#image022.jpg
Эндокринный мозг
Лет 20 назад, прочитав название этой главы, биологи в лучшем случае просто недоуменно пожали бы плечами, в худшем - публично обвинили бы автора в ереси и абсурдности суждений.
Сейчас это не только не вызывает удивления, но даже наборот - термин "эндокринный мозг", предложенный Дж. Хыоджесом в 1978 году, достаточно точно отражает существо дела. Открытие в мозге гормонально активных веществ действительно привело, по выражению известного американского нейробиолога Д. Хьюбела, к "подлинному взрыву открытий и прозрений" - выяснению тонких, ранее совершенно неизвестных механизмов деятельности мозга, хранения и переработки информации, памяти, возникновения и развития некоторых заболеваний, к разработке перспективных методов их лечения.
Именно в последние годы благодаря применению новых очень чувствительных и объективных методов исследования, основанных на новейших достижениях физики, химии, математики, все менее бесспорным кажется бытующее в кругах физиологов утверждение того, что "мозг не может быть понят мозгом". Темп развития современной нейробиологии очень высок, просто стремителен. Каждый год приносит новые и новые сведения, свидетельствующие об успехах ученых в изучении мозга. Эндокринологические аспекты его структурно-функциональной организации - яркая, увлекательная страница в нашей истории о вездесущих гормонах.
Ярмарка имен
Специалисты (а что говорить о несведущем читателе) и те могут запутаться в многообразии терминов, которыми различные авторы пользуются для обозначения биологически активных веществ, обладающих свойствами гормонов, синтезирующихся в головном мозге: медиаторы, модуляторы, мессенджеры, трансмиттеры. Не будем разбираться, в чем причина такой ярмарки имен - в традициях ли или еще в чем-либо, дело не в этом. Суть процесса и явления не меняется от использования того или иного названия. Поскольку в центральной нервной системе данные вещества в основном участвуют в химическом обеспечении проведения нервного импульса, мы, как и большинство ученых, будем называть их медиаторами передатчиками, однако не забывая о том, что они прежде всего гормоны, которые, помимо мозга, обнаружены и в других органах, где они выполняют специфические, присущие только гормонам, функции.
Об этом ярко и убедительно говорил в 1980 году на совещании по актуальным проблемам нейроэндокринологии в Пущино - Центре биологических исследований Академии наук СССР - профессор Д. Сахаров. Любителям поэзии и самодеятельной песни хорошо известно имя Дмитрия Сухарева. Но у него - автора многих прекрасных стихов, исполнителя песен, написанных им для кинофильмов, спектаклей и просто для людей, - есть и вторая не менее сильная любовь. Профессор Д. Сахаров (Сухарев - его псевдоним), видный советский нейробиолог, лауреат премии имени Л. А. Орбели АН СССР, давно и серьезно занимается медиаторами. Лаборатория профессора Сахарова в Институте биологии развития имени Н. К. Кольцова АН СССР, как и многие другие коллективы в различных странах мира, целеустремленно работает, изучая химию мозга. На многие вопросы уже получены ответы. Но пока еще далеко не все ясно, и это неудивительно. Уже упоминавшийся нами Д. Хьюбел справедливо писал во вступлении к специальному выпуску американского журнала "Scientific American", посвященному нейробиологии: "Мозг - сложнее всего, что нам известно во Вселенной".
Хаос? Нет - гармония!
Несколько цифр. Они впечатляют. Число нервных клеток в человеческом мозге равно 100 миллиардам. Взаимодействуя между собой, они образуют специальные контакты - синапсы, количество которых составляет 100 триллионов. Некоторые ученые считают эти цифры заниженными.
На сегодняшний день в мозге идентифицировано 30 медиаторов. Предполагается, что в последующие годы цифра будет прогрессивно увеличиваться. Распределение медиаторов в мозге носит неслучайный характер: каждый тип гормона локализован в нейронах определенной группы.
Использование моноклональных антител к различным веществам позволило установить клеточные источники синтеза медиаторов в мозге и составить соответствующие карты местонахождения их в различных отделах центральной нервной системы. Так, например, было обнаружено, что нейроны, содержащие норадреналин, сосредоточены в основном в стволе мозга, образуя там крупное скопление клеток. Отростки (аксоны) этих нейронов очень сильно ветвятся и достигают различных отделов мозга - гипоталамуса, мозжечка, переднего мозга. Оказалось, что функцией норадренергических нейронов является поддержание бодрствования, формирование чувства удовольствия. Ритм их деятельности определяет и регулирует настроение.
Нервные клетки, содержащие еще один биогенный амин - дофамин, - располагаются в среднем мозге, где также формируют своеобразную клеточную колонию, так называемую "черную субстанцию" (Substancra nigra). Ее так назвали из-за того, что на свежем разрезе мозговой ткани она выглядит в виде черной полоски. Это связано с особенностями химизма клеток - быстрым окислением продуктов цитоплазмы в присутствии кислорода. Аксоны дофаминовых нейронов проникают в передний мозг. Ученые предполагают, что там они принимают участие в регуляции эмоций и движений. Дальше мы расскажем о том, как дегенерация нервных клеток, содержащих дофамин, приводит к дефициту этого вещества и возникновению болезни Паркинсона.
Клетки, вырабатывающие один из самых активных биогенных аминов - серотонин, находятся в стволе мозга. Отростки от них идут в гипоталамус, таламус и многие другие области мозга.
Функции серотонина в мозге разнообразны, они связаны с терморегуляцией, ритмами сна и бодрствования, психоэмоциональным статусом, настроением, умственной деятельностью.
Не менее многочисленны, чем серотониновые нейроны, нервные клетки и аксоны, содержащие ацетилхолин - медиатор, участвующий в процессах формирования позы, активности движений и ориентировки, равновесия и других явлений.
Биогенные амины составляют одну группу медиаторов, ко второй относятся нейропептиды - гормоны, которые, так же, как биогенные амины, вырабатываются, помимо мозга, и в других органах и тканях. Это - вещество Р, эндорфины и энкефалины, соматостатин, холецистокинин, гастрин и другие вещества. Об удивительных свойствах вещества Р и эндогенных оппиатов мы рассказали. Роль же других пептидов не совсем ясна; по-видимому, как считают многие специалисты, они выполняют в отличие от медиаторов не конкретные функции, связанные с регуляцией определенных процессов, а глобальные, связанные с координированием тех форм активности мозга, которые направлены на общее поддержание гомеостаза: процессы ассимиляции и диссимиляции питательных веществ, поддержание водно-солевого баланса, половое поведение, размножение и многие другие проявления жизни.
На гистологических препаратах, специально окрашенных или обработанных специфическими антисыворотками, ткань мозга подобна рисунку яркого персидского ковра, различные цвета узоров которого свидетельствуют о разнообразии гормонов, синтезируемых мозгом. Как же разобраться нейробиологу в этом хитросплетении анатомических и функциональных связей? Какой из миллиардов аксонов - отростков нервных клеток - является той путеводной нитью, которая приведет к разгадке тайн мозга - познанию тех физиологических и психологических процессов, которые ежечасно, ежеминутно, ежесекундно протекают в нем, гармонично сочетаясь друг с другом?
Поиски трудны. В них участвуют и врачи, и биологи, физиологи, морфологи, биохимики, эндокринологи, представители практически всех отраслей медицины и биологии и даже… техники. Не говоря уже о математиках и физиках. Познано немало, и чем дальше ученые углубляют свои исследования, тем все более зримо вырисовываются роль и значение межгормональных взаимодействий мозговых нейронов в обеспечении нервной регуляции функций организма.
Исследования последних лет убедительно показали, что действие многих лекарственных веществ и нейротропных ядов реализуется именно на медиаторном уровне. Воздействуя на процессы синтеза и высвобождения медиатора, химические вещества нарушают передачу нервного импульса, что в итоге находит свое отражение в возникновении нервно-психических расстройств. Известный американский нейрохимик Л. Иверсен, анализируя результаты многочисленных конкретных исследований, не без оснований считает, что причины психических заболеваний в основном связаны с нарушениями функций специфических медиаторных систем мозга.
Нейромедиаторы и дисфункции мозга
Каждому из нас обязательно встречались люди пожилого возраста с характерным внешним видом: туловище их находится в полусогнутом состоянии, руки слегка приведены к грудной клетке, кисти все время дрожат, пальцы будто бы что-то перебирают, мышцы лица и туловища ригидны (напряжены). Больные возбуждены, речь их быстрая и зачастую несвязная. Днем им нередко видятся галлюцинации, а ночью снятся кошмары. Эти несчастные люди страдают болезнью Паркинсона (иначе паркинсонизмом). В начале XIX века английский врач Дж. Паркинсон впервые описал подобный симптомокомплекс, и с тех пор это заболевание носит его имя. Оно достаточно широко распространено и ежегодно приводит к инвалидности сотни тысяч людей. Причина болезни установлена. Нарушения двигательной и эмоциональной активности возникают вследствие разрушения (дегенерации) нервных клеток и окончаний черной субстанции мозга, содержащих дофамин. Экспериментальную патологию, свойственную болезни Паркинсона, можно вызвать у крысы или другого животного, если ввести в черную субстанцию мозга вещество, блокирующее синтез дофамина (например, 6-гидроксидофамин), или разрушить скопление дофаминергических нейронов электролитическим путем. При этом у них развивается асимметрия позы и движений, они начинают спонтанно кружиться в направлении пораженной стороны. Если разрушить дофаминергические проводящие пути в обоих полушариях мозга, крысы вообще теряют способность двигаться и при отсутствии специального ухода умирают.
Дж. Маршалл из Калифорнийского университета в Ирвине (США) показал, что при сохранении у животного после повреждения более 5 процентов дофаминсодержащих нейронов и их отростков восстановление нарушенных функций происходит в первые 1-2 недели. Это слишком короткое время для регенерации нервных окончаний или развития дополнительных коллатералей у аксонов сохранившихся дофаминовых нейронов. Маршалл со своими сотрудниками объясняет столь быстрое восстановление двумя химическими механизмами: ускорением синтеза и высвобождения медиатора из уцелевших волокон и возрастанием чувствительности клеток-мишеней в других областях мозга к уменьшенному по сравнению с нормой количеству дофамина. Ученые назвали это явление "денервационнои чувствительностью" и считают, что в основе ее лежит увеличение числа воспринимающих данный медиатор рецепторов на мембране клеток, чувствительных к этому веществу.
Установленная дофаминовая недостаточность, приводящая к болезни Паркинсона, обусловила изучение возможности лечения ее путем введения в организм препарата L-ДОФА, который является предшественником дофамина. Результаты оказались положительными, и сейчас L-ДОФА - общепризнанный, достаточно эффективный препарат, устраняющий на некоторое время многие симптомы этого страдания.
Нарушения процессов выработки и транспорта нейромедиаторов служат причиной и других известных патологических процессов. Э. Берд из отдела фармакологии Медицинской школы в Кембридже (Великобритания) в серии биохимических и клинических исследований доказал, что тяжелое наследственное заболевание - хорея Гентипгтона, возникающее в цветущем возрасте (между 35-50 годами), связано с гибелью нервных клеток головного мозга, продуцирующих ГАМК (гамма-аминомасляную кислоту) - основной-тормозной медиатор центральной нервной системы.
Постепенное падение концентрации ГАМК в ткани мозга сначала проявляется в виде легкого подергивания мышц лица и рук. С течением времени патологические движения нарастают, переходят в конвульсивные судороги, больные теряют способность самостоятельно передвигаться, вынуждены быть прикованными к постели и умирают от застойной пневмонии на фоне развивающегося слабоумия.
Заболевание генетически предопределено. Частота его передачи по наследству очень высока и составляет 50 процентов. Лечение хореи Гентингтона представляет пока неразрешимую проблему, так как эффективные средства, повышающие концентрацию ГАМК, не найдены, так же как безуспешны еще попытки разработки способа предупреждения дегенерации ГАМК-ергических клеток…
В последние годы с помощью тонких нейрохимических методов доказано участие серотонина и дофамина в возникновении эпилептических припадков, серотонина и катехоламинов - в развитии шизофрении. Ацетилхолин - непосредственный виновник болезни Альцгеймера, по это уже тема другой истории…
Болезнь Альцгеймера: загадочное слабоумие
Автоматизм - необходимое условие нормального существования человека и животных. Кто из нас, спеша по разным житейским делам, думает, как совершить шаг, поставить ногу, сохранить равновесие? Разумеется, никто. Мы это делаем автоматически, не задумываясь. Сидя за рулем автомашины, мы не раздумывая оцениваем обстановку на дороге, автоматически переключаем скорости, тормозим, газуем, одновременно разговариваем с попутчиками, курим, слушаем радио и даже мечтаем. Так же привычно, уходя из дома, мы запираем дверь, выключаем газ, свет и воду, успевая в то же время продумать план предстоящего мероприятия, выступления или повторить в уме ответы на трудные вопросы перед экзаменом.
Это удивительное свойство человеческого организма обеспечивает одновременное выполнение разнообразных функций, освобождая мозговые центры от ненужного контроля обыденных процессов.
Потеря автоматизма "расшатывает" стройную организацию нервной системы, в ее деятельности возникает беспорядок, хаос и как следствие этого - нервно-психические расстройства, слабоумие, психозы, деградация личности, лишение рассудка, смерть.
Заболевание, которое начинается медленно, исподволь с утраты способности автоматически совершать обычные действия и в конце концов приводит к слабоумию, называется болезнью Альцгеймера, по имени немецкого невропатолога, который еще в 1907 году описал его. Эта тяжелая патология мозга, к сожалению, встречается нередко. Только в США ею страдают 1,5-2 миллиона человек, несколько сотен тысяч человек ежегодно заболевают этой болезнью, а не менее 100 тысяч человек умирают. Подавляющее большинство больных находится в расцвете физических и духовных сил. Им по 40-50 лет. Способные трудиться, творить, делать научные открытия, сочинять музыку, писать книги, строить дома, летать в космос, они становятся жертвой страшного, до сих пор до конца не познанного таинственного заболевания.
В последние годы ученым удалось узнать некоторые тайны болезни Альцгеймера, но до окончательного выяснения главного вопроса - установления причины - еще далеко. Сейчас существует шесть различных теорий возникновения заболевания. Одна из них - ацетилхолиновая. В ее основе лежат данные о нарушении синтеза и транспорта ацетилхолина. Эта теория наиболее объективно подтверждена. Она получила широкое распространение. Ацетилхолин, как известно, синтезируется в нервных клетках различных отделов мозга, выделяется из них в синапсы при прохождении нервного импульса и обеспечивает при этом возникновение различных физиологических реакций. Основные места его синтеза в мозге - нейроны гиппокампа и коры. В гиппокампе располагаются центры обучения и памяти, координации поведения и обеспечения постоянства внутренней среды, в коре - центры мышления и речи.
В 1976 году П. Дэвис из Эдинбургского университета и Д. Боуэн - сотрудник Лондонского института неврологии, впервые сообщили о том, что у пациентов, страдающих болезнью Альцгеймера, в гиппокампе и коре мозга обнаруживается резкое снижение активности холинацетилтрансферазы - специфического фермента, катализирующего образование ацетилхолина из его предшественников - холина и ацетилкофермента А. Падение содержания ключевого фермента, естественно, влечет за собой недостаточную выработку ацетилхолина, что незамедлительно сказывается на формировании нейронных психо-функциональных связей, обеспечивающих процессы мышления, запоминания, обучения.
#image023.jpg
Болезнь Альцгеймера: загадочное слабоумие
При морфологических исследованиях, проведенных американскими учеными М. Месуламом и Дж. Койлом, было обнаружено, что при болезни Альцгеймера происходит дегенерация холинергических (то есть содержащих ацетилхолин) нейронов, длинные отростки которых буквально пронизывают весь мозг, простираясь от базальной его части до гиппокампа и коры. Почему же происходит разрушение нервных клеток? Нейроморфологи стремятся понять, в чем здесь причина. Ведь при этом мозг лишается структурных компонентов образования ацетилхолина, столь важного вещества для нормального функционирования мозга. Один из ведущих специалистов по нейрогуморальнй регуляции профессор Массачусетского технологического института Р. Вуртман считает, что одним из возможных механизмов дегенерации нервных клеток является саморазрушение мембран нейронов. Дело в том, что холинергические нейроны используют холин в двух целях: в качестве предшественника ацетилхолина и как составную часть фосфатидилхолина - важного структурного компонента клеточных мембран. Испытывая недостаток в свободном холине, уровень которого при болезни Альцгеймера также снижается, окончания холинергических нейронов и сами нервные клетки начинают "пожирать" самих себя - чтобы синтезировать ацетилхолин, расщепляют фосфатидилхолин, входящий в состав их собственных мембран. Разумеется, если из фундамента здания вынимать по кирпичику, оно, в конце концов, рухнет. Вот и при болезни Альцгеймера это приводит к разрушению нервных клеток и окончаний.
Уменьшение выработки ацетилхолина в центральной нервной системе сопровождается падением содержания норадреналина, серотонина и соматостатина в мозге. Вероятно, это вторичные, опосредованные процессы. Первичным является снижение ацетилхолина, о чем свидетельствуют, хоть пока и немногочисленные, но в определенной мере обнадеживающие результаты первых экспериментов (введение в организм экзогенного холина) по лечению болезни Альцгеймера.
Помимо ацетилхолиновой теории, существует еще пять точек зрения на механизм возникновения болезни и ее развития. Теория генетических аномалий, сторонники которой считают, что в основе данной патологии лежит наследственный фактор; теория накопления белков, объясняющая гибель нейронов воздействием на них белковых субстратов, отличных от белков, синтезируемых в организме; гипотеза инфекции, согласно которой существуют специфические вирусные агенты - прионы, вызывающие болезнь Альцгеймера; теория токсина, по которой заболевание возникает вследствие влияния на нервные структуры солей алюминия, попадающих в организм с питьевой водой, продуктами питания, лекарственными препаратами; и, наконец, теория сосудистой недостаточности, постулирующая уменьшение количества крови, притекающей к отдельным областям мозга, в качестве основного фактора возникновения патологического процесса.
Все эти теории сосредоточивают внимание на какой-то одной группе признаков, в той или иной степени присущих болезни Альцгеймера. Не уподобляются ли сторонники каждого направления персонажам известной притчи о шести слепцах, которые, ощупывая слона, решили, что он похож на стену, копье, змею, дерево, веер и канат, в зависимости от того, к какой части тела прикасались их руки? Действительно, отдельные элементы (хобот, ноги, хвост и т. п.) похожи на эти предметы, но слепцы не смогли представить слона целиком и тем самым познать его сущность. Так пока обстоит дело и с болезнью Альцгеймера. Настало время сплотить усилия перед решающим штурмом таинственной болезни.
Иммунологическая привилегия мозга
Трансплантация - пересадка различных органов уже вступила в зрелый период своего развития. Из лабораторного метода изучения регенераторных свойств тканей она переросла в способ лечения различных заболеваний путем восстановления нарушенной структурной организации. История медицины насчитывает тысячи выполненных в различных клиниках пересадок почек, сотни случаев трансплантации печени, десятки пересадок сердца. Исходы этих операций не всегда утешительны. Основной причиной отторжения чужого донорского органа является иммунологическая несовместимость пересаживаемой ткани и соответствующей ей ткани, так называемый трансплантационный иммунитет. Подавление трансплантационного иммунитета решило бы проблемы пересадок органов, открыло бы широкие возможности для спасения многих человеческих жизней. Пока, к сожалению, эффективность всех известных способов преодоления реакции отторжения оставляет желать лучшего.
Существует лишь один иммунологически привилегированный орган, для которого проблемы трансплантационного иммунитета практически не существует. Это - головной мозг. Причин здесь несколько. Во-первых, отсутствие в мозге лимфатических узлов, являющихся основным источником клеток иммунной системы; во-вторых, особое строение стенок сосудов и желудочков головного мозга, создающее так называемый гематоэнцефалический барьер, препятствующий воздействию иммунной системы: в-третьих, отсутствие (или наличие в крайне незначительном количестве) на мембране нейронов в отличие от всех других видов клеток специальных белковых молекул, кодируемых генами гистосовместимости, которые определяют "чужака" в пересаженной ткани и отторгают ее.
Эти обстоятельства побудили исследователей заняться изучением возможности трансплантации нервной ткани для лечения заболеваний мозга, связанных с дегенерацией определенных групп нейронов. Многочисленные эксперименты показали, что для успешного осуществления пересадок нервной ткани важны два фактора: возраст донора - животного, от которого берутся нейроны для трансплантации, и хорошее кровоснабжение мозга у реципиента - животного, которому пересаживают мозговую ткань.
Еще в 1940 году сотрудник Оксфордского университета в Англии У. Гро Кларк осуществил успешную пересадку эмбриональных нейронов коры мозга в боковые желудочки мозга новорожденных крольчат. С тех пор исследования по трансплантации эмбриональной нервной ткани в мозг взрослых животных успешно развиваются. Среди многих ученых, занимающихся этой проблемой, следует отметить внесших большой вклад в ее решение - советского исследователя Л. Полежаева, шведа А. Бьерклунда, американцев Г. Даса, Дж. Альтмана и Р. Лунда, англичанина А. Файна. Их работы составили канву тех знаний о трансплантации нервной ткани, на основе которых сейчас успешно разрабатываются экспериментальные способы лечения нервно-психических заболеваний.
Первой моделью, на которой изучалась возможная эффективность трансплантации нейронов, была болезнь Паркинсона. Она вызывалась у крыс введением 6-гидро-ксидофамина или электрическим разрушением дофаминергических нейронов черной субстанции. Пересадка таким животным кусочка мозга эмбрионов, взятых из соответствующей зоны, приводила к исчезновению позиционной асимметрии у больных крыс. У. Фрид и Р. Уайет из Национального института неврологии (США) обнаружили, что пересадка клеток мозгового вещества надпочечников также устраняет у крыс признаки паркинсонизма. Оказывается, извлеченные из надпочечников клетки способны продуцировать, помимо присущего им адреналина, и дофамин, что восполняет дефицит медиатора при болезни Паркинсона.
А. Бьерклунд и Ф. Гейндж из Каролинского университета в Стокгольме пересаживали кусочки эмбрионального мозга, содержащие холинергические нейроны, крысам с экспериментальной болезнью Альцгеймера, вызванной уничтожением ацетилхолиновых нервных клеток, с помощью введения в соответствующие структуры мозга иботеновой кислоты. Иботеновая кислота избирательно разрушает нейроны, содержащие ацетилхолин, оставляя неповрежденными нервные клетки, синтезирующие другие медиаторы. Трансплантация, осуществленная шведскими учеными, оказалась успешной - симптомы болезни Альцгеймера устранялись.
Хорошие результаты, полученные в опытах с трансплантацией эмбрионального мозга при экспериментальных болезнях Паркинсона и Альцгеймера, побудили ученых попробовать применить пересадку нервной ткани для лечения нейрозндокринных заболеваний, возникающих из-за недостаточности тех или иных мозговых гормонов.
Д. Гаш и Дж. Сладек из Школы медицины и стоматологии Рочестерского университета трансплантировали кусочки эмбрионального гипоталамуса в желудочки мозга крыс с наследственной формой несахарного диабета. Несахарный диабет вызывается низким содержанием вазопрессина - гормона гипоталамуса, регулирующего водно-солевой обмен в организме. Чрезмерная жажда и усиленное выведение мочи способствуют избыточному накоплению сахара в организме, что приводит к серьезным расстройствам деятельности различных органов. В 25 процентах случаев ученые наблюдали улучшение состояния. При гистологическом исследовании, проведенном через 6 месяцев после операции, в пересаженном участке было обнаружено большое количество нейронов, синтезирующих вазопрессин.
Положительные результаты были зарегистрированы также при трансплантации гипоталамуса мышам, у которых моделировали синдром Калмэна - наследственную болезнь, характеризующуюся тем, что у мужских особей не наступает половое созревание. Такая патология обусловлена отсутствием специфического фактора, стимулирующего синтез мужского полового гормона - тестостерона, определяющего полноценное развитие мужских половых желез. Д. Кригер и М. Гобсон из Медицинской школы Маунт-Синай в Нью-Йорке совместно с Г. Чарлтоном из Оксфордского университета пересаживали больным животным участки эмбрионального гипоталамуса, содержащего вышеуказанный фактор. Через два месяца половые железы мышей созревали и начинали продуцировать нормальные сперматозоиды. Проведенное исследование мозга показало наличие в трансплантированных зонах множества клеток, продуцирующих тестостерон-высвобождающий фактор.
Иммунологическая толерантность мозга может оказаться полезной и при лечении заболеваний, причиной которых служит гормональная недостаточность, локализованная вне мозга. При этом ученые предполагали, что гормоны, продуцируемые эндокринными клетками, пересаженными в мозг, могут достигать своей цели путем диффузии в кровеносные сосуды нервной ткани, оттуда в спинномозговую жидкость и опять в кровяное русло других органов.
Остроумная идея была подтверждена Ч. Помератом и его сотрудниками в Алабамском университете (США). Они пересаживали мозговое вещество надпочечников от эмбриональных крысят взрослым животным, у которых предварительно удалялись надпочечные железы. Трансплантанты приживались, их клетки созревали и через восемь месяцев полностью компенсировали гормональную недостаточность, возникшую вследствие удаления надпочечников. В Кембриджском университете А. Файн и в университете провинции Британская Колумбия в Канаде Ва Юн Цзе и Дж. Тай показали эффективность пересадки в мозг при экспериментальном сахарном диабете клеток поджелудочной железы, вырабатывающих инсулин.
Успешные пересадки нервной ткани, проведенные на лабораторных животных (мышах, крысах), побудили ученых начать эксперимент с обезьянами. Недалек тот день, когда мир, возможно, станет свидетелем трансплантации мозга у человека. Технически, по мнению многих авторитетных хирургов, это вполне выполнимо. Но прежде чем к этому приступить, предстоит решить много еще неизвестных вопросов структурно-функциональной организации мозга.
Нейробиология сейчас вступает в период своего расцвета. Фрэнсису Крику - крупному английскому биологу, лауреату Нобелевской премии за открытие структуры основного вещества наследственности - ДНК, принадлежат слова, являющиеся путеводной звездой ученых в их трудных поисках: "Нет области науки более жизненно важной для человека, чем исследование его собственного мозга. От нее зависит все наше представление о Вселенной".