Возникновение разнополых организмов в природе – это вопрос, порождающий многочисленные дискуссии. В 1862 г. Ч. Дарвин писал: «Мы не имеем даже маловероятного объяснения цели полового процесса….». Во времена Ч. Дарвина ничего не было известно о механизмах генетической рекомбинации. Но вот что мы можем прочитать у одного из ведущих эволюционистов современности спустя более века. Дж. Мейнард-Смит пишет: «Создается впечатление, что по вопросу пола от нас ускользает что-то самое главное» (Maynard Smith J., 1978). Вопросы вызывают, например, многочисленные исключения из классического полового процесса, имеющиеся даже у представителей высших систематических групп (гермафродитизм, закономерная инверсия пола у некоторых представителей в ходе онтогенеза, партеногенез и многое другое).
Мы никогда, видимо, не сможем с точностью сказать, как возник половой процесс в эволюции. Рассмотрим этапы формирования пола в онтогенезе. Здесь также имеется много загадок природы.
14.1. Детерминация пола
Принадлежность организмов к тому или иному полу часто является результатом сложного взаимодействия генетических, экологических, физиологических, а иногда и психологических факторов. Однако решающее значение имеет тот «выбор», который осуществляется при детерминации.
Детерминация пола – исходное направление развития организма в сторону мужского или женского пола вследствие определенных факторов.
У высших организмов генетическая детерминация обычно выражается мужским или женским кариотипом зиготы, образующимся в момент оплодотворения. Наблюдается несколько вариантов генетической детерминации пола, но наиболее общая тенденция – это различные сочетания половых хромосом у разных полов.
Варианты половых кариотипов в природе рассматривались нами ранее. Однако не сам половой кариотип является непосредственным фактором детерминации пола. Этим фактором служит стартовый сигнал, воспринимаемый «ключевым» геном. Одинаковые половые кариотипы могут участвовать в разных механизмах детерминации. Таких механизмов в природе встречается множество. У высших животных процессы формирования пола проходят более сложно, но единообразнее. Рассмотрим некоторые варианты детерминации пола.
У дрозофилы контролирующим сигналом является соотношение числа Х-хромосом и гаплоидных наборов аутосом. Соотношение 1 дает самок, а 0,5 – самцов. Анеуплоидия по половым хромосомам, сдвигающая это соотношение, дает либо интерсексов, либо бесплодных особей с гипертрофированными половыми признаками (сверхсамка и сверхсамец). Это открытие, сделанное американским генетиком К. Бриджесом в 1921 г., легло в основу балансовой теории детерминации пола. Ключевым геном, «улавливающим» баланс хромосом кариотипа дрозофилы(по соотношению белковых продуктов определенных генов), является ген Sxl (Sex lethal). В зависимости от баланса хромосом ген Sxl экспрессируется по-разному, и сложные каскады других регуляторных генов расходятся в направлении мужского или женского пола.
Широко представлена в природе, в частности у многих рептилий, и так называемая экологическая детерминация, когда пол определяется внешними условиями (температурой, продолжительностью светового дня). При этом создается впечатление независимости детерминации от генетических характеристик. Но современная биология развития рассматривает влияние внешней среды как сигнал, «включающий» или «выключающий» ключевой ген. На роль такого стартового гена-переключателя, запускающего генетические механизмы определения пола у яйцекладущих форм, претендует гипотетический фактор Testis Determining Factor (TDF). Вероятно, он кодирует белки, регулирующие экспрессию важнейших генов, участвующих в процессе детерминации пола.
У млекопитающих, имеющих одинаковые с дрозофилой половые кариотипы, мы видим другой механизм детерминации пола, в котором основное значение имеет наличие Y-хромосомы. Она направляет развитие в сторону мужского пола при любом количестве Х-хромосом.
Определяющую роль в процессе детерминации пола у млекопитающих в настоящее время придают гену SRY (Sex determining region Y gene) Y-хромосомы. Эта роль была продемонстрирована в случаях инверсии пола у XX-самцов, содержащих транслоцированный участок с SRY-геном. Ген SRY запускает каскадные процессы дифференциации пола. Однако процессы детерминации пола у млекопитающих проходят на многих уровнях, с привлечением большого числа взаимодействующих генов. Кроме гена SRY, в них участвуют другие регуляторные гены (около двух десятков), формирующие многочисленные «каскады». Некоторые из этих генов при повышенной экспрессии способны преодолеть стартовый сигнал гена SRY и перенаправить развитие пола. Таким эффектом обладает, например, Х-сцепленный ген Dax, вызывающий при дупликации инверсию пола, что было обнаружено у ХY-самок. Наибольшее значение в формирующихся каскадах играют геныDMRT 1, Dhh, ген Tas, локализованный у мышей на аутосоме 17, ген Sox-9. Некоторые гены, участвующие в детерминации пола, экспрессируются только у самок и предположительно репрессируются у самцов геном SRY.
Эти наблюдения показывают, что в процессах детерминации пола млекопитающих задействованы не только гены Y-хромосомы, но и гены Х-хромосомы и аутосом. Существует, например, белковый фактор SF-1 – регулятор генов для всех ферментов синтеза стероидов, к которым относятся половые гормоны. Дефект гена SF-1 может привести к отсутствию дифференцированных гонад у обоих полов независимо от кариотипа.
Таким образом, при детерминации пола особенно трудно провести четкие временные границы. Можно добавить, что до сих пор во многом не ясно соподчинение генетических механизмов детерминации.
14.2. Дифференциация пола
Дифференциация пола – это процесс формирования морфофизиологических и поведенческих различий между полами в онтогенезе. Она представляет собой цепь закономерно сменяющих друг друга этапов, причем каждый последующий этап основывается на предыдущем.
Несмотря на разнообразие вариантов у разных животных, принципиальная схема дифференцировки весьма консервативна и представляет определенную последовательность событий. Необходимо отметить, что развитие в направлении женского организма – это «нормальная судьба» зиготы. Для развития в мужском направлении необходимы особые «переключатели», подавляющие самодифференциацию в женском направлении. В онтогенезе млекопитающих можно выделить 3 основных этапа дифференцировки.
На 1-м этапе на основе детерминации пола происходит дифференциация гонад.
На 2-м этапе дифференцированные гонады выделяют гормоны, которые активируют гены, обусловливающие половую дифференциацию фенотипа и мозга.
На 3-м этапе вследствие дифференциации мозга и процессов социализации формируется половое поведение.
Дифференциация гонад. У эмбриона млекопитающих происходит закладка бисексуальной системы эмбриональных гонад и двух пар половых протоков – мюллеровых и вольфовых каналов. Под действием гена SRY эмбриональные гонады преобразуются в семенники, а в случае отсутствия этого гена – в яичники.
После дифференцировки эмбриональных гонад в семенники они начинают выделять гормоны – тестостерон и антимюллеровский гормон (АМН). АМН обусловливает дегенерацию мюллеровых каналов. Тестостерон обусловливает преобразование вольфовых каналов в семявыносящие протоки и придатки яичек; его можно считать вторым «главным переключателем», так как он является важнейшим фактором маскулинизации. Кастрированные на ранних стадиях зародыши развиваются по женскому типу, независимо от кариотипа.
При дифференцировке эмбриональных гонад в яичники не происходит выделения тестостерона и АМН. Это сопровождается запрограммированным преобразованием мюллеровых каналов в женскую проводящую систему, состоящую из матки и яйцеводов. Воль-фовы каналы дегенерируют.
Дифференциация гамет. Дифференциация гамет – процесс преобразований первичных половых клеток (ППК, или гоноцитов) в мужские (сперматогонии) или женские (оогонии) половые клетки. Этот процесс независим от дифференциации гонад и определяется половым кариотипом.
Давно доказано внегонадное происхождение первичных половых клеток позвоночных. У млекопитающих они образуются в эктодерме желточного мешка, откуда мигрируют вначале к задней части зародыша, а затем – в область закладки гонад. Во время своего «путешествия» ППК делятся. После дифференцировки гонад ППК также дифференцируются и превращаются либо в сперматогонии, либо в оогонии, в зависимости от пола гонад.
Процессы дифференциации гамет и гонад являются примером такого явления как автономность развития частей единой структуры. Это типично для процессов онтогенеза: другим примером может служить независимость формирования индуктора и компетентной ткани. Целостность морфогенеза достигается синхронизацией событий. В случае десинхронизации обычно наблюдаются различные пороки развития.
Фенотипическая половая дифференциация. Развитие вторичных половых признаков у млекопитающих контролируется многими генами. Одним из основных является ген Tfm, локализованный на Х-хромосоме. Это ген рецептора андрогенов. Его регуляторные белки, связываясь с тестостероном, активируют гены, необходимые для дифференцировки по мужскому типу.
Локализация гена Tfm на Х-хромосоме показывает, что клеточные рецепторы тестостерона должны быть как на XX-, так и на ХY-кариотипах. Поэтому введение тестостерона в зародыши XX вызывает развитие вторичных половых признаков самца. Однако отсутствие гормона АМН у таких зародышей приводит к развитию как женских, так и мужских половых путей и формированию гермафродитизма.
В результате половой дифференциации формируются:
Первичные половые признаки – морфофизиологические характеристики половой системы у разных полов.
Вторичные половые признаки – морфофизиологические характеристики фенотипов разных полов, не относящихся к половой системы.
Степень различия между полами по вторичным половым признакам получила название половой диморфизм.
Гермафродитизм – это направление в процессах дифференциации пола, приводящее к формированию организмов с признаками обоих полов.
Половая дифференциация мозга и поведения. Главным фактором маскулинизации мозга и опосредуемого им поведения является также тестостерон. Опыты на животных показали, что самцы, кастрированные на ранней стадии, демонстрируют поведение, характерное для самок.
Для маскулинизации мозга тестостерон должен воздействовать в особые чувствительные критические периоды онтогенеза, причем его отсутствие в это время не может быть компенсировано в дальнейшем. Именно своевременное воздействие этого гормона закладывает базовые основы полового поведения.
Если формы полового поведения у беспозвоночных обычно стереотипны и жестко детерминированы, то у высших позвоночных они демонстрируют широкий диапазон индивидуальной изменчивости под влиянием сообщества и научения. Многочисленные работы этологов показали роль импринтинга, изоляции, общения с матерью и сородичами в последующем формировании полового поведения у птиц и млекопитающих. У млекопитающих особое значение имеет контакт с матерью. Однако, даже выращенные с матерью, но в изоляции от сверстников самцы, часто оказываются неспособными к спариванию, к установлению коммуникаций.
Половая социализация – это процесс формирования моделей полового поведения в ходе постнатального развития.
Для социальных животных возможность спаривания самым тесным образом связана с их положением в группе, поэтому процесс социализации приобретает важнейшее значение. На протяжении постнатального онтогенеза половая социализация может представлять особый, длительный и многоэтапный процесс, где каждый последующий этап зависит от предыдущего и где имеются свои критические периоды.
Необычайно широк репертуар полового поведения у человека вследствие влияния разнообразных факторов культуры.
В процессах дифференциации, как и детерминации, особое значение имеет понятие критического периода. Каждый этап дифференциации пола происходит только в определенный период развития организма. Если такой критический период пропущен, т. е. в необходимое время запускающие сигналы отсутствовали, то последствия обычно необратимы. Поскольку разные этапы дифференцировки запускаются различными пусковыми механизмами и в разное время, то в онтогенезах наблюдаются многочисленные варианты отклонений. Особенно часто такие отклонения встречаются при формировании половых признаков и полового поведения.
14.3. Формирование пола у человека
В настоящее время начинает складываться целостная картина формирования пола в онтогенезе человека. Однако для полного понимания предстоит выяснить еще многое в механизмах реализации его генетической программы.
У человека в зависимости от кариотипа ХY или XX происходит формирование зародыша мужского или женского пола. Как и у других млекопитающих, решающее значение в детерминации пола у человека имеют гены, локализованные на Y-хромосоме.
Анеуплоидные кариотипы XXY, XXXY (синдром Клайнфельтера), развиваются по мужскому типу с образованием семенников (без сперматогенеза). У человека даже описан кариотип XXXXY – и в этом случае развитие идет по мужскому типу (непонятно происхождение подобного кариотипа). Наоборот, кариотип Х0 (синдром Тернера) формирует женский фенотип. Данные кариотипы, хотя и жизнеспособны, но имеют многочисленные нарушения, в том числе и половых признаков.
Транслокации гена SRY с Y-хромосомы на Х-хромосому наблюдались и у человека при изучении генетических патологий – мужчин XX и женщин ХY. Ген SRY человека был идентифицирован в 1990 г. как небольшой ген короткого плеча Y-хромосомы. Он не имеет интронов и кодирует белок размером в 204 аминокислоты. Белок, специфически связываясь с ДНК, выполняет регуляторную функцию.
Половая дифференцировка гонад у человека происходит на 6–7-й неделе развития плода, точные механизмы этого критического момента до конца не выяснены.
У человека известна мутация гена Tfm – синдром тестикулярной феминизации. Несмотря на мужской кариотип ХY и достаточный уровень тестостерона, «переключения» на маскулинизацию не происходит, так как клетки оказываются нечувствительны к действию тестостерона и развитие идет по женскому типу. Такие особи имеют типичный женский фенотип, однако вместо яичников у них развиваются семенники. Секреция семенниками гормона АМН приводит к дегенерации мюллеровых каналов, поэтому не формируется женская половая система, отсутствуют матка и яйцеводы, влагалище заканчивается слепо.
Можно предположить, что формирование половых признаков у человека, вида с выраженным половым диморфизмом, контролируется множеством генов. В своем большинстве это гены аутосом, общие для обоих полов. Различная экспрессия этих генов у разных полов получила в генетике название наследственности, ограниченной полом.
Половая дифференцировка мозга у человека приходится на 5–6-й месяц внутриутробного развития. Хотя неоднократно публиковались данные о морфологических различиях мозговых структур женщин и мужчин (а также гомосексуалистов), до сих пор неизвестно, как соотносятся эти различия с половыми различиями психики. Эти различия у человека выражаются различием моделей поведения, психических особенностей, когнитивных процессов (в психологии нашел применение термин «половой дипсихизм»).
Важным мозговым центром регуляции поведения у человека является гипоталамус. Именно на него в первую очередь действует тестостерон. К половому поведению у человека имеет отношение также височная и лобные доли большого мозга, причем обращает на себя внимание тесная связь нервных центров, регулирующих оральные и генитальные реакции. Возможно, эта связь опосредована обонянием и является нашим филогенетическим наследием.
Интенсивное гормональное воздействие в пубертатный период является заключительным этапом дифференциации пола у человека как для фенотипической дифференциации, так и для полового поведения.
Гермафродитизм у человека выражается в проявлении у особи признаков обоих полов. В медицине принято разделять понятия истинного гермафродитизма (особь имеет гонады обоих полов) и ложного гермафродитизма (особь имеет гонадыодного пола).
Причиной гермафродитизма могут быть различные генетические аномалии, сбои тонкой системы дифференциации гонад и гормональной регуляции, тератогенные факторы. В случае анеуплоидии или мозаицизма по половым хромосомам (XXY, XX/ХY, XX/XXY и т. д.) они четко выявляются при цитогенетическом анализе. Хотя многие гермафродиты имеют женский кариотип XX, генетический фактор может быть представлен различными мутациями, не всегда легко идентифицируемыми.
В прошлом во многих культурах интригующий феномен гермафродитизма (в связи с незнанием его биологической природы) пытались объяснить с сакральной или философской точки зрения. Сейчас в большинстве случаев причины гермафродитизма понятны. Отмечается тенденция (как и в отношении других половых патологий) к неуклонному увеличению частоты этой аномалии – в той или иной степени она встречается у 2 % новорожденных.
Половое поведение человека, имея биологическую основу, претерпело особенно значительное влияние культурных факторов в ходе антропогенеза. Хотя половое поведение животных характеризуется сложным репертуаром, весьма разнообразно, часто избирательно, все же некоторые понятия в строгом смысле мы можем применить только к человеку.
Сексуальная ориентация – половое влечение к представителям того или иного пола. У человека это понятие приобретает не только физиологическую, но и психологическую окраску.
Половая идентификация – ощущение принадлежности к определенному полу. Это явление исключительно «человеческое», невозможное вне рамок культурных традиций.
Издавна особое внимание привлекали отклонения этих составляющих полового поведения – гомосексуализм как отклонение сексуальной ориентации и транссексуализм как отклонение половой идентификации. Изучение данных явлений – прерогатива сексологии, где накоплен гигантский массив наблюдений. Однако, несмотря на это, мы не можем констатировать заметный прогресс в понимании таких явлений. Неясна и роль биологических факторов в этиологии гомосексуализма и транссексуализма. Весьма далекое отношение к науке имеют психоаналитические спекуляции по данной проблеме. Интересные интерпретации дает новое направление – эволюционная психология, где показана роль фактора стресса.
Безусловно, биологический фактор играет решающую роль в формировании таких отклонений, но этот фактор нельзя понимать упрощенно. Не существует особых генов гомосексуализма и транссексуализма (о чем уже говорилось выше), хотя и существуют гены, предрасполагающие к патологизации в этих направлениях. Основная причина роста подобных явлений – негативное воздействие факторов цивилизации на сложные, многоэтапные, отшлифованные эволюцией процессы формирования пола. Увеличение количества сексуальных отклонений в XX в. объясняется прогрессирующим давлением стрессогенных факторов на всех этапах половой дифференцировки. Слишком часто какой-либо генотип не выдерживает «испытание на прочность». Вспомним, что где тонко, там и рвется. В полной мере это относится и к половому поведению человека. Организм – целостная система. Вряд ли можно выделить специфические для полового поведения негативные воздействия в том массированном давлении, которому подвергается «природа» человека в условиях мегаполиса. Учитывая образ жизни современного «цивилизованного» человека, к сожалению, можно предсказать дальнейшее увеличение частоты патологий, которые услужливые интерпретаторы массовой культуры объявят «вариантами нормы».
14.4. Некоторые вопросы теории формирования пола
Биология развития является в настоящее время интенсивно развивающейся наукой. Конечно, в ней остается множество нерешенных вопросов по проблеме формирования пола. Однако немало интересных загадок природы уже разгадано наукой.
Интересной особенностью немногочисленных генов Y-хромосомы, в том числе генов, участвующих в детерминации пола, является наличие похожих гомологов на Х-хромосоме. Это открытие породило новые гипотезы детерминации пола. Некоторые из таких генов-гомологов характеризуются тканеспецифичной экспрессией в начале онтогенеза. Так, гомолог «главного» в детерминации пола гена SRY на Х-хромосоме – ген Sox-3 – характеризуется экспрессией в клетках нервной системы в раннем эмбриогенезе (Корочкин Л. И., 2002). Вероятно, Х– и Y-хромосомы, имеющие общие области гомологии, единого эволюционного происхождения. Анализ генетических преобразований генотипа и кариотипа представляет интересную страницу эволюционной биологии.
Хотя человека можно отнести к видам с четким половым диморфизмом, в природе встречаются значительно более контрастные случаи диморфизма. Классическим примером может служить морской червь бонеллия (Bonellia viridis), у которого самка длиной около 1 м, а самец – около 1 мм. У некоторых глубоководных рыб самцы прикрепляются к телу несравненно более крупных самок, дегенерируют и превращаются в придаток с семенниками на ее теле. У них соединяются кровеносные системы, самец получает питание из крови самки.
Но даже в таких крайних случаях мы можем констатировать, что яйцеклетка обладает двумя потенциями развития – в направлении мужского или женского организма. Направление в сторону мужского организма осуществляется по единому принципу – при помощи особых «переключателей». В природе имеются различные системы переключателей, например, химические (как у бонеллии), генные (как у человека).
У животных мы можем наблюдать влияние внешних факторов на частоту рождения самцов. У человека при рождении приходится 105 мальчиков на 100 девочек. В дальнейшем, в связи с большей «жизнестойкостью» женщин, соотношение полов изменяется и в старческом возрасте составляет 1: 2. Каково соотношение полов при оплодотворении? Учитывая значительное превышение мужских кариотипов при спонтанных абортах, можно предположить, что число мужских зигот значительно превышает число женских.
Наблюдается общее уменьшение плодовитости у человека в течение исторического периода. Вероятность оплодотворения без предохранения у человека составляет не более 15–20 %, тогда как у животных – 70–80 %. К этому следует добавить огромное число бесплодных супружеских пар с тенденцией к его неуклонному увеличению. У животных неоднократно регистрировались явления снижения рождаемости и плодовитости в случае перенаселенности. Каков биологический механизм таких явлений? Не являются ли такие примеры ярким подтверждением гипотезы саморегуляции численности популяции, описанной ранее? В случае ее подтверждения расплата за игнорирование законов природы может поставить человечество перед проблемами, решать которые ему еще не приходилось.
Список «вопросов без ответа» можно продолжать. Даже самые первые этапы детерминации пола ставят перед учеными многочисленные загадки. Еще больше загадок преподносят заключительные этапы формирования пола и полового поведения. Хотя успехи молекулярной генетики впечатляют, пока сделаны только первые шаги в изучении тонких генетических механизмов. Это область больших открытий науки будущего!