору переменного напряжения?

«Н»: Снова какой-то сюрприз ты мне готовишь? Отвечаю — не знаю! Потому что пока не могу понять, чем, с точки зрения электротехники, отличается просто провод от самого же себя, но только намотанного на ручку, или карандаш, или на гвоздь, или на что-нибудь еще?

«А»: Сюрприз, дорогой Незнайкин, приготовила матушка-Природа, а не я! Кстати, чтобы тебя успокоить, замечу, что свойства провода, намотанного на шариковую ручку, существенно отличаются от свойств того же провода, намотанного на гвоздь!

«Н»: Да не томи душу! Выкладывай, где тут собака зарыта!?

«А»: Прежде всего, запомни, что вокруг проводника, по которому проходит электрический ток, возникает так называемое электромагнитное поле. Которое имеет как электрическую, так и магнитную составляющую. Но магнитная составляющая у одиночного проводника невелика. Чтобы ее сконцентрировать и необходимо намотать из проволоки катушку… Ты ведь не раз видел подковообразный постоянный магнит?

«Н»: Я вообще часто забавлялся им в детстве! Вещь очень занимательная.

«А»: Согласен… А теперь взгляни на рис. 2.7. Итак, если силовые линии электромагнитного поля одиночного проводника имеют некоторую ПЛОТНОСТЬ, (когда по проводнику течет электрический ток), то если этот провод намотать хотя бы на шариковую ручку, то эта плотность будет возрастать ПРОПОРЦИОНАЛЬНО количеству витков. Ну, а если поменять направление тока, то изменится и магнитная полярность нашего ЭЛЕКТРОМАГНИТА!

«Н»: То, что в этом случае получается электромагнит, я понял! А вот как определяется его полярность?

«А»: Для этого рядом с электромагнитом достаточно разместить компас. И тогда легко видеть, что если при некотором направлении тока электромагнит притянет ЮЖНЫЙ ПОЛЮС стрелки компаса, то достаточно изменить направление тока и… электромагнит притянет СЕВЕРНЫЙ ПОЛЮС стрелки!

«Н»: То есть направление магнитного поля зависит от направления тока, создающего это поле!

«А»: Конечно! Электромагниты — это основа электродвигателей и реле. Но для нас значительно важнее совсем иные свойства! Кстати, будем называть провод, намотанный на какой-либо каркас, или просто закрученный в спираль, именем собственным — ИНДУКТИВНОСТЬ!

«Н»: Почему такое странное название?

«А»: Потому что в его основе лежит такое явление, как ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ! Это явление настолько важно для электроники, что хочу рассказать тебе о нем.

В природе существует большое количество явлений, имеющих «обратимый» характер. И в нашем случае, если ток способен создавать магнитное поле вокруг проводника, то и магнитное поле, в свою очередь, должно было бы генерировать ток в проводнике. Например так, как показано ниже (рис. 2.8).

Смотри, Незнайкин, чтобы увеличить эффект, я изобразил проводник, выполненный в виде катушки и обозначенный римской двойкой, который подвергается воздействию магнитного поля, наводимого (индуцированного) катушкой, обозначенной римской единицей. Как ты думаешь, что произойдет в этом случае?

«Н»: Полагаю, что во вторичной катушке возникает ток I 2 . который создаст на резисторе R соответствующее падение напряжения, что немедленно зафиксирует вольтметр V.

«А»: То же самое полагали десятки исследователей XVII и XVIII веков. И жестоко просчитались. Вольтметр не покажет НИЧЕГО.

«Н»: Но почему!?…

«А»: Да потому, что Природа распорядилась так, что ток I, возникает в вышепреведенной схеме, если мы… выключили первую цепь, то есть ту часть схемы, которая содержит батарейку, выключатель и электромагнит! Но ток I 2 возникает ненадолго. Наблюдатель увидит бросок напряжения, а затем стрелка снова покажет НУЛЬ!

«Н»: Ну, а что произойдет, если снова замкнуть первичную цепь?

«А»: А то же самое! За одним исключением… Бросок напряжения будет иметь ОБРАТНУЮ полярность!

Отсюда следует один из фундаментальнейших выводов — ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ, ИМЕЮЩЕЕ ПЕРЕМЕННЫЙ ВО ВРЕМЕНИ ХАРАКТЕР, СПОСОБНО ИНДУЦИРОВАТЬ ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ ВО ВТОРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ, НЕ СВЯЗАННОЙ НЕПОСРЕДСТВЕННО С ПЕРВИЧНОЙ ЦЕПЬЮ!

«Н»: …Иначе, чем посредством самого этого электромагнитного поля?

«А»: Браво, Незнайкин! Я и хотел, чтобы к этой мысли ты пришел сам! Само явление наведения вторичного тока первичным и носит название ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ!

«Н»: «И он стал умнее, чем он был!». Это я, в данном случае, о себе самом! Дружище, хватит на сегодня! Все это должно утрамбоваться в моей голове!

«А»: Понимаю и согласен! До встречи, дружище!

 

Глава 3. Индуктивность… Добротность… Резонанс…

«Аматор»: Заходи-заходи, дружище!

«Незнайкин»: У тебя, как ты мне признался по телефону, есть время, а у меня и время, и желание продолжить разговор на тему электромагнитной индукции!

«А»: «Я очень счастлив и рад за вас!». Полагаю, что продолжить разговор об электромагнитной индукции просто необходимо, поскольку с ее характером следует познакомиться поближе. А характер у нее весьма упрямый!

«Н»: В каком смысле — «упрямый»?

«А»: Да в самом, что ни на есть, прямом! Дело в том, что наведенный во вторичной обмотке, иначе говоря, ИНДУЦИРОВАННЫЙ ТОК I 2  ВСЕГДА находится в противофазе с индуцирующим током I,! Если индуцирующий ток увеличивается в одном направлении, то индуцированный ток — течет в противоположном направлении, как бы препятствуя увеличению первого! А когда индуцирующий ток уменьшается, индуцированный ток течет В ТОМ ЖЕ НАПРАВЛЕНИИ, как бы препятствуя уменьшению первого! Взгляни на рис. 2.8.

«Н»: И ты считаешь, что эту головоломку я запомню и пойму?

«А»: Выше голову! Ведь сказанное ранее можно сформулировать и более кратко. Например, так:

ИНДУЦИРОВАННЫЙ ТОК ВСЕГДА ИМЕЕТ ТАКОЕ НАПРАВЛЕНИЕ, КОТОРОЕ ПРОТИВОДЕЙСТВУЕТ ЛЮБЫМ ИЗМЕНЕНИЯМ ИНДУЦИРУЮЩЕГО ТОКА!

Я скажу даже больше, чем БЫСТРЕЕ происходит изменение величины тока в первичной обмотке, тем сильнее реакция вторичной обмотки!

«Н»: То есть ВЕЛИЧИНА ИНДУЦИРОВАННОГО ТОКА ПРОПОРЦИОНАЛЬНА СКОРОСТИ ИЗМЕНЕНИЯ ИНДУЦИРУЮЩЕГО ТОКА, а также его ВЕЛИЧИНЕ?

«А»: Правильно совершенно!

«Н»: Вот тебе и «простой медный провод»! Удивительный эффект!

«А»: Но и это еще не все!.. Как ты думаешь, что произойдет в такой вот простенькой схемке (рис. 3.1)?

«Н»: Сейчас-сейчас, только график набросаю… Готово! Теперь будем рассуждать, как на эпюру напряжения на индуктивности L наложится эпюра тока.

«А»: В момент А изменение напряжения во времени (т. е. ΔU/Δt) минимально. Поэтому ток равен НУЛЮ! Затем напряжение на участке АВ падает до НУЛЯ. Но при этом отношение ΔU/Δt — ВОЗРАСТАЕТ! Поэтому генерируемый электромагнитным полем индуктивности L ток I имеет такое направление, чтобы не дать напряжению на выводах индуктивности L упасть до нуля! То есть в этом случае в точке В ток максимален, а его полярность положительна!

Но вот напряжение генератора становится отрицательным. И отношение ΔU/Δt — уменьшается! Ток I по-прежнему положителен, но его величина падает, становясь равной нулю в точке С. В тоже время в этой точке амплитуда отрицательной полуволны напряжения максимальна! Но когда на участке CD амплитуда напряжения падает, генерируемый электромагнитным полем индуктивности ток I возрастает, но теперь этот ток имеет отрицательную полярность, поскольку он препятствует спаданию напряжения на индуктивности до нуля!

«Н»: Если я правильно понял, электромагнитная индукция может индуцировать ток даже в своих собственных витках?

«А»: Ну конечно. В этом случае это явление именуется как САМОИНДУКЦИЯ!

«Н»: Я вспоминаю твой рассказ о временах Пунических войн! Помнишь, ты рассказывал о римском сенаторе, который свои выступления в сенате на тему о проблемах римского плебса, на тему об улучшении торговли, благоустройстве дорог и так далее, заканчивал всегда одной и той же фразой!..

«А»: «Карфаген должен быть разрушен!»? То есть ты снова намекаешь на то, какое отношение все наши рассуждения об удивительных свойствах индуктивностей и емкостей имеют к электронике?

«Н»: Ты прав, о высокочтительный друг мой!

«А»: А вот ты, Незнайкин, не совсем! Только теперь мы подошли к самому интересному. Как ты думаешь… А впрочем, я виноват в том что мы еще ничего не сказали о том, что является основной единицей индуктивности. Так вот, в качестве таковой принят ОДИН ГЕНРИ.

1 ГЕНРИ — это такая индуктивность, при которой изменение напряжение на ее выводах на 1 вольт в течении 1 секунды вызывает появление противодействующего такому изменению тока, равного 1 амперу. Заметим, что вообще 1 генри — это исключительно большая индуктивность, которая нигде не встречается. Поэтому в ходу более мелкие единицы:

1 генри = 1000 миллигенри = 1000000 микрогенри.

А теперь — последнее, Незнайкин! Как мы ранее уже могли убедиться, поскольку при приложении напряжения к индуктивности (из-за присущей ей инерции) происходит отставание тока от напряжения, то говорят, что ток отстает по фазе. Любопытно, что для емкости, ток опережает по фазе напряжение! А теперь — вопросы.

«Н»: Ты как-то употребил в разговоре выражение — реактивное сопротивление! Что же это такое и присуще ли оно только емкости?

«А»: Нет, не только! Индуктивность тоже характеризуется реактивным сопротивлением. В самом общем смысле этот термин означает, что реактивная мощность, равная произведению мгновенного значения емкостного (или индуктивного) тока на напряжение не преобразуется в тепло! Поскольку она затрачивается не на увеличение амплитуды тепловых колебаний атомов кристаллической решетки, как в случае активного сопротивления, а на изменение интенсивности электромагнитного поля (в индуктивности) или на поляризацию диполей изолятора (в конденсаторе). А это, практически, не носит теплового характера…

«Н»: Все это дьявольски интересно!

«А»: Еще бы!.. Но в мире слишком много интересного, поверь! А потому не хочешь ли немного пожонглировать?

«Н»: Соскучился по цирку? Что предпочитаешь?… Шары, мячи… Может тарелки?…

«А»: Расслабься! Посуда останется целой, ручаюсь… И жонглировать мы будем не тарелками или шарами, а… резисторами, конденсаторами и индуктивностями! Причем на бумаге!..

«Н»: Как это… как это… как это?..

«А»: Очень просто. Мы «разрисуем» целый ряд «простеньких» схемок, состоящих из различных комбинаций R, L и С. После чего ознакомимся с их свойствами… Итак, начнем вот с чего (см. рис. 3.2)… По глазам твоим вижу, Незнайкин, что ты хочешь меня о чем-то спросить!

«Н»: А то нет?! Ты мне столько рассказывал, что электрические цепи должны быть замкнуты… А что нарисовал?

«А»: Тебя смущает, что точки А и В не соединены между собой? Не сомневайся — превосходно соединены! Эти вот значки, напоминающие «перекладины», «гребешки» и «щеточки», символизируют, ласкающий слух радистов, термин — ЗАЗЕМЛЕНИЕ или КОРПУС!

Реально эти точки всегда располагаются на обшей металлической шине или массивном проводнике. Поэтому, чтобы не загромождать принципиальные электрические схемы, условились общий проводник (провод) или корпус не изображать, а пользоваться особыми условными обозначениями. Один из вариантов таких обозначений ты и наблюдаешь!

А теперь, маэстро, ваш выход! Прошу зарисовать АЧХ как для схемы рис. 3.2, а, так и для схемы рис. 3.2, б.

«Н»: «Извольте, я готов…, но я в большой надежде, что термин АЧХ… мне разъясните прежде?»

«А»: Вот ты уже, Незнайкин, стихами заговорил!.. АЧХ — это аббревиатура, которая расшифровывается как АМПЛИТУДНО-ЧАСТОТНАЯ ХАРАКТЕРИСТИКА! Ее смысл — наглядно показать, как изменяется напряжение в какой-либо точке в зависимости от частоты генератора переменного напряжения.

«Н»: Так частота генератора переменного напряжения НЕПОСТОЯННАЯ величина?

«А»: Ну конечно!.. А то чего ради мы потратили столько времени и усилий, вникая в суть индуктивностей и емкостей?

«Н»: Будет лучше, если ты изобразишь это графически!

«А»: Ладно!.. Я рисую график! Ординате присваиваю обозначение А, тогда абсциссе — f. По английски f — friquensi — (частота) (см. рис. 3.3)! Тогда А, соответственно, амплитуда.

Пусть амплитуда переменного напряжения, генерируемого источником, постоянна и равна U для любой из генерируемых частот. При f = 0, то есть в нашем случае U просто некоторое постоянное напряжение. Соответственно, в точке D (рис. 3.2, а) установится напряжение, равное U. Эта точка на графике обозначена, как «а».

Повысим частоту генератора до f1. Естественно, что это приведет к заряду (или разряду в зависимости от полупериода) конденсатора С. Но в этом случае зарядно-разрядный ток, проходя по резистору R, создает на нем соответствующее падение напряжения. Поэтому теперь напряжение в точке D будет меньше, чем U. На графике это соответствует точке «б».

Увеличим частоту генератора и приравняем ее f2. Напряжение на выходе стало еще меньше. Это и отображает точка «в». Так будет продолжаться до тех пор. пока частота не станет равной частоте среза fср. На этой частоте уже ВСЕ напряжение источника падает на активном сопротивлении!

«Н»: Выходит, что дальнейшее увеличение частоты генератора уже бессмысленно?

«А»: В точности так! А теперь, Незнайкин, раздраконь мне так же схемку на рис. 3.2,б.

«Н»: С нашим удовольствием… Вот график (рис. 3.4)! Все верно?

«А»: Мне остается только (и с полным на то правом) повторить слова «великого кормчего» Мао-цзе-дуна к его приемнику Хуа-го-фену: «Если дело в твоих руках, я спокоен!» Тем более, что ты предъявил реальный график, а не утопию!

«Н»: Но ты обратил внимание, что в точках графика «д» и «е» амплитуда одна и та же?

«А»: Поверь, я от всей души рад, что ты это подметил! А что ты скажешь по поводу вот этих двух схемок (рис. 3.5)?

«Н»: Вот, прошу. И для случая а и для случая б. Возражения есть (рис. 3.6)?

«А»: Пока — никаких! Но я проявлю известную толерантность и не стану вот так, с места в карьер требовать, чтобы ты нарисовал мне АЧХ вот такой «скромной» схемки (рис. 3.7).

«Н»: Да что в ней особенного-то! Сейчас-сейчас. Нет, знаешь, что-то не выходит!..

«А»: Остынь, дружище! И, чтобы не тратить время напрасно, послушай, что в действительности представляет из себя вышепредложенная схема! Ты уже знаешь, что с возрастанием частоты индуктивное сопротивление (XL) увеличивается, а емкостное сопротивление (ХС) — уменьшается! Но отсюда следует, что при некоторой частоте f0 — индуктивное и емкостное сопротивления становятся равными. И в этот момент общее реактивное сопротивление цепи СТРЕМИТСЯ К НУЛЮ! Вспомним о сдвигах по фазе!

Так вот, когда частота генератора равна никакого сдвига по фазе между напряжением и током — НЕ БУДЕТ! Эта ситуация получила название — РЕЗОНАНС!

«Н»: Я знал, что есть механический резонанс…

«А»: Ну, примеры потрясающих случаев механического резонанса можно найти даже в Библии. Например, Иерихонские трубы!

«Н»: Действительно…

«А»: Итак, мы видим, что электрическая цепь, состоящая из емкости С и индуктивности L, обладает собственной резонансной частотой f0! При этом общее сопротивление цепи становится очень малым, а амплитуда колебаний тока в ней — очень большой!

«Н»: Но почему ты говоришь «очень малым», а не говоришь — «нулевым»?

«А»: Ты прав, мой милый граф! Это только из-за того, что индуктивность L — это ведь изолированный провод, намотанный на сердечник. А провод, как известно, имеет еще и активное сопротивление, хотя и очень небольшое. Поэтому, в реальном случае, предыдущая схема выглядит так (рис. 3.8).

«Н»: А я готов нарисовать АЧХ этой схемы! Смотри, я даже учел тот факт, что из-за наличия активного сопротивления R «провал» АЧХ не имеет общей точки с осью абсцисс!

«А»: Я начинаю думать, что если дело и дальше пойдет так же успешно, то не только я, но и Спец запишется на цикл твоих лекций по электронике! Ну, а теперь я прошу тебя подумать, что будет в таком случае (рис. 3.9)…

Да, учти следующее обстоятельство. То, о чем мы сейчас говорим, я имею в виду электрический резонанс, — это «святая святых» радиотехники вообще и техники радиоприема, в частности!

«Н»: Что я вижу!? Ты заменил генератор переменного тока на батарейку? К чему бы это?

«А»: Мы подключили батарейку к нашей схеме посредством выключателя, а затем отключили ее! Вот с этого момента мы и начнем анализ…

«Н»: А что же тут анализировать? Конденсатор просто разрядится через резистор R и индуктивность L! И все дела!..

«А»: Да, кроме шуток?

«Н»: Нет-нет, прости! Не совсем… Что-то еще здесь произойдет… Но я пока не врубился — что!..

«А»: Вспомни, Незнайкин, что индуктивность L обладает некоторой инерцией. Образно говоря, из-за нее электронам так же трудно начать упорядоченное движение, как и прекратить это движение!

Ток разряда, проходя по виткам индуктивности L, порождает магнитное поле, в котором запасается некоторая энергия! Таким образом, в тот момент, когда конденсатор С уже разрядится, магнитное поле будет поддерживать упорядоченное движение электронов в том же направлении! Это значит, что до того момента, как энергия магнитного поля иссякнет, конденсатор успеет перезарядиться почти до первоначального напряжения! Хотя и ПРОТИВОПОЛОЖНОЙ ПОЛЯРНОСТИ! Затем снова наступит цикл перезаряда. И так будет продолжаться до того момента, пока на активном сопротивлении R (а оно в неявном виде ВСЕГДА присутствует в рассматриваемой системе) постепенно не перейдет в тепло ВСЯ первоначально запасенная в конденсаторе энергия!

«Н»: А рассмотренная система, состоящая из L, С и R, не имеет имени собственного?

«А»: Обязательно! И отныне мы будем употреблять только его — КОЛЕБАТЕЛЬНЫЙ КОНТУР!

«Н»: А как долго будет продолжаться подобная циркуляция тока в контуре? От чего это зависит?

«А»: Есть такой удивительный параметр — ДОБРОТНОСТЬ! Вот он то и, определяет, как долго в контуре будут продолжаться колебания.

«Н»: А почему ты назвал этот параметр — «удивительным»?

«А»: Да хотя бы потому, что он как бы един в трех лицах!

«Н»: А это как?

«А»: Да вот, посмотри на рисунок! На рис. 3.10,а изображены незатухающие электромагнитные колебания, которые имели бы место в контуре без потерь. На рис. 3.10,б изображены реальные, ЗАТУХАЮЩИЕ колебания в контуре.

Так вот, численно, количество полных циклов заряд — разряд до, практически, полного затухания РАВНО ДОБРОТНОСТИ! Т. е. добротность Q = n, где n — количество полных циклов. А теперь от амплитудно-временных характеристик перейдем к АЧХ (рис. 3.11).

Вот эта, колоколообразная кривая (мы к ее рассмотрению вернемся в дальнейшем еще не раз) дает вторую, практически очень важную характеристику для Q:

Q = f 0 /2Δf,

где Δf — полоса пропускания по уровню 0,707.

И, кроме того, вот третья ипостась добротности, численно равная:

И если первая ипостась очень понятна, но не очень наглядна, поскольку кто успеет подсчитать точное число колебаний за очень малый промежуток времени, то вторая ипостась — может прямо выводиться на экран специальных анализаторов АЧХ! С ней удобно работать!

«Н»: Ну, а третья?

«А»: Третья ипостась — для реальных расчетов! Но любой колебательный контур характеризуется еще и частотой резонанса, или, что адекватно, частотой собственных колебаний:

Любопытно, что для получения одной и той же f0, можно взять различное соотношение L и С. Но формула для определения добротности показывает, каким именно должно быть соотношение L и С для получения требующейся нам ПОЛОСЫ ПРОПУСКАНИЯ КОЛЕБАТЕЛЬНОГО КОНТУРА! Она обозначена как df = 2Δf

«Н»: А какого порядка эта величина должна быть?

«А»: Смотря для чего! А вообще получение высоких добротностей — это сложная техническая задача! Но, в общем, вполне решаемая! Сейчас нам осталось рассмотреть еще одну важную физическую, а равно и техническую особенность колебательных контуров!

«Н»: Ты снова рисуешь схему?

«А»: А куда деваться (см. рис. 3.12)?

Здесь колебательный контур включен непосредственно в состав некоторой внешней цепи. Обрати внимание, Незнайкин, что в этом случае, когда частота внешнего генератора f1 совпадает с собственной частотой контура, последний представляет собой ЗНАЧИТЕЛЬНОЕ РЕАКТИВНОЕ СОПРОТИВЛЕНИЕ для ВНЕШНЕЙ ЦЕПИ!

«Н»: Но при этом ВНУТРИ контура LC реактивное сопротивление МАЛО!?

«А»: Да, конечно!.. Дело в том, что за каждый период собственных колебаний контур LC теряет МАЛУЮ часть запасенной в нем энергии! Следовательно, этот контур будет потреблять из ВНЕШНЕЙ цепи ТОЛЬКО такую часть энергии, которая идет на компенсацию потерь за этот период! А это — очень незначительная величина! И она тем меньше, чем больше добротность контура Q!

«Н»: То есть, если я верно понял, на резонансной частоте по отношению ко ВНЕШНЕЙ ЦЕПИ контур является БОЛЬШИМ СОПРОТИВЛЕНИЕМ, причем тем большим, чем больше его добротность?

«А»: Абсолютно точно! Но есть и еще одно исключительно важное следствие! Не догадываешься, какое именно?

«Н»: Может быть (см. рис. 3.12) что мы можем написать:

I 2 = I 1 Q

Так или нет?

«А»: Замечательно! Ну а что ты скажешь относительно напряжения?

«Н»: У меня создалось впечатление, что напряжение на зажимах А и Б контура… может превысить напряжение генератора!

«А»: И ты не ошибся! Оно превышает на частоте собственного резонанса подводимые извне колебания по амплитуде в Q раз!

«Н»: То есть колебательный контур УСИЛИВАЕТ частоту, равную его резонансной в Q раз?

«А»: Да! Но если во внешней цепи будут протекать токи, частоты которых не совпадают с резонансной, то они не создадут на зажимах контура сколько-нибудь заметного напряжения! Поэтому РЕЗОНАНСНЫЙ КОНТУР ОБЛАДАЕТ ЧАСТОТНОЙ ИЗБИРАТЕЛЬНОСТЬЮ!

«Н»: Я уже дошел до кондиции, как того и хотел герой «Бриллиантовой руки». Всю впитанную (с кровью) информацию я должен осмыслить. В общем «принять ванну и выпить чашечку кофе»…

«А»: Мы кое-что успели сегодня, дружище!

 

Глава 4. Устремленные в пространство

«Незнайкин»: Наконец-то ты вновь удостоил меня аудиенции!..

«Аматор»: О милорд, какой изысканный стиль! Ты случайно не перечитал «Трех мушкетеров», пока мы не виделись?

«Н»: Ты почти угадал — «Одиссею капитана Блада»!

«А»: Я так и понял по твоему высокому слогу! Кстати, я тоже очень уважаю книги о капитане Бладе! Но благородный и великолепный пират жил в буколическую эпоху! Когда медленное считалось быстрым!

«Н»: Что ты хочешь сказать?

«А»: В те времена новости из Америки в Европу шли, вернее плыли, месяцами! Скорость доставки информации была равна скорости хода каравеллы или галеона!..

«Н»: В то время как сейчас для этого достаточно секунд!

«А»: Долей секунды, дружище, долей секунды! И все благодаря свойствам… открытого колебательного контура!

«Н»: Какого это — открытого? Простите, сэр! Следующий раз захвачу словарь, сэр!

«А»: Хороший (в буколические времена говорили — добрый) учебник или пособие по радиотехнике помогло бы тебе больше! ОТКРЫТЫЙ КОНТУР — это просто техническое название для ПЕРЕДАЮЩЕЙ и ПРИЕМНОЙ антенн!

«Н»: То есть мы сейчас вплотную подошли к вопросу о возникновении, распространении и возможности ПРИЕМА РАДИОВОЛН!?

«А»: Да пора уж! Представь себе, что мы преобразовали колебательный контур таким образом, что он принял следующий вид (см. рис. 4.1).

Здесь, фактически, мы имеем не один, а два колебательных контура. Первый — это контур, образованный С и L1, резонансная частота которого f0 равна частоте генератора Uсигн. Обмотки L1 и L2 связаны индуктивно. Поэтому во втором контуре также возникают колебания с частотой f0…

«Н»: Относительно первого контура вопросов не имеется. Но вот где ты увидал второй контур? Я лично вижу только обмотку L2!

«А»: Но ты не можешь не видеть, что верхний конец L2 переходит в некий проводник, который оканчивается точкой А?

«Н»: Вижу… Но что дальше?

«А»: А то, что это и есть второй, открытый колебательный контур! Его емкость является распределенной. То есть она образована как бы из множества малых емкостей между различными точками антенны и землей!

«Н»: Выходит, что L2 входит в состав ЦЕПИ АНТЕННЫ?

«А»: Ну конечно! А упомянутый уже вертикальный проводник — это ни что иное, как антенный штырь! Его длина может варьироваться в разных случаях от нескольких сантиметров до сотен метров! Да и само устройство антенны в реальности может быть исключительно сложным по своей конструкции!

«Н»: Но если это и есть антенна, то она должна каким-то образом принимать близкие и далекие радиостанции. Разве нет?

«А»: Верно! Однако в данном случае она не принимающая, а передающая. Попробуем представить себе, что при этом происходит… Видишь, на рис. 4.2 я изобразил только непосредственно антенну и то в очень упрощенном виде?

«Н»: А что представляют из себя концентрические кольца, параллельные земле и названные тобой Н¯, а также «серпантин*, обозначенный, как Е¯? И почему, если я правильно понял, они носят ВЕКТОРНЫЙ ХАРАКТЕР!?

«А»:E¯ — это вектор напряженности электрического поля. Соответственно Н¯ — вектор напряженности магнитного поля. Знак вектора дает нам ясно понять, что эти поля могут быть ориентированы относительно поверхности земли под самыми различными углами.

Но вот между собой они ВСЕГДА взаимоперпендикулярны! Но на рисунке присутствуют еще и токи I1 и I2.Ты мне не скажешь, что они из себя представляют?

«Н»: Очевидно, под воздействием не показанного здесь первичного контура, вдоль по длине антенного штыря циркулируют токи I1 и I2, представляющие собой перемещение, посредством индукции, электрического заряда то в направлении ОТ земли к точке А, то в ОБРАТНОМ! Естественно, с частотой f0!

Выходит, в точке А то наблюдается «избыток» электронов, то их «недостаток»! В пользу моих слов говорит и тот факт, как при этом направлены силовые линии электрического поля…

«А»: Вот она — моя награда за потраченные труды! Совершенно верно!

Иначе говоря — антенна есть инструмент для преобразования переменных напряжения и тока в энергию электромагнитного поля, способную свободно распространяться в пространстве!

«Н»: А вот чего я, дружище, не могу понять… Все-таки, почему порождаемое вокруг антенны электромагнитное поле не просто циркулирует, а способно как-бы «оторваться» и унестись навсегда?

«А»: Браво, Незнайкин! Ты задал сейчас очень глубокий вопрос! Недавно мы беседовали на эту тему со Спецом! Это была интересная беседа. Действительно, ведь токи в той же антенне имеют вполне обратимый характер.

То вверх, то вниз, то они вообще равны нулю… Электромагнитное поле могло бы тоже циркулировать, то распространяясь в пространстве ОТ антенны в один из полупериодов, то стремясь К антенне в другой полупериод…

«Н»: А как думает Спец?

«А»: Он сказал, что категорического, строгого объяснения этому факту — не существует!

Но мы должны благодарить Бога и Природу за то, что электромагнитное поле в виде электромагнитных волн способно покидать антенну и уноситься в бесконечность!

Именно этот эффект, по большому счету, делает возможной не только радиосвязь, но и саму жизнь на Земле!

А возможно и вообще во Вселенной!

«Н»: Даже вот так вот!?

«А»: Даже вот так вот! Но продолжим наши игры! Ты, безусловно, слышал, что «покинув» передающую антенну, электромагнитные волны СО СКОРОСТЬЮ СВЕТА распространяются в пространстве! Если передающая антенна является ИЗОТРОПНОЙ, то интенсивность электромагнитной энергии уменьшается ОБРАТНО ПРОПОРЦИОНАЛЬНО КВАДРАТУ РАССТОЯНИЯ!

В случае, если антенна обладает направленностью, то есть является АНИЗОТРОПНОЙ, то эта зависимость может быть несколько иной. Но, в любом случае, чем дальше точка приема находится от передающей антенны, тем меньше интенсивность электромагнитного поля в ней! Наводимого этой передающей антенной, разумеется.

«Н»: Это понятно! Ну, а как устроена приемная антенна?

«А»: Подумай сам! Я подскажу тебе — это обратимое явление.

«Н»: Но если это явление обратимое, то тогда, поместив штырь (металлический) в точку, удаленную от передающей антенны на некоторое расстояние, мы вправе ожидать, что электромагнитное поле НАВЕДЕТ в этой ПРИЕМНОЙ АНТЕННЕ токи, имеющие туже частоту, что и породившие их электромагнитные волны!

«А»: Достойный ответ! Ты только не уточнил, что по своей величине эти ВЫСОКОЧАСТОТНЫЕ токи являются исключительно малыми! Их реальное амплитудное значение — не более нескольких десятков милливольт! И это еще исключительно много! Чаще всего — на порядок меньше. А то и два-три порядка.

«Н»: А почему ты употребил слово — высокочастотные? А низкочастотных разве нет?

«А»: Действительно! Давай определимся в понятиях! В Природе существуют электромагнитные колебания с самыми разнообразными длинами волн или, что адекватно, с самыми различными частотами!

Видимый свет — это ведь также электромагнитные волны длина, которых измеряется нанометрами! Например, красный цвет характеризуется длиной волны — 630 нм.

Или 2x1014 герц!

То есть ДВЕСТИ ТЫСЯЧ МИЛЛИАРДОВ полных периодов в секунду!

«Н»: Да это считать не пересчитать!

«А»: И то правда, Незнайкин! Ведь если представить себе некое существо, которое не ест, не спит, не развлекается, а только подсчитывает это число со скоростью одна единица в секунду, то ему потребовалось бы примерно ШЕСТЬ МИЛЛИОНОВ ЧЕТЫРЕСТА ТЫСЯЧ ЛЕТ! И все для того, чтобы зафиксировать — сколько раз в секунду изменяется направленность векторов магнитного и электрического!

«Н»: Но ведь это уже не радиодиапазон?

«А»: Что правда, то правда! Генерация и прием электромагнитных колебаний подобных частот осуществляются особыми, не радиотехническими методами! А собственно радиодиапазон ограничен сверху частотами порядка ДЕСЯТЬ В ДВЕНАДЦАТОЙ СТЕПЕНИ ГЕРЦ!

«Н»: Ну, а снизу?

«А»: Это очень сложный вопрос! Дело в том, что сверхнизкочастотные колебания имеют свои особенности. Представь, например, длину волны электромагнитного колебания 3х1013 километров!

Она соответствует частоте f = 10-8 герц! Это означает, что ОДИН ПОЛНЫЙ ПЕРИОД такого колебания — около ТРЕХ ЛЕТ! То есть длина волны составляет приблизительно ОДИН ПАРСЕК!

Ты ведь встречался с подобной единицей длины в фантастических романах?

«Н»: Было дело в Грибоедове… Неужели есть радиостанции, оперирующие с такими чудовищными волнами?

«А»: Расслабься, Незнайкин! Человечество еще не в состоянии оперировать не только с такими, но и в сотни раз большими длинами волн! Но кто сказал, что их не существует во Вселенной?

В семидесятых годах (нашего столетия, естественно) в США широко обсуждался проект, получивший наименование «САНГВИН». Речь шла о возможности осуществления связи с атомными подводными крейсерами. Для того, чтобы передать приказ на нанесение, в случае необходимости, ответного атомного удара по СССР!

При этом исходили из того, что подлодка находится на МАКСИМАЛЬНОЙ ГЛУБИНЕ в несколько сотен метров в ПРОИЗВОЛЬНОЙ ТОЧКЕ МИРОВОГО ОКЕАНА! Оказалось, что это возможно осуществить, если для подобной односторонней связи использовать СВЕРХДЛИННЫЕ ВОЛНЫ, частота которых несколько меньше СТА ГЕРЦ!

«Н»: …Это соответствует длине волны порядка… 3000 километров!

«А»: Совершенно верно! Но учти, Незнайкин, что мир устроен так, что передающая антенна, чтобы быть эффективной, не должна иметь размеры менее одной четверти излучаемой ею длины волны! Поэтому вопрос реализации проекта «САНГВИН» требовал сооружения системы антенн, занимающих площадь порядка ДЕСЯТКОВ ТЫСЯЧ квадратных километров!

При этом для генерации «глобального» сигнала требовалась энергия порядка СОТЕН МЕГАВАТТ! После продолжительных и бурных дебатов в Сенате, от этого способа связи с погруженными подводными лодками отказались!

«Н»: Так вот что такое генерация подобных электромагнитных колебаний!?

Ну, а более высокие частоты?

«А»: «Сверхдлинными» волнами для осуществления радиосвязи, представь себе, сейчас пользуются! Но самые длинные из них начинаются с ТРИДЦАТИ КИЛОГЕРЦ!

То есть длина волны равна «всего-навсего» 10 километрам! Но и эта «экзотика» в радиовещательной технике не используется.

«Н»: А какие длины волн и почему используются в международном радиовещании?

«А»: На этот твой вопрос отвечу совершенно конкретно! Все используемые в радиовещании длины волн разбиты на следующие диапазоны:

Длинные волны — 150–408 кГц (2000—735,3 м).

Средние волны — 525—1605 кГц (571,4—86,9 м).

Короткие волны — 3,5—30 МГц (80–10 м).

Ультракороткие волны — 87,5-104 МГц (Европа); 87,5 — 108 МГц (США); 76–90 МГц (Япония).

Кроме того, в последнее время получил тенденцию к расширению УКВ диапазон на территории Украины!

«Н»: Я как-то слышал, что каждый из приведенных выше диапазонов имеет чуть ли не свой собственный «характер»?

Это что, просто вариации на тему известных «Сказок братьев Гримм» или в этом действительно что-то есть?

«А»: Уже скоро сто лет, как трудами ученых, изобретателей и любителей было установлено, что чем больше размеры антенн, тем больше и дальность связи! И теоретики начала века утверждали, что самые «дальнобойные» волны — это волны длинноволнового диапазона!

Они поясняли это ДИФРАКЦИЕЙ! Напомню, что дифракция — это огибание волной препятствий! Например, для сверхдлинных волн, длина которых измеряется километрами — даже выпуклость Земли помехой не является. И вот для дальней связи строятся гигантские антенны!

Сказано — сделано! И вот пришел успех! Осуществлена связь между Канадой и Южной Америкой! А поскольку (мы дальше коснемся этого вопроса) в начале двадцатого века считалось, что частоты различных станций должны быть различными и это различие должно составлять около 10 процентов, то американский ученый Фредериксон, например, утверждал, что в диапазоне 30—100 кГц можно разместить не более ДВЕНАДЦАТИ каналов!

«Н»: Он ошибся?…

«А»: Да нет, он был прав! На тот момент, естественно!

Но есть древняя восточная мудрость: «Время способно превратить самую чистую правду в отвратительную ложь!»

Дело в том, что техника начала века большего не позволяла! Это во-первых!

А, во-вторых, «есть многое на свете, друг Горацио, что и не снилось нашим мудрецам»!

«Н»: Я тоже очень уважаю Шекспира!..

«А»: Рад, что доставил тебе удовольствие! Однако, ближе к теме! Исследования по распространению электромагнитных волн на расстояние от нескольких десятков до 10000 километров уже не возможно было пояснить только дифракцией!

И потом, как можно было объяснить тот факт, что днем дальность связи намного меньше, чем ночью? Или известный сейчас курьез с радиодиапазоном коротких волн?

В свое время государственные службы, действуя по принципу «на тебе, боже, что нам не гоже», отдали в распоряжение радиолюбителей волны, короче 200 метров. И вдруг на тебе… в 1923 году два радиолюбителя на кустарных, маломощных радиостанциях установили связь между… Англией и Новой Зеландией!

«Н»: Это есть пример ПОБЕДЫ ТЕХНИКИ НАД НАУКОЙ!

«А»: Да, совершенно блестящий пример! Но, Незнайкин, далеко не единственный! «Тому в истории мы тьму примеров слышим, но мы истории не пишем…».

Но… будем же справедливы! Я имею в виду, по отношению к науке! Ее ведь тоже делают люди. А среди людей науки ВСЕГДА находятся гении и прозорливцы…

«Н»: И в этом случае тоже?

«А»: И в этом — тоже! В 1902 году физики Хевисайд и Конелли выдвинули смелую гипотезу: ВЕРХНИЕ СЛОИ АТМОСФЕРЫ ДОЛЖНЫ СОСТОЯТЬ ИЗ ИОНИЗИРОВАННОГО ГАЗА! По причине того, что они подвергаются прямому воздействию жесткого космического излучения. И, безусловно, воздействию солнечного излучения! Но поскольку ионизированный газ является проводником, то радиоволны ДОЛЖНЫ ОТРАЖАТЬСЯ от верхних слоев атмосферы, как от зеркала! Споры на эту тему шли более 20 лет, пока, наконец в 1925 г., американские исследователи Туве и Брайт не дали этой гипотезе блестящее экспериментальное подтверждение!

«Н»: Погоди, я слышал о каком-то «слое Хевисайда»!

«А»: О нем, Незнайкин, речь и идет! Но вскоре оказалось, что отражающих слоев — несколько! Например, летним днем их не меньше четырех! Ближе всего к земной поверхности расположен слой D. Затем Е, и, наконец, F, который «распадается» на F1 и F2. Но если мы сейчас не остановимся, то можем «утонуть» в этих интереснейших вопросах!

«Н»: Жаль, хотя ты совершенно прав! Но, надеюсь, о свойствах топосферы Земли сегодня известно почти все?

«А»: Больше всего в восторг я прихожу от твоего «почти»! Нет, дорогой!

Эти свойства преподносят массу сюрпризов! О некоторых просто стараются не упоминать — так спокойнее!

«Н»: Это мне чем-то напоминает «эффект страуса»!

«А»: Согласен! В топосфере много непознанного, но в свое время под Москвой был создан ИЗМИРАН — институт земного магнетизма и хождения коротких волн для территории СССР (бывшего) на месяц вперед!

Но — хватит истории!

«Н»: Если я правильно понял, то есть несколько путей распространения радиоволн?

«А»: Да, это так! Для коротких волн, которые, как известно могут распространяться на любые расстояния, есть несколько путей. Самый простой путь распространения отраженных радиоволн — односкачковый. При этом дальность достигает, примерно, 3500 км. Существует такая вещь как многоскачковое распространение. При этом волна отражается последовательно несколько раз от ионосферы и поверхности Земли. Есть и еще одна возможность — рикошетирующее распространение. При этом виде распространения потери мощности получаются особо малыми!

«Н»: Ну и ну! А что получается, если короткие волны из одной точки «двинутся» сразу по двум или трем путям?

«А»: А то и получается, что в течение нескольких минут интенсивность (или уровень) сигнала в точке приема может измениться в СОТНИ РАЗ! Это явление известно как замирание или ФЕДИНГ. В основе этого явления — интерференция нескольких волн одной и той же длины, пришедших от передатчика к приемнику несколькими различными путями. А поскольку пути различны и непостоянны, то различны и непостоянны и фазы пришедших сигналов, которые, как правило, ослабляют друг друга! Я здесь, фактически, не затрагивал вопроса о «дневных» и «ночных» особенностях распространения радиоволн.

«Н»: Но как же пользоваться такими «ненадежными» волнами как короткие?

«А»: Круглосуточно, конечно! Их преимущества «при всём при том, при всём при том» настолько велики, что «охлаждение» интереса к ним не наблюдается ни со стороны профессиональной связи, ни со стороны радиолюбителей! И потом, как неоднократно подчеркивал Спец, для чего-то ведь существует и схемотехника!

«Н»: Так я уже в состоянии присутствовать на ваших беседах со Спецом?

«А»: Не так, чтобы очень! Но, пожалуй, можно рискнуть! И хотя мы ещё собственно схемотехники даже не коснулись, давай условимся о встрече со Спецом прямо сейчас! Пододвинь мне, пожалуйста, телефон!..

 

Глава 5. Экскурс в историю…

«Спец»: Рад приветствовать тебя, Аматор! И новому гостю почет и уважение! Проходите, садитесь! Кстати, Амат, ты успел рассказать нашему юному другу о транзисторах и микросхемах, хотя бы в самых общих чертах?

«Аматор»: Нет, уважаемый Спец, не успел! Тем более, что мне хотелось бы чтобы беседу на эту тему провели именно Вы!

«С»: Возможно, это оптимальная мысль! Но, насколько я понял, сегодня ты хотел побеседовать на другую тему?

«А»: Я и хочу на другую! Дело в том, что вопрос осознанного выбора исходной блок-схемы всеволнового современного радиоприемника оказался много запутаннее, чем это представлялось мне вначале!

Вроде бы все ясно! Ну есть «прямики» и есть значительно превосходящие их по своим возможностям «суперы»! Но оказывается, чем «дальше в лес, тем больше… да ну меня совсем»!

«С»: Кажется, я представляю в чем тут дело! Выбор исходной блок-схемы — это действительно основополагающий вопрос при любой мало-мальски серьезной разработке!

«Незнайкин»: Принципиальные электрические схемы — это еще куда ни шло… А вот что такое БЛОК-СХЕМЫ?

«С»: Ситуация понятна! Ну что же, друзья мои, полагаю, что вопрос надо ставить даже несколько шире!

Поэтому мы сегодня проведем «историческую беседу». И начнем мы именно с истории радиотехники!..

«А»: Отлично! Незнайкину это вообще необходимо, а я с удовольствием упорядочу свои познания в данном вопросе. Итак?…

«С»: Иногда приходится слышать спор на тему о том, кто и когда «открыл радио»!? Попов или Маркони?… Общемировое мнение на сей счет неоднозначно!..

Но нет сомнения, что успехи в электричестве и магнетизме базировались на изобретениях и открытиях Фарадея и Максвелла. Принципы электромагнитной индукции были истрактованы Майклом Фарадеем в 1831 г. А в 1832 г. он написал: «…я считаю, что теория колебаний будет применена к этому явлению (индукции), равно как и к звуку и, весьма вероятно, к свету».

Но только в 1855 г. Максвелл опубликовал статью «О силовых линиях Фарадея», а в 1864 г. дал миру ошеломляющую работу «Динамическая теория электромагнитного поля». Эта статья предсказывала существование радиоволн и возможность их распространения со скоростью света.

В 1887 г. выводы Максвелла были экспериментально подтверждены Генрихом Герцем. Он построил ИСКРОВОЙ ГЕНЕРАТОР электромагнитных волн и исследовал их свойства. Вот что представлял собой этот генератор (см. рис. 5.1).

Его основа — уже известный нам колебательный контур. Но… поскольку колебания в реальном контуре быстро затухают (а электронных ламп и транзисторов еще и в помине не было), то в качестве быстродействующего коммутатора, позволяющего заряжать конденсатор и переключать его от батареи к катушке, был использован… искровой промежуток между двумя металлическими шариками!

«А»: Обозначенный на схеме, как S?

«С»: Абсолютно верно! Здесь искру дает, так называемая, ИНДУКЦИОННАЯ КАТУШКА Румкорфа.

Кстати, разновидность катушки Румкорфа используется и в наше время в системе зажигания автомобилей!

Ток батареи, проходя через обмотку I, намагничивает ее железный сердечник. Он притягивает подвижной контакт К и… цепь разрывается. Магнитное поле исчезает и контакт замыкается снова. Весь процесс проходит с частотой нескольких сотен герц.

В момент размыкания цепи происходит следующее. ЭДС самоиндукции, возникающая в обмотках индукционной катушки L, пропорциональна скорости изменения магнитного потока. Эта скорость достаточно велика! В результате на выводах обмотки I возникает импульс напряжения в ДЕСЯТКИ РАЗ ПРЕВЫШАЮЩИЙ по амплитуде напряжение батареи! А поскольку обмотка II содержит гораздо больше витков, то на ее выводах напряжение достигает нескольких десятков тысяч вольт! Конденсатор С заряжается до такого же напряжения. Искровой промежуток S регулировался так, чтобы он пробивался при напряжении, близком к максимально развиваемому катушкой!

Проскочившая искра замыкает цепь LC — контура и в нем возникает серия затухающих колебаний. Стремясь повысить частоту колебаний. Герц довел длину волны до трех десятков метров! Русский физик Лебедев сконструировал вибратор на длину волны ТРИ САНТИМЕТРА!

Вот почему первым сообщением Попова было имя Генриха Герца!

«А»: Вы имеете в виду Александра Степановича Попова!?

«С»: Разумеется, потому что именно преподавателю минных офицерских классов в Кронштадте А. С. Попову удалось сконструировать приемник электромагнитных волн, обладающий достаточной для практических целей чувствительностью!

«Н»: А как был устроен приемник Попова?

«С»: Очень изобретательно, как на то время! В приемной цепи Попов использовал «КОГЕРЕР». Это устройство изобрел незадолго до экспериментов Попова француз Бранли!..

КОГЕРЕР представлял из себя стеклянную трубку с двумя выводами, между которыми были засыпаны мелкие железные опилки. Из-за тонкого слоя окиси, содержащегося всегда на поверхности железных опилок, сопротивление КОГЕРЕРА — велико! Но только до того момента, пока на его выводы не подано высокое напряжение. Безразлично, постоянное или переменное!

«А»: Но ведь через обмотки реле Р1 напряжение батареи подается на КОГЕРЕР постоянно (см. рис. 5.2)?

«С»: Это действительно так! Но напряжения батареи недостаточно, чтобы «заработал» КОГЕРЕР. Через антенну А на него подается еще и высокочастотное напряжение. Именно оно приводит к тому, что опилки, как бы «слипаются» и сопротивление КОГЕРЕРА резко падает! При этом срабатывает реле Р1, притягивая якорь Я1. В этом случае замыкается контакт К1. Следовательно, срабатывает реле Р2, притягивая к себе якорь Я2. При этом разрывается силовая цепь посредством контакта К2. Через реле Р2 перестает протекать ток и под действием механической пружины Я2 возвращается в первоначальное положение.

Не только наличие антенны являлось важнейшим элементом приемника Попова, но и релейный усилитель постоянного тока также! Поскольку относительно слабый ток через когерер приводил в действие чувствительное реле Р1, контакты которого замыкали цепь электрического звонка.

«Н»: Но если исходить из этого рисунка, уважаемый Спец, то создается впечатление, что молоточек лупил не только по чашечке звонка, но еще и прямо по когереру!?

«С»: Атак оно и было! Именно таким образом КОГЕРЕР автоматически встряхивался после приема каждого электромагнитного импульса! И был готов к приему следующего!

Но заметьте, что в приборе Попова применяется и ЗАЗЕМЛЕНИЕ!

«А»: Я где-то читал, что приемник Попова называли «грозоотметчик»?

«С»: Это сам Попов так его назвал! С подключением наружной антенны удалось регистрировать грозы на расстояниях до 30 километров. Вот это устройство, а мы уже разобрали принцип его действия, А. С. Попов и продемонстрировал 7 мая 1895 года на заседании Русского Императорского физико-химического общества!

В дальнейшем было обнаружено, что КОГЕРЕР обладает детекторным эффектом, а для приема с 1899 г. стали использовать головные телефоны. В последующих опытах было замечено, что чувствительность приемника к слабым сигналам значительно возрастала, если с приемником был связан собственный, даже маломощный генератор! Настроенный на частоту, близкую к частоте принимаемого сигнала!

Собственный генератор получил наименование — ГЕТЕРОДИН. А сам приемник получил название — ГЕТЕРОДИННЫЙ.

25 октября 1906 года американский инженер Ли де Форест подал заявку на выдачу ему патента. Речь в нем шла о знаменитом «АУДИОНЕ»! То есть о трехэлектродной вакуумной лампе-усилителе! Хотя, если говорить строго, первые «аудионы» усиливали амплитуду входного напряжения меньше, чем в два раза! Шесть лет тяжких трудов ушло на то, чтобы «аудион» стал действительно усилителем!

В 1912 г майор — американец Эдвин Армстронг создал на основе «аудиона» электронный генератор незатухающих одночастотных колебаний. Я подчеркиваю — ОДНОЧАСТОТНЫХ!

«А»: Это потому, что искровые передатчики (генераторы) не обладали этим свойством?

«С»: Да, искровая техника этим свойством не обладала! Там можно было говорить только о некотором спектре частот!

Итак, генераторы Армстронга, а также Фореста и Александра Мейснера позволили получать чистые непрерывные синусоидальные сигналы! Вот схема лампового автогенератора на рис. 5.3.

«Н»: На схеме колебательного контура показан конденсатор со стрелкой! Это значит — переменный?

«А»: Мы, Незнайкин, ещё будем говорить на этот счет подробно! А что означает двойная стрелка между катушками, ты понимаешь?

«Н»: Не совсем, если честно!

«А»: А между тем это символизирует, что взаимное расположение этих обмоток можно изменять механическим регулированием!..

«С»: Ну что, идем дальше? В 1915 г. появились электронные лампы с высоким вакуумом. Эти лампы обеспечили возможность создания не только генераторов незатухающих колебаний, но также и усилителей слабых сигналов!

Поэтому в практику прочно вошли так называемые ПРИЕМНИКИ ПРЯМОГО УСИЛЕНИЯ. Но еще прежде них — ДЕТЕКТОРНЫЕ. Эго я рассказываю прежде всего для тебя, Незнайкин!

«Н»: Спасибо, большое спасибо!.. Но если бы к тому же я ясно представлял себе, что такое вообще ДЕТЕКТОРНЫЙ приемник!?..

«С»: Дорогой Аматор! Так вы не рассматривали процессы детектирования?…

«А»: Так судьба сложилась!.. Мы просто не успели этого сделать!

«С»: Но обойти этот вопрос молчанием мы не можем!

«Н»: Но как бы там ни было, КОГЕРЕР для этого сейчас уже не применяют?

«С»: КОГЕРЕР ушел в историю! Но, как говорится, «король умер — да здравствует король!» Вместо КОГЕРЕРА в современной радиотехнике используется КОГЕ…РЕНТНЫЙ ДЕТЕКТОР!

«Н»: Расскажите сначала об обычном!

«С»: «Вы просите песен? Их есть у меня!» А ну-ка, скажите мне, какой спектр или лучше диапазон частот занимает обыкновенная человеческая речь?

«Н»: Я где-то слышал, что диапазон воспринимаемых человеческим ухом частот лежит в пределах от 16 до 20000 герц!

«А»: А обыкновенная речь (не музыка) ограничена диапазоном 150—4500 герц! Я не слишком ошибся?

«С»: Не слишком!.. Некоторые исследователи, кстати, считают, что диапазон воспринимаемых верхних частот простирается до 30 кГц! Однако понятно, что эти частоты сами по себе в «эфир» с помощью антенн приемлемых размеров переданы быть не могут! Поэтому для технического решения подобных задач используется МОДУЛЯЦИЯ. А что это такое, видно на примере так называемой АМПЛИТУДНОЙ МОДУЛЯЦИИ (см. рис. 5.4).

Вопросы к иллюстрирующим этот термин рисункам имеются?

«А»: У меня — нет! А у тебя Незнайкин?

«Н»: Только один! Высокая частота может быть любой?

«С»: В принципе, да! Но показанная здесь АМПЛИТУДНАЯ модуляция (или AM) применяется только в диапазонах ДВ, СВ и КВ!

Поскольку считается самой примитивной и помехонеустойчивой. Например, в диапазоне УКВ применяется более совершенная, ЧАСТОТНАЯ МОДУЛЯЦИЯ!

«Н»: А на рисунке ее можно изобразить?

«С»: Без проблем! Да вот она на рис. 5.5.

«Н»: То есть в этом случае непостоянна именно частота сигнала?

«С»: Конечно, при том, что амплитуда сигнала сохраняет свою величину! Имеются значительно более совершенные виды модуляции.

Например, ИМПУЛЬСНАЯ, ФАЗОВАЯ, ИМПУЛЬСНО-ЧАСТОТНАЯ и т. д. Но при всем, при том — в области длинных, средних и коротких волн для радиовещания применяется и будет применяться еще долго ИМЕННО ЭТА, такая «плохая» и «устаревшая» АМПЛИТУДНАЯ МОДУЛЯЦИЯ!

«А»: Казалось бы, если уж она такая «плохая», то смените ее на другую — «хорошую» да и дело с концом!

«С»: Это уже давно пытаются сделать! Вот, например, еще в 1915 г. Джон Карсон изобрел ОДНОПОЛОСНУЮ МОДУЛЯЦИЮ, которая экономила и мощность, и полосу частот.

Любопытно, что однополосная модуляция (или SSB) появилась как практическое следствие математического анализа модулированной несущей!

Но прежде, чем говорить об SSB или, например, частотной модуляции, давайте вернемся к вопросам детектирования!

Прежде всего, Незнайкин! Для чего оно необходимо? Почему нельзя (см. рис. 5.4, иллюстрирующий AM) просто подать сигнал вида «в» на головные телефоны или динамик?

«Н»: «Это мы не проходили, это нам не задавали!» А, действительно, почему?

«С»: Потому что, сделай мы подобное, ничего-то бы мы с вами не услышали! Не может мембрана динамика колебаться с такой частотой! Да и ухо человека ВЧ — колебания просто не воспримет.

Значит, остается только один выход — ВЫДЕЛИТЬ НИЗКОЧАСТОТНЫЙ СИГНАЛ! А как это сделать?

«А»: Наверное проще всего — применив для этой цели некий электронный прибор, имеющий высокую проводимость в одном направлении и исключительно низкую — в другом! Проще говоря, использовать для этой цели полупроводниковый ДИОД!

«С»: Ты безусловно прав! Но ведь вы с Незнайкиным еще не рассматривали диоды, транзисторы, микросхемы, оптроны и т. д.! Как же нам быть?

«Н»: А может, рассмотрим принципы выделения НЧ — сигналов без рассмотрения физических принципов функционирования диодов? А о самих диодах поговорим в последующих беседах?

«С»: Разумно! Итак, на представленной схеме показан простейший детектор амплитудно-модулированных сигналов, а рядышком представлена эпюра выходного напряжения UA. В качестве сопротивления нагрузки Rн могут использоваться наушники (рис. 5.6).

«Н»: А какова роль конденсатора С?

«С»: Накапливая на себе поступающий за время каждого полупериода электрический заряд, конденсатор С позволяет поддерживать на нагрузке плавно меняющееся напряжение низкой частоты. Поэтому разрядный ток, протекающий через Rн, будет являться не серией амплитудно-модулированных импульсов, а настоящим током НИЗКОЙ ЧАСТОТЫ!

Ну вот! А теперь я рисую первую блок-схему, а ты, Незнайкин, постарайся ее правильно истрактовать (рис. 5.7)!

«Н»: «Я не волшебник, я еще только учусь», но мне кажется, что УВЧ — это усилитель высокой частоты, а УНЧ — соответственно, низкой частоты!

«А»: И какова же роль УВЧ?

«Н»: Я полагаю, что все дело в амплитуде высокочастотного сигнала, поступающего от антенны. Каким-то образом (я пока затрудняюсь объяснить этот феномен), но УВЧ, сохраняя временные зависимости относительного изменения амплитуды сигнала, способен увеличивать их абсолютный размах!.. Затем усиленный сигнал детектируется, а дальше поступает на вход УНЧ. Затем на динамик, после чего мы имеем удовольствие слушать интересные радиопередачи!

«С»: Поздравляю! Ты поведал нам об устройстве и принципе работы ПРИЕМНИКА ПРЯМОГО УСИЛЕНИЯ, в просторечии — ПРЯМИКА!

«Н»: А что, применяются и иные блок-схемы?

«С»: Вне всякого сомнения! Поскольку приемники прямого усиления имеют немалое количество очень серьезных недостатков. Ну, например, начинающие радиолюбители часто строят простенькие транзисторные «прямички». Но ТОЛЬКО для диапазонов длинных и средних волн!

«Н»: А почему их нельзя применить и для диапазона коротких волн?

«А»: Прежде всего потому, что входной настраиваемый колебательный контур (или целая система колебательных контуров), получивший в технической литературе наименование ПРЕСЕЛЕКТОР, не обладает сколько-нибудь существенной избирательностью в диапазоне коротких волн!

«Н»: А что такое вообще — ИЗБИРАТЕЛЬНОСТЬ?

«А»: Вернемся к нашему избирательному контуру. И, в частности, к его АЧХ (см. рис. 5.8).

«Н»: А что это за вертикальные линии на рисунке, обозначенные как f1; f2; f3 и f4?

«А»: Здесь я представил вполне реальную ситуацию, когда в эфире, кроме станции с несущей частотой f0, работают еще и другие радиостанции. Вот их частоты и соответствуют изображенным на рисунке вертикальным линиям!

Но ты ведь не хочешь слушать и их тоже, причем ВСЕ СРАЗУ?!

«Н»: Так я же ничего не расслышу!

«А»: Ну так твой преселектор и помогает тебе настроиться на одну из них, в данном случае это и будет частота f0!

«С»: При этом обрати внимание, что амплитуды сигналов, развиваемые на антенном входе всеми пятью радиостанциями — РАВНЫ!

«Н»: Я отлично это вижу! Но заметил еще и то, что частоты f1 и f4 — совсем не воспринимаются преселектором, а частоты f2 и f3 — только частично…

«А»: Только те частоты, которые накрываются «колоколом» и проходят преселектор!

Но обрати внимание, что частота f0 при этом еще и возрастает по амплитуде!

Повторим еще раз, что КОЛЕБАТЕЛЬНЫЙ КОНТУР УСИЛИВАЕТ приходящие сигналы, частоты которых равны или очень близки его резонансной частоте!

«Н»: На нашей блок-схеме, кстати, я никакого преселектора не вижу!

«С»: Да потому, что его там просто нет! Кстати, «в последнее время стало модным разливать чай через ситечко»! Я это к тому, что нам будет удобнее, наряду с блок-схемами, пользоваться также СТРУКТУРНЫМИ СХЕМАМИ! Тогда, с учетом пожеланий Незнайкина, я изображу структурную схему приемника прямого усиления рис. 5.9.

«А»: Информация к размышлению, Незнайкин! — Z1 — преселектор; A1 — УВЧ; U1 — амплитудный детектор; А2 —УНЧ; BF1 — телефоны или динамик.

«С»: Я полагаю, дорогой Аматор, что в дальнейшем мы будем прибегать только к структурным и принципиальным электрическим схемам!

«А»: Очень хорошо! Я придерживаюсь того же мнения, уважаемый Спец!

«Н»: Принято единогласно!.. Но у меня вопрос относительно изображенной выше характеристики преселектора. И, в связи с этим, о бесполезности «прямика» в диапазоне КВ…

«С»: Выкладывай, дорогой Незнайкин! Мы для этого и собрались!

«Н»: Расстояние между частотами f1; f2; f3 и f4 выбрано случайно?

«С»: Не совсем!.. В современном мире огромное количество радиостанций! И вопрос о том, что надо предпринять, чтобы они не мешали друг другу, непрерывно решается в течение вот уже многих десятков лет! В диапазонах длинных, средних и коротких волн интервал по частоте выбран равным 9 кГц в Европе. А в Америке и Японии даже 10 кГц.

При таком распределении частот получается, что в диапазоне ДВ размещается 28 каналов, а в СВ — 120 каналов! Но только в европейском регионе число радиостанций значительно больше числа каналов!

Таким образом, одинаковые частоты отведены радиостанциям, максимально удаленным друг от друга территориально. И днем положение терпимо. Однако ночью не редкость ситуация, когда на одной частоте прослушиваются две — три радиостанции. Ничего не поделаешь! В эфире тесновато!

«Н»: А уменьшить интервал с 9 кГц до 3–4 никак нельзя?

«С»: Взгляни на следующий эскиз (рис. 5.10)!

Здесь я изобразил частотный спектр AM — сигнала ОДНОЙ радиостанции. Следовательно, даже отведя на одну станцию полосу частот 9 кГц, передать сигнал, в котором содержится ВЕСЬ воспринимаемый ухом звуковой спектр — НЕЛЬЗЯ! Самая верхняя звуковая частота, это — 4,5 кГц! Хотя должен сказать, что если не слишком придираться к качеству звука, этого вполне хватает даже для приема ритмов современной музыки.

Зато информацию в диапазоне КВ можно «ловить» из ЛЮБОЙ ТОЧКИ ЗЕМНОГО ШАРА!

«Н»: А буква Fв что означает?

«С»:Fв — это НАИВЫСШАЯ ЗВУКОВАЯ МОДУЛИРУЮЩАЯ ЧАСТОТА.

«А»: А что делается для улучшения ситуации в эфире? Кроме чисто тривиальных методов, например, понижения Fв?

«С»: Ну вообще-то, чтобы существенно улучшить качество радиовещания в диапазонах ДВ, СВ и КВ, его следует коренным образом перестроить!

Я понимаю, само слово «перестройка» сейчас иначе, как с сарказмом, не воспринимается! Но куда деваться? Амплитудная модуляция впервые была предложена еще при царе Горохе! Она и не эффективна, она и расточительна!

Ее динамический диапазон крайне мал! И т. д., и т. п.!

Но, повторяю, она ИСПОЛЬЗОВАЛАСЬ, ИСПОЛЬЗУЕТСЯ и БУДЕТ ИСПОЛЬЗОВАТЬСЯ, поскольку самая дальнобойная!

«А»: Да, чудные дела Твои, Господи! Так что же делать?

«С»: Или, как говорил незабвенный Шура Балаганов: «как снискать хлеб насущный?» Прежде всего — никакой паники! Следует спокойно и конструктивно порассуждать на тему о том, как велика и обширна современная компонентная база и приборный парк электроники!

А после этого подумать о целом ряде способов, которые следует применить для решения этой «неразрешимой» задачи! Да вот вам пример! Только 5 процентов мощности излучаемого AM — сигнала несут полезную информацию! А, остальные 95 процентов приходятся на несущую, которая никакой полезной информации не несет! Так вот, мысль была такая — не передавать несущую частоту f0 через эфир!

«Н»: А это возможно?

«С»: Оказывается… да! И в основе лежит, так называемый, СИНХРОННЫЙ ПРИЕМ! Но… электроника не терпит расхлябанности и непоследовательности! А потому… вернемся к истории развития радиоприемной техники!

Мы уже упоминали ГЕТЕРОДИННЫЙ ПРИЕМНИК. Вот так он выглядит на структурной схеме (рис. 5.11). Стрелка означает, что его можно перестраивать по частоте.

«А»: В чем особенность работы гетеродинного приемника?

«С»: В том, что на детектор воздействуют ДВА сигнала. Входной — от антенны WA и гетеродинный — который генерируется местным генератором G.

Так вот, если частота гетеродина ненамного (400—1000 Гц) отличается от частоты передатчика, то на выходе детектора появляется напряжение «биений» с разностной звуковой частотой.

«А»: И все же, дорогой Спец, я не совсем ясно себе представляю, что дает введение в схему детекторного приемника еще и гетеродина?

«С»: Ты знаешь, что чувствительность детекторного приемника оказывается слишком низкой! Даже подключение на выходе детектора УНЧ не спасает положения. Поскольку для того, чтобы детектор «заработал», необходимо, чтобы амплитуда сигнала на его входе достигала нескольких милливольт. А еще лучше — нескольких десятков милливольт!

Иное дело — гетеродинный приемник! Математический анализ показывает, что полезное, напряжение на выходе детектора является СУММОЙ продетектированного сигнала и продетектированного напряжения гетеродина!

А кроме того, в эту сумму входят еще БИЕНИЯ между колебаниями сигнала и гетеродина. Но добавление гетеродинного напряжения к сигналу на обычном детекторе не избавляет от прямого ДЕТЕКТИРОВАНИЯ ПОМЕХ!

«А»: То есть влиянию помех гетеродинный приемник (ГП) подвержен значительно?

«С»: Во всяком случае, в представленном выше виде!..

Поэтому ГП, автодины, синхродины и прочая техника 20-х годов ушла в прошлое безвозвратно!

«Н»: А что такое АВТОДИНЫ?

«С»: Это устройства, применяющиеся для автодинного приема. Сущность его в том, что он является ПОЧТИ генератором Мейснера. Если в схему этого генератора добавить цепь индуктивной связи с антенной и телефон, шунтированный конденсатором в анодной цепи лампы, то мы и получим схему автодинного приемника! В контуре существуют два колебания сразу. Собственное и принимаемое. Их частоты сдвинуты нате же 400 — 1000 Гц.

Вырабатывается сигнал биений. Он проявляется в виде свиста, тон которого меняется. Автодинные приемники являлись почти идеальными для приема телеграфных сигналов.

«А»: Я краем уха слышал, что имеются приемники, использующие какую-то технику ПРЯМОГО ПРЕОБРАЗОВАНИЯ?

«С»: Мы обязательно будем говорить о принципах этой техники, но позднее!

А сейчас, мои дорогие друзья, хочу заметить, что среди большого количества самых разнообразных разновидностей приемной техники (а мы упомянули далеко не о всех) особое место занимает выдающееся изобретение электроники 20 века — СУПЕРГЕТЕРОДИН!

 

Глава 6. Что такое «супергетеродин»?

«Спец»: Первый супергетеродинный приемник капитан корпуса связи армии США Эдвин Говард Армстронг, служивший в то время во Франции, (а это было время Первой Мировой войны) собрал на территории Европы. Он подал заявку на патент в США из Парижа 30 декабря 1918 года, а получил патент 3 июля 1920 г. Супергетеродин — это величайшее достижение не только Армстронга, но всей электронной техники вообще!

«А»: Что, неужели за 80 лет не появилось никакой более удачной идеи?

«С»: Представь себе — нет! Хотя вариаций на тему супергетеродинного принципа имеется великое множество!

Первоначально Армстронг разработал супергетеродин с целью изыскать способ усиления сигнала на тех частотах, которые были недоступны для электронных ламп того времени. Именно с появлением супергетеродинной схемы, радиотехника стала бурно развиваться!

«Н»: Уважаемый Спец! Но что же представлял из себя супергетеродин Армстронга? И в чем заключается его феноменальный секрет?

«С»: Вот структурная схема супергетеродина (рис. 6.1).

Принцип супергетеродинного приема состоит в том, что принятые колебания преобразуются по частоте в некоторую ПРОМЕЖУТОЧНУЮ частоту. Вот на ней и происходит основное усиление сигнала! А поскольку промежуточная частота — фиксирована, в УПЧ можно задействовать значительное число контуров, обеспечивающих необходимую избирательность!

«Н»: Но ведь ранее мы знакомились с замечательными свойствами колебательного контура! Разве с его помощью нельзя добиться необходимой избирательности? Зачем для этого нужна целая система контуров?

«С»: Дорогой Аматор! Что слышу я из уст нашего друга? Вы разве не касались вопроса АЧХ связанных контуров? Или того, какова может быть предельная избирательность?

«Н»: Это я виноват! Слишком торопил Аматора согласиться на мое участие в вашей с ним беседе!..

«С»: Не беда! Однако, поскольку супергетеродин — это очень серьезно и никаких «галопом по европам» здесь не будет, я попрошу нашего уважаемого Аматора прямо сейчас продолжить тему о колебательных контурах и избирательности!

«А»: С удовольствием! Для чего предлагаю вернуться еще раз к АЧХ колебательного контура. Но сейчас в наши рассуждения мы добавим немного конкретики (см. рис. 6.2).

Так все СЕМЬ представленных частот f1—f6, а также f0, разделены частотным промежутком, или интервалом, равным 10 кГц. Представим, что резонансная частота, на которую настроен входной контур, совпадает с f0. И, кроме того, что прием ведется в диапазоне КВ. Для удобства рассуждений принимаем f0 = 10 МГц! То есть длина волны составляет 30 метров! Кроме того принимаем, что добротность контура Q = 100.

«С»: Должен заметить, что это весьма неплохой контур!

«А»: Согласен! Теперь подсчитаем, чему равна полоса пропускания нашего контура и увековечим ее очертания на представленном выше рисунке.

Q = f 0 /Δf;

Δf = f o /Q = 107/102 = 105 Гц!

То есть полоса нашего контура равна 100 кГц! И это по уровню 0,707!..

«Н»: Как же так!? Ведь из этого следует, что наш контур не обладает, практически, НИКАКОЙ ИЗБИРАТЕЛЬНОСТЬЮ!

«А»: Совершенно верно, Незнайкин! Приведенный пример ясно показывает, что даже на частоте 10 МГц, контур уже не обладает ИЗБИРАТЕЛЬНОСТЬЮ ПО СОСЕДНЕМУ КАНАЛУ! (Это узаконенный технический термин, который показывает — во сколько раз ослабляется селекторной цепью сигнал частоты, отстоящей от f0 на 10 кГц, если входные величины их сигналов — равны!)

«Н»: Но может стоит просто взять Q = 1000?

«А»: Ты воображаешь, что это так просто сделать? В какой-то степени дело можно улучшить, если резко увеличить размеры катушки. Намотать ее толстым проводом, лучше посеребреным, на очень качественном диэлектрическом каркасе. Но и в этом случае, для реального контура получить Q больше 250 вряд ли удастся! А поскольку, как ты еще убедишься дальше, катушек таких в серьезном приемнике достаточно много, то габариты его могут стать вовсе неприемлемыми!

«С»: А кроме всего прочего, даже это не спасает положения! При Q = 250, полоса пропускания находится на уровне 40 кГц!

«А»: Легко видеть, что в полосе приема этого контура (Q = 250) будет прослушиваться ПЯТЬ каналов одновременно!

«Н»: Но ведь подобный преселектор — это ВСЕ, чем располагает «прямичок» для отстройки от мешающих станций!

«А»: Не совсем так… Мы ведь еще не рассматривали системы СВЯЗАННЫХ КОНТУРОВ. Их еще называют ПОЛОСОВЫМИ ФИЛЬТРАМИ. Простейшие полосовые фильтры состоят из двух связанных между собой высокодобротных контуров, настроенных на несущую частоту. Изменяя связь между ними, можно значительно улучшить форму АЧХ, приблизив ее к идеальной, прямоугольной.

«Н»: Как можно представить себе полосовые фильтры?

«А»: Да вот хотя бы так, как показано на рис. 6.3. Хотя возможны и другие конфигурации. Полосовые фильтры не дают заметного повышения добротности, но зато делают более крутыми боковые склоны АЧХ. «Срез» АЧХ полосового фильтра по уровню 0,707 в отличие от одиночного контура, очень незначительно превосходит по ширине свое «основание»!

«Н»: Но полностью задачу это ведь все равно не решает?

«А»: Ну конечно нет! Вот почему и возник вопрос о том, нельзя ли для повышения избирательности по соседнему каналу, каким-либо способом понизить несущую частоту сигнала в приемнике, сохранив ее, однако, в передатчике!

Оказалось, именно это блестяще и подтвердил Армстронг, что подобное вполне реально!

«Н»: А с помощью какой лампы Алладина это удалось сделать?

«А»: С помощью так называемого СМЕСИТЕЛЯ, осуществляющего процесс преобразования частоты!

«С»: Вообще в различной радиоаппаратуре особую роль играют, так называемые, НЕЛИНЕЙНЫЕ ПРОЦЕССЫ. Это и детектирование, и модуляция, и даже некоторые случаи усиления сигнала. Основным признаком всякого нелинейного процесса является, Аматор…

«А»: …Изменение формы электрического сигнала, в результате чего в его спектре появляются НОВЫЕ ЧАСТОТНЫЕ СОСТАВЛЯЮЩИЕ!

Однако нелинейный процесс осуществляется только в том случае, если в состав цепи вводится простой или сложный, но обязательно НЕЛИНЕЙНЫЙ ЭЛЕМЕНТ!

Вот именно к числу таких, нелинейных процессов, относится и ПРЕОБРАЗОВАНИЕ ЧАСТОТЫ, лежащее в основе СУПЕРГЕТЕРОДИННОГО метода приема.

«С»: Так вот, если к такому нелинейному элементу одновременно подвести два сигнала с различными частотами f1 и f2, то в цепи этого элемента появятся самые различные комбинации этих сигналов!..

Вузовские курсы по радиотехнике перечисляют несколько комбинаций, которые при этом получаются! Но нас интересуют только две… Так Аматор?

«А»: Мне очень неловко в этом признаться, но я всегда считал, что только одна!.. А именно f1 — f2. При том, что частота гетеродина fгет = f1, a f2 — частота несущей канала, в котором осуществляется прием… То есть fгет — fсигн.

«С»: Ты совершенно прав, но не следует забывать и о такой комбинации, как fсигн— fгет.

«А»: Ну конечно! Это ведь так важно для понимания термина ИЗБИРАТЕЛЬНОСТЬ ПО ЗЕРКАЛЬНОМУ КАНАЛУ!

«С»: Друг мой, ты совершенно прав, но я имел в виду не только это… Кстати, чему соответствует эта разность частот?

«А»: fгет — fсигн? Она равна fпр, то есть ПРОМЕЖУТОЧНОЙ ЧАСТОТЕ!

Однако особенно следует отметить следующее обстоятельство — если один из двух сигналов, породивших сигнал промежуточной частоты, будет модулированным, то сама промежуточная частота окажется… ПРОМОДУЛИРОВАННОЙ ЭТИМ ЖЕ САМЫМ СИГНАЛОМ!

Ну и совсем нетрудно понять, что поскольку fгет — это чистый, синусоидальный сигнал, то из этого следует, что произойдет перенос модулирующего сигнала (речь, музыка) на fnp!

«Н»: Здорово! А какой обычно выбирается промежуточная частота?

«С»: Дорогой Незнайкин! Спросил бы ты это, скажем, лет 20 назад, то я не моргнув глазом, с чувством глубокой убежденности ответил бы так. А именно, что промежуточная частота строго стандартизирована и равна в Европе — 465 кГц, а в США и Японии — 455 кГц!

«А»: А сейчас, как писал Дюма, «20 лет спустя», разве это не так?

«С»: Мы еще не раз будем иметь возможность убедиться, что совсем не так!

Но не будем пока брать это в голову! Продолжай пожалуйста, Аматор!

«А»: …Так вот, давайте посмотрим, чему будет равна полоса пропускания полосового фильтра, настроенного на частоту 465 кГц, если его добротность — 100?

«Н»: Даже я могу легко подсчитать, что полоса составляет 4,65 кГц!

«А»: И это в то самое время, как каналы от f1 и до f6 по-прежнему разделены промежутком в 10 килогерц! Прошу взглянуть на рис. 6.4.

Теперь в полосе приема оказалась ТОЛЬКО ОДНА СТАНЦИЯ! Поскольку после смешения частот и получения fпром в АЧХ «вмещается» только ОДИН канал! Приведем численное обоснование сказанного:

Итак,

f0 = 10 МГц; fгет = 10,465 МГц;

тогда:

fгет — fпром = 465 кГц!

Рассмотрим ситуацию с ближайшим каналом, частота которого равна:

f3 = 10,010 МГц.

При той же частоте гетеродина, равной 10,465 МГц, имеем:

fгет — f3 = 10,465 МГц — 10,010 МГц = 455 кГц.

В полосу пропускания контура промежуточной частоты f3 уже НЕ ПОПАДАЕТ!

«Н»: Вот что дает перенос полезного сигнала на новую несущую, равную fпром!

Мне кажется, что добротности, равной 100, здесь даже многовато!

«С»: Совершенно верно! Поэтому полосовые фильтры на 465 кГц, используемые для радиовещательных приемников, имеют обычно Q = 70–80. Попутно решалась задача, стоящая перед Армстронгом — как получить устойчивое высокое усиление для сигнала радиочастоты.

«Н»: А разве для ВЧ сигнала действительно необходимо высокое усиление?

«А»: Давай посмотрим… Пусть на антенном входе интересующая нас станция развивает сигнал, величина которого равна 50 микровольт!

«Н»: Так мало?

«А»: Ты хотел сказать — так много?! Потому что сигнал, обычно, несколько меньше!.. Подать на вход детектора необходимо хотя бы милливольт 100–200! Таким образом, даже при самом грубом подсчете, коэффициент усиления по напряжению до детектора — порядка нескольких тысяч! А реально, учитывая потери в аттенюаторе, преобразователе частоты и т. п. — несколько десятков тысяч раз!

«С»: А то и больше!

«А»: Однако сделать хороший усилитель высокой частоты (имеется в виду — однокаскадный) с коэффициентом усиления по напряжению «всего» 50 раз — задача очень непростая!

Ты, Незнайкин, еще вспомнишь мои слова насей счет! В то же время сделать хороший УПЧ с коэффициентом усиления НЕСКОЛЬКО ТЫСЯЧ — задача значительно более легкая!

«Н»: Ты меня убедил! А что, недостатков у супергетеродина действительно нет?

«А»: Да может ли такое быть? Это ведь не божественная сущность, а техническое устройство!

Основными недостатками супергетеродина является наличие ДВУХ крайне нежелательных каналов приема, которые всегда существуют независимо от того, в каком диапазоне осуществляется прием…

«С»: Я, пожалуй, не стал бы так категорически утверждать, что «всегда», хотя для рассмотренной структурной схемы супергетеродина Армстронга-Леви это действительно справедливо!.. Но дорогой Аматор, прошу прощения за вмешательство!

«А»: Я только благодарен за него, дорогой Спец, поскольку если с этими недостатками существуют средства борьбы, то я искренне рад!

«Н»: Не отвлекайтесь, пожалуйста!.. Так какие это ДВА канала?

«А»: Это ПОБОЧНЫЕ каналы приема, в дальнейшем будем называть их ПОМЕХАМИ. Первый — это ЗЕРКАЛЬНЫЙ канал (зеркальная помеха). Второй — помеха с частотой, равной промежуточной. Итак, во-первых, рассмотрим, что представляет из себя помеха по зеркальному каналу.

Мы уже говорили, что в супергетеродинах частота гетеродина ВСЕГДА выше частоты принимаемой станции. Будь это не так, мы просто не смогли бы принимать станции, расположенные в диапазоне длинных волн, поскольку частота гетеродина при этом должна была бы стать ОТРИЦАТЕЛЬНОЙ!

Но представим себе, что прием ведется в диапазонах СВ или КВ. Наш приемник настроен на частоту, равную 10 МГц. Мы ведь уже имели с ней дело, не так ли? При этом частота гетеродина:

fгет = 10,465 МГц.

А теперь вообразим (фантазия для этого нужна не бог весть какая), что на вход приемника поступает еще один сигнал, частота которого:

fc2 = 10,930 МГц.

В этом случае разностная частота равна… 465 кГц!

«Н»: Значит для тракта промежуточной частоты совершенно безразлично, какой из двух сигналов усиливать! Если на вход УПЧ поступают вышеупомянутые частоты (10 МГц и 10,930 МГц), то усиливаться и детектироваться они будут ВМЕСТЕ и ОДНОВРЕМЕННО!

«А»: Именно так! Поэтому с полным основанием можем записать:

fзерк. = 2fпром. = 930 КГц!

Это соотношение справедливо при ЛЮБОЙ настройке приемника!

«Н»: А разве 930 кГц разницы — это мало?

«А»: А вот сейчас посмотрим (см. рис. 6.2)!.. Входной преселектор, собственно и нужен, чтобы отсечь зеркальный канал или «зеркалку»! И для частоты 10 МГц это удается сделать достаточно удовлетворительно.

Действительно:

f0 = 10 МГц; Q = 100.

Тогда полоса частот по уровню 0,707 равна 100 кГц!

Вроде бы — все отлично! Но не забывай, Незнайкин, что мы говорим про уровень 0,707! А что будет, если посмотреть «колокольчик» по уровню 0,1, скажем?

«Н»: Да ведь полоса тогда почти ВЧЕТВЕРО шире!

«А»: Да и запас селективности уже невелик!

То есть в этом случае преселектор уже не в силах существенно подавить помеху по «зеркалке»! И если нежелательная станция создаст на входе сигнал, раз в 20–30 больший, чем сигнал интересующей нас станции, то амплитуда зеркальной помехи будет равна или даже будет превосходить амплитуду принимаемого сигнала! Ситуация эта встречалась достаточно часто!

«Н»: Но без преселектора было бы еще хуже?

«А»: Вне сомнения! Поэтому в супергетеродинах преселектор ставится всегда! Чтобы хоть как-то ослабить зеркальный канал!

«С»: У преселектора есть и дополнительные обязанности. Благодаря ему значительно снижается напряжение шумов, действующих на входе.

«А»: Давайте о шумах побеседуем отдельно, если вы не против!

«С»: И о шумах, и о помехах мы еще будем говорить! А пока, Аматор, продолжай.

«А»: Кроме помехи по зеркальному каналу, существует еще одна. Несмотря на то, что промежуточная частота выбрана из того расчета, что она «свободна» от радиостанций, в процессе работы двигателей, сварочных аппаратов, рекламных щитов и т. д., наводки с частотой 465 кГц достаточно часто проникают в приемную антенну!

Для борьбы с этим видом помехи, в антенной цепи приемника устанавливают различные фильтры. Например, фильтр — пробку, представляющий собой обычный параллельный колебательный контур, настроенный на частоту 465 кГц и включенный в антенную цепь. А поскольку на резонансной частоте такой контур имеет большое сопротивление, он не пропустит на вход приемника сигналы с частотой равной 465 кГц!

«С»: Ну, что же, сегодня мы начали говорить о супергетеродине. И, согласитесь, он стоит того, чтобы продолжить эту тему завтра!

 

Глава 7. От одиночного преобразования — к двойному!

«С»: Ну как, пришли в себя? Продолжим наш рассказ?

«А»: Но я, в общих чертах, уже всё рассказал, дорогой Спец!

«С»: Не совсем, друг мой!.. Мы не отметили ещё один момент, который характерен для преселекторов, перестраиваемых с помощью конденсаторов переменной емкости, а это ведь присуще именно Супергетеродину Армстронга, не так ли?

«Н»: Ну конечно, я тоже видел, что из себя представляет конденсатор переменной емкости! Аматор показывал мне сдвоенный и строенный конденсатор переменной емкости с воздушным диэлектриком. И объяснил, зачем это сделано.

«А»: Да, уважаемый Спец! Я рассказал Незнайкину, что путем механического вращения, осуществляемого посредством ручки настройки и системы шкивов, ротор, представляющий собой ось с укрепленными на ней пластинами перемещается относительно неподвижных пластин статора, чем достигается изменение емкости. А сдвоенными или строенными эти конденсаторы делаются, например, для того, чтобы можно было реализовать, скажем, такую структурную схему супергетеродина (рис. 7.1).

Он (я имею в виду представленный супергетеродин) представляет собой современный радиоприемник, в котором имеется еще и предварительный усилитель высокой частоты, на выходе которого применен второй селектор частоты. А конструктивно и преселектор Z1 и селектор Z2 перестраиваются одновременно, посредством двух секций конденсатора переменной емкости, а третья секция входит в состав гетеродина…

«С»: Дорогой Аматор, ты совершенно верно нарисовал структурную схему достаточно сложного радиовещательного приемника, так называемого, «высокого класса». Но поверь, СОВРЕМЕННЫМ этот приемник не является уже более ПОЛУВЕКА! То что ты нарисовал — это уровень радиотехники ТРИДЦАТЫХ ГОДОВ!

«А»: Как… ведь транзисторные приемники 60-х—70-х годов выпуска, причем самые дорогие, строились именно по этой схеме?!

«С»: Да, строились! Причем до самого недавнего времени! Пока эти самые «современные советские приемники высшего класса» не оказались, образно говоря, на «помойке» мирового рынка! Не помогли ни транзисторы, ни микросхемы! Но мы с вами, друзья мои, люди дела. Поэтому продолжим наш рассказ…

«А»: Сделайте это лучше Вы, Спец!

«С»: Ну и ладно!.. Но прежде о том самом моменте преселекторов… Как будет меняться форма «колокола» во время перестройки конденсатора от минимальной до максимальной емкости?

«А»: Поскольку: Q равно корень квадратный из L деленное на С и всё это деленное на R, то в связи с тем, что соотношение L деленное на С — возрастает при перестройке конденсатора от Сmax до Сmin, добротность тоже должна возрастать и колокол должен… вытягиваться вверх!

«С»: Это теоретически совершенно верно, однако практика подтверждает существование обратной зависимости — по мере повышения частоты в пределах диапазона, колокол становится ниже, как это и показано на рис. 7.2!

«А»: Но почему?

«С»: Дело в том, что в упрощенную формулу не входят, например, такие параметры, как КОНСТРУКТИВНАЯ ДОБРОТНОСТЬ. Ведь индуктивность характеризуется именно ей! Так с ростом частоты конструктивная добротность L падает. Увеличивается и сопротивление R.

«Н»: А вот этого я уже никак не понимаю! Почему может меняться R?

«С»: Из-за, так называемого, СКИН — ЭФФЕКТА. Этот эффект заключается в том, что с ростом частоты, токи высокой частоты распространяются только по поверхности проводника. Иначе говоря, происходит высокочастотное перераспределение плотности тока по сечению провода, которым намотана L. Это эквивалентно уменьшению сечения проводника, что адекватно возрастанию R! Но главным следствием является следующий факт — избирательность по соседнему каналу (у рассмотренных вариантов супергетеродина) в пределах диапазона не является постоянной величиной!

Информация для размышления: у рассмотренных супергетеродинов избирательность по соседнему каналу составляет 42–46 дБ, а по зеркальному каналу не более чем 32–40 дБ! Это совершенно не соответствует современным мировым стандартам!

«А»: Хорошо, но что нового тогда дала радиотехника 40-х и последующих годов?

«С»: Прежде всего, схемы построенные с использованием МНОГОКРАТНОГО ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ!

Следует сказать и о том, что в тридцатые годы загруженность эфира была значительно ниже, чем сегодня. И тем не менее к концу тридцатых были найдены методы, с помощью которых стало возможным то, что ранее считалось просто недостижимым!

Одним из принципиально новых путей, которых удалось достичь, используя возможности ДВОЙНОГО ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ, является способ кардинального повышения селективности (избирательности) тракта высокой частоты (радиочастоты). Речь идет о предложенном в мае 1941 года советским инженером Юзвинским методе, именуемом с той поры «цепью Юзвинского». Вот она на рис. 7.3).

«А»: Это следует понимать так, что на выходе восстанавливается все та же частота сигнала?

«С»: Вот именно! Но обрати внимание, что в «цепи Юзвинского» частота гетеродина fгет ВСЕГДА НИЖЕ чем частота сигнала fсигн!

И вот почему:

fпр = fсигн — fгет.

После второго преобразования:

fсигн.2 = fпр + fгет = (fсигн — fгет) + fгет = fсигн!

Понятно, в чем «изюминка»?

«А»: Получается, что селективность «цепи Юзвинского» эквивалентна применению колебательного контура с добротностью, равной МНОГИМ ТЫСЯЧАМ?

«С»: Ну конечно же! Представь себе, что fпр = 465 кГц, например. Тогда и полоса пропускания будет соответствующей! То есть порядка 10 кГц!

УПЧ А1 способен без труда повысить амплитуду сигнала fпр в сотни раз! А затем второй смеситель U2 восстанавливает частоту сигнала ВЧ (РЧ), который далее можно подать на вход обычного «супера»! Избирательность по соседнему каналу при этом достигает уже не десятков, а ТЫСЯЧ РАЗ!

«А»: Но я не видел ни одной схемы радиовещательного приемника, в которой использовалась бы такая цепь!

«С»: А в отечественных разработках бытовой радиотехники это решение и не использовалось! Да и в радиолюбительских конструкциях подобное встречалось не более двух раз!

«А»: А «за бугром»?

«С»: А «за бугром» и техника, и люди серьезные. Там в массовые или, будем говорить, в серийные радиоприемники разнообразные методы двойного преобразования частоты прочно вошли уже в начале 70-х годов! Да и «цепь Юзвинского» получила достаточно широкое распространение.

Да вот, к примеру, в интереснейшем, профессиональном журнале «Электроника» (№ 4 за 1975 г.) владелец известной во всем мире немецкой радиотехнической фирмы ROHDE&SCHWARZ Inc. сам господин Роде, опубликовал большую программную статью под названием «Улучшение технических характеристик современных приемников».

В ней, фактически, была дана совершенно новая концепция построения супергетеродинов! В этой статье, между прочим, по ходу дела приводятся и примеры оптимального построения «цепи Юзвинского». Как обычной, так и ДВОЙНОЙ!

Но в статье Роде «цепь Юзвинского» играет уже чисто вспомогательную роль! Концепция, предложенная фирмой, совершенно иная. Именно эта концепция и может считаться «уровнем радиоприемной техники середины семидесятых»!

«Н»: Имеется в виду ВСЯ радиоприемная техника?

«С»: Ни в коем случае! Нас ведь, в конечном счете, интересуют не стационарные, а мобильные, ПЕРЕНОСНЫЕ приемники, собственный вес которых не должен превышать 15 кг!

«А»: Теперь я понимаю ваше замечание о том, что можно считать современным приемником, а что нет!

«С»: Да, мы говорим сейчас именно об уровне семидесятых!.. Прежде, чем двинуться дальше, я все же приведу структурную схему радиоприемника, о котором говорил г-н Роде (рис. 7.4)!

Ну вот, друзья мои… Вопросы, замечания имеются?

«А»: Вопросов у меня лично так много, что я просто не знаю с которого начать!?…

«С»: Как всегда, начинай с самого начала, то есть с Z1!

«Н»: Вот как раз к с Z1 претензий не имею! Но следующий узелок обозначен, как R! Что это такое и зачем он нужен?

«С»: Ну что же, как сказал однажды персонаж какого-то авантюрного романа: «пришла пора расплачиваться за все!» Я в данном случае имею в виду расплату за то, что мы до сих пор не затрагивали вопроса о, так называемой, РЕАЛЬНОЙ (или МНОГОСИГНАЛЬНОЙ) СЕЛЕКТИВНОСТИ!

«А»: Лучше позже, чем никогда!

«С»: Ты прав, мой друг, ты прав!..

Итак, реальная или многосигнальная селективность — это способность приемника выделять слабый сигнал в присутствии мощных мешающих сигналов, лежащих ВНЕ полосы пропускания приемника! Источником помех от этих сигналов является смеситель… РЕАЛЬНЫЙ СМЕСИТЕЛЬ!.. Поскольку, если бы операция перемножения напряжений сигнала и гетеродина выполнялась абсолютно точно, то никаких помех от внеполосных сигналов не возникало бы вообще! В этом случае РЕАЛЬНАЯ селективность приемника совпадала бы с ОДНОСИГНАЛЬНОЙ, которая определяется, как…

«А»: …как ослабление сигнала при расстройке приемника относительно некоторой частоты, которую мы считаем за частоту настройки f0!

«С»: Как жаль, что реальные смесители неидеальны!

Они, во-первых, детектируют входной сигнал, что порождает, так называемые, ПЕРЕКРЕСТНЫЕ ПОМЕХИ!

Во-вторых, смешивают РАЗЛИЧНЫЕ входные сигналы между собой. Это можно себе представить так, будто один из сигналов БЕРЕТ НА СЕБЯ функцию гетеродинного сигнала для другого! Эти помехи получили наименование ИНТЕРМОДУЛЯЦИОННЫХ!

Если немодулированная по амплитуде помеха достаточно велика, то ее сигнал может продетектироваться в смесителе, создавая на его нелинейных элементах (диодах, транзисторах и т. д.) постоянное смещение. Коэффициент передачи смесителя при этом — падает, а шумы — возрастают! Это явление называют ЗАБИТИЕМ!

Есть еще такая разновидность помех, как ШУМОВАЯ МОДУЛЯЦИЯ. При воздействии сильного ВНЕПОЛОСТНОГО сигнала увеличивается общий уровень шумов приемника. Шумовая модуляция зависит от того, насколько чистый спектр имеет сигнал собственного гетеродина приемника!

«А»: То есть следует самым тщательным образом «вылизывать» форму сигнала гетеродина?

«С»: Именно так! Поскольку, хотя и незначительно, тепловой шум по амплитуде и фазе МОДУЛИРУЕТ напряжение гетеродина. При этом, ЧЕМ ВЫШЕ ДОБРОТНОСТЬ КОНТУРА гетеродина, тем меньше амплитуда его спектрального «мусора»!

А вот еще один неприятный случай! Представьте себе, что вблизи от вашей частоты настройки находится мощный сигнал АМ-станции, содержащий и несущую, и боковые полосы. При детектировании его на выходе смесителя выделяются частоты модуляции. Причем, вращением ручки настройки (то есть изменением частоты гетеродина) отстроиться от помехи НЕВОЗМОЖНО!

Приемник работает в режиме ПРЯМОГО детектирования, т. е. — как детекторный!

ПЕРЕКРЕСТНАЯ МОДУЛЯЦИЯ поясняется тем, что мощная помеха детектируется в высокочастотных каскадах! При этом продетектированный сигнал ИЗМЕНЯЕТ их коэффициент передачи, модулируя полезный сигнал.

Что касается ИНТЕРМОДУЛЯЦИОННЫХ помех, то они возникают при условии, что два ВНЕПОЛОСНЫХ сигнала fвп1 и fвп2 удовлетворяют следующему условию:

2fвп1 — fвп2 = f (частоте, попадающей в полосу пропускания приемника).

«А»: Уважаемый Спец, то что мы с Незнайкиным сейчас узнали, настолько нас обеспокоило, что может стоит составить своего рода «рецепт» как бороться со всем этим безобразием?

«С»: Я не против… Значит, во-первых… Шумовая модуляция. Основной способ борьбы с ней — это, как уже было подмечено, усердие и терпение при проектировании и изготовлении гетеродина! Во-вторых, перекрестные и интермодуляционные помехи… Ряд авторов-профессионалов предлагают рассмотреть следующую номограмму, характеризующую ЗАВИСИМОСТЬ УРОВНЯ ПОМЕХ ОТ НАПРЯЖЕНИЙ СИГНАЛОВ (рис. 7.5).

Здесь на горизонтали отложены напряжения полезных и мешающих сигналов на ВХОДЕ ПРИЕМНИКА, а по вертикали — напряжения сигналов на ВЫХОДЕ, приведенные ко входу. Те. поделенные на полный коэффициент усиления приемника — К0. Тогда прямая 1 соответствует полезному сигналу и имеет единичный наклон, поскольку напряжение сигнала на входе совпадает с приведенным выходным напряжением. Естественно, что такая зависимость будет наблюдаться в области не слишком больших сигналов.

Тогда, сняв реальную характеристику (амплитудную) радиочастотного тракта приемника, можно определить и уровень забития. Это произойдет, когда входное напряжение будет таким, что реальная характеристика ОТКЛОНЯЕТСЯ на 3 дБ от прямой 1.

«А»: А в чем на этой номограмме выражены уровни сигналов?

«С»: Уровни сигналов могут выражаться в микровольтах или децибелах. Используются также ОТНОСИТЕЛЬНЫЕ единицы измерения:

дБмкв — т. е. отношение НАПРЯЖЕНИЯ сигнала к одному микровольту, выраженное в децибелах, иначе — 20 lg(Uсигн/1 мкв),

и дБм — т. е. отношение МОЩНОСТИ сигнала к одному миливатту, также в децибелах — 10 lg(Pсигн/1 мвт).

На рис. 7.5 приведены ТРИ шкалы, что облегчает перевод одних единиц в другие. Нижняя шкала (дБм) соответствует верхним только в том случае, если Rвх приемника равно 75 Ом! Для входного сопротивления 50 Ом к значениям шкалы дБм следует добавлять 2 дБ.

Если в смесителе присутствует нелинейность, из-за наличия в ВАХ (вольт-амперной характеристике) квадратичных членов возникают, как говорилось, перекрестные помехи. Причем, напряжение перекрестной помехи на выходе пропорционально КВАДРАТУ входного напряжения! Этот факт и характеризует линия 2! По графику всегда можно найти Кам как расстояние по горизонтали между прямыми 1 и 2 при заданном уровне полезного сигнала.

«А»: Получается, что на нашем рисунке определено значение Кам при уровне полезного сигнала 1 мкВ! Найденное значение будет соответствовать случаю 100 процентной модулированной помехи!

«С»: Верно! Но если брать коэффициент модуляции 30 процентов, то найденное значение надо увеличить в 3,3 раза, т. е. на 10 дБ.

Из номограммы также видно, что Кам…

«Н»: Простите, а что такое Кам?

«С»:Кам — это КОЭФФИЦИЕНТ ПОДАВЛЕНИЯ амплитудной модуляции, который сильно зависит от выбранного уровня сигнала!

Если в одинаковой степени уменьшать уровень и полезного сигнала, и помехи на входе, то при этом Кам — ВОЗРАСТАЕТ! Отсюда следует важнейший вывод! Можно даже сказать более образно — краеугольный камень в проектировании радиоприемников:

ПРИ ЛЮБОМ ТИПЕ СМЕСИТЕЛЯ УВЕЛИЧЕНИЕ ЧУВСТВИТЕЛЬНОСТИ СО ВХОДА СМЕСИТЕЛЯ ОДНОВРЕМЕННО УВЕЛИЧИВАЕТ РЕАЛЬНУЮ СЕЛЕКТИВНОСТЬ!

Вот почему в структурной схеме приемника Роде применен аттенюатор!

«А»: Если я правильно понял, уменьшая напряжение ВСЕХ сигналов на входе — и полезных, и мешающих в два раза (6 дБ), мы уменьшаем полезный сигнал на выходе тоже в два раза. А перекрестная помеха на выходе при этом УМЕНЬШАЕТСЯ В ЧЕТЫРЕ РАЗА!?

«С»: Ты всегда все быстро схватываешь! Но помни, что главным средством повышения реальной селективности остается улучшение качества смесителей!

Поскольку с улучшением параметров смесителя линия 2 сдвигается ВПРАВО!

«Н»: А что интермодуляционные Помехи?

«С»: Это уже, так называемые, помехи третьего порядка. То есть напряжение помехи на выходе приемника пропорционально КУБУ ВХОДНОГО НАПРЯЖЕНИЯ ИНТЕРФЕРИРУЮЩИХ СИГНАЛОВ! Что и представлено зависимостью 3.

Откуда следует, что для снижения помех этого вида повышение чувствительности со входа смесителя и применение аттенюатора на входе приемника — еще более эффективны!

«А»: А что имеют в виду, когда говорят, что реальная селективность приемника определяется его ДИНАМИЧЕСКИМ ДИАПАЗОНОМ?

«С»: Имеют в виду следующее… Нижнюю границу динамического диапазона принимают равной уровню СОБСТВЕННЫХ ШУМОВ Uш, приведенному ко входу. Верхняя граница соответствует напряжению на входе, при котором продукты ПЕРЕКРЕСТНЫХ ИСКАЖЕНИЙ и ИНТЕРМОДУЛЯЦИОННЫХ ИСКАЖЕНИЙ равны внутренним шумам!..

«Н»: Я что-то не врубаюсь!..

«С»: Ну подумай!.. Если напряжения двух сигналов (а мы о них уже говорили выше, это fвп1 и fвп2) равны или ниже верхней границы динамического диапазона, то их сигналы прослушиваются только НА ИХ СОБСТВЕННЫХ ЧАСТОТАХ!

Если же напряжения этих сигналов больше, то на фоне шумов слышны их биения (перекрестная помеха, не зависящая от частоты настройки). Или же сигналы прослушиваются еще на двух частотах!

«А»: А именно, на каких?

«С»: Да хотя бы на:

2fвп1 — fвп2 и 2fвп2 — fвп1

На графике динамический диапазон по перекрестным D2 и интермодуляционным D3 помехам находят, отсчитав по вертикали расстояние от точки пересечения, соответственно, прямой 2 или 3 с горизонтальной линией, соответствующей уровню шумов, до прямой!

«А»: А если ДИНАМИЧЕСКИЙ ДИАПАЗОН необходимо охарактеризовать только одним значением?

«С»: Тогда выбирай наименьшее из двух и не ошибешься!

Вообще можно считать, что реальную селективность полностью определяют две «точки пересечения» А2 и А3. Они получаются при продолжении прямых 2 и 3 до пересечения с прямой!

«А»: Раз уж мы все равно коснулись этой темы, давайте дадим более строгие определения понятия ЧУВСТВИТЕЛЬНОСТИ приемника!

«С»: ЧУВСТВИТЕЛЬНОСТЬ — это минимальное напряжение сигнала на входе приемника, которое обеспечивает отношение сигнала к шуму, равное 20 дБ!

Мы дальше будем касаться этого вопроса еще не раз, поэтому заметим только, что коэффициент шума всего приемника уменьшается при уменьшении коэффициента шума отдельных его узлов. Вот здесь у меня очень простая и удобная табличка, предложенная одним исследователем для оценки значения минимального шумового напряжения, развиваемого согласованной наружной антенной на сопротивлении 75 Ом в различных КВ диапазанах (см. табл. 7.1).

«А»: Это при значениях полосы пропускания равной в одном случае 3, а в другом 10 кГц?

«С»: Совершенно верно!.. Здесь вполне наглядно представлены значения той чувствительности, которой стоит добиваться при проектировании приемников с КВ. Это, естественно, в том случае, если ты желаешь добиться соотношения сигнал/шум = 20 дБ (10 раз). Но когда идет интересная передача из-за «бугра», то сказанное вполне можно различить и при вдвое меньшем соотношении сигнала к шуму!

«Н»: Мне попался как-то паспорт старого, но широко известного приемника «Спидола». У моего дяди он еще сохранился. Там, помню, фигурировала чувствительность на КВ равная 100 микровольтам! А может я ошибаюсь?

«С»: Нет, Незнайкин! Ты не ошибаешься! Действительно, «совдеповская» «аппаратура высокого класса» ВСЕГДА характеризовалась чувствительностью на порядок хуже, чем современная ей заграничная! И это делалось вполне сознательно! Уж в два-три раза улучшить чувствительность приемников вполне реально было бы и на отечественной компонентной базе того времени!

«А»: Но я встречал довольно толстые книги, где объяснялось, что высокая чувствительность просто НЕ НУЖНА, поскольку ее не возможно реализовать!

«С»: Я тоже знаю такие книги, равно как и «рыночную цену» их, порой, маститым авторам! Это, мои дорогие юные друзья, можно считать одним из примеров совдеповской демагогии в области радиотехники! И следующий раз мы начнем беседу именно с этой темы!

 

Глава 8. Парадоксы KB-приемников

«Аматор»: Мы снова пришли надоедать Вам, уважаемый Спец!

«Спец»: Ничуть не бывало! Мы продолжаем нашу «прогулку по структурной схеме приемника Роде»!

Да, действительно, жизнь складывается так, что техника и политика часто завязаны в такой узел, когда развязать его можно только в том случае, если одновременно потянуть за оба конца! А по-отдельности вообще ничего понять невозможно!

«А»: Неужели чувствительность радиоприемников — это политика?

«С»: Вне сомнений! К счастью для него, Незнайкин не помнит это время, поскольку тогда «он был крайне мал, он был — дитя!»

Тоталитарное советское общество строилось таким образом, чтобы компартия (ее «вожди») посредством своего «боевого отряда» (КГБ) — имела возможность постоянно контролировать информацию, которую «скармливали» народу. Что касается кинофильмов, театральных постановок, журналов и газет — тут все понятно и комментарии излишни!

Но радиоволны без труда преодолевали любые «границы на замке»!

Короткие волны — вот предмет постоянной заботы «доблестных» не летчиков!

И хотя это были не тридцатые годы, каждый высококлассный японский или американский красавец-приемник, проникший легальным или полулегальным путем на территорию СССР, немедленно заносился в особую картотеку и его хозяин уже считался «нашим» не на все сто!

И все равно было ясно, что «щитом и мечом» прогресс не остановить.

Транзисторная техника, чтоб ей!.. Ее можно перевозить в сумке, слушать на даче, в лесу, в поле…

А в эфире «Голос Америки», «Немецкая волна», «Свобода» и т. д. и т. п.! И там говорят совсем не то, о чем советские люди могут прочесть на страницах, так называемой, «Правды» или «Коммуниста»! Радиоволны несут иную информацию, которую «простому советскому человеку» знать не полагалось!..

«А»: По этой причине все советские приемники с КВ диапазоном и были лишены таких поддиапазонов, как 19; 16; 13 и 11 метров?

«С»: Да, именно поэтому! Строжайше запрещено было вводить эти диапазоны, как наиболее удобные и «дальнобойные», во ВСЕ советские радиоприемники, даже так называемого «высшего класса»!

«Н»: Но техническая база действительно позволяла их реализовать, если бы не запрет?

«С»: Без сомнений!.. В то же, примерно, время, когда была выпущена «Спидола» (1963 г.), где-то через годик малыми сериями в Прибалтике выпускался транзисторный приемник «Гауйя». Причем в двух модификациях. В «экспортном» и «советском» вариантах.

Заявленная в паспорте чувствительность экспортного варианта составляла 40 микровольт, что в ДВА С ПОЛОВИНОЙ РАЗА превышало чувствительность ЛЮБЫХ других советских транзисторных приемников! Имелся и диапазон 16–19 метров! В «совдеповском» варианте ничего подобного не было и даже рисунок печатной платы был другим!

«А»: А в торговую сеть «экспортный» вариант поступал?

«С»: Нет, никогда! Но дело отнюдь не ограничивалось ТОЛЬКО отсутствием определенных диапазонов!

Схемы гетеродинов были выбраны такими, что попытки повысить частоту генерации путем подпайки катушки с уменьшенным числом витков, приводили к резкому возрастанию нестабильности и заметному ухудшению формы генерируемого синусоидального сигнала! Естественно, что прием становился, практически, невозможным!

Но самая «хитрая хитрость» заключалась в том, что ни в одном учебнике по радиоприемным устройствам НЕ РАССМАТРИВАЛИСЬ вопросы, посвященные проблеме просачивания сигнала гетеродина в антенну!

«А»: Ну, а это с чем связано?

«С»: Проникая в антенну приемника, сигнал собственного гетеродина «передавал в эфир» информацию о том, какую радиостанцию «ловят» в той или иной квартире! Иначе говоря, в какой квартире чем «дышат»!

«Н»: Разве такое возможно?

«С»: Вполне! Представь себе, что ты слушаешь, например, радио «Свободу»! Твой входной преселектор (широкий, как чья-то натура) настроен на соответствующую частоту. А, следовательно, гетеродин генерирует ту же самую частоту плюс… еще 465 кГц!

Через емкости сигнал проникает в антенную цепь и… излучается в эфир!

Мощность этого паразитного излучения невелика. Но вполне достаточна, чтобы соответствующая ДЕЙСТВИТЕЛЬНО чувствительная аппаратура установленная, например, в спецавтотранспорте, зарегистрировала тот факт что ведется слушание именно станции «Радио Свобода»!

«А»: Ну ладно, а как определить, в какой именно квартире ведется прослушивание данной радиостанции?

«С»: И на этот счет есть способы… Но это особая тема и потому не будем излишне отвлекаться на нее!

Тем более, что для того, чтобы все равно сделать невозможным прослушивание определенных участков КВ диапазона, очень большое распространение в семидесятые-восьмидесятые годы нашли методы радиоэлектронного противодействия. Например, как их прозвали в народе — «глушилки»!

«А»: Это, когда на волне прослушиваемой станции вдруг возникал непереносимый гул, напоминающий охрипшую сирену?

«С»: Очень образное сравнение! Да, учитывая крайне низкие радиотехнические параметры советских радиоприемников «высших» классов, не требовалось что-то совершенно уникальное, чтобы перекрестные и интермодуляционные помехи плюс мощная «глушилка» делали прослушивание «забугорных» радиостанций просто физически болезненным делом!

«А»: Получается, что если в приемнике нет усилителя высокой частоты, стоящего перед смесителем, то «пролаз» гетеродина в антенну будет значительным?

«С»: Да, отчасти это так. Но не следует думать, что достаточно поставить в некачественный приемник УВЧ и все станет хорошо само-собой! Это смотря еще — какой это УВЧ! Мы подробно коснемся этого вопроса, когда будем говорить о принципиальных электрических схемах.

«А»: Но в статье Роде говорится о ДВУХТАКТНЫХ УВЧ! Я не встречался с ними в схемах советских радиоприемников!

«С»: А я о чем толкую? Двухтактные УВЧ, да еще построенные с использованием специальных ПОЛЕВЫХ транзисторов — это замечательная штука! Их линейная область по входному сигналу получается почти на порядок шире, чем в «совдеповских» приемниках как «первого», так и «высшего» классов!

Полевые транзисторы при этом обеспечивают коэффициент перекрестной модуляции на 40–45 дБ лучше, чем подобные же схемы на биполярных транзисторах.

«Н»: До чего мне жаль, что я не имею достаточной информации ни о полевых, ни о биполярных транзисторах, хотя и слыхал, что таковые в природе имеются!

«С»: «Терпение, мой друг, терпение», как говаривал актер Кадочников в фильме «Подвиг разведчика»!.. Всему свое время.

«А»: Следующий квадратик — СМЕСИТЕЛЬ?

«С»: Очевидно так!.. Но я по твоим глазам вижу, любезный Аматор, что ты готов задать ну совершенно экстренный вопрос!?

«А»: А то нет!.. Мы так много говорили о том, что промежуточная частота стандартизирована и всегда должна быть МЕНЬШЕ, чем частота входного сигнала! А что мы наблюдаем в приемнике Роде!? Промежуточная частота ПРЕВЫШАЕТ 40 МГц! Может здесь какая-то ошибка?…

«С»: Да ровным счетом — никакой ошибки, дорогой друг!

Во-первых, я никогда в наших беседах не утверждал, что промежуточная частота (ПЧ) ВСЕГДА ДОЛЖНА БЫТЬ меньше частоты сигнала! ПЧ ничего и никому не должна!.. Ни гривны, ни полтинника! Напротив, с этим вредным предрассудком пора покончить!

В самом деле, борьба с «зеркальным» каналом может быть эффективной только в том случае, если 2fпр — достаточно велико! В нашем случае ПЧ превышает 40 МГц! Значит «зеркалка» находится в 80 МГц от частоты основного канала! Это тебе не 930 кГц! И селективность составляет уже не 28–36 дБ, а ОКОЛО 80 ДЕЦИБЕЛ!

То есть не в десятки раз, а в несколько тысяч раз подавляется «зеркальная» помеха! Это, естественно, требует совершенно иного гетеродина! Но зато «пролаз» в антенну — исключается. Радиоприемник действительно становится другом, а не «Павликом Морозовым»!

Излишне говорить, что и смеситель для этого необходим совсем иной!

«А»: Советские приемники 70-х годов включали в себя, помнится, совмещенный смеситель. Подобное решение еще находит применение?

«С»: Во всяком случае в серьезной аппаратуре — нет, нет и еще раз нет!

Вообще, друзья, мне тоже не терпится начать разговор по принципиальным схемам смесителей, но полагаю, что мы еще недостаточное внимание уделили рассмотрению структурной схемы приемника Роде. По этой причине, опуская (пока) вопрос о том, какое схемное решение годится для качественного смесителя, запомним, что на его выходе получаем fпр1 = 40,525 МГц, хотя это значение в настоящее время в различных конструкциях варьируется от 40 МГц и до 120 МГц!

«А»: Ну хорошо, а что представляет из себя фильтр ПЧ, обозначенный, как Z1? На нем еще имеет место символ кварца?

Вообще вы можете рассказать об этом чуть подробнее?

«С»: «Я могу, а потому — обязан»!.. Вообще в УПЧ применяют различные виды фильтров: с LC — контурами, RC — цепями, с электроакустическими и цифровыми системами. Но в рассматриваемом приемнике, который получил в радиотехнике наименование ПРИЕМНИКА С ПРЕОБРАЗОВАНИЕМ ВВЕРХ, к фильтру Z2 предъявляются исключительно высокие требования по обеспечению селективности по соседнему каналу! Давайте оценим, какая для этого требуется добротность (хотя бы приблизительно)!

Пусть fпр = 40 МГц, а полоса пропускания = 20 кГц!

«Н»: …Получается, что Q = 2000!..

«С»: Фактически, она должна быть даже несколько больше! Не станем забывать, что встречаются подобные фильтры, у которых полоса пропускания равна всего 3 кГц, а частота — выше, чем 40 МГц!..

Поэтому понятно, что обычные фильтры здесь не проходят! И возможны несколько вариантов.

Прежде всего, применить в качестве фильтра Z2 — «цепь Юзвинского»!

Вторая возможность — это применение так называемых «спиральных резонаторов»! Они представляют собой четвертьволновой коаксиальный резонатор, внутренний проводник которого для уменьшения габаритов, свернут в спираль. Спиральные резонаторы в подобных фильтрах обычно индуктивно связаны. Эта связь выполняется снижением высоты экрана, разделяющего два соседних резонатора со стороны заземленных концов спиральных катушек…

«Н»: А можно это изобразить на рисунке?

«С»: Ну почему нет? Вот, прошу вас (рис. 8.1)…

«А»: На всякий случай, может приведете расчетную формулу?

«С»: Конечно же, я предпочел бы иное решение, чем применение спирального резонатора! Но… раз вытребуете расчетную формулу, то вот она:

Здесь: N — число витков спирали;

S — показано на рис. 8.1;

σ — толщина стенки каркаса, на который намотана спираль, см. рис. 8.1;

ε — диэлектрическая проницаемость каркаса.

При этом S определяется, исходя из требуемой добротности Q0 по формуле:

Добротность, согласно исследованиям авторов этой конструкции, можно довести до 800!

«А»: Я полагаю, что возни с подобным фильтром будет немало, но проблема при этом до конца не решится! Верно?

«С»: Да, я тоже считаю так, поскольку полосу селекции сделать лучше, чем 50 кГц вряд ли удастся!

«Н»: При fпр = 40 МГц?

«С»: Ну конечно! Так что на спиральный резонатор можно согласиться только в совершенно пиковом случае!..

Иная картина получается, если удастся достать ПОЛОСОВОЙ КВАРЦЕВЫЙ ФИЛЬТР! Этот фильтр представляет из себя сложную многорезонаторную систему, включающую в свой состав согласующие ВЧ-трансформаторы, подстроечные элементы и т. д. При этом сами кварцы включены по, так называемой, дифференциально-мостовой схеме, помещены в общий экран, индивидуально настроены и герметизированы.

Вот подобный фильтр, хотя его стоимость и высока — это действительно решение проблемы!

«Н»: А эти фильтры выпускаются промышленностью?

«С»: Обязательно, Незнайкин! Например, одним из заводов города Волгограда (Царицына) в России. Мне приходилось встречаться с несколькими разновидностями таких фильтров, настроенных, соответственно, на частоты 40 МГц; 45 МГц; 55,5 МГц.

«А»: А как именуются эти изделия?

«С»: Они называются: ФП2П (2–1); ФП2П (4–1). Кроме того, имеются великолепные японские, американские и западноевропейские изделия! Но мы подробнее поговорим о названиях позднее.

«А»: Отлично! Идем дальше по схеме… Усилитель А2 — пропускаем, ведь он такой же, как и А1. Верно?

«С»: …Почти. Следующий квадратик — второй смеситель U2.

«А»: Но я вижу, что второй гетеродин — неперестраиваемый! Ну это, допустим, еще понятно. А вот почему он кварцованный? Что вообще реально может дать применение в генераторе кварца?

«С»: Стабильность частоты LC — генераторов во многих случаях недостаточна! Она зависит от множества факторов. От температурных коэффициентов индуктивности и емкости. Обычно в составе гетеродинов используют именно LC — генераторы. Подобные гетеродины имеют относительную частотную нестабильность Δf/f0 равную 10-3—10-4.

Это означает, что при f0 = 50 МГц, при нестабильности 10-4 Δf = 5 кГц! То есть дрейф частоты гетеродина равен ПОЛУШИРИНЕ полосы пропускания! Для рассматриваемого приемника это величина недопустимо большая!

Максимальная нестабильность, с которой еще можно как-то мириться, для второго гетеродина составляет величину (2–3)∙10-6.

Это нормально для обычного кварцованного генератора! Хотя следует сказать, что в случае двойного термостатирования кварцевых генераторов нестабильность может быть ограничена уровнем ДЕСЯТЬ В МИНУС ДЕВЯТОЙ СТЕПЕНИ!

«А»: Но ведь это решает наши проблемы!

«С»: Ну, если и не все, то многие!.. Разработаны (и довольно давно) очень неплохие схемы с кварцевыми резонаторами. Например, кварцевые генераторы на основе схем Хартли и Колпитца!

«А»: То есть этот вопрос решается! Тогда, уважаемый Спец, перейдем к следующим квадратикам структурной схемы!

«С»: Далее у нас идет второй смеситель U2. Он каких-то особых, принципиальных отличий от U1 не имеет. Далее идет еще один фильтр — Z3!

«Н»: Какой смысл во втором преобразователе частоты? Почему нельзя было обойтись только одним?

«С»: Преобразование ВВЕРХ позволило кардинально решить проблему избирательности по «зеркалке»! А, кроме того, ликвидировать неприятности связанные с «пролазом» гетеродина в антенну! Но окончательную «обработку» и усиление сигнала удобнее проводить на значительно более низкой частоте!

«Н»: А чем плоха для этого частота 465 кГц? Или, например, 5,5 МГц, которую часто употребляют профессионалы?

«С»: Сам по себе фильтр Z3 — многозвенный, обеспечивающий крутые наклоны характеристики. Он может быть электромеханическим или пьезомеханическим. Или, что еще более предпочтительно — кварцевым, поскольку в этом случае его относительное изменение средней частоты минимально и составляет величину: 5х10-7 град-1.

«А»: Усилитель второй промежуточной частоты A3 разве имеет какие-то особенности?

«С»: Если и да, то на чисто схемотехническом уровне. Поэтому сейчас мы его не рассматриваем.

«Н»: А детектор U3?

«С»: О нем будем говорить отдельно и позже, поскольку это особый вопрос!

«А»: Получается, что на данный момент мы рассмотрели ВСЮ структурную схему приемника Роде?

«С»: Кроме двух принципиальных вопросов! Кстати сказать, на структурной схеме они не отмечены вообще! Речь идет об АВТОМАТИЧЕСКОЙ РЕГУЛИРОВКЕ УСИЛЕНИЯ — АРУ, а также о современном устройстве контроля настройки.

«Н»: Вы считаете, что индикация частоты настройки в современном высококлассном приемнике должна быть цифровой?

«С»: Без всяких сомнений! И это еще минимум — миниморум того, что должно быть на дисплее приемника!

«Н»: Интересно, а есть фирмовые приемники, в которых реализовано вышесказанное?

«А»: Погоди, Незнайкин! Мы ведь действительно еще не рассмотрели вопроса об АРУ!

«С»: Обещаю подробно ответить на твой вопрос, дорогой Незнайкин, но сначала поговорим об АРУ!

Автоматическая регулировка усиления (АРУ) — применяется для расширения динамического диапазона приемника и поддержания в заданных пределах выходного напряжения. При этом устраняются перегрузки в каскадах при приеме сильных сигналов и, таким образом, предотвращается появление недопустимых нелинейных искажений. Следовательно, оконечные устройства приемников работают в режиме обработки сигналов оптимального уровня!

Принцип действия системы АРУ состоит в автоматическом изменении коэффициентов усиления (передачи) отдельных каскадов приемника при изменении уровня принимаемого сигнала. Система АРУ, в самом общем случае, должна содержать регулируемые каскады усиления или делители напряжения и… цепь регулирования ЦР. Вот некоторые основные структурные схемы АРУ (см. рис. 8.2).

При этом цепь регулирования (ЦР) вырабатывает управляющее напряжение, воздействующее на регулируемые элементы усилительного тракта.

Обычно ЦР содержит амплитудный детектор АД и фильтр низкой частоты — ФНЧ. Эффективность АРУ оценивают двумя величинами, выраженными в децибелах, — Dвх/Dвых,

где

D вх = 20∙lg(U вх. max /U вх. min ),

а

D вых = 20∙lg(U вых. max /U вых. min ),

При этом Dвых значительно меньше, чем Dвх. Инертность системы АРУ обычно оценивают постоянной времени АРУ.

«А»: А почему на рисунке представлены не одна, а целых ТРИ системы АРУ?

«С»: Различают три основные системы АРУ: с ОБРАТНЫМ (рис. 8.2, а), ПРЯМЫМ (рис. 8.2, б) и СМЕШАННЫМ (рис. 8.2, в) регулированием.

При обратном регулировании управляющее напряжение определяется напряжением сигнала (его уровнем) на выходе. Это наиболее простая АРУ и весьма действенная.

В системе с прямым регулированием управляющее напряжение определяется напряжением сигнала на входе.

«А»: Тогда, если не ошибаюсь, смешанное регулирование в той или иной степени является комбинацией первых двух?

«С»: Да, так оно и есть! Кроме того, различают АРУ задержанные и незадержанные. Например, при задержанной АРУ регулирующее воздействие начинает проявляться, если напряжение сигнала на входе приемника достигает некоторого уровня, соответствующего некоторой наперед заданной величине.

«А»: Я где-то встречал такие аббревиатуры, как БАРУ и МАРУ! Что это такое?

«С»: Это просто классификация систем АРУ по инерционным свойствам! А именно — быстродействующие (БАРУ) и медленные, инерционные (МАРУ). В нашем случае мы имеем дело с инерционными АРУ.

И еще: системы АРУ могут быть ОДНОПЕТЛЕВЫМ И и МНОГОПЕТЛЕВЫМИ! Для нас, как покажет дальнейшее, наибольший интерес представляют ДВУХПЕТЛЕВЫЕ системы. Они обладают необходимыми нам свойствами.

«Н»: А все-таки, что можно сказать о применении всех этих замечательных систем и устройств в реальных радиовещательных приемниках?

«С»: Многое! Но об этом поговорим в нашу следующую встречу.

 

Глава 9. Что же такое действительно современный радиоприемник?

«Спец»: Заходите друзья!.. Я помню, Незнайкин, твою просьбу! А потому сегодня мы поговорим ИМЕННО на тему о современных реальных высококлассных радиоприемниках!

«А»: Я тоже с удовольствием послушаю!

«С»: Это тем более важно, дорогой Аматор, что именно после сегодняшней беседы мы сможем окончательно решить интересующий нас вопрос!

«Н»: Если не секрет — какой?

«А»: Торопись медленно, Незнайкин! Узнаешь еще!

«С»: Итак, начинаем разговор о конкретных приемниках… В 1975 году знаменитая на весь мир и тогда, и ныне, японская фирма SONY выпускает всеволновый переносный приемник «CRF—230».

Все схемные и конструктивные решения в нем были направлены на достижение максимально возможных электрических параметров и различных потребительских удобств. Вот его структурная схема (рис. 9.1).

«А»: Это полная схема «CRF—230»?

«С»: Нет, только упрощенная структурная схема KB-тракта! Подобный же тракт, но для ЧМ (частотной модуляции) имеет диапазон УКВ! Который мы здесь не приводим, чтобы не загромождать рисунок. Нет здесь и структурной схемы СВ — ДВ-блоков.

Подобную же структурную схему имел и всеволновый приемник немецкой фирмы GRUNDIG типа «Satellit—6001».

ВЧ-блок этого приемника позволял принять любую станцию в диапазоне частот от 5 до 30 МГц, не пропустив ни одной! И в этой модели использовался принцип двойного преобразования частоты. В последующие годы использование двойного преобразования частоты стало обязательным не только для «самых-самых» приемников, но прочно внедрилось в схемы значительно более дешевых, так сказать «демократических» моделей! Но в приемнике «Satellit-6001» первая промежуточная частота равна всего 1,85 МГц. За это пришлось заплатить тем. что ослабление зеркального канала в диапазоне КВ на частоте 27 МГц в этом приемнике составило всего… 40 дБ!

«А»: Напомните, какое значение ослабления соответствует обычным, одногетеродинным суперам?

«С»: Напоминаю… На частоте 12 МГц ослабление по «зеркалке» составляет величину 28–34 дБ!

«Н»: А что новенького предложили мировые фирмы в восьмидесятые годы?

«С»: В конце 80-х упомянутая уже фирма SONY предложила новые технические и конструктивные решения, позволившие взглянуть на приемники совершенно по-новому! Это касается, например, БЛОЧНЫХ радиоприемников.

Концепция фирмы заключалась в том, что можно даже в малогабаритной аппаратуре обеспечить такие параметры, что прием самых слабых сигналов буквально с «края света» будет вполне реальным делом!

А вот и подтверждение. Приемник фирмы SONY типа «ICF — SW1S»! Его размер — коробка из-под компакт-кассет для магнитофона…

«А»: Видеомагнитофона?

«С»: Представь себе, самого что ни на есть — АУДИО! И вот надо же!..

Мало того, что эта «кроха» представляет собой всеволновый приемник! Его система настройки на станцию в любом диапазоне длин волн является ЧЕТЫРЕХВАРИАНТНОЙ!

«А»: Приехали… Это как же понимать? Какие еще четыре варианта?

«С»: Ну, первые два способа знают все. Это — «классическое» вращение ручки настройки, а также и фиксированная настройка на несколько заранее выбранных станций. При этом традиционно применяемая в приемниках «аналоговая» шкала с верньерным устройством заменена жидкокристаллическим дисплеем, на котором индицируется частота принимаемого сигнала, а вместо подстроечных элементов фиксированных настроек предусмотрена электронная память.

«Н»: А еще два вида настройки?

«С»: Вообще, если известна частота передающей станции, то настроиться на нее можно не только «классическим» способом. «ICF-SW1S» снабжен клавиатурой, подобной кнопочным телефонам. Набрав частоту той или иной станции, оператор — слушатель почти мгновенно «ловит» ее. И, наконец, автоматическая настройка. В этом случае приемник «сам» ведет поиск станции по диапазону. Процесс сканирования прерывается, как только обнаруживается станция. Нажатием кнопки слушатель фиксирует частоту приема.

«А»: Не могу себе представить, куда можно поместить конденсатор переменной емкости в таком «малыше»?

«С»: Да никуда! Нет там его и никогда не было, смею тебя уверить! Да и гетеродин в приемничке из хитрых-хитрый! Японцы в приемнике весом всего… 230 грамм в качестве гетеродина используют… синтезатор частоты!

«Н»: А что это такое?

«А»: Прав был «товарищ Сухов», когда утверждал, что «Восток — дело тонкое, Петруха!»

«С»: Еще бы не прав!.. Относительно принципа синтеза частоты мы еще побеседуем! Но та же фирма SONY больше всего гордилась в конце 80-х даже не этой удивительной «крохой»!..

«А»: Вы меня просто морально убиваете, уважаемый Спец!

«С»: …Гордостью специалистов фирмы являлся радиоприемник «CRF — V21». Его возможности до сих пор поражают специалистов! «CRF — V21» способен (кроме всего прочего), принимать со спутника метеотелеметрию и распечатывать карту погоды с помощью малогабаритного встроенного принтера.

Но система индикации и настройки представляет особый интерес.

Великолепный по своим параметрам синтезатор частоты гарантирует точность настройки, а следовательно и необходимую для этого стабильность частоты плюс — минус 10 Гц! И в ручном, и в автоматическом режимах!

На жидкокристаллическом экране, играющем не последнюю роль в этом приемнике, отображается, если это необходимо… СПЕКТР любого участка диапазона, по которому легко узнать, на каких частотах в настоящий момент ведется работа радиостанций. В памяти приемника содержится информация о частотах и времени выхода в эфир 350 радиостанций! Для ориентировки в них, опять-таки применяется ЖК-экран.

«А»: Они что, выводятся на экран, как в компьютере?

«С»: Да еще в виде многостраничного списка, в котором есть информация о порядковом номере настройки, название станции, ее частота и даже режим приема!

«Н»: Что значит «режим приема»?

«С»: Нормальный, спутниковый или с распечаткой телеметрии! Кроме того, визуально можно определить, какие из занесенных в память станций в данный момент слышны «хорошо», а какие — «плохо»! Я просто не хочу переутомлять свои голосовые связки, перечисляя прочие многочисленные достоинства этого приемника!

«А»: Но это всеволновый приемник?

«С»: Суди сам!.. Его диапазон принимаемых частот:

AM — 9-29,99999 МГц;

УКВ ЧМ — 76-108 МГц.

А масса его составляет не более 9,5 кг.

«А»:…Хватит, не надо больше! А сколько же может стоить подобное «чудо»?

«С»: Мал золотник, да дорог!.. В конце 80-х его цена была около 15000 долларов! И, насколько мне известно, она мало изменилась с тех пор! Дело в том, что этот приемник полюбили военные, профессионалы, обеспеченные радиолюбители, богатые владельцы собственных яхт…А также администраторы — руководители экспедиций. Поэтому сбавлять цену на «CRF — V21» необязательно! Кроме того, приемник просто стоит этих денег!

«А»: И подобные приемники создают только японские фирмы?

«С»: Сам посуди… Американская фирма ROCKWELL INTERNATIONAL Corp. вышла на рынок специальной и военной аппаратуры со своим приемником, получившим обозначение «HF—2050». В нем вообще использована обработка ГГЧ-сигналов цифровым способом! Военные США и Канады немедленно заинтересовались этой моделью, которая стоит более 6000 долларов.

Представители фирмы заявили, что классические для промежуточной частоты функции преобразования и фильтрации реализуются в зависимости от заказываемого варианта исполнения ЧЕТЫРЬМЯ или ПЯТЬЮ специализированными микропроцессорами! Операции выполняются над сигналами в цифровой форме, полученными с АЦП (аналого-цифрового преобразователя), преобразующего в цифровую форму трехмегагерцовой сигнал промежуточной частоты со скоростью ДВЕНАДЦАТЬ МИЛЛИОНОВ ОТСЧЕТОВ в секунду! Кстати, в схеме радиоприемника используется немногим более 2000 компонентов.

«Н»: А еще примеры подобного рода у Вас имеются?

«С»: Почему нет? Любой коротковолновый приемник должен, если говорить по существу, решать исключительно сложную задачу.

Выделять нужный сигнал среди мешающих сигналов, которые порой в МИЛЛИОН раз превосходят его по уровню! Поэтому не только в Японии и США, но и в стране «мистера Пиквика» и «Шерлока Холмса» тоже занимаются высококачественными радиоприемниками!

Так в графстве Беркшир, в известнейшей фирме RACAL создали и в конце 80-х запустили в серию две модели профессиональных коротковолновых радиоприемников: «RA—1792» и «RA—6790», предназначенных, соответственно, для европейского и американского рынков. Характерная особенность этих моделей — применение микропроцессоров и жидкокристаллических индикаторов.

«А»: Индикаторы только фиксируют частоту приема или у них есть и иные функции?

«С»: У них есть и иные функции, совершенно верно замечено… Такие, например, как ввод с клавиатуры и хранение предварительно заданных значений частот, характеристик, режимов и параметров цепи АРУ; самоконтроль; дистанционное управление и работу по командам от других приемников! А также цифровой синтез частот и выбор фильтров.

«А»: А использование принципа «преобразования вверх» имеет место в этих приемниках?

«С»: Обязательно! Значение первой промежуточной частоты — 40,455 МГц!

В качестве гетеродина используется синтезатор. Его стандартный шаг частоты в модели 1792 — 10 Гц и 1 Гц. А в модели 6790 — только 1 Гц!

Мне еще хотелось бы отметить вот что. Вместо обычного переключателя, задающего быструю или медленную скорость перестройки частоты, в приемниках использована оптическая система контроля положения оси, вращаемой ручкой настройки.

Но в этих KB-приемниках есть возможности, о которых ранее слышать не приходилось. Например, в определенных случаях потребовалось последовательное подключение фильтров ПЧ… не в обычном порядке!

«А»: Один момент!.. Получается, что приемники фирмы RACAL используют какие-то принципы автоматического варьирования структурной схемой?

«С: Да, дополнительная подпрограмма может настроить приемник на внутренний сигнал известной частоты, после чего микропроцессор производит анализ характеристик КАЖДОГО фильтра в полосе пропускания и запоминает эту информацию!

Следовательно, сами фильтры на плате могут быть установлены в ПРОИЗВОЛЬНОМ ПОРЯДКЕ и тем не менее допустим их последовательный выбор с передней панели! Высокая линейность и широкий динамический диапазон входных ВЧ каскадов предотвращает модуляцию слабого принимаемого сигнала мощной помехой!

«А»: А есть ли какая-нибудь информация о ВЧ-тракте?

«С»: Известно, что в этих приемниках использован балансный ключевой смеситель, который обеспечивает линейное переключение при уровне входных сигналов до сотен милливольт и требует напряжения от гетеродина в несколько вольт!

«А»: Все вышесказанное характерно для радиовещательных и специальных приемников в одинаковой степени?

«С»: Во всяком случае, в последние 10–15 лет наметилась и развивается тенденция приближения параметров радиовещательных приемников высокого класса к специализированным профессиональным.

«А»: Остался, как я понимаю, только один туманный вопрос. А именно — что представляет собой СИНТЕЗАТОР ЧАСТОТЫ?

«С»: Ну, что такое собственно синтезатор частоты мы сейчас выясним…

В тех случаях, когда в приемниках требуется исключительно стабильный, но в то же время перестраиваемый в широком диапазоне гетеродин, создание высококачественного ГПД (генератора плавного диапазона) является технической проблемой!

По этой причине задача решается путем формирования дискретного множества частот, как говорят в вузовских учебниках по радиотехнике, КОГЕРЕНТНЫХ С ЧАСТОТОЙ ОДНОГО ВЫСОКОСТАБИЛЬНОГО ОПОРНОГО КОЛЕБАНИЯ!

При разработке гетеродинов на основе синтезаторов частот используется цифровой метод формирования и стабилизации сеток частот.

«А»: Что может представлять собой структурная схема цифрового синтезатора частот?

«С»: Перед вами, мои юные друзья, упрощенная структурная схема цифрового синтезатора частоты (рис. 9.2).

Работа синтезатора частоты осуществляется следующим образом. Частота опорного кварцевого генератора ОГ понижается в цифровом делителе ЦД1 до частоты fоп и подается на фазовый детектор ФД. На другой его вход подводится напряжение от управляемого генератора УГ, частота которого понижается в цифровом делителе ЦД2 в Кцд2 раз!

Переменный коэффициент деления Кцд2 определяется управляющим напряжением Uynp. Выходное напряжение ФД после ФНЧ подается на управляющий элемент УЭ, который стабилизирует частоту УГ.

Должен сказать, что есть достаточно большое количество схем СЧ. Ведущие в техническом отношении страны наладили выпуск синтезаторов частоты в виде интегральных схем, сочетающих в себе все необходимые функции.

«А»: А у нас, если я верно понял, есть только один выход — клепать СЧ из дискретных деталей?

«С»: Ты недалек от истины, или, как сказал бы Васйсуалий Лоханкин, от «сермяжной правды жизни»!

«Н»: А какую-нибудь конкретную реализацию СЧ Вы могли бы привести?

«С»: Ты полагаешь, что тебе от этого станет легче? Тогда учти следующее обстоятельство. Несмотря на то, что к настоящему времени предложено множество схем прямого и косвенного синтеза частот, тем не менее большинство из них не обеспечивает необходимые шумовые и спектральные параметры гетеродина.

Те же, которые обеспечивают, базируются на использовании дефицитных иностранных микросхем! Но все же одну структурную схему синтезатора, которая используется в ряде промышленных конструкций, я приведу.

«Н»: А этот синтезатор годится для приемников с «преобразованием вверх»?

«С»: А как же иначе? Изображенный ниже синтезатор, предназначен для перекрытия тридцати сегментов шириной 1 МГц в диапазоне 45,5—75,5 МГц, при первой ПЧ равной 45,5 МГц! Такой синтезатор использован, например, в КВ-приемнике, разработанном RC2AM (рис. 9.3).

В этом синтезаторе используется кварцевый генератор на 46 МГц, плавный гетеродин, перекрывающий диапазоны 6,5–5,5 МГц, а также ГУН (генератор управляемый напряжением), работающий в диапазоне 45,5—75,5 МГц.

Сигнал ГПД смешивается с сигналом 46 МГц, в результате чего выделяется полоса частот 39,5—40,5 МГц, которая, смешиваясь с частотой ГУН, дает частоту, лежащую в диапазоне 6—35 МГц. Устанавливая коэффициент деления делителя частоты в пределах от 6 до 35, добиваются, чтобы при работе генератора, управляемого напряжением, в нужном диапазоне частота сигнала на выходе делителя была 1 МГц, на которой и происходит захват и удержание частоты петлей фазовой автоподстройки, включающей фазовый детектор и интегратор. На второй вход ФД подается опорный сигнал 1 МГц!

«А»: Но ведь изготовить подобный синтезатор в домашних условиях — это гигантский труд!

«С»: Совершенно верно! И я даже сказал бы — Сизифов труд! Поскольку шумовые характеристики этого синтезатора все равно оставляют желать лучшего!

«Н»: Так получается, не изготовив высококачественного синтезатора, мы не смогли бы построить приемник с преобразованием «вверх»?!

«С»: Выше головы, парни! Все вовсе не так плохо! Пока на рынках появятся доступные синтезаторы частоты в интегральном исполнении, высококачественные ГПД еще послужат верой и правдой, в том числе и в приемниках с преобразованием «вверх»!

Тем более, что шумовые характеристики гетеродинов на основе ГПД — существенно лучше, а схемы — значительно проще!

«Н»: Я лично очень благодарен Вам и Аматору, что имел возможность получить достаточно четкое представление о структурных схемах и особенностях современных радиовещательных приемников КВ диапазона.

Но остался один неясный для меня вопрос…

«А»: Интересно, какой именно?

«Н»: Почему вы так много внимания и времени уделили ИМЕННО ЭТОЙ ТЕМЕ?

«А»: А ты что, до сих пор не догадался? Или желаешь, чтобы точки над «i» расставил я?…

«Н»: Логичное заключение…

«А»: Ну что же… Весь наш цикл бесед, в некоторых из которых принимал участие и ты, был посвящен, в сущности, только одному — обсуждению структурной схемы коротковолнового переносного радиоприемника, ПОСТРОЙКУ КОТОРОГО МЫ ВСКОРЕ И НАЧНЕМ!

«Н»: Вы — это значит Спец и ты, Аматор?

«А»: Не совсем!.. Мы с тобой, дружище Незнайкин! Ты что, не веришь в свои творческие силы?

«С»: Дорогой Незнайкин!.. В дни моей юности был очень популярен кинофильм «Последний дюйм»! Так вот там один из персонажей фильма пилот Бен утверждал: «Сынок, в жизни можно сделать все, если не надорваться!..»

Поэтому, чтобы избежать подобной неприятности, как мне кажется, за дело лучше взяться вдвоем!

«А»: Вопросы, предложения, возражения и прочее имеются?

«Н»: Да меня эта идея, откровенно говоря, захватила уже давно! Я просто признаваться не хотел!.. И все — таки… А получится?… Как Вы полагаете, уважаемый Спец?

«С»: Дорогие друзья!

Постройка подобного приемника преследует сразу несколько целей! Поэтому с полным на то основанием можно утверждать, что это — многоцелевая задача!

Первое — в процессе постройки и отладки подобного приемника, знания и навыки, которые при этом приобретаются, в любом случае подготавливают человека к дальнейшей работе в интереснейшей области практической электроники!

А люди, имеющие подобные навыки, без работы не останутся! Во-вторых, давайте вспомним, например, что говорил Михаил Сергеич Горбачев в своем интервью после окончания Великого Форосского заточения?

«А»: Это когда он заявил, что единственным источником информации для него была, вещающая на КВ, станция «Радио Свобода»?

«С»: В точности так! Друзья мои, хороший KB-приемник ВСЕГДА обеспечит вам возможность прорыва «информационной блокады»! Независимо оттого, находитесь ли вы на Форосе, или в иной географической точке нашей многострадальной…

«А»: Но ведь сейчас не глушат!?…

«С»: А какими словами заканчивается вторая книга А. Дюма о похождениях трех мушкетеров?…

«А»: Помнится, словами д'Артаньяна?!..

«С»: И это верно!.. Д'Артаньян произносит мудрую фразу: «…отведите мне комнату в бельэтаже. Я теперь капитан мушкетеров! Но… оставьте за мной и чердак! Никогда не знаешь, что может случиться в жизни!»

«А»: Убедительно! И даже очень!..

«С»: Естественно, гениальный писатель!..

Ну и в-третьих! Конечно, имея, например, ну совершенно лишние доллары, которые просто непонятно куда девать, вы можете, походив по маркетам, приобрести японский или голландский KB-приемник высокого класса, который будет ублажать ваш глаз, слух и чувство собственного достоинства!..

Кроме всего прочего, это обеспечит вам возможность «ловить» ВЕСЬ МИР!

Но учтите, что высококлассный приемник стоит очень дорого!

«Н»: Каков уровень цен, хотя бы примерно?

«С»: За KB-приемник с профессиональными параметрами около 2000 долларов!

«А»: Больше вопросов не имею!..

«Н»: А я — тем более!..

«С»: Тогда, друзья мои, начинаем наш «военный совет»!

 

Глава 10. Структурная схема выбрана

«Спец»: Итак, вопрос в принципе решен, я полагаю?

«Аматор»: Да, безусловно!

«Незнайкин»: И я так считаю!..

«А»: Хотя выбор окончательного варианта структурной схемы еще не произведен!

«С»: Вот именно этим мы сейчас и займемся!..

Итак, приступаем к обсуждению структурной схемы и ее особенностей. Я предлагаю начать с обсуждения радиотехнического тракта, затем обсудить особенности систем контроля и индикации, а затем вопросы электропитания разрабатываемого устройства. И, одновременно, не забыть о весогабаритных характеристиках.

«А»: Вы, Спец, всю жизнь занимались разработками. Поэтому — Вам и карты в руки! Какой же радиотехнический тракт вы предлагаете принять за основу?

«С»: Да вот, примерно, такой (см. рис. 10.1)!

«Н»: А почему цепи первой АРУ даны пунктиром?

«С»: Да потому, что мы должны еще выяснить такой вопрос. Будет ли аттенюатор R иметь плавную регулировку? В этом случае необходима цепь первой АРУ.

Или же аттенюатор R будет иметь некоторое фиксирование значение ослабления, которое будет задействовано,' если входной сигнал приемника превысит некоторое значение?

«А»: Аттенюатор применяется для сохранения высокого динамического диапазона приемника?

«С»: Да, именно для этого! В связи с чем, ослабление при малом сигнале должно быть равно НУЛЮ, а при большом сигнале иметь такое значение, чтобы не допустить перегрузки усилителя ВЧ, который обозначен на структурной схеме, как А1.

«А»: АРУ-1 может строиться только как обратная АРУ?

«С»: Нет, АРУ-1 может быть и прямого и смешанного типа также!

«А»: А какое значение чувствительности приемника мы примем в качестве исходного для нашего реального случая? И вообще, не кажется ли Вам, что следует более подробно остановиться на шумах?

«С»: Действительно!.. Этот вопрос мы до сих пор как-то обходили!

Так вот, шумы бывают не только внешними, но и внутренними. Внутренние шумы возникают как в пассивных элементах радиоприемных устройств — резисторах, фильтрах, линиях передач; так и в активных приборах — работа которых независимо от того, что они собой представляют (радиолампы или транзисторы) связана с наличием управляемых потоков носителей заряда.

Поскольку любой ток, как известно, имеет составляющую хаотического перемещения заряда под действием теплового возмущения. Это ведет и к появлению некоторой хаотической составляющей тока, следствием которой является появление хаотической составляющей напряжения, когда этот ток проходит через резистор.

«А»: Именно это явление и называют ТЕПЛОВЫМИ ШУМАМИ?

«С»: Верно! Значит, любой резистор R является… источником теплового шума!

Но… средние значения шумового тока и напряжения равны нулю!

«А»: Так как ВСЕ направления случайных перемещений элементарных носителей зарядов — РАВНОВЕРОЯТНЫ!

«С»: Спектр тепловых шумов ограничен и обусловлен средней длительностью импульса, создаваемого перемещением элементарного носителя заряда.

«А»: Но ведь эта длительность должна быть исключительно мала!

«С»: Ну, конечно! Поэтому энергетический спектр равномерен во всем радиотехническом диапазоне. Вплоть до частот порядка 1011 — 1012 Гц!

Формулы Найквиста и определяют среднеквадратичные шумовой ток и напряжение:

где k — постоянная Больцмана, равная 1,38х10-23 Дж/К; Т — температура в град. Кельвина; Δf = f1 — f2 — диапазон частот, Гц.

Шумы транзисторов и диодов рассмотрим далее. Поскольку для активных приборов характерен не только тепловой, но и дробовый шум!

«А»: А как рассчитывают чувствительность радиоприемного устройства?

«С»: Будем считать требуемое отношение сигнал/шум на выходе линейной части приемника заданным. В единицах напряжения чувствительность приемника составляет:

где  отношение сигнала к шуму на выходе линейного тракта приемника, т. е. на входе детектора; rА — сопротивление антенны; Пш — шумовая полоса; Т0 — комнатная температура; tA — относительная шумовая температура; Шпр — коэффициент шума приемника.

tA определяется по формуле:

t A = T A /T 0

здесь ТА — эквивалентная шумовая температура антенны; Т0 — 293 град. Кельвина.

«Н»: Что, все это надо считать?…

«С»: Если необходимо, то да! Кстати замечу, что радиотехнические расчеты весьма и весьма громоздки! А что касается Шпр, то в практических случаях можно ограничиться следующим:

Ш пр = L вх [Ш ву + (Шусч - 1)/K р. ву + (Ш см — 1)/ К р. ву К р. усч +…] ~= L вх Ш ву ,

здесь: Lвх— коэффициент потерь входного тракта; Шву — коэффициент шума входного устройства.

Но практика показала, что tA = 1 и формулы приобретают вполне удобоваримый вид:

Р АС (чувствительность) = kТ 0 П ш Ш пр γ 2 .

«А»: А какой величиной чувствительности следует задаваться?

«С»: Шумы приемника, используя доступную компонентную базу, вполне реально довести до величины порядка ОДНОГО микровольта и меньше!

Окончательно мы все решим, когда от структурной перейдем к принципиальной электрической схеме. Поскольку ее роль в этом деле — ведущая!

«А»: А как мы поступим с вопросом о ГПД? Будет ли это все-таки синтезатор, или есть возможность ограничиться обычным гетеродином?

«С»: Учитывая тот факт, что в наш приемник мы не вводим SSB — тракта (хотя это вовсе не значит, что мы отказываемся от этой идеи в перспективе), в качестве гетеродина мы используем ГПД. Хороший, спектрально чистый ГПД, выполненный на основе LC — генератора!

У меня есть на примете подходящая схемотехника!

«А»: Усилитель А1 применим двухтактный?

«С»: Возможно и это. Хотя в данный исторический период есть решения и получше!

«А»: Смеситель U1 проблем у нас не вызывает?

«С»: Я полагаю — никаких!

«А»: Ну, фильтр Z2 проходим также без проблем?

«С»: А вот здесь я неуверен! Вопрос о том, удастся ли достать узкополосный кварцевый фильтр и какой именно! Поскольку фильтр Z2 держит в неопределенности расчет исходных значений частот гетеродинов и коэффициентов перекрытий диапазонов!

«Н»: Уважаемый Спец! А если нам не повезет и вопрос с Z2 — зависнет? Как быть тогда?

«С»: Посыпать голову пеплом не придется и в этом случае! Просто мы воспользуемся альтернативными решениями.

«А»: Но от преобразования «вверх» мы не отказываемся?

«С»: Ни при каких условиях! Но я вижу что принципиальных возражений по структурной схеме не имеется! Поэтому предлагаю перейти к рассмотрению системы индикации настройки.

«А»: Какой вид индикации мы предусматриваем — аналоговый или цифровой?

«С»: В приемниках подобного класса говорить об использовании нецифровых индикаторов частоты настройки считается признаком дурного вкуса…

Поэтому, друзья мои, я полагаю, что этот вопрос должен быть решен ОДНОЗНАЧНО!

«А»: То есть Вы предлагаете включить в состав приемника устройство, напоминающее то, которое применила фирма RACAL?

«С»: Нет-нет! Как ты знаешь, я уважаю не только научную фантастику, но фантастику вообще! Но только не пустопорожнее прожектерство!..

Поэтому, безусловно, очень заманчиво было бы использовать в приемнике микропроцессорную систему! Но это был бы уже до некоторой степени снобизм!.. Потом, позднее, если вы захотите создать еще более совершенный KB-приемник, имея соответствующий опыт, можно посоревноваться и с фирмой RACAL! Хотя я не уверен, что вы станете при этом призерами!..

Но имея ограниченные ресурсы, опыт, а главное — ограниченное время на разработку и изготовление, подобную задачу ставить перед собой не стоит!

«Н»: Как же лучше поступить в данном случае,?

«С»: Прежде всего — подумать и взвесить… Не теряя при этом веры в свои силы, естественно! Что мы хотим получить реально?

Во-первых, цифровую индикацию частоты принимаемой станции в любом из диапазонов, верно?

«А»: А цифровое значение самого принимаемого поддиапазона?

«С»: Совершенно не исключено! Затем — индикатор точной настройки на станцию. Неплохо еще было бы вынести на переднюю панель управления аналоговую информацию об уровне сигнала, присутствующего на входе приемника!

«Н»: Да, это было бы классно!..

«С»: Учитывая, что это еще достаточно просто сделать технически!

«А»: В маркетах у некоторых дорогих моделей приемников, магнитол и музыкальных центров на дисплее индицируется до трех — четырех знакомест в диапазоне УКВ. А сколько знакомест (иначе разрядов) должен иметь цифровой индикатор нашего приемника?

«С»: Я полагаю — не больше ПЯТИ! Но и не меньше!

В этом случае частота принимаемой станции определяется с точностью 1 кГц! Можно, конечно же, высветить и больше знакомест! Например, многие коротковолновики в своих приемниках и радиостанциях индицируют частоту принимаемого сигнала с точностью до 100 Гц!

Это означает, что их дисплеи имеют ШЕСТЬ разрядов! Кстати, будем использовать более общепризнанное название цифрового индикатора частоты принимаемого сигнала — ЦИФРОВАЯ ШКАЛА. Или, например, ЦОУ — цифровое отсчетное устройство.

«А»: А почему? Спец, вы решили ограничиться ЦОУ на пять знакомест? Из-за экономических соображений?

«С»: Решающее значение здесь имеет не столько экономика, сколько эргономика! Опыт показывает, что любитель прослушивания передач в КВ-диапазоне «гоняет» приемник по всем диапазонам. При этом, как правило, на прослушивание радиостанции, если она не очень интересна, требуется 5–7 минут! Иными словами, визуальная индикация частоты принимаемого сигнала осуществляется в течение довольно продолжительного времени.

Выяснилось, что значение показания шкалы все время анализируется и сознательно, и подсознательно!

Так вот, указывается, что визуализация ПЯТИ знакомест утомляет В НЕСКОЛЬКО РАЗ МЕНЬШЕ, чем ШЕСТИ!

«Н»: Но ведь, как я понял, длина волны KB-диапазона тоже должна претендовать на два знакоместа, как минимум!?

«С»: Само-собой! Например: «25 м»; «16 м»; «19 м». И так далее… Но эти два знакоместа располагаются, во-первых, в ином месте дисплейного поля.

Кроме того, размер их, как правило, отличается от размера цифр ЦОУ! А в случае применения светодиодных индикаторов, различие касается и цвета.

«А»: Ну хорошо! Так какую же разновидность цифрового индикатора Вы порекомендуете применить в нашем случае?

«Н»: А что, этих разновидностей много?

«А»: Да, немало! Представь себе, что общепризнанное применение нашли: вакуумные накаливаемые индикаторы — ВНИ; вакуумные люминесцентные индикаторы — ВЛИ; полупроводниковые светодиодные индикаторы — ПСИ; жидкокристаллические индикаторы — ЖКИ. А также люминесцентные и газоразрядные индикаторы, газовые и плазменные панели и пр.!

«Н»: Во многих приборах в настоящее время стоят ЖКИ!

«С»: Потому, что они самые экономичные из всех! Но у них есть принципиальный недостаток. Показания ЖКИ легко считываются только в дневное время!

В темноте они не видны! Поэтому я предлагаю использовать полупроводниковые знакосинтезирующие индикаторы — ППЗСИ. Хотя это, конечно, дело вкуса! Кстати, будет ли приемник иметь аккумуляторное питание или все же сетевое?

«А»: Аккумуляторное было бы предпочтительнее! Но это ведь зависит не в последнюю очередь от потребляемой приемником энергии!

«С»: Безусловно! Поэтому, поскольку окончательно подобный вопрос может быть выяснен только после выбора полной принципиальной электрической схемы устройства, могу предложить следующий вариант.

Приемник будет иметь встроенный блок сетевого питания. Но мы предусмотрим и аккумуляторный режим! Возражений нет?

«А»: А почему они должны быть?

«Н»: Что, можно перейти, наконец, к рассмотрению принципиальных электрических схем узлов приемника?…

«С»: Я бы посоветовал перед этим этапом разработки приемника вернуться к серьезному рассмотрению особенностей используемой для этого современной компонентной базы!

«А»: Действительно, Незнайкин!.. Ты уже достаточно разбираешься в транзисторах, микросхемах, конденсаторах и т. д.?…

«Н»: «Не мастерица я полки-то различать…»

«С»: «А форменные есть отлички! В мундирах выпушки, погончики, петлички…»

«А»: Есть замечательный анекдот о советском летчике, который вернулся из американского плена после вьетнамской войны… Все им гордятся — никаких секретов не открыл врагу! Замполит его в качестве наглядного примера для прочих приводит. А когда все отметили этот образчик героизма за столом, то на откровенные вопросы однополчан летчик ответил так: «Ребята!.. Учите как следует материальную часть!.. А то так бьют!»

«С»: Я, даст Бог, надеюсь, что ни Незнайкину, ни нам никогда не придется рисковать своим здоровьем и жизнью ради «успехов» социализма!

Но электроника — дама очень требовательная! Она требует к себе бережного, вдумчивого и очень деликатного отношения! И готова за это вознаградить сторицей! Поэтому, дорогой Незнайкин, мы начинаем новый цикл бесед. На этот раз — О КОМПОНЕНТАХ!

«А»: Я тоже с удовольствием приму в ней участие!

«Н»: Нет вопросов! А когда начнем?…

«С»: А прямо со следующего раза!

КОНЕЦ ПЕРВОЙ ЧАСТИ