De rerum natura
Для современной эпохи характерно сближение самых общих гносеологических задач науки с ее прикладными задачами. Поиски общего ответа на вопрос о природе вещей приобретают непосредственное значение для экономического развития, для его ускорения. В круг практически необходимой информации, создающей ноозоны, повышающей негэнтропийную упорядоченность мира, входит информация о все более общих закономерностях мира. Вместе с такой информацией в число непосредственных факторов прогресса входят идеалы науки.
Будем рассматривать науку с чисто гносеологической стороны, не касаясь ее практических целей, как процесс объяснения наблюдаемых явлений. Это слово — «объяснение» — меняет свой смысл, никогда не сводясь к феноменологическому указанию на ближайшие другие явления и никогда в действительности не включая последней причины явлений. Изменение смысла «объяснения» связано с изменением научного идеала. «Идеал» — это имманентный импульс развития науки, то, к чему стремится наука. Позже, в конце этой части книги, в особом очерке, речь будет идти о проблеме цели в науке, о науке как целесообразной деятельности, о связи науки с целесообразным преобразованием мира. Здесь же речь идет о внутренних имманентных импульсах, о научных идеалах.
Каждая эпоха в науке характеризуется некоторыми идеалами физического объяснения природы. Эйнштейновское «внутреннее совершенство» физических теорий измеряется связью этих теорий с универсальными принципами такого идеального объяснения. Прогноз на 2000 г. должен ответить на вопрос: к какому идеалу научного объяснения будут стремиться в последние десятилетия нашего столетия? Когда речь идет о фундаментальных исследованиях, мы можем очень мало сказать о предвидимых результатах, но направление этих исследований видно яснее, оно определяется современным идеалом науки, который сейчас вырисовывается все отчетливей.
Современный идеал науки отличается от классического идеала не только своим содержанием, но и своей явной динамичностью. Современная наука видит в том идеале научного объяснения мир, к которому она стремится, нечто меняющееся уже на глазах одного поколения. Чтобы сформулировать современный идеал научного объяснения, его следует сравнить с теми идеальными схемами, которые определяли в прошлом стиль и направление научной мысли.
В прошлом наука всегда искала объекты, существование и поведение которых в последнем счете объясняют все происходящие в природе процессы. В греческой натурфилософии появились две концепции: мир подобен воде и мир подобен песку. Первая, континуальная, концепция считала реальной основой явлений изменения, деформации и смещения частей непрерывной субстанции. Этим частям приписывали различные качественные предикаты либо считали субстанцию гомогенной. Вторая, атомистическая концепция по большей части выдвигала в качестве кирпичей мироздания движущиеся дискретные части гомогенной субстанции, окруженные демокритовым «небытием» — пустым пространством.
Первоначально господство принадлежало континуально-качественному ответу на вопрос о субстанции. Аристотелевы стихии — качественно различные части непрерывной субстанции — своими сочетаниями образуют весь окружающий нас многокрасочный мир. Идеал науки — свести это многообразие к сочетаниям четырех элементов. Такой взгляд продержался до XVII в. Другой ответ на вопрос о субстанции — атомистика. Идеал атомистики — сведение всех явлений к пространственной группировке частиц, не обладающих никакими качественными признаками. Этот ответ на вопрос о субстанции и этот идеал научного объяснения оказали колоссальное воздействие на мировую культуру, на запросы человека, познающего и подчиняющего себе природу, и даже на прогнозы, в которых наука рисует свое будущее, вплоть до современных прогнозов. Частично дошедшие до нас фрагменты Демокрита и Эпикура и сохранившийся шедевр поэтической речи и научной мысли — поэма Лукреция «О природе вещей» (De rerum natura) остались не только памятником мысли, ищущей последние начала бытия, но и импульсом, ускоряющим эти поиски. Современная мысль ищет новые фундаментальные принципы бытия, зная, что они не последние. Но это только значит, что поэма Лукреция и все, что за ней стоит, будет всегда сохранять свое «импульсное», ускоряющее значение для человеческой мысли, которая хочет знать, в чем состоит rerum natura, природа вещей.
Идеалы античной атомистики были подняты наукой XVII в. и легли в основу классического учения о субстанции и классического идеала науки. Впрочем, ответ Декарта — субстанция тождественна с пространством — исключил из картины мира пустое пространство, фигурировавшее в античной атомистике. Но это мало изменило дело. Если атомы не обладают качественными предикатами, их трудно отличить от окружающего пустого пространства. Здесь то же самое затруднение, с которым не мог справиться Декарт, не нашедший границы, отделяющей тело от окружающих тел. Его пытались устранить Лейбниц и Ньютон. Лейбниц приписал телам отличающие их от частей пространства динамические свойства. Тела обладают инерцией — они сопротивляются силам, которые стремятся изменить их состояния. Они способны влиять на состояние других тел. Части пространства лишены такой способности. В этом — отличие субстанции, разделенной на дискретные тела гомогенной материи, от пространства.
Ньютон, пользуясь понятием силы, нарисовал картину взаимодействующих тел. Все процессы в природе сводятся к перегруппировке тел и объясняются взаимодействиями тел. Найти эту подоснову всех процессов — таков классический идеал науки, то, что Эйнштейн назвал программой Ньютона.
Декарт, Лейбниц и Ньютон объясняли взаимодействием тел их поведение, положения, импульсы и ускорения. Что же касается существования тел, то оно было выведено за пределы физики и объяснялось метафизически. Только один мыслитель XVII в. хотел ввести существование тел в пределы физики. Это был Спиноза. Он рассматривал природу как причину своего собственного существования (causa sua), как нечто взаимодействующее с собой и не требующее внешней причины для своего существования. Эта идея не нашла воплощения в классической физике.
С мыслью о Всбленной, которая сама является причиной существования каждой из составляющих ее частиц, мы встретимся при изложении современных неклассических идей. Сейчас мы только отметим, что идея Спинозы находится в главном фарватере физической мысли, несмотря на то, что ей пришлось два столетия дожидаться своего физического воплощения, т. е. появления теории, которая связывает, хотя бы гипотетически, концепцию существования тел с экспериментальными наблюдениями и претендует на объяснение экспериментальных результатов, не находящих иного объяснения.
Классическая наука объясняла существование тел тем, что некоторые более простые тела сгруппировались и образовали единое тело. Его свойства объясняются структурой, составом, расположением, взаимодействиями и движениями составляющих его элементов. Но такое объяснение отсылало от одной ступени структурной иерархии мира к другой. В конце стоял ответ, выводивший существование элементарных, далее недробимых частиц за пределы физического объяснения.
Изменение положения тел, их смещение, их ускорение теряли смысл без субстанциальных свойств. Но откуда взялись эти субстанциальные свойства? На этот вопрос классическая наука не давала ответа.
Как уже было сказано, Лейбниц и Ньютон наделили вещество свойством, которое отличает его от пространства, — способностью частей вещества взаимодействовать друг с другом. Бошкович считал частицы непротяженными центрами сил. Взаимодействие позволяет физически, в эксперименте, определить массу и заряд тела. Фарадей приписал взаимодействиям субстанциальный характер. Сила — это упругая силовая трубка, а частицы — это только концы силовых трубок, особые точки силового поля. В теории Максвелла поле вовсе эмансипировалось от тел; электромагнитные силы — замкнутые ‘ вихревые линии электромагнитного поля — могут существовать и двигаться в пространстве, где нет обычных тел, обладающих массами и зарядами.
Но все эти классические ответы на вопрос о субстанции, об отличии вещества от пространства, физического существования от поведения, в сущности, не выходили за пределы поведения и не решали проблемы существования. Взаимодействие частицы с другими частицами выражается той или иной, зависящей от поля траекторией, скоростью и ускорением частицы. Теперь мы бы сказали, что взаимодействие так или иначе искривляет мировые линии взаимодействующих частиц. Но здесь мы снова приходим к уже упоминавшейся сквозной проблеме, которая появляется в связи с каждой попыткой геометризации картины мира: чем же отличается мировая линия частицы от геометрического образа, чем она заполнена, каковы негеометрические события, заполняющие мировую линию?
Ни классическая наука в собственном смысле, ни теория относительности не давали ответа на этот вопрос. А о нем задумывались давно. В сущности спонтанные отклонения частиц от макроскопически предуказанного пути — clinamen Эпикура и Лукреция — должны были гарантировать подлинное бытие атома. Эпикурейцы шли и дальше. Они говорили не только о «бунте» атома — его спонтанном отклонении, но и о попеременном уничтожении и возникновении частицы на ее пути. Александр Афродизийский писал в начале III в. н. э. об эпикурейцах, что они думают, будто «движения нет, а есть только результат движения», т. е. частица, исчезая и затем возникая в другой клетке дискретного пространства, как бы движется вперед.
Почему в книге о прогнозах на 2000 г. мы уходим на две с лишним тысячи лет назад в прошлое, к Эпикуру? Это объясняется радикальным характером прогноза на 2000 г. в области фундаментальных знаний. Чем радикальней предвидимый переход к новым представлениям, тем радикальней связанная с ним ретроспективная переоценка ценностей, тем более мощный пласт уходящих в прошлое, привычных представлений поднимает и поворачивает современная мысль. При этом она не только меняет то, что в течение тысячелетий казалось незыблемым, но и находит в прошлом недоумения, противоречия, вопросы, адресованные будущему.
В чем же состоит то новое, что позволяет сейчас переоценить самые укоренившиеся представления? В чем состоит то радикальное обновление стиля фундаментальных исследований и те новые принципы науки, которые несут в себе зародыш новой, послеатомной цивилизации? Исходная область новой научной революции — теория элементарных частиц. Это никого не может удивить. То, что в каждую эпоху кажется элементарными частицами, представляет собой наиболее фундаментальное звено концепции мира. В течение двух тысячелетий элементарные частицы назывались атомами и казались состоящими из гомогенной, бескачественной материи. Потом эти атомы разделились на протоны, нейтроны и электроны, различающиеся по массе, заряду и продолжительности жизни. Потом к ним прибавились еще новые типы частиц, их сейчас десятки, быть может сотни. Новая ступень теории элементарных частиц будет состоять в систематизации известных сейчас частиц, а также новых, которые будут еще найдены. Но эта систематизация, по-видимому, будет принципиально отличаться от таблицы Менделеева. Физическая расшифровка периодической системы была классически структурной: атомы отличаются числом и группировкой субатомов. Маловероятно, что те частицы, которые сейчас называют элементарными, окажутся структурами, состоящими из меньших частиц. Скорее, их различия предстанут перед нами как выражение различных по характеру и интенсивности связей с другими частицами, может быть, с Вселенной в целом.
В середине нашего столетия исследование космических лучей и потоков частиц высокой энергии, которую они приобрели в ускорителях, привело к значительному расширению сведений об элементарных частицах. Дело не только в том, что увеличилось число известных нам типов элементарных частиц. Это увеличение ставит перед наукой весьма фундаментальные вопросы. Они еще далеко не решены, и современный физик с двойственным чувством воспринимает быстрое расширение таблицы элементарных частиц, даже с более сложным, чем двойственное. С одной стороны, налицо почти непрерывное расширение представлений о кирпичах мироздания, т. е. фундаментальных знаний. Открытия в этой области, которые когда-то были поворотными вехами, открывавшими новые эпохи в науке или во всяком случае длительные периоды (таким было открытие первых ставших известными элементарных частиц — электрона, протона, фотона), следуют сейчас с большой частотой. Отчасти обнадеживающей и вместе с тем (в этом состоит вторая сторона дела) пугающей. Потому что чем больше различных по типу элементарных частиц, тем, по-видимому, дальше не только классический идеал — объяснение мироздания движением частиц гомогенной материи, но вообще объяснение мироздания движением его элементарных «кирпичей».
Но в данном случае есть и третья сторона дела, третья компонента того ощущения, которое индуцируется потоком все новых типов элементарных частиц. Скажем в скобках, что эти «компоненты ощущения» являются по существу прогнозами дальнейшего развития теории элементарных частиц. Так вот, третья компонента состоит в подозрении, что образ кирпичей не подходит, что мироздание не состоит из «кирпичей».
Задача настоящей главы — проиллюстрировать некоторыми условными гипотезами эту компоненту, этот прогноз дальнейшего развития науки. Речь идет не столько о физических гипотезах, сколько об историкофизических; они относятся не к предполагаемой структуре мира, а к предполагаемому появлению и развитию физических концепций. Разумеется, эти концепции в какой-то мере описывают реальную структуру мира, но все же высказанная только что оговорка имеет некоторый смысл: конкретная, историко-физическая гипотеза может быть весьма условной и тем не менее иллюстрировать действительную, уже наметившуюся тенденцию научной мысли. Здесь мы попытаемся выяснить, возможна ли такая дальнейшая эволюция фундаментальных исследований, которая не только увеличит или уменьшит число кирпичей мироздания, но и откажется от этого понятия как исходного.
Именно таким исходным понятием были кирпичи мироздания, постулировавшиеся классической наукой, включая и ее античные атомистические прообразы, и те классические конструкции, которые фигурируют в современной науке. Атомы Демокрита и их позднейшие модификации, принадлежащие Гассенди и другим мыслителям нового времени, непроницаемые тела картезианской физики, динамические центры Бошковича, заряды, фигурирующие в картине электромагнитного поля, элементарные частицы, если игнорировать их аннигиляции и порождения, — все эти конструкции отвечали на вопрос о поведении элементов бытия, а не об их существовании.
Есть основания думать, что весьма общей тенденцией дальнейшего развития науки будет уже наметившаяся тенденция, направленная к объяснению существования эмпирически наблюдаемых типов элементарных частиц, к объяснению, почему они обладают именно такими, а не иными массами и зарядами — свойствами, отличающими один тип частиц от другого.
Мы подойдем к проблеме существования частиц, обратив внимание прежде всего на массу и заряд частицы каждого типа. Игнорируя эти свойства, мы не можем отличить частицу от точки, в которой она находится в данный момент. Изменения заряда и массы — это трансмутация частицы, превращение частицы одного типа в частицу другого типа. Превращения электронно-позитронных пар в фотоны или фотонов в электронно-позитронные пары не сводятся к переходу из одной мировой точки в другую, эти процессы выпадают из картины движущихся тождественных себе частиц. Трансмутации выпадают из стиля классической физики, которая мыслила о природе с помощью пространственно-временных моделей поведения неуничтожаемых частиц. Наука возвращается к эпикурейскому представлению, изложенному Александром Афродизийским: в очень малых областях нет движения, а только «результат движения», смещение как результат аннигиляций и порождений частицы данного типа. Но слово «возвращение» не нужно понимать как повторение. Науке не нужны ни модернизация старого, ни архаизация нового. Возвращаясь назад, наука подбирает не ответы, а вопросы и отвечает на старые вопросы по-новому.
Новые возможности, позволяющие ответить на вопрос, заданный два с лишним тысячелетия назад, состоят в наблюдении сильных взаимодействий и манипулировании этими сильными взаимодействиями.
В современной физике существует представление об иерархии все более сильных взаимодействий. Мы можем здесь ограничиться двумя звеньями этой иерархии, которая начинается ультраслабым, гравитационным взаимодействием, после которого идет слабое, затем электромагнитное и, наконец, сильное взаимодействие. Электромагнитное взаимодействие — это взаимодействие всех электрически заряженных частиц с электромагнитным полем, т. е. с фотонами. Его интенсивность характеризуется неким числом V137, о природе которого было высказано немало противоречивых суждений, не приведших пока к отчетливому представлению. Мы можем приблизиться к некоторому первоначальному и совсем не строгому представлению, если будем считать это число мерой «некартезианских» эффектов взаимодействия, т. е. эффектов, несводимых к изменению поведения тождественных себе частиц. Чем больше константа, измеряющая интенсивность взаимодействия, тем меньшее время охватывает это взаимодействие и тем больше вероятность того, что оно вызовет не изменение поведения частицы, а ее превращение в частицу другого типа. Константа, характеризующая электромагнитное взаимодействие, мала. Поэтому электромагнитное взаимодействие сравнительно редко (по сравнению с сильным взаимодействием и при не очень больших энергиях взаимодействующих частиц) приводит к трансмутациям. Сильное взаимодействие характеризуется во много раз большей константой, оно происходит в течение интервала времени порядка 10-23 сек (т. е. в миллионы раз быстрее, чем электромагнитное взаимодействие, занимающее время порядка 10-15—10-17 сек) и приводит к трансмутационным актам.
Эти акты происходят, вообще говоря, когда частицы обладают очень высокими энергиями, т. е. движутся с высокими скоростями. Поэтому изучение трансмутаций частиц требует, чтобы взаимодействующим частицам придавали большие скорости. Трансмутационные акты могут происходить и в случае электромагнитного взаимодействия: если фотоны обладают высокой энергией (превышающей энергию массы покоя электрона и позитрона вместе взятых), то, несмотря на небольшое значение постоянной V137, фотоны будут превращаться в электроннопозитронные пары. Здесь соотношения теории относительности приводят не только к необходимости учитывать некоторое изменение массы, зависящее от скорости частицы. Здесь масса, соответствующая кинетической энергии, становится одного порядка и даже больше массы покоя новых частиц и переходит в массу покоя., Для возникновения новых частиц требуется, чтобы энергия имеющихся частиц превысила энергию покоя генерируемых частиц, пропорциональную их массе покоя.
Подобные процессы выходят за рамки теории относительности как учения о мировых линиях тождественных себе тел. Эти процессы следует назвать уже не релятивистскими, а ультрарелятивистскими. Переход из релятивистского мира в ультрарелятивистский — это переход от поведения тождественных себе частиц того или иного типа к существованию частицы данного типа, ее возникновению или уничтожению, т. е. к трансмутации частицы иного типа в частицу данного типа или частицы данного типа в частицу иного типа.
Это весьма радикальный переход. Если бы существование элементарной частицы данного типа объяснялось группировкой каких-то субчастиц, то перед нами оказалось бы еще одно звено классической атомистики. Существование молекулы объясняется группировкой атомов, существование атома — группировкой элементарных частиц, а теперь существование частицы — группировкой субчастиц. Все это — структурные объяснения, сводящие существование галактики, планетной системы, звезды, молекулы, атома к внутренней структуре. Структура может быть классически статической (совокупность пространственных расстояний между точно определенными в каждый момент положениями тел, составляющих данную систему); она может быть релятивистской (совокупность четырехмерных интервалов); динамической (совокупность сил, действующих между элементами); квантовой (расстояния между элементами нельзя точно определить, они определены тем менее точно, чем точнее определены взаимодействия и импульс частиц). Но, когда речь идет об элементарной частице, ее существование не сводится к внутренней структуре.
Может быть, его можно объяснить, апеллируя к сочетанию взаимодействующих частиц большей массы. В 1964 г. Гелл-Манн и одновременно с ним Цвейг высказали предположение о неких частицах очень большой массы, которые получили название кварков по имени фантастических существ из романа Джойса «Пробуждение Финнегана». Каждая из частиц, вступающих в сильные взаимодействия (таково подавляющее большинство частиц), состоит из трех кварков. Как же получается, что масса такой частицы во много раз меньше, чем масса составляющих ее кварков? Дело объясняется уже знакомым нам дефектом массы. При образовании частицы из кварков выделяется очень большая энергия и соответственно такая составная частица обладает массой, во много раз меньшей, чем масса составивших ее кварков. Если гипотеза кварков соответствует действительности, то кварки должны встречаться в свободном состоянии, хотя и очень редко. Большинство их уже «выгорело», т. е. они соединились в системы из трех кварков — известные нам частицы с различной, но всегда значительно меньшей, чем у кварков, массой.
С гипотезой кварков физика вступила на новый путь: она конструирует системы не из меньших, а из больших, чем они, элементов. Собственно, физика начала этот путь еще раньше: в 1949 г. Ферми и Янг предположили, что нуклон и антинуклон могут составить частицу значительно меньшей массы, чем у каждого из них. Как далеко можно пойти по этому пути? М. А. Марков исследовал вопрос о его границе и выдвинул понятие максимально тяжелой элементарной частицы — максимона. Это гигантские в масштабах микромира частицы. М. А. Марков предполагает, что они спрессовались в известные нам гораздо меньшие по массе частицы в результате процесса, существование которого объясняет некоторые астрономические явления. Это — гравитационный коллапс, с которым мы встретимся, когда речь будет идти о перспективах изучения космоса. Процесс этот происходит в области, где вещество спрессовано во много раз плотнее чем в атомных ядрах. В таких условиях может начаться очень быстрый, практически мгновенный процесс дальнейшего сжатия вещества, вызванный силами взаимного притяжения частиц.
Гравитационный коллапс мгновенно приводит к громадному дефекту массы, к громадной разнице между суммой масс максимонов и массой частицы, в которую их упаковывает коллапс. Но для начала гравитационного коллапса нужно, чтобы уже существовала не встречающаяся на Земле плотность вещества. Такие условия могли существовать, когда нынешняя Вселенная была спрессована в сравнительно небольшое ядро — начальный пункт ее некогда начавшегося и сейчас продолжающегося расширения. Таким образом, начальный пункт роста Вселенной совпадает с начальным пунктом генезиса современных частиц.
Эти беглые замечания о некоторых характерных для современной физики гипотезах сделаны не без умысла. Начинающийся сейчас новый этап развития теоретической физики воздействует на прогресс науки (ускоряет этот прогресс и в последнем счете вызывает возрастание ускорения производительности общественного труда) не только новыми позитивными концепциями, но и стилем научного мышления. Такая зависимость не может быть реализована без некоторой психологической эволюции, без большей пластичности познания. Мы еще не знаем, подтвердят ли эксперименты существование кварков или максимонов. Но, как бы ни было, эти гипотезы уже сейчас выполняют важную для современной цивилизации функцию: они делают психологию людей, размышляющих о природе (не только профессиональных ученых), более пластичной и этим ускоряют восприятие науки и воздействие ее динамического стиля на современную культуру. Это и оправдывает вынесение за эзотерические рамки неоднозначных и не претендующих на однозначный характер физических конструкций.
Все это сказано, чтобы подготовить читателя к новым, столь же, а может быть, и еще более неоднозначным гипотетическим конструкциям. Их смысл в том, чтобы придать относительно наглядный вид прогнозам, которые стали столь частыми в физике и в которых отражены поиски нового идеала науки. Идеала, сопоставимого с классическим идеалом — сведением rerum natura к движению тождественных себе, неисчезающих частиц, сопоставимого по общности, по охвату всей природы единой исходной концепцией. Чем дальше развивается теория элементарных частиц, тем больше вырастает убеждение в необходимости новой концепции rerum natura.
Вольтер вложил в уста Декарта обращение к богу, в котором мыслитель берется создать такой же мир, какой был создан богом, если ему дадут материю и закон ее движения. В сущности не только Декарт, но и классическая наука в целом бралась объяснить всё мироздание, если существование материи и законы движения ее дискретных элементов будут даны в качестве исходных пунктов анализа. В современной науке существуют аналогичные исходные данные. Это эмпирически установленные константы. С тех пор как физика приобрела количественный характер, с тех пор как наука не только наблюдает, но и измеряет физические процессы, идеалом научного объяснения стало сведение к минимуму чисто эмпирических констант. Уже на рубеже XVI и XVII вв. Кеплер хотел вывести средние расстояния между планетами из чисто геометрических соотношений. Он думал, что, описав правильный октаэдр вокруг сферы Меркурия и затем охватив этот октаэдр объемлющей его шаровой поверхностью, он получит сферу Венеры; затем, описав вокруг этой сферы правильный икосаэдр, он получит сферу Земли и, таким образом, используя все правильные многогранники, можно получить сферы всех планет.
Эта попытка была достаточно фантастической. Но вопрос: «почему мир именно такой, каков он есть, а не другой?» — не исчез. Во все периоды своего развития физика — и классическая и неклассическая — стремилась исключить чисто эмпирические величины, связать их с другими, объяснить их каузальным образом, превратить картину мира в самосогласованную схему, где каждая константа вытекает из общей концепции мироздания. Эйнштейн в своей автобиографии 1949 г. писал о завершении подобной тенденции, о фундаментальной физической теории, в которой вовсе не будет чисто эмпирических констант, где все константы будут вытекать из единой схемы, однозначно выражающей гармонию мироздания. В разговоре со своим ассистентом Штраусом Эйнштейн как-то спросил: «Мог ли бог создать мир иным?», т. е. могла ли каузальная гармония мироздания быть выражена другими физическими константами.
Если считать указанную тенденцию сквозной для всего развития физики, то какие же константы стали сейчас предметом наиболее напряженных поисков каузального объяснения?
В части поведения элементарных частиц современная наука добилась сравнительно упорядоченной картины. Две константы — скорость света и постоянная Планка, квант действия, — объясняют множество процессов. Но то, что мы могли бы назвать константами существования элементарных частиц, т. е. массы и заряды, характеризующие типы частиц, не только не уменьшаются в своем числе, но, наоборот, растут. Конкретная и ближайшая ступень восхождения к идеалу, нарисованному Эйнштейном, состоит в выведении спектра масс и зарядов частиц из каких-то общих постулатов, в превращении значений масс и зарядов частиц из эмпирических в теоретически осмысленные.
В этом и состоит основная задача еще не построенной единой теории элементарных частиц, в этом состоит переход от теории поведения частиц к теории их бытия. Вспоминая приведенные в начале этой главы беглые характеристики концепций XVII в., можно было бы сказать, что задача состоит в переходе от программы Декарта к программе Спинозы, к представлению о природе не только как сотворенной (natura naturata), но и творящей (natura naturans), создающей свои элементы, взаимодействующей сама с собой, о природе, которая является причиной своего существования.
Как можно, пользуясь накопленными за последние десятилетия сведениями о частицах, их взаимодействиях и трансмутациях, превратить эту программу из абстрактно-философской в конкретную физическую, т. е. в программу экспериментов? Именно на этот вопрос и должны ответить прогнозы, относящиеся к фундаментальным исследованиям. Они, эти прогнозы, явно или неявно присутствуют в тех гипотезах, которые выводят спектр масс и зарядов частиц из некоторого общего постулата. Как мы видели, в современной физике многие стремятся упорядочить разросшийся список элементарных частиц, рассматривая их многообразие как результат взаимодействия «более элементарных» частиц, может быть больших по массе. Наряду с такой тенденцией существует и другая — выведение спектра масс и зарядов частиц (а также других величин, характеризующих отличие одного типа частиц от другого) из более общих постулатов.
Таким общим постулатом может быть, по мнению Гейзенберга, нелинейный характер первичного взаимодействия, которое ответственно за существование элементарных частиц. В конце 30-х годов было написано нелинейное уравнение, описывающее взаимодействие некоторого универсального поля с самим собой. Решения этого уравнения должны были дать спектр масс различных частиц. Они являются возбужденными состояниями той «праматерии», которая взаимодействует сама с собой. Существование частицы в этой теории рассматривается как результат взаимодействия, понятие «голой», т. е. невзаимодействующей, частицы теряет здесь смысл.
Концепция Гейзенберга пока не дала однозначного результата. Единая теория элементарных частиц продолжает быть недостигнутым идеалом современной науки.
Но нелинейная концепция, по-видимому, Лежит в основном фарватере научного прогресса. Классическая картина мира рассматривала поведение частицы как нечто зависящее от существования и расположения других частиц, но эта зависимость казалась линейной. Исходное представление — заданная система заряженных частиц. Она рассматривается как источник поля. Поле действует на частицу и определяет ее поведение. Возникновение поля той или иной структуры в зависимости от расположения и движения частиц — это один процесс, одна задача, а образование кинематической схемы мироздания, расположение и движение частиц в зависимости от структуры поля — другой процесс, другая задача. Классическая физика решала их отдельно одна от другой. Можно предполагать, что единая теория элементарных частиц подойдет к проблеме движения и взаимодействия частиц по-иному.
Если существование частицы иногда выводится из ее взаимодействия с другими частицами, получается самосогласованная система, где уже не может быть заданного распределения частиц, каждая из которых обладает индивидуальным существованием, независимым от существования других частиц и связывающего их взаимодействия. Из принципа относительности вытекает, что положение частицы не имеет смысла без других частиц. Теперь мы склоняемся к мысли, что существование частицы невозможно без существования других частиц, взаимодействующих с данной. Эта схема кажется парадоксальной, более того — порочным кругом: существование частиц объясняется их взаимодействием, а взаимодействие — существованием. Столь же парадоксально существование частицы, которое объясняется существованием других частиц, причем существование каждой из последних в свою очередь не имеет первичного и независимого характера. Но именно такой парадоксально-нелинейный характер свойствен природе, которая сама является причиной своего существования. Эта спинозовская производящая природа (natura naturans) в классической физике не находила эквивалента и оставалась вопросом, адресованным будущему. Теперь это понятие облеклось в физическую форму самосогласованной системы сильных взаимодействий, которые создают каждую из взаимодействующих частиц.
Такое представление о существовании частицы как результате ее взаимодействия с другими частицами уже упоминалось в первой части этой книги, оно принадлежит Чу и Фраучи и относится к сильным взаимодействиям и к частицам, участвующим в сильных взаимодействиях. Сильно взаимодействующая частица, например протон, представляется результатом динамических воздействий, причем каждый такой результат сам является источником динамических воздействий. Динамические воздействия определяют не только поведение, но и существование частиц.
Теперь мы постараемся показать, что привлечение сильных взаимодействий к объяснению существования элементарных частиц пересекается с другой тенденцией. Речь идет о дискретном пространстве и времени. Эта идея, очень старая, существовавшая, как мы видели, уже в древности, приобрела в середине нашего столетия особое значение. В ней увидели возможный, хотя и трудный, выход из очень тяжелой ситуации. Уже в 30-е годы, а еще больше в 40-е выяснилось, что последовательное применение теории относительности и квантовой механики для описания событий в очень малых пространственно-временных областях приводит к физически бессмысленному результату. Вычисленные с учетом квантовых и релятивистских соотношений значения энергии и заряда оказываются бесконечными. Предположения о бесконечной энергии и бесконечном заряде противоречат всему, что мы знаем о мире. Тем не менее при вычислении получался именно такой физически бессмысленный результат.
Чтобы пояснить эту ситуацию и значение дискретного пространства-времени для выхода из нее, рассмотрим только один источник бесконечных значений энергии. Электрон может излучать фотоны, которые поглощаются самим излучившим их электроном. Чем короче интервал между излучением и поглощением подобного фотона, тем больше его вклад в энергию электрона и соответственно в его массу. Такое «самодействие» электрона приводит к бесконечно большим значениям его энергии и массы: если фотон может быть излучен и затем поглощен в течение сколь угодно малого интервала времени и пройти сколь угодно малое расстояние, то вклад его в энергию электрона может быть сколь угодно большим. Существуют весьма виртуозные математические методы, чтобы избежать бесконечных значений. Эти методы дают значения энергии, очень близкие к тем, что дает эксперимент. Они обладают тем, что Эйнштейн называл внешним оправданием. Но указанные методы вводятся ad hoc, т. е. специально для получения искомого результата; они не обладают в этом смысле' внутренним совершенством, не вытекают из какой-либо общей непротиворечивой физической теории и применяются «в кредит», в надежде на то, что подобная теория будет построена.
Такая теория могла бы исходить из дискретности пространства и времени. В этом случае излучение фотона и его поглощение не могло бы происходить в течение сколь угодно малого времени и соответственно его путь не мог бы быть меньше некоторой минимальной длины (минимального интервала времени, умноженного на скорость света). Тогда подсчет вклада фотонов, излучаемых и затем поглощаемых электроном, в его энергию и массу был бы естественным образом ограничен и методы устранения бесконечных значений получили бы физический смысл и «внутреннее совершенство».
Вспомним уже знакомый нам исторический прообраз концепции дискретного пространства и времени — взгляды эпикурейцев, изложенные во II в. н. э. Александром Афро-дизийским. Частица не движется из одной минимальной пространственной клетки в другую, а исчезает в одной из них и возникает в соседней. Связь идеи дискретности с идеей возникновения и уничтожения частицы сохранялась в продолжение всей эволюции этих идей. Действительно, движение внутри минимальной клетки означало бы, что частица в первую половину интервала времени была бы в первой половине клетки, а в продолжение второй половины интервала находилась бы во второй половине пространственной клетки. Иначе говоря, минимальный интервал времени и минимальная пространственная клетка разделяются на половины, что противоречит их определению как минимальных, далее неделимых. Но чисто логическая, натурфилософская догадка о связи дискретного пространства и времени с уничтожением и возникновением частицы могла превратиться в физическую концепцию только после того, как в науку вошли понятия сильных взаимодействий и ультрарелятивистских трансмутационных эффектов.
В самом начале 30-х годов идея дискретности пространства и времени приобрела новую форму под влиянием квантовой механики. Понятие квантовой неопределенности стало основой ряда концепций, отказывавших частице в определенной локализации внутри очень малых пространственно-временных областей. Позже ряд таких концепций был в некоторой степени завершен гейзенберговской 5-матрицей, которая сыграла большую роль и сохранила эту роль до сих пор в теории элементарных частиц. 5-матрица — это оператор, который позволяет описать состояние системы частиц после рассеяния, если известно ее состояние до рассеяния частиц. Однако слова до рассеяния и после него означают «задолго до» и «намного позже» по сравнению с длительностью самого акта рассеяния, т. е. времени наибольшего сближения частиц и изменения их движений. Что же касается самого интервала времени и пространственной области, где происходит рассеяние, то Гейзенберг считает невозможным приписывать здесь частице какую-то определенную пространственную и временную локализацию. Он вводит минимальную пространственную длину и минимальный интервал времени, которые образуют минимальную четырехмерную ячейку. Внутри этой ячейки пространственно-временная локализация теряет смысл. Поэтому положение и время события — пространственно-временные координаты, проникающие по своей точности внутрь минимальной ячейки, физически бессмысленны, и об этом свидетельствуют, в частности, бесконечные значения энергии и заряда, появляющиеся, когда мы прослеживаем пространственно-временные события в областях порядка минимальных ячеек. Из этих соображений и вытекает оперирование состояниями «задолго до» и «намного позже» акта рассеяния, происходящего в очень малой пространственно-временной области.
Квантовая неопределенность как основа дискретности пространства — это специфическая, характерная для 30-х годов и позднейшего периода форма идеи дискретности.
В конце 40-х годов Снайдер связал дискретность пространства со своеобразным соотношением неопределенности. Гейзенберговское соотношение неопределенности связывает каждую координату с соответствующей компонентой импульса. Если координата х определяется все точнее, то составляющая импульса р х становится все менее определенной. Аналогичным образом Снайдер связывает между собой координаты х, у и z: если одна из них измеряется все более точно и в конце концов стремится стать непрерывной, то другие координаты становятся все менее определенными. Поэтому объем не может стянуться в точку, пространство в целом оказывается дискретным, состоящим из далее неделимых объемов, и положение частицы всегда будет неопределенным.
И. Е. Тамм следующим образом связывает физическую интерпретацию дискретности пространственных объемов, постулированных Снайдером, с рождением новых частиц. Измерить положение частицы с максимальной точностью — значит найти минимальный объем пространства, объем, в котором находится частица. Такое измерение происходит, когда на частицу направляют поток фотонов, электронов или других частиц и определяют направления полета этих частиц, рассеяннных на частице, положение которой измеряется в эксперименте. Но при этом нельзя измерить координату частицы с большей точностью, чем с точностью до длины волны рассеивающихся частиц. Длина волны обратно пропорциональна частоте колебаний волновой функции и соответственно энергии рассеивающейся частицы. Но при возрастании энергии все более вероятно возникновение новых частиц при рассеянии. Эти новые частицы в свою очередь быстро распадаются. Продукты такого распада неотличимы от частиц, возникших при первоначальных соударениях частиц высокой энергии, т. е. при рассеянии, которым пользовались для более точного измерения координаты рассеивающей частицы. Но они вылетают не из пункта рассеяния, а из окрестностей этого пункта. Таким образом, трансмутационные процессы при определении положения рассеивающей частицы мешают точности локализации этой частицы.
В конце 50-х годов Коиш развивал другую концепцию дискретного пространства. Дискретным признается не только трехмерное расстояние (геометрическая сумма трех координатных отрезков) или трехмерный объем, как это было у Снайдера, но и каждая координата и каждое расстояние, даже если оно отсчитывается вдоль одной из координат. В этом случае для ультрамикроскопического мира теряет смысл релятивистская причинность. Она требует, чтобы сигнал (иначе говоря, каждый процесс, соединяющий два события как причину и следствие) распространялся со скоростью, не превышающей скорость света. Но там, где нельзя говорить о расстоянии как о функции координат двух точек, теряет смысл и понятие скорости, т. е. предельное отношение приращения пространства к приращению времени.
На этом следует остановиться несколько подробнее.
Чтобы определить расстояние между двумя точками, мы берем разности одноименных координат этих точек, возводим их в квадрат, складываем и из суммы извлекаем квадратный корень. Такая формула мероопределения характерна для эвклидова пространства. Если пространство становится неэвклидовым, т. е. искривляется, эта формула заменяется другой. Например, на сферической поверхности, т. е. в двумерном искривленном пространстве, расстояние уже не равно корню из суммы квадратов координатных разностей — эта формула заменяется иной.
Но любое мероопределение имеет смысл только для непрерывного пространства. Если пространство состоит из точек, расстояния между которыми нельзя определить каким-либо числом, потому что эти расстояния не делятся на части, то в таком пространстве нельзя говорить ни о координатах (расстояниях от точки до координатных осей), ни об измерении вообще.
Что же в таком случае означают слова «минимальная длина порядка 10-13 см» или «минимальный интервал времени порядка 10-24 сек»? Как можно говорить о минимальных расстояниях в пространстве, для которого само слово «расстояние» теряет смысл? Но, с другой стороны, без понятия минимального расстояния было бы очень трудно представить себе, что такое дискретное пространство.
Мы здесь встречаемся с дополнительностью двух понятий, противоречащих друг другу, исключающих друг друга и вместе с тем теряющих смысл одно без другого. Понятие дискретного пространства имеет смысл, если оно может перейти в непрерывное пространство; это понятие приобретает физический смысл только потому, что его дополнением служит понятие непрерывного пространства.
Забегая вперед, отметим, что переход от дискретного пространства к непрерывному будет одной из важнейших проблем науки в течение ближайших десятилетий. Можно предположить, что в ультрамикроскопическом дискретном пространстве развертываются события, из которых будет выведена релятивистская причинность. Мы помним, что мировая линия остается геометрическим, а не физическим понятием, пока она не заполнена событиями, несводимыми к пребыванию в каждой мировой точке и к переходу в следующую мировую точку. Быть может, ультрамикроскопические (и ультрарелятивистские!) события и являются тем заполнением каркаса мировых линий, которое превращает этот каркас в физический мир.
Подобные «быть может» являются существенными, хотя и неопределенными, компонентами прогноза. Вместе с тем они характерны для стиля физического мышления в теории элементарных частиц — в области наиболее фундаментальных исследований, этих современных поисков rerum natura. Эти поиски отчасти опираются на реминисценции, на воспоминания об аналогичных поисках от древности до наших дней. Такие воспоминания необходимы, чтобы понять, что, собственно, происходит сейчас в науке и куда направлено ее предвидимое развитие. Но решение старых вопросов исходит из тех новых фактов, которые стали известны совсем недавно. В особенности это относится к экспериментальным открытиям и теоретическим обобщениям в области сильных взаимодействий и трансмутаций элементарных частиц.
В наше время научный прогноз напоминает касательную к кривой, касательную, которую мы проводим, чтобы определить направление кривой в данной точке. Он не претендует на титул пророчества: в следующий момент кривая изменит направление и оно не совпадет ни с одной из касательных, которые проведены сейчас. И тем не менее констатация современных тенденций науки не может быть высказана без прогнозов, дискуссия о направлении кривой не может вестись без касательных, каждая из которых не претендует на однозначный характер.
Сейчас мы попробуем провести подобную касательную, взяв в качестве исходного пункта идею регенерации частиц, высказанную в 1949 г. Я. И. Френкелем. Он предположил, что частица превращается в частицу иного типа, а эта последняя снова превращается в частицу исходного типа. Такую двойную трансмутацию Я. И. Френкель назвал регенерацией частицы. В 50-е годы и позже эта гипотеза рассматривалась в связи с дискретностью пространства-времени. Предположим, что регенерация частицы происходит в соседней пространственно-временной ячейке, т. е. через минимальный интервал времени (порядка 10-24 сек) и на расстоянии, равном элементарной длине (расстоянии, которое пройдет свет за 10-24 сек, т. е. расстоянии порядка 10-13 см). Если мы отождествим регенерировавшую частицу с исходной, то получим сдвиг тождественной себе частицы на расстояние порядка 10-13 см со скоростью, равной скорости света. Таким образом, мы приходим к дискретному пространству-времени на световом конусе[76]См.: Б. Г. Кузнецов. О квантово-релятивистской логике. В сб.: «Вопросы логики». M., 1959, стр. 99—112; «Этюды об Эйнштейне». M., 1970, стр. 191–216, 349–420; «Phil. Sc.», 1966, 33, Jsfi 3, р. 199.
. Здесь движение происходит в виде дискретных сдвигов, в общем случае направленных в различные стороны и образующих ломаную пространственную траекторию. Пространство-время внутри светового конуса (т. е. там, где частицы движутся с различными скоростями, меньшими, чем скорость света) непрерывно. Здесь проходят усредненные макроскопические мировые линии, которым соответствуют непрерывные пространственные траектории. Легко видеть, что при полной пространственной симметрии элементарных сдвигов-регенераций частица после большого их числа окажется вблизи исходной точки, макроскопический сдвиг будет нулевым. Напротив, если в пространстве имеется некоторая дисимметрия вероятностей элементарных сдвигов, макроскопическая траектория частицы и ее макроскопическая скорость будут иметь конечные значения.
Тенденция, иллюстрируемая подобной условной схемой перехода из ультрарелятивистского мира трансмутаций в релятивистский мир непрерывных движений, может показаться направленной к некой трансмутационной картине мира, к превращению трансмутаций в исходный образ картины мира. Но это не так. Выше уже говорилось, что понятие трансмутации теряет смысл без макроскопического понятия мировой линии, по форме и длине которой можно определить тип частицы. Новая картина мира, к которой будет двигаться наука в ближайшие десятилетия, окажется гораздо парадоксальнее любой картины мира, которая исходит из каких бы то ни было «кирпичей мироздания», будь то перемещения тел, изменения структуры поля или еще более сложные процессы. Она будет исходить из принципа физического бытия, требующего дополнительности ультрамикроскопических и макроскопических процессов.
Вспомним самосогласованную систему частиц, взаимодействие которых гарантирует существование каждой. Наука в своем дальнейшем развитии, быть может, подтвердит эту схему для сильных взаимодействий. Но не исключено также появление физической теории, которая свяжет субстанциальные свойства частицы с воздействием на нее всех частиц, образующих Метагалактику. Следующая условная схема пояснит эту возможную тенденцию. Дисимметрия вероятностей элементарных сдвигов приводит к ненулевой макроскопической скорости частицы. Можно было бы отождествить эту дисимметрию с импульсом частицы и возложить ответственность за нее на локальные поля, связанные с неоднородным распределением материи в окружающем нас пространстве. Но какое поле ответственно за симметрию, за статистический разброс элементарных сдвигов, который заставляет макроскопическую скорость частицы быть меньшей, чем скорость света? С таким статистическим разбросом движутся частицы, обладающие массой покоя. Естественно отождествить массу покоя с симметрией вероятностей элементарных сдвигов и возложить ответственность за нее на однородную Метагалактику. Из однородности Метагалактики (в которой становятся пренебрежимыми даже такие неоднородности, как галактики и скопления галактик) вытекает, что частице со всех сторон противостоит одна и та же «толща» Вселенной; это и объясняет симметрию вероятностей элементарных сдвигов.
Излагая эти гипотетические конструкции, я, как мне кажется, не ухожу от темы прогноза, не заменяю вопрос о том, куда идет наука, вопросом о том, как устроена природа. Приведенные конструкции, как уже не раз говорилось, являются условными иллюстрациями реальной тенденции объединения понятий космоса и микрокосма. Кончился долгий период, когда последним звеном анализа rerum natura были микроскопические «кирипичи мироздания». Теперь не только поведение, но и существование элементарных частиц оказывается связанным с самосогласованной космической системой, охватывающей всю Метагалактику.
Отсюда — некоторые особенности стиля и темпа современного развития науки. Сама наука становится самосогласованной системой, в которой понятия одной области приобретают смысл только при существовании корреспондирующих им понятий в других областях. Еще недавно можно было говорить о динамике частиц одного типа без того, чтобы при этом возникали проблемы, противоречия, затруднения, их преодоление в виде новых понятий — в динамике других частиц. Когда речь идет о единой теории частиц, о высоких энергиях, о трансмутациях, которые ограничивают или видоизменяют динамику данных, тождественных себе частиц определенного типа, уже нельзя сохранить перегородки между исследованиями, посвященными различным типам частиц. Соответственно меняется связь между исследованиями, относящимися к различным взаимодействиям. Раньше они распределялись по относительно далеким областям: тяготением интересовались, когда речь шла о космических областях, электромагнитные взаимодействия объясняли явления в широком диапазоне от геофизики до атомной физики, а на сильные взаимодействия ссылались при изучении ядер. Теперь все это изменилось. Гравитационный коллапс привлекается не только для объяснения судьбы звезд, но и для объяснения микропроцессов, например превращения максимонов Маркова в известные нам частицы. Все это приводит к своеобразной, не имеющей прецедентов связи между частными открытиями и общей концепцией мироздания. Частное открытие во многих случаях является столь парадоксальным, что оно индуцирует пересмотр общей концепции. Это бывало и раньше, но тогда указанная индукция была «слабым взаимодействием»: например, между опытами, не подтвердившими существование эфирного ветра, и теорией относительности прошло четверть века. Характерным примером современного «сильного взаимодействия» между частным открытием и фундаментальной концепцией служит экспериментальное открытие несохранения четности при распаде некоторых определенных частиц и объяснившая этот результат общая концепция. Они разделялись интервалом в несколько месяцев. Дискретность прогресса фундаментальных идей сейчас смягчается; интервалы между обобщениями иногда приближаются к интервалам между очередными номерами основных физических журналов. Прогресс фундаментальных знаний становится практически непрерывным. Конечно, столь часто появляющиеся фундаментальные обобщения неоднозначны, не обладают предикатом единственности, не подтверждены experimentum crucis и часто даже не указывают на характер такого решающего эксперимента. Но появление новой экспериментальной базы, не останавливая появления фундаментальных обобщений, в значительной мере сделает такой натурфилософский стиль однозначным. Впрочем, выражение «натурфилософский стиль», может быть, и несправедливо: появляющиеся сейчас фундаментальные концепции — это, в сущности, отработка вопросов, которые будут заданы природе с помощью экспериментальных средств, о которых пойдет речь в следующих двух главах этой книги.
Непрерывный поток радикальных фундаментальных обобщений меняет динамику цивилизации. Фундаментальные принципы науки с точки зрения эйнштейновского внутреннего совершенства физических теорий являются для этих теорий целевым каноном: чтобы не быть искусственными, введенными ad hoc, они должны естественно вытекать из фундаментальных принципов.
В. Вайскопф разграничивает в развитии науки XX столетия «интенсивные» и «экстенсивные» направления. Первые состоят в поисках фундаментальных принципов. Основными этапами интенсивных исследований были электродинамика и относительность, квантовая теория атома, ядерная физика и, наконец, субъядерная физика. Каждое интенсивное направление с течением времени обрастает гораздо более многочисленными экстенсивными направлениями. Так Вайскопф называет объяснение явлений с позиций уже известного фундаментального принципа. Он говорит, что даже в самых экстенсивных исследованиях присутствует интенсивная компонента.
В наше время наука испытывает новый, беспрецедентный по напряженности и охватывающий очень широкие круги ученых порыв к интенсивным исследованиям, к единству картины мира.
Современная наука нашла переходы между областями, казавшимися далекими, математизация привела к небывалому единству методов, но в самой фундаментальной области — в теории элементарных частиц — она имеет дело с быстро увеличивающимся числом фактов и областей, пока еще связанных между собой весьма проблематично.
И она, как никогда, стремится к единству. Современная — наука — это Марфа, пекущаяся о многом, которая хочет стать Марией, взыскующей единого. Но, по-видимому, сейчас «многое» и «единое» связаны совсем иначе, чем раньше.
Можно думать, что прогноз на 2000 г. должен исходить из нового соотношения интенсивных и экстенсивных исследований, из уже упомянутого «сильного взаимодействия» между теми и другими. После того как войдет в строй новое поколение ускорителей частиц и будут реализованы возможности, связанные с заатмосферными и внеземными астрофизическими и астрономическими исследованиями, создастся такое положение, когда новая фундаментальная идея будет в очень Короткий срок индуцировать экстенсивные исследования. Эти последние будут в свою очередь часто приводить к фундаментальным проблемам, причем новые возможности эксперимента позволят не слишком долго дожидаться experimentum crucis для того или иного решения этих проблем.
Экстенсивные исследования — это исследования, которые открывают новые идеальные циклы. Такие вновь открытые циклы служат целевыми канонами для технического прогресса, их практически непрерывная эволюция приводит к практически непрерывному ускорению прогресса. Если же меняются фундаментальные принципы (целевые каноны экстенсивных исследований), то технический прогресс приобретает возрастающее ускорение.
Не следует думать, что возрастание ускорения будет монотонным. Развитие фундаментальных принципов — развитие в интенсивном направлении — не сохранит интервалов, характерных для первой половины XX в. (теория относительности, квантовая механика, теория ядра, субъядерные проблемы); интервалы, вероятно, сократятся, но известная цикличность сохранится. Повороты такого масштаба, как создание теории относительности, не будут происходить ежегодно. Эффект подобных поворотов состоит в непрерывном росте ускорения прогресса, потому что каждый фундаментальный поворот в течение известного периода ускоряет темп экстенсивных исследований.
Поэтому не следует также думать, что «сильное взаимодействие» фундаментальных и экстенсивных исследований означает их слияние или неразличимость. Исследования, которые изменяют исходные принципы, идеалы и стиль науки, которые дают принципиально неопределимый и скорее всего отдаленный эффект, будут стоять в какой-то мере особняком. В этой связи хочется сделать одно замечание о типе ученого в эпоху, когда самосогласованная система интенсивных и экстенсивных исследований направляет свои усилия на познание самосогласованной системы космоса я микрокосма. В научных кругах иногда сетуют на исчезновение типа ученого-«отшельника», который поднимался на абстрактные вершины мысли, куда не доносится многоголосый шум экстенсивной науки. Мне кажется, этот тип не исчезнет я, более того, станет несколько более распространенным, чем сейчас.
Конечно, «отшельник» конца XX в. будет отличаться от своего прообраза, принадлежащего первой половине века. И тот и другой — «отшельники» в весьма специфическом смысле. Речь идет о возможности далеко продвинуть принципы науки при «слабом взаимодействии» с большой и быстро растущей массой частных проблем и частных результатов. Этому не противоречит ни личный интерес мыслителя к некоторым частным проблемам, ни принципиальная установка на возможность экспериментальной проверки теории («внешнее оправдание»). Эйнштейн интересовался десятками частных научных проблем (например, причиной размыва правого берега рек, текущих на юг) и десятками технических изобретений (не только во время службы в Бернском патентном бюро). Тем не менее он был «отшельником» в том смысле, что исходным пунктом теории относительности было очень небольшое число экспериментов. Напомним, кроме того, что Эйнштейн утверждал, будто электрона — его одного — достаточно, чтобы вывести общие закономерности микромира (это было, заметим в скобках, справедливым в 1924–1927 гг., когда создавались волновая и квантовая механика).
Сейчас положение иное. Задача состоит в объединении того, что известно о различных типах частиц, и эта задача в целом не может быть решена на основе законов поведения, возникновения и распада частиц одного типа. И тем не менее каждое парадоксальное свойство, присущее одному или нескольким типам частиц, индуцирует размышления о природе пространства и времени, об их симметрии, об их дискретности и непрерывности, б логических и математических понятиях, о том, что отличает физическое бытие от геометрических образов. Таков же эффект астрономических и астрофизических открытий. Поэтому «слабое взаимодействие» с экстенсивной наукой, по-видимому, сохранится, и соответственно сохранится тип ученого-«отшельника».
Как уже сказано, этот тип ученого может стать более распространенным. Циклы экстенсивных исследований, вызванные интенсивным прорывом к новым фундаментальным принципам, вызывают закономерное изменение преобладающих интересов в науке. Примером может служить цикл, вызванный моделью атома Бора. Когда была выдвинута эта модель, начались экстенсивные исследования, объяснившие спектры атомов, валентность, периодичность и ее нарушения в системе элементов и множество других закономерностей. Этот цикл продолжается поныне. На него накладываются другие, позднейшие, создавшие ядерную физику. Вообще наложение экстенсивных циклов один на другой увеличивает практическую непрерывность воздействия науки на прогресс цивилизации. Но в начале 20-х годов наряду с продолжением применения модели Бора стала отчетливо ощущаться необходимость новых принципов, которые и были найдены в 1924–1926 гг. мыслителями, связанными иногда «слабым взаимодействием» с применениями модели Бора и в этом смысле «отшельниками».
С проблемой слабого и сильного взаимодействий фундаментальных принципов и частных исследований и с проблемой ученого-«отшельника» связана одна чисто психологическая проблема, которую лучше всего осветить на примере Эйнштейна.
Каждый, кто познакомился с теорией относительности, прошел через чащу математических и физических конструкций, реальных и мысленных экспериментов, необозримых эмпирических подтверждений и применений и частных задач, почувствовал эту незабываемую встречу с простой и вместе с тем наиболее сложной загадкой движения материальной точки в окружающем ее пустом пространстве. Здесь нет ни разнообразия элементарных частиц, ни многоступенчатой иерархии атомов, молекул, микроскопических тел, планет, звезд и галактик, ни различных полей — гравитационных, электромагнитных, ядер-ных и т. д., здесь нет ничего, кроме пространства и движущейся в нем и не имеющей других предикатов частицы. Что означает ее движение, каков смысл этого понятия в отсутствие других тел и что означает ее бытие? Это вопрос несравненно более глубокий и трудный, чем множество частных вопросов, относящихся к конкретным частицам различного типа, входящим в конкретные сложные системы, связанным сложными и разнообразными взаимодействиями. Он кажется изолированным от этих частных вопросов, и соответственно размышления о природе бытия и движения, по-видимому, требуют изоляций мыслителя от стихии частных исследований. Мыслитель должен остаться один на один с наиболее общими загадками и противоречиями бытия. Он должен быть отшельником.
Несомненно, для психологии Эйнштейна характерна такая тенденция. Его замечания о месте сторожа на маяке как об оптимальном положении ученого, отмеченная Инфельдом и другими постоянная тяга к одиноким размышлениям, к уходу в себя выявляли не только индивидуальные черты мыслителя, но и некоторую сторону стиля науки XX столетия. Но именно сторону, только сторону. Сторону, которая не могла существовать без другой стороны. Без глубокого и активного погружения в пеструю и на первый взгляд «пуантилистскую», состоящую из отдельных пятен картину частных исследований. Такая амбивалентная, противоречивая природа научного мышления связана с несомненным различием и несомненной связью «внутреннего совершенства» и «внешнего оправдания» научной теории. Чтобы подняться к наиболее общим принципам, из которых естественно вытекают новые парадоксальные результаты, необходим этот синтетический взгляд на природу в целом, открывающий независимый от отдельных рядов явлений субстрат мира.
Такими были соображения Эйнштейна и затем Минковского об отсутствии физических эквивалентов трехмерного пространства, о физической реальности четырехмерного пространства-времени. Но, поднимаясь к общим проблемам и как бы удаляясь от конкретных и частных проблем, научная мысль не может оторваться от последних, потому что эти общие проблемы модифицируются на основе «внешнего оправдания», на основе эмпирии, на основе парадоксальных фактов. Размышления о пространстве и времени привели к новому, невозможному без новых оптических и электродинамических наблюдений синтезу классических понятий, парадоксальные факты получили естественное объяснение в рамках парадоксальной теории, и весь генезис и все развитие неклассической науки подтвердили тезис о необходимом сенсуальном, эмпирическом, гетерогенном аккомпанементе рационалистической мысли.
Отсюда противоречивая позиция Эйнштейна: он стремился к одиночеству и откликался на множество самых разнообразных экспериментальных и теоретических результатов, он откликался даже на события, непосредственно не связанные с наукой, и в конце концов стал физиком, наиболее близким беспрецедентно широкому кругу людей. И это тоже не индивидуальная черта, во всяком случае не только индивидуальная. Современная наука вызывает у ее представителей, и не только у них, а у самых широких кругов, две связанные одна с другой психологические черты. Современный ученый стремится подняться над многообразием фактов и остаться лицом к лицу с наиболее общими проблемами бытия, и в то же время он, как никогда раньше, прислушивается ко всему, что происходит в науке, причем не только в своей области, но и в более отдаленных областях, откуда могут прийти новые факты и новые логические конструкции. По-видимому, эти психологические черты ученого нашей эпохи будут становиться все более связанными между собой, по мере того как наука будет приближаться к своему современному идеалу — к единой концепции do rerum natura, охватывающей невероятно расширившуюся и усложнившуюся эмпирическую базу неклассической науки.
Сейчас фундаментальные принципы теории относительности, квантовой механики и релятивистской квантовой механики индуцировали очень большой цикл экстенсивных исследований и открытий, которые вместе с этими принципами образуют атомную и ядерную физику. Но все большее число апорий, противоречий, трудностей поворачивает научную мысль к поискам новых принципов. По-видимому, такой поворот будет усиливаться в течение ближайших десятилетий. Мыслители, отдающие свои силы проблеме кварков, проблеме дискретности пространства, проблеме отличия субстанциальных свойств частицы от ее мировой линии, проблеме конечной или бесконечной Вселенной, являются «отшельниками» в смысле, не имеющем ничего общего с какой-либо интеллектуальной изоляцией. Ведь подобные проблемы являются вопросами, которые будут заданы природе, частично, может быть, окажутся лишенными смысла, но будут так или иначе решены с помощью больших коллективных экспериментальных, теоретических и вычислительных работ.