Разнообразие живых существ ошеломляет каждого изучающего биологию. В XIX веке многие ученые считали, что зданиям ботаники и зоологии грозит опасность полностью развалиться под тяжестью накопленных фактов. Систематизацией этого разнообразия занимается специальная биологическая дисциплина – систематика.
6.1. Принципы систематики
Задача систематики – построение научно обоснованной системы (т. е. классификации) живых организмов. Для решения этой задачи в систематике используются достижения всех областей биологии (морфологии, анатомии, генетики, биохимии, эмбриологии, теории эволюции и др.), поэтому можно считать, что систематика – это самая «синтетическая» биологическая дисциплина.
Категории систематики
Хотя систематизацию накопленных знаний о природе человек проводил с древних времен, основателем научной систематики считается шведский ученый К. Линней (1707–1778). Именно ему принадлежит заслуга внедрения в биологию бинарной номенклатуры и таксономии. Свои положения он изложил в имеющем историческое значение труде «Система природы», впервые опубликованном в 1735 году. Линней сгруппировал все известные ему организмы (их было около 36 000) в стройную систему. С тех пор число изученных видов резко возросло, а система живых организмов радикально изменилась. Сейчас некоторые авторы считают, что число разных видов на Земле превышает 10 млн, учитывая, что большая часть микроорганизмов науке неизвестна.
Для систематизации столь огромного числа живых существ в биологии используются систематические категории, или таксоны. Они составляют свою иерархию соподчинения, в которой таксоны более низкого ранга входят в состав таксонов более высокого ранга. В настоящее время используются следующие основные таксоны:
1) царство;
2) тип;
3) класс;
4) отряд;
5) семейство;
6) род;
7) вид.
В случае необходимости применяются многочисленные дополнительные таксоны: подтип, надкласс, подотряд и др.
Сущность бинарной номенклатуры заключается в двойном наименовании всех живых организмов на латинском языке. Первое слово – родовое название, второе – видовое:
Нomo sapiens – человек;
Viola rostata – фиалка;
Drosophila melanogaster – дрозофила;
Corvus corax – ворон;
Pantera tigris – тигр;
Pantera leo – лев.
На латинском языке обозначаются не только названия организмов, но и названия всех таксонов, например:
тип Chordata;
класс Mammalia;
отряд Carnivora;
семейство Felidae и т. д.
Латинский язык является международным биологическим языком, поэтому все биологические термины и названия понятны ученым всего мира.
Систематика и филогения
Если первые системы организмов были искусственными, т. е. основанными на произвольно выбранных признаках, то современная систематика строится на принципах филогении.
Филогения – это историческое развитие организмов. Графически филогения изображается в виде филогенетического древа, отражающего последовательность ветвлений, с учетом или без учета масштаба времени. Каждая линия этого древа символизирует существующий во времени таксон, который на схеме рассматривается как единое целое.
Подход к систематике, основанный на принципе филогении, получил название кладизма. Как уже говорилось выше, современная систематика стремится отражать филогению организмов, поэтому кладизм является основным подходом. Кладизм также имеет свои ограничения, поэтому реальная систематика не всегда строго выдерживает его положения. Достоверность этого метода возрастает с увеличением ранга исследуемого таксона и числа групп в нем. Необходимо отметить, что есть и другие подходы к систематике, однако они не получают поддержки в современной биологии.
В эволюционной систематике сложилась своя специфическая терминология, в которой принципиальное значение имеют понятия монофилии и полифилии.
Монофилия подразумевает наличие одного, общего для всех членов таксона, предка. Монофилия рассматривается в двух вариантах: голофилия и парафилия.
Голофилия подразумевает включение в таксон всех потомков общего предка.
Парафилия допускает, что не все потомки общего предка могут быть включены в таксон.
Полифилия подразумевает, что в таксон не включен общий предок для всех членов таксона. Строго филогенетическая система не должна включать полифилических таксонов.
Автором первой «естественной» системы организмов, опирающейся на эволюционную теорию, считается выдающийся немецкий ученый-эволюционист Э. Геккель (1834–1919). Им же были предложены основные методы реконструкции филогении: сравнительно-морфологический, палеонтологический и сравнительно-эмбриологический. С точки зрения современной биологии не все положения «Геккелевской триады» обоснованы, а данные палеонтологии и эмбриологии следует рассматривать скорее внутри сравнительно-морфологического метода (Клюге Н. Ю., 1999). Современный механизм реконструкции филогенетического древа – кладистический анализ, был предложен немецким энтомологом В. Хеннигом (1913–1976).
Бурное развитие в 1970-е годы электронной микроскопии и молекулярной генетики радикально изменило методологию систематики. Все большее значение в ней стали приобретать молекулярно-генетические методы, одновременно уменьшался «удельный вес» морфологии. Возникает новое направление – геносистематика, основанное на анализе сходства нуклеотидного состава организмов, которое становится ведущим методом определения филогенетического родства. Этот метод также имеет свои ограничения, условно в нем принимается равновероятность мутаций. Поскольку в геномах всегда имеются локусы с разной частотой мутаций, метод более достоверен для консервативных участков. Большие споры вызывает анализ роли регуляторных генов в формировании филогенетического древа. Регуляторные гены контролируют деятельность структурных генов и способны по-разному влиять на скорость эволюции таксона.
В настоящее время за основу филогенетической системы часто принимается анализ молекул р-РНК, которые отличаются значительным консерватизмом и изменяются примерно с одинаковой скоростью у разных организмов.
6.2. Система живой природы
Систематика – это важнейший раздел биологии, без которого все остальные разделы оставались бы лишь описательными дисциплинами. Знания о строении, функциях и развитии живых организмов имеют прогностическую ценность только тогда, когда они отнесены к определенному таксону, а не вообще к «некоторым живым существам» (Клюге Н. Ю., 1999).
История взглядов на систему природы
Идея разделения всех живых существ на растения и животных принадлежит древнегреческому мыслителю Аристотелю. Эта идея оказалась исключительно «привлекательной» для последующих поколений. Пройдя через века, она была принята «отцом» систематики К. Линнеем, а затем сохранялась до середины XX века (а в популярной литературе сохраняется и до настоящего времени). Однако, несмотря на такой консерватизм, уже в XIX веке ряд биологов стали предлагать свои системы, не ограниченные двумя царствами. Третьим царством обычно являлись грибы или одноклеточные организмы (простейшие). Наиболее известна система Э. Геккеля, который в 1866 году выделил царство Protista, в которое он включил, кроме простейших, еще ряд примитивных многоклеточных животных. Эта идея опередила свое время и не получила должного признания других биологов. Зато прижился и сохранился до настоящего времени термин «протисты», под которым стали объединять простейших, водоросли и зооспоровые грибы.
В середине XX века широкую известность получила система Р. Уиттекера, предложенная в 1959 году и усовершенствованная в дальнейшем (Whittaker R., 1969). В этой системе организмы делились на пять царств: бактерии, протисты, грибы, растения, животные. Через 100 лет после Э. Геккеля царство протистов было, наконец, восстановлено. Система Р. Уиттекера стремилась покончить с неопределенностью, когда одни и те же организмы включались ботаниками в царство растений (так называемые водоросли), а зоологами – в царство животных (простейшие). Важным достижением этой системы было признание принципиальных различий между грибами и растениями. Однако сама система столкнулась со многими затруднениями из-за размытости границ между новыми царствами.
До «логического конца» систему Р. Уиттекера довела Л. Маргелис, выделив в царство протистов все одноклеточные организмы (она назвала их «протокристами»). Царства грибов, растений и животных стали включать только многоклеточные организмы (Маргелис Л., 1983).
Хотя система пяти царств стала у биологов «почти классической», она не избежала критики. Известный эколог Ю. Одум выразил мнение многих специалистов, считая, что подобные системы являются не таксономическими, а функциональными (экологическими), так как основаны на типе питания и источнике энергии, что далеко не обязательно отражает филогенетическое родство (Одум Ю., 1986). В царстве протистов (особенно в его расширенных вариантах) фактически были собраны все организмы, которые «не укладывались» в характеристики многоклеточных растений, грибов или животных. Такое объединение изначально свидетельствовало о гетерогенном характере этого царства, не отражающем филогенетические связи, и заранее предполагало временный характер его существования. Состав царства протистов породил у систематиков ходовое определение «свалка» (Маргелис Л., 1983).
Развитие в 1970-е годы цитологических, биохимических и молекулярно-генетических методов, о которых уже говорилось выше, необычайно расширило наши представления об ультраструктуре клеток различных организмов. Выяснилось, что мир живых существ более разнообразен, чем предполагалось ранее. В основу новой систематики легли не морфологические различия, а фундаментальные принципы организации генетического материала, биохимического состава и ультраструктуры клетки.
В рамках традиционной систематики выделилась и приобрела особую популярность систематика высших таксонов (от типа до «империи») – мегасистематика.
Прокариоты и эукариоты
Известно, что всем «настоящим» живым организмам свойственна клеточная форма организации. Именно на уровне клетки и были выявлены фундаментальные различия в системе живых организмов, в результате чего их разделили на две группы («империи») – прокариоты и эукариоты. Впервые такое разделение было предложено в исторической работе французского протистолога Э. Шаттона в 1925 году. Однако окончательно оно было признано только во второй половине XX века, благодаря возможностям электронной микроскопии.
Прокариотические организмы, куда отнесли различные бактерии, несомненно, являются древнейшими на Земле. Клетка прокариот не содержит ядра и других мембранных структур. Генетический материал представлен хромонемой – кольцевой молекулой ДНК, не связанной с белками. Цитоплазма не содержит типичных органоидов, за исключением рибосом (70S), отличных от рибосом эукариот.
Подавляющее большинство бактерий – гетеротрофы (сапрофиты или паразиты), однако среди них можно наблюдать все типы питания, известные в природе: хемоавтотрофный, фотоавтотрофный, фотогетеротрофный. Форма бактерий разнообразна: кокки (шаровидные), бациллы (палочковидные), вибрионы (изогнутые), спириллы (спиралевидные). Несмотря на микроскопические размеры, на биомассу бактерий приходится более половины биомассы Земли.
Размер бактериальной клетки составляет обычно всего 1–10 мкм. Еще меньшие размеры (0,2–0,3 мкм) имеют представители особой группы бактерий – микоплазмы, которые можно рассматривать как наименьшие и простейшие клетки. Именно по этой причине они оказались в фокусе внимания ученых, исследующих вопросы возникновения жизни. Уникальной особенностью микоплазм является отличие их генетического кода (сходного с кодом митохондрий) от универсального. Другая особенность микоплазм – отсутствие клеточной стенки. Несмотря на чрезвычайно простое строение, многие ученые не считают их родственниками первичных организмов, а рассматривают как дегенерировавшие формы. Высказывалась даже такая экзотическая гипотеза, как происхождение микоплазм от митохондрий. В настоящее время место микоплазм в филогенетической системе не ясно.
Клетка эукариотического организма имеет ядро, отграниченное от цитоплазмы мембраной. Мембраны окружают также саму клетку и так называемые мембранные органоиды: эндоплазматическую сеть, аппарат Гольджи, лизосомы, митохондрии, пластиды. Все мембраны построены по единой схеме, хотя могут различаться деталями строения. Они разделяют клетку на обособленные участки – компартменты, в которых возможно протекание независимых биохимических процессов. Ядро также можно рассматривать как отдельный компартмент. В настоящее время сложилось представление о наличии единой мембранной системы клетки .
Цитоплазма эукариотической клетки имеет сложный цитоскелет, который упорядочивает размещение клеточных компонентов. Органоиды цитоплазмы выполняют специфические функции, осуществляя все многообразие биохимических процессов. Важнейший процесс – синтез белка – происходит на эукариотических рибосомах (80S).
Генетический материал эукариот локализован в особых структурах – хромосомах, находящихся в ядре. Структура хромосом кратко рассматривалась нами ранее. Высокий уровень организации эукариот (по сравнению с прокариотами) обусловливает сложность информационной системы эукариотической клетки.
Хромосомная организация генетического материала, наличие ядра, специфических органоидов и принцип компартментализации являются важнейшими особенностями эукариотической клетки.
Однако мегасистематику ждали поистине революционные открытия. Одним из крупнейших событий в биологии стало выяснение отличий архебактерий от других прокариот в 1977 году (Woese С. [et al.], 1978). Некоторые авторы сравнивают это достижение с открытием нового континента на Земле (Кусакин О. Г., Дроздов А. Л., 1994).
Архебактерии сохранили в большей степени признаки организации первичных организмов. Живут они в самых «неподходящих» для жизни местах – сточных водах, горячих и кислых источниках, желудке жвачных животных, соленых источниках и др. Среди архебактерий имеется группа метанобактерий, деятельность которых является причиной образования природного газа.
Молекулярно-генетический анализ р-РНК выявил их отличие как от эукариот, так и от эубактерий. Позднее были показаны принципиальные особенности архебактерий по структуре клеточной стенки, т-РНК, РНК-полимераз и другим компонентам. На основании этого многие специалисты принимают разделение органического мира изначально на три ствола (империи): Archae (археи), Bacteria (бактерии), Eucarya (эукариоты). В этом случае термин «прокариоты» теряет таксономический смысл и становится термином, определяющим только структурную организацию клетки.
Однако не все систематики согласны с таким подходом. Отмечаются общие характеристики архебактерий и эубактерий: организация генетического материала, строение жгутиков, сходства в биохимическом составе. Поэтому некоторые авторы, рассматривая архебактерии и эубактерии как самостоятельные прокариотические царства, придерживаются традиционного деления живых существ Земли на две «империи»: прокариот и эукариот.
Положение вирусов в системе живой природы
Спорным на протяжении истории биологии является положение в мегасистеме вирусов. Одни авторы считают вирусы особой «неклеточной» формой жизни, другие – что их нельзя относить к живым организмам в полном понимании этого слова, поскольку вирусы не способны самостоятельно расти и размножаться. Авторы теории «автопоэза» У. Матурана и Ф. Варела, анализируя вирусы с позиций системного подхода, считают, что определяющим критерием жизни является наличие физической оболочки, ограничивающей метаболические процессы. Вирусы, не обладая собственным метаболизмом, за пределами живой клетки представляют собой просто молекулярные структуры (Maturana U., Varela F., 1980).
Не вдаваясь в детали долгого спора: «существо или вещество», – отметим, что, несмотря на простое строение, вирусы произошли после возникновения клетки.
Предполагается, что вирусы образовались около 3 млрд лет назад из фрагментов генетического материала клеточных организмов. Эти фрагменты приобрели способность синтезировать белковую оболочку и реплицироваться при использовании систем синтеза клетки-хозяина. Вероятно, вирусы возникали неоднократно в ходе эволюции, причем от разных групп организмов и в разное время. Возможно, крупные вирусы представляют собой сильно дегенерировавшие клетки, которые в ходе приспособления к паразитизму утратили все, кроме своего наследственного аппарата.
В общем виде строение вируса можно представить в виде нуклеиновой кислоты (ДНК или РНК), окруженной белковой оболочкой. Размер вируса колеблется в диапазоне 15–300 нм. В настоящее время вирусам придается большая роль в эволюционном процессе, благодаря их способности воздействовать на геном других организмов. Более подробно механизм функционирования вирусов рассматривается в курсе генетики (Курчанов Н. А., 2006).
Классификация вирусов в значительной мере умозрительна. Существует Международный комитет по таксономии вирусов, в задачу которого входит создание универсальной системы. Но в настоящее время нет оснований признавать за вирусами общее происхождение. Поскольку классификация живых организмов должна отражать их филогению, мы не можем считать вирусы единой группой.
Необычность биологии и происхождения ставит вирусы особняком в системе органического мира. Подавляющее большинство авторов в своих филогенетических системах их вообще не рассматривают.
Мегасистема эукариот
Молекулярно-генетические подходы полностью изменили 4-царственную мегасистему эукариот. Подтвердилось мнение о сборном характере царства протистов: у них были обнаружены самые разнообразные типы структуры и функции клеток (распределение генетического материала, виды митоза и мейоза, варианты клеточных органелл, типы питания и локомоции). Различия между разными протистами на клеточном уровне оказались даже более глубокими, чем между царствами многоклеточных животных. Понятие «протисты» потеряло таксономический смысл, оставаясь сборным нарицательным понятием для одноклеточных организмов и организмов «дотканевого» уровня.
Внутри группы протистов Природа создала разные варианты клеточного уровня организации. У некоторых одноклеточных организмов клетка достигла исключительно высокого уровня сложности, со структурами, аналогичными органам многоклеточных. Именно среди царства протистов независимо возникла многоклеточность у хорошо известных нам растений, грибов и животных. Эволюция эукариот происходила отнюдь не по прямой линии от одноклеточности к многоклеточности. Многоклеточность – это один из вариантов эволюции протистов.
Базируясь на новых данных, начиная с 1970-х годов, стали появляться многоцарственные системы. В потоке работ различные варианты мегасистем перекраивались с калейдоскопической быстротой. В большинстве систем резко возросло число царств, что вызвало растерянность самих систематиков. Они резонно считали, что системы, где число царств измеряется десятками, девальвируют категорию «царство».
Во всех новых системах «классические» царства многоклеточных организмов (грибы, растения, животные) оставались, хотя и с несколько разным «наполнением». Другая группа организмов, единодушно отграничиваемая систематиками от остальных эукариот на основании общих ультраструктурных признаков, включала разнообразных протистов, как гетеротрофов, так и фотоавтотрофов с хлорофиллом С. Т. Кавалье-Смит, который много лет является одним из лидеров в области мегасистематики, выделил эту группу в особое царство Chromista.
Состав пигментов является важным таксономическим признаком в систематике. Весьма разнообразен и фотосинтетический аппарат различных эукариот, у которых выявлено 6 типов хлоропластов, окруженных 2–4 мембранами. Из-за высокого содержания каротиноидов у фотосинтезирующих «хромистов» преобладает желтый и бурый цвет окраски, заглушая зеленый цвет хлорофиллов. Примером могут служить бурые водоросли (тип Phaeophyta) – самые крупные и сложно организованные протисты. Такие их представители, как Laminaria, имеют многоклеточные структуры, аналогичные органам высших растений. Многие «хромисты»-гетеротрофы потеряли способность к фотосинтезу вторично. Потеря различных органелл в ходе эволюции эукариот не является редкостью.
Дробление протистов на самостоятельные царства не стабилизировало систему эукариот. Спорные критерии выделения царств не привели к единству взглядов систематиков. Даже в 18-царственной системе К. Лидейла некоторые царства оказались полифиличны, а значит требовали дальнейшего деления (Leedale С., 1974).
В 1990-е годы совершенствовались молекулярно-генетические методы анализа, повысилась их надежность. В настоящее время наметился синтез, а главное – лучшая совместимость молекулярно-генетических и морфологических показателей систематики. Вследствие выяснения филогенетических связей формируются новые группировки. Наблюдается процесс объединения некоторых протистов с многоклеточными. Как называть новые группировки? Как быть со старыми, привычными названиями животных, грибов и растений? Сколько крупнейших группировок в природе?
В своей давней работе Т. Кавалье-Смит, ставя вопрос о числе царств в природе, в названии статьи останавливается на числе 9 (Cavalier-Smith Т., 1981), а почти четверть века спустя сокращает его до шести (Cavalier-Smith Т., 2004). Его последняя система демонстрирует желание автора ограничить число царств, сохранить их традиционные названия.
Однако далеко не все систематики согласны с этой версией. Международный комитет протистологов предлагает другую систему, в которой фигурируют другие группировки. Проблематично и сохранение старых названий в новых таксонах.
Что можно сказать о современной тенденции в систематике эукариот? Большинство специалистов выделяют сейчас по результатам молекулярно-генетических исследований 5–8 крупнейших группировок, которые должны будут составить таксоны высшего порядка в новой системе (Карпов С. А., 2005), причем многоклеточные теперь представлены отдельными веточками на «могучем» эволюционном древе протистов. Животные и грибы могут оказаться в одном таксоне в новой системе, демонстрируя относительную близость молекулярной филогении. Не вызывает никаких возражений объединение тех представителей протистов и многоклеточных, у которых просматриваются четкие филогенетические связи, например, зеленых водорослей и наземных растений, хитридиевых и многоклеточных грибов.
Как будет выглядеть система живых организмов в будущем? Возможно, она будет совсем непривычна для нас. Выделенные крупнейшие подразделения ныне включают довольно большое количество хорошо обособленных групп. Какой ранг им присвоить? Как быть с терминологией? Названия новых групп знакомы лишь специалистам-протистологам. Привычные названия, которые прошли через всю историю человека (растения, грибы, животные), резко понизились в систематическом ранге. Все это должно весьма затруднить внедрение новой мегасистемы в образование. Не будем гадать. Филогения эукариот развивается сейчас столь стремительно, что любая система пока недолговечна.
6.3. Строение и происхождение эукариотической клетки
Нет сомнения, что первые организмы на Земле имели прокариотическую организацию клетки. Как же возникли эукариоты? Существуют две версии на этот счет. Теория симбиогенеза предполагает, что эукариотическая клетка возникла вследствие симбиоза различных прокариотических клеток. Автогенетическая теория предполагает эндогенную компартментализацию протоклетки. В настоящее время большинство ученых поддерживают теорию симбиогенеза, которую мы подробнее рассмотрим ниже.
Структура эукариотической клетки
Эукариотическая клетка включает в себя четыре взаимосвязанных отдела: плазматическую мембрану, цитоплазму, органоиды, ядро.
Плазматической мембраной (или плазмалеммой) называют мембрану, окружающую клетку и отделяющую содержимое клетки от внешней среды. Согласно жидкостно-мозаичной модели, основу плазматической мембраны составляет двойной слой молекул липидов, в который особым образом встроены молекулы различных белков.
В цитоплазме различают внутреннюю среду (гиалоплазму) и цитоскелет. Цитоскелет представлен нитевидными белковыми комплексами – филаментами. В эукариотических клетках выделяют три системы филаментов: микрофиламенты, микротрубочки и промежуточные филаменты. Поскольку структура и функции клетки подробно изучаются в курсе цитологии, мы будем останавливаться только на некоторых структурах, касающихся темы раздела. В цитоскелете такой структурой являются микротрубочки.
Микротрубочки представляют собой полые цилиндры, образованные белком тубулином. Они могут находиться в цитоплазме, не образуя определенных структур, могут формировать временные образования (веретено деления), могут входить в состав постоянных клеточных структур. Эти структуры бывают двух видов. Центриоли клеточного центра, кинетосомы ресничек и жгутиков образованы девятью триплетами микротрубочек – (9+0) – структуры, а сами реснички и жгутики образованы девятью дублетами микротрубочек и центральной парой – (9+2) – структуры. Микротрубочки митотического веретена деления являются очень динамичными структурами – в клетке постоянно происходит их сборка и разборка. Центриоли, жгутики, реснички, наоборот, стабильны.
В происхождении и функционировании микротрубочек и их структур много неясного. Чтобы отличить жгутики и реснички эукариот (имеющие одинаковое строение) от жгутиков бактерий (имеющих принципиально другое строение), для первых предложен общий термин – ундулиподии.
Важнейшей структурой эукариот является ядро – место хранения генетической информации. Эта информация локализована на хромосомах – сложных ДНК-белковых образованиях, способных к структурным модификациям во время клеточного цикла.
В цитоплазме эукариотической клетки расположены органоиды, имеющие плазматическую мембрану: эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии, а у фотосинтезирующих организмов – пластиды. В этих органоидах, отсутствующих у прокариот, происходят специфические биохимические процессы, благодаря компартментализации клетки, о чем говорилось выше. На мембранах гранулярной ЭПС расположены рибосомы, что позволяет совместить синтез белка с его транспортировкой.
Из мембранных органоидов своей специфичностью выделяются митохондрии и пластиды.
Митохондрии
В митохондриях проходят аэробные процессы биологического окисления. Они встречаются почти во всех клетках эукариот, за исключением некоторых паразитических протистов. Это одни из самых крупных органоидов клетки длиной до 7–10 мкм. Форма митохондрий может быть самой разнообразной, в зависимости от систематической группы и типа ткани. В большом диапазоне варьируется и число митохондрий, особенно у протистов. В некоторых клетках млекопитающих оно достигает 1000.
План строения митохондрий общий для всех эукариот. Митохондрии окружены двумя мембранами, между которыми имеется межмембранное пространство. Наружная и внутренняя мембраны значительно различаются между собой. Наружная мембрана проницаема для ионов, бедна ферментами, стабильна по форме. Внутренняя мембрана почти непроницаема для ионов, содержит ферментативные комплексы, лабильна по форме и образует выросты – кристы.
Внутреннее содержимое митохондрий – матрикс – имеет сложный биохимический состав. Помимо аминокислот, ферментов, различных включений, в матриксе находятся митохондриальная ДНК (mi-ДНК) и все виды РНК (и-РНК, р-РНК, т-РНК). Имея собственные ДНК и рибосомы, митохондрии осуществляют собственный синтез белка (обычно 25–125 белков).
Пластиды
Фотосинтезирующие автотрофные организмы (растения и некоторые протисты) имеют свои характерные органоиды клетки – пластиды. Их форма, размеры и окраска весьма разнообразны. Классифицируют пластиды по наличию в них тех или иных пигментов. У растений различают пластиды трех видов: хлоропласты, хромопласты и лейкопласты. Размер пластид составляет 4–6 мкм. Возможно взаимопревращение разных видов пластид. Наиболее законченную структуру и основное функциональное значение в жизни клетки имеют хлоропласты.
Хлоропласты – носители основного пигмента фотосинтеза хлорофилла, который маскирует присутствие каротиноидов. Общий план строения хлоропластов различается у разных организмов. У растений они окружены двумя мембранами (наружной и внутренней), которые ограничивают внутреннюю среду хлоропласта – строму. У протистов встречается от двух до четырех мембран. В строме имеется своя мембранная система – система тилакоидов. В мембранах тилакоидов локализованы фотосинтезирующие пигменты и переносчики электронов, осуществляющие ключевые процессы фотосинтеза. Тилакоиды находятся в строме либо поодиночке, либо собираются в стопки, формируя граны. Число тилакоидов в гранах может сильно варьироваться.
В строме хлоропластов находятся ферменты цикла Кальвина и происходит темновая фаза фотосинтеза. Здесь же откладывается крахмал.
Как и митохондрии, хлоропласты имеют собственную генетическую и белоксинтезирующую системы – ДНК, все виды РНК (и-РНК, т-РНК, р-РНК) и рибосомы, синтезируя 100–130 собственных белков.
Как и другие виды пластид, хлоропласты происходят от предшественников пластид из образовательных тканей – пропластид, лишенных пигментов. Если структура пропластид сохраняется в зрелых клетках, образуются лейкопласты. В лейкопластах запасаются питательные вещества – белки, липиды, углеводы. Хромопласты имеют пигменты желтого и оранжевого цвета – каротиноиды, которые становятся видимыми после разрушения хлорофилла. Хромопласты определяют окраску плодов растений. Их можно представить как дегенерирующий хлоропласт. Все виды пластид генетически связаны между собой, а процесс их взаимопревращений можно представить как ряд изменений, идущих в одном направлении – от пропластид до хромопластов.
Несмотря на наличие собственных генетических систем, большая часть белков, митохондрий и хлоропластов синтезируются в ядре клетки. Поэтому они получили названия полуавтономные структуры .
Теория симбиотического происхождения эукариотической клетки
Кольцевая структура ДНК, структура рибосом и ряд биохимических особенностей, общие у прокариот, митохондрий и пластид, послужили доводом теории симбиотического происхождения эукариотической клетки, предложенной Л. Маргелис. Эта теория объясняет возникновение митохондрий, пластид и микротрубочек интеграцией эукариотической клеткой определенных прокариот. Хлоропласты, вероятно, произошли от разных фотобактерий. На роль предшественников митохондрий «выдвигаются» пурпурные несерные бактерии, микротрубочек – спирохеты (Маргелис Л., 1983).
Отвергнутая первоначально большинством ученых, гипотеза Л. Маргелис в настоящее время находит широкую поддержку относительно возникновения митохондрий и пластид. Теория симбиотического происхождения микротрубочек не разделяется другими авторами. В отличие от полуавтономных структур, не обнаружена особая «центриолярная» ДНК, хотя равномерное распределение структур микротрубочек при делении может свидетельствовать об их генетической автономности. Объяснение, предлагаемое Л. Маргелис, заключается в полной интеграции ДНК спирохет-симбионтов с ДНК хромосом, за исключением кинетохора, который она относит к системе ундулиподий (а не хромосом).
Анализ этой проблемы представляет большой общетеоретический интерес.
6.4. Многоклеточные организмы
Многоклеточные организмы обычно ассоциируются в массовом сознании с понятием «живая природа». Именно они формируют «флору» и «фауну» Земли. Как уже говорилось выше, многоклеточные представляют собой несколько независимых направлений эволюции на древе эукариот. Три их основные группы до недавнего времени формировали три самостоятельных царства: растения, грибы, животные. В настоящее время таксономический статус этих групп пока не ясен, поэтому рассмотрим их без названий таксона.
Растения
Растения – это многоклеточные организмы с фотоавтотрофным типом питания. Запасное питательное вещество – крахмал. Для жизненных циклов характерно чередование поколений с разным соотношением диплоидного (спорофит) и гаплоидного (гаметофит) поколений.
Особенности растительной клетки: наличие специальных органоидов пластид и клеточной оболочки из целлюлозы поверх плазмолеммы. Клетки не имеют центриолей. До 90 % объема клетки занимает особая структура – вакуоль, покрытая мембраной – тонопластом.
В настоящее время не вызывает сомнения происхождение наземных растений от зеленых водорослей, с которыми они имеют много общего и сейчас практически во всех системах входят в одно царство. Объединение растений с красными водорослями находит поддержку не у всех систематиков. Сами наземные растения имеют две независимые линии эволюции и происхождения.
Bryophyta – мхи – лишены проводящей системы, доминирующее поколение – гаметофит (гаплоидное).
Tracheophyta – сосудистые растения – с проводящей системой, представленной ксилемой и флоэмой, доминирующее поколение – спорофит (диплоидное). Высшие представители сосудистых растений имеют семя – зародыш с запасом питательных веществ. Сосудистые образуют многочисленные отделы вымерших и ныне живущих растений.
По старой традиции в ботанике принято типы называть отделами, а отряды – порядками, что создает определенные неудобства и мешает унификации таксономии.
Пересмотр традиционных взглядов коснулся и систематики высших растений, что привело к разделению сборного отдела «голосеменные» на самостоятельные отделы, эволюционно весьма далекие друг от друга. Учитывая это изменение, можно выделить следующие отделы современных сосудистых растений.
Систематика Tracheophyta:
1) Lycophyta – плауны;
2) Sphenophyta – хвощи;
3) Pterophyta – папоротники;
4) Cycadophyta – саговники;
5) Ginkgophyta – гинкговые;
6) Gnetophyta – гнетовые;
7) Coniferophyta – хвойные;
8) Anthophyta – покрытосеменные (или цветковые).
Исключительный интерес представляет флора каменноугольного периода (360–280 млн лет назад), представленная гигантскими хвощами, плаунами, папоротниками. В мезозойскую эру господствовали различные «голосеменные».
Более половины видового разнообразия современных растений составляют цветковые. Наличие цветка и плода позволило им занять лидирующее положение в растительном мире (рис. 6.1).
Рис. 6.1. Растительный биоценоз
Грибы
Неподвижные организмы с гетеротрофным способом питания. Запасное питательное вещество – гликоген. Для жизненных циклов характерно сложное чередование поколений (гаплоидного и диплоидного) и различных способов размножения (вегетативного, бесполого и полового). Вегетативное тело высших грибов представлено мицелием, состоящим из ветвящихся нитей – гиф. Плотные сплетения гиф образуют особые структуры – плодовые тела, где происходит процесс образования спор. Царство грибов объединяет более 100 тыс. видов, широко распространенных на Земле.
Особенностями клетки грибов являются наличие специфической оболочки, в состав которой входят хитин, пигменты и другие вещества, а также отсутствие ресничек, жгутиков, центриолей. Обычно клетка имеет центральную вакуоль. Митотическое деление клетки протекает со значительными отличиями от других эукариот. Клетки некоторых грибов имеют несколько ядер. Разные группы грибов имеют свои специфические клеточные структуры.
Свое происхождение грибы ведут, вероятно, от хитридиевых. В последнее время с грибами сближают также микроспоридий – внутриклеточных паразитов, которых раньше часто рассматривали как наиболее примитивных эукариот. Их строение – следствие эволюционного упрощения организации вследствие паразитизма. Микроспоридии паразитируют в организме почти всех животных. Большинство их еще не открыто, и некоторые ученые считают, что общее число видов микроспоридий в природе превышает миллион.
Царство грибов разделяется на ряд типов, из которых выделим три. Тип Zygomycota – зигомицеты. В основном плесневые грибы со сложным циклом развития. Многие виды вырабатывают антибиотики.
Тип Ascomycota – аскомицеты. Название происходит от названия спорангия в виде сумки (аск), где образуются аскоспоры. В основном представлены многоклеточными формами, но одна группа – дрожжи – вторично эволюционировала в одноклеточные формы.
Тип Basidiomycota – базидиомицеты. Типичные шляпочные грибы (рис. 6.2). В процессе развития на мицелии формируются органы спороношения – плодовые тела, состоящие из ножки и шляпки. Споры образуются в особых органах – базидиях. Часто мицелий оплетает корни определенного растения, проникает в их клетки и формирует симбиотическую структуру – микоризу. Микориза обнаружена у большинства растений.
Рис. 6.2. Шампиньоны
Животные
Для животных характерен гетеротрофный тип питания. Запасное питательное вещество – гликоген. В размножении преобладает половой процесс. Важнейшей чертой организации животных является дифференциация клеток и формирование тканей, специализированных на выполнении определенных функций. Разные ткани формируют разные органы, а органы – системы органов. Для координации их деятельности в процессе эволюции образовались регуляторные системы – нервная и эндокринная. Благодаря контролю деятельности всех систем многоклеточный организм работает как единое целое. Развитие сложного многоклеточного организма из одной клетки – зиготы – привело к появлению сложного процесса индивидуального развития – онтогенеза. Уровень сложности и дифференцировки у клеток животных выше, чем у других групп. Клетки животных не имеют пластид и клеточной оболочки.
Поразительно морфологическое разнообразие животных, знакомое каждому. Однако, несмотря на такое разнообразие, давно отмечено, что общий план строения клетки сходен у всех животных «от медузы до кита» (Dillon L., 1962). Это служит весомым доказательством единства их происхождения.
Весьма удивительно, что о происхождении, казалось бы, наиболее изученной группы организмов известно крайне мало. Возможными предками животных считают воротничковых жгутиконосцев (Choanomonada), которые сейчас обычно группируются с ними в один таксон (Карпов С. А., 2005). Спорным остается положение губок и других примитивных групп, которых многие авторы выводят из разряда «настоящих» животных (Animalia).
Насчитывается около 2 млн видов животных, которые группируются в 20–30 (по разным классификациям) типов. Эти типы формируют группы надтипового ранга, отражающие их филогенетические связи (табл. 6.1).
Подавляющее большинство «настоящих» многоклеточных животных относятся к билатерально-симметричным. В их классификации ключевое значение приобретает такое понятие, как полость тела – пространство между стенкой тела и кишечником. Все виды полостей тела выполняют опорную функцию и обеспечивают свободное расположение органов.
Наиболее высокоорганизованные животные имеют вторичную полость тела, или целом. К нецеломическим животным относятся червеобразные организмы (10–14 типов), в систематике которых много неясного. Среди них много паразитических видов.
Таблица 6.1. Надтиповые группировки животных
Целомические животные делятся на две большие группы, в зависимости от дальнейшей судьбы в онтогенезе первичного отверстия зародыша на стадии бластулы – бластопора (табл. 6.2).
Таблица 6.2. Система целомических животных
Анализируя систему царства животных, необходимо отметить, что ряд малочисленных типов (обычно имеющих долгую филогенетическую историю) систематики затрудняются отнести к какой-либо группе, вследствие мозаичности признаков.
В новых системах, построенных на принципах молекулярной филогении, животные (Animalia) входят в одну группу (Opisthokonta) с грибами, «ненастоящими» многоклеточными типа губок, Choanomonada и некоторыми бывшими протистами. Предполагается, что все они произошли от одножгутиковых форм. Это одна из крупнейших и наиболее четко очерченных группировок новой классификации.
Членистоногие и хордовые
В системе животных, несмотря на относительность понятия прогресса, часто выделяют две вершины эволюционного развития. Это класс насекомых в типе членистоногих и класс млекопитающих в типе хордовых.
Членистоногие – самый многочисленный тип животного мира. Среди беспозвоночных это наиболее высокоорганизованные животные. В процессе эволюции членистоногие приобрели ряд ароморфозов, что позволило им приспособиться к самым различным условиям существования. Членистоногие делятся на 14 классов (включая вымерших), половину из которых составляют различные «многоножки». Основные классы членистоногих:
1) Crustacea – ракообразные;
2) Arachnida – паукообразные;
3) Insecta – насекомые.
Насекомые включают в себя более 1,5 млн видов, объединенных примерно в 30 отрядов. Они имеют наиболее сложную среди беспозвоночных нервную систему, которая обусловливает их поведение (рис. 6.3). У некоторых насекомых формируется сложная социальная организация.
Рис. 6.3. Насекомые – вершина эволюции в мире беспозвоночных
Хордовые наряду с ланцетниками и оболочниками (специализированными морскими животными) включают в качестве подтипа позвоночных. Происхождение позвоночных до конца не понятно. Возможно, они берут свое начало от неотенических личинок древних оболочников.
Позвоночные являются предметом долгого изучения человеком. Благодаря внутреннему костному скелету они лучше других типов представлены в палеонтологической летописи Земли. Поэтому может показаться странным, что систематика позвоночных до сих пор вызывает разногласия специалистов (табл. 6.3).
Таблица 6.3. Систематика позвоночных животных
В надклассе рыб (рис. 6.4) мы в очередной раз сталкиваемся с явлением конвергенции в эволюции. В результате сходных условий существования рыбы приобрели много общих черт, однако представляют собой ряд групп независимого происхождения. Эпохальным событием в эволюции был выход позвоночных на сушу, который совершили рыбы, как предполагают, в девонский период.
Рис. 6.4. Рыбы отличаются исключительным многообразием
Система четвероногих в последнее время претерпела существенные изменения. Некогда единый класс рептилий разбит на три независимых класса. К классу Anapsida относятся вымершие котилозавры и все черепахи. К классу Diapsida принадлежат остальные «настоящие» пресмыкающие, включая огромное число вымерших форм. Особенно широко известны среди них динозавры, близкими родственниками которых являются крокодилы (рис. 6.5). Класс Synapsida – это полностью вымершая группа, от которой ведут свое происхождение млекопитающие. Возможно, высшие ее представители уже были теплокровными.
Рис. 6.5. Современные крокодилы – ближайшие родственники динозавров
Некоторые зоологи призывают в настоящее время к ревизии класса земноводных, выдвигая независимое происхождение хвостатых и бесхвостых амфибий.
Исключительное многообразие форм, окраски, размеров наблюдается у представителей класса птиц – подлинного чуда природы (рис. 6.6).
Рис. 6.6. Прекрасен и разнообразен мир птиц
Рис. 6.7. Млекопитающие – вершина эволюции
У представителей класса млекопитающих мозг достиг величайшего уровня сложности организации (рис. 6.7). К этому классу принадлежит и человек.