Генетика человека с основами общей генетики. Учебное пособие

Курчанов Николай Анатольевич

Глава 7. Генная инженерия

 

 

Генная инженерия – это совокупность методов получения генов и переноса генетической информации из одних организмов в другие. В самом общем виде генно-инженерный процесс представляет собой различные операции над рекомбинантными ДНК, т. е. молекулами, объединяющими ДНК разных видов (Уотсон Дж. [и др.], 1986). Несмотря на разнообразие используемых подходов, в этом процессе мы можем выделить определенную последовательность этапов.

 

7.1. Выделение генов

Возможно использование нескольких путей выделения генов. Каждый из них имеет свои достоинства и недостатки.

Химический синтез генов, т. е. синтез нуклеотидов с заданной последовательностью, соответствующей одному гену, впервые был осуществлен в лаборатории Г. Кораны в 1969 г. (Agarwal К. [et al.], 1970). Это был ген аланиновой т-РНК дрожжей размером в 77 п. н. В то время это было выдающееся достижение науки. Еще более значительным событием стал искусственный синтез гена тирозиновой т-РНК, проведенный тем же исследователем в 1976 г. Этот ген включал области промотора и терминатора, а главное, он был биологически активен, т. е. работал при введении в клетку.

Уже в 1980-е гг. были успешно синтезированы функционально активные гены инсулина, соматостатина, интерферона. Прогресс в этой области позволил разработать специальные автоматы для синтеза ДНК определенной последовательности.

Получение отдельных генов из молекулы ДНК из природного генетического материала впервые осуществил Дж. Беквит в 1969 г. (Beckwith J., Zipser D., 1970), выделив гены лактозного оперона E. coli.

Главную роль в этом методе играют ферменты рестрикции (разрезания ДНК) – рестриктазы. Такие ферменты синтезируются практически всеми бактериями. Они относятся к группе ферментов-эндонуклеаз, которые делают разрезы в молекуле ДНК. Разные рестриктазы всегда разрезают ДНК в определенных местах – сайтах рестрикции, которые они способны узнавать. Собственная ДНК организма, продуцирующего рестриктазу, обычно модифицирована по участку узнавания, чтобы предотвратить саморасщепление. Модификация осуществляется посредством включения в ДНК бактерии модифицированных азотистых оснований особой ферментативной системой модификации. Ферменты рестрикции и модификации представляют собой единую систему. Эта система является своеобразным барьером, предохраняющим клетку от проникновения чужеродного генетического материала и включения его в собственный геном. Структура многих сайтов рестрикции-модификации в настоящее время расшифрована.

Ферменты бактериальной клетки могут модифицировать ДНК внедрившегося фага еще до того, как его атакуют рестриктазы. В этом случае фаговая инфекция приведет к лизису клетки, а все потомство такого фага будет содержать также модифицированную ДНК. Оно будет способно заражать другие бактерии с такой же системой репарации.

К 1977 г. А. Максамом, У. Гилбертом и Ф. Сэнджером (Gilbert W., 1981; Sanger F., 1981) были разработаны специальные методы определения нуклеотидных последовательностей ДНК, которые получили название секвенирование (от англ. sequence – последовательность). Эти методы сыграли судьбоносную роль в становлении геномики и генной инженерии. Методы секвенирования основаны на создании набора одноцепочечных фрагментов ДНК, оканчивающихся определенным нуклеотидом, для чего используются специфические рестриктазы. Разработаны разные методические подходы секвенирования и способы выделения набора фрагментов. В настоящее время высокий уровень технического оснащения сделал секвенирование достаточно рутинной лабораторной работой.

Синтез генов путем обратной транскрипции первоначально представлялся наиболее перспективным. Если известна хотя бы часть первичной структуры нужного белка, то можно синтезировать коллинеарную часть соответствующего гена. Такие участки получили название ДНК-зондов. Их применяют для поиска м-РНК, имеющей комплементарный им участок. Выделенную с помощью зонда м-РНК можно использовать для синтеза комплементарной ДНК (к-ДНК) путем обратной транскрипции. После синтеза одной цепи с помощью ДНК-полимеразы можно синтезировать вторую цепь.

Большим недостатком этого метода является отсутствие регуляторных элементов в синтезированных генах, необходимых для экспрессии. К тому же часто к-ДНК является упрощенной копией гена, поскольку содержит только его кодирующую часть, т. е. экзоны (без интронов).

 

7.2. Создание рекомбинантной ДНК

Для переноса необходимого генетического материала используются особые структуры, способные переносить чужеродную ДНК в клетку-реципиент – векторы. Еще в начале развития генной инженерии векторы получили название «молекулярное такси». В качестве векторов могут использоваться два вида структур, содержащих ДНК: плазмиды и вирусы. ДНК вектора разрезают теми же рестриктазами, которые использовались для экзогенной ДНК.

Рестриктазы, обычно используемые в генной инженерии, разрезают обе цепи ДНК в симметричных точках палиндромов – коротких участков ДНК, в которых запись нуклеотидов слева направо в одной цепи аналогична записи справа налево другой цепи. Так, первая рестриктаза, которая нашла широкое применение, EcoR1, узнает последовательность GAATTC. Участок цепи ДНК она всегда разрывает между точками G и А.

Поэтому фрагменты ДНК, полученные при помощи этой рестриктазы, всегда несут на своих концах одноцепочечные участки ААТТ и ТТАА, комплементарные друг другу. Такие участки получили название «липкие концы», поскольку они позволяют любые фрагменты ДНК, полученные при помощи одной рестриктазы, соединять друг с другом. Это свойство и используется для соединения полученной ДНК и ДНК вектора.

Каждая рестриктаза узнает свою специфичную последовательность. Некоторые рестриктазы дают «липкие концы», другие – «тупые концы», воздействуя на связи, расположенные точно друг против друга. «Тупые концы» можно превратить в «липкие», присоединив искусственно синтезированные последовательности, узнаваемые определенной рестриктазой, – линкеры. Они позволяют клонировать любые фрагменты чужеродной ДНК безотносительно к специфичности сайтов рестрикции. Иногда к «тупым концам» присоединяют (при помощи фермента терминальная трансфераза) комплементарные «хвосты» – поли (А) и поли (Т).

 

7.3. Введение рекомбинантной ДНК в клетку

К настоящему времени сконструировано множество типов векторов на основе разнообразных плазмид и вирусов.

Плазмиды являются основным материалом векторов. Геном плазмид представляет собой кольцевую ДНК и имеет систему контроля репликации, которая поддерживает их количество в бактериальной клетке на определенном уровне. Многие плазмиды несут гены, обусловливающие устойчивость к антибиотикам.

На первых этапах генной инженерии применяли естественные плазмиды бактерий. Сейчас создают искусственные (рекомбинантные) плазмиды со стандартными свойствами. Они обычно содержат один сайт рестрикции к какой-либо одной рестриктазе, несут два гена устойчивости к разным антибиотикам и имеют ослабленный контроль репликации. Контроль репликации, свойственный природным плазмидам, ограничивает число плазмид в клетке. Обычно бактериальная клетка имеет 20–30 плазмид, но ослабленный контроль репликации позволяет накапливать в клетке более 1000 плазмид.

Разрыв ДНК плазмиды в сайте рестрикции превращает ее в линейную молекулу. Если той же рестриктазой была разрезана и чужеродная ДНК для выделения нужного гена, то этот ген можно «сшить» с плазмидной ДНК по одинаковым «липким концам» (рис. 7.1).

Рис. 7.1. Плазмида-вектор с встроенной экзогенной ДНК

Полученная гибридная (или химерная) плазмида будет представлять собой рекомбинантную ДНК. Гибридная плазмида может существовать в бактериальной клетке долгое время. Она реплицируется так же, как и исходная плазмида. Обычно встроенная чужеродная ДНК не влияет на свойства бактерий.

Единственные известные в природе эукариотические плазмиды обнаружены у дрожжей. В генной инженерии были «сконструированы» особые плазмиды, способные существовать в клетках как бактерии E. coli, так и дрожжей Saccharomyces cerevisiae. В этом случае один и тот же вектор может быть использован с двумя хозяевами.

Явление переноса генетической информации при помощи вирусов называется трансдукцией и встречается в живой природе.

В генной инженерии наиболее широко применяется фаг ë. ДНК фага представляет собой линейную молекулу, поэтому один разрыв рестриктазой приводит к образованию двух фрагментов. Эти фрагменты сшивают с чужеродной ДНК, в результате чего образуется химерный фаг. Этот фаг должен пройти цикл литической инфекции для накопления достаточного количества встроенной ДНК.

Размер встраиваемой ДНК не должен превышать 10 % генома фага, иначе он не поместится в капсид. Для решения этой проблемыу фага-вектора удаляют часть собственной ДНК, оставляя только необходимые гены.

В последнее время разработаны тонкие методы введения экзогенной ДНК в клетки-реципиенты при помощи микроинъекций.

Экспрессия чужеродного генетического материала в клетке-реципиенте представлялась наиболее трудной задачей на заре становления генной инженерии.

Накопление необходимого количества ДНК, при использовании как вирусных, так и плазмидных векторов происходит в бактериальной клетке-хозяине. Обычно эукариотические гены в бактериальной клетке не экспрессируются. Для преодоления этого барьера разработаны различные подходы.

В последние годы большое значение приобрел новый метод – полимеразная цепная реакция (ПЦР), позволяющий размножить любой интересующий исследователя фрагмент ДНК. Для этого используются специфические праймеры (затравки) длиной 18–20 нуклеотидов и термостойкие ДНК-полимеразы. ПЦР позволяет увеличить количество ДНК любого участка в сотни раз.

Для транскрипции эукариотического гена в бактериальной клетке он должен быть помещен под контроль бактериального промотора. Это достигается встраиванием либо кодирующей последовательности эукариотического гена в структуру оперона (причем рядом с промотором), либо бактериального промотора в вектор.

Для трансляции синтезированной чужеродной м-РНК были сконструированы векторы, в которых сайт рестрикции находится рядом с участком связывания рибосомы (за промотором), а вставка начинается со стартового кодона.

При трансформации эукариот посредством ДНК бактерий необходимо учитывать, что репликаторы бактериальной клетки в эукариотической клетке не работают. Для преодоления этого барьера введенная ДНК должна быть интегрирована с хромосомой, что значительно легче осуществить у микроорганизмов. Хорошую модель такого процесса мы можем наблюдать в природе. Было показано, что причиной опухолей некоторых растений является бактериальная Ti-плазмида длиной около 200 000 п. н. Эти плазмиды проникают в клетки растений, часть ДНК Ti-плазмиды (Т-ДНК) встраивается в хромосомы растений и вызывает образование опухолей, нарушая баланс фитогормонов. С помощью Ti-плазмиды были проведены различные эксперименты на растениях (Инге-Вечтомов С. Г., 1989).

В настоящее время многие барьеры, препятствующие первым исследованиям, преодолены. В бактериальном геноме экспрессируются введенные гены человека (инсулина, интерферона, гормона роста и др.). Успешно вводятся чужие гены, в том числе и человека, в геномы животных. Чужеродный ген, введенный в клетку какого-либо организма, получил название трансгена. Животных, носителей такого гена, называют трансгенными. Генная инженерия породила целую новую индустрию – биотехнологию.

 

7.4. Социальное значение генной инженерии

Генная инженерия ведет отсчет своей истории с работы П. Берга по созданию рекомбинантной ДНК вирусного и бактериального геномов в 1972 г. (Berg Р., 1981). За прошедшие 30 с лишним лет произошли изменения, сравнимые с промышленной революцией. Современная жизнь уже немыслима без биотехнологии. Но, как и все крупномасштабные явления, генная инженерия породила немало проблем. Проблемам, поднимаемым генной инженерией, посвящены сотни книг. Поэтому, не вдаваясь в подробности столь многогранной темы, перечислим некоторые «узловые» моменты дискуссий вокруг нее.

Проблема генетически модифицированных продуктов активно обсуждается в прессе. С самого начала исследования по «производству» трансгенных организмов встретили враждебное отношение, а первое растение (трансгенная земляника) была уничтожена разгневанными противниками. В разных городах и странах и ныне проходят митинги и демонстрации протеста. Сторонники генетически модифицированных продуктов выступают с альтернативными аргументами. Ажиотаж вокруг споров в большой степени базируется на неграмотности широких масс в вопросах генетики. Этим ловко пользуются конкурирующие фирмы, шумно запуская в прессу несуразные «страшилки», одновременно преподнося свою продукцию как «экологически чистую».

Другая давняя тема – создание нового биологического оружия. Проблема болезнетворных микроорганизмов с новыми свойствами, по каким-либо причинам оказавшихся вне лаборатории, была основной темой воззвания к ученым всего мира «комитета Берга» в 1973 г. и Международной конференции в Асиломаре (США) в 1975 г. Возможности современной генной инженерии несоизмеримы с ее возможностями того времени. Вопрос, как будут использованы научные достижения – от самой науки никогда не зависел.

Существует также проблема непредсказуемых результатов. Так, в свое время введение чужого гормона роста лососю, не только имело обратное действие, но и сопровождалось целым рядом патологий. Фактор устойчивости, введенный в культурное растение, может быть посредством плазмид перенесен в сорняки, что приведет к катастрофическим последствиям. Сам фактор устойчивости только стимулирует к эволюционным изменениям новых патогенных форм, против которых трансгенные организмы будут беззащитны.

Трансгенные растения, а в будущем и животные могут нанести непоправимый удар по сбалансированным эволюцией экосистемам. Жизнь на Земле зависит от всего биологического разнообразия, нарушение которого представляет огромную опасность.

Биотехнологию с первых шагов ее развития сопровождает «Господин Большой Бизнес», направляя в исследования свои финансовые потоки. Биотехнология и сама превратилась в доходный бизнес со всеми его негативными атрибутами. Конкуренция толкает фирмы к осуществлению в рекламных целях самых абсурдных проектов.

Проблема клонирования человека и создания «склада запасных органов» столь давно муссируется в прессе, что добавить уже нечего. В настоящее время во многих странах эксперименты по клонированию человека запрещены, и нарушителям грозит тюремное заключение от 5 до 20 лет. Но всем понятно, что никакие запреты не смогут помешать, если есть спрос. Клонирование человека – дело ближайшего будущего.

Стратегия запретов практически неприменима из-за невозможности провести «этическую границу» исследований. Даже при клонировании тканей в терапевтических целях необходим этап выращивания человеческого эмбриона с целью получения его клеток. Это многие рассматривают как убийство потенциального человеческого индивида. Особое негодование такие эксперименты вызывают в религиозных кругах. На наших глазах рождается новая область права – «юридический статус зародыша». Как экзотику можно вспомнить выступление общественности США против употребления в пищу мяса трансгенных коров со встроенными генами человека. Активисты выступлений сравнивали поедание такого мяса с каннибализмом (Кусакин О. Г., Дроздов А. Л., 1994).

Такие разделы, как генная диагностика и генная терапия, породили свои этические проблемы. Главная из них – допустимость информированности больного и его родственников о неизлечимом недуге. Поскольку многие болезни носят вероятностный характер, допустимо ли информировать больного о степени риска? Какова степень доступа государственных служб и работодателей к генетическим сведениям о гражданине?

Успешное завершение проекта «Геном человека» открывает новые перспективы в развитии генной инженерии. То, что еще недавно относилось к области научной фантастики, на наших глазах становится реальностью. Столь стремительное развитие науки затрудняет перспективное прогнозирование. Современные актуальные проблемы заслоняют проблемы отдаленного будущего. Например, нет никаких принципиальных теоретических барьеров для создания в будущем генотипа ребенка «по заказу» родителей. Но все ли в полной мере представляют последствия этой возможности?

Вышеперечисленные примеры представляют только малую долю тех проблем, которые породила генная инженерия. Всякое явление по своей сути амбивалентно. Как убеждает нас история, вроде бы очевидные достоинства какого-либо внедрения неизбежно имеют негативные последствия. То же относится и к генной инженерии. Проблемы, порожденные ею, человечеству предстоит решать в ближайшее время.