Кроме того что Уильям Томсон внес значительный вклад в становление термодинамики, он также был прекрасным инженером, работавшим над разнообразными темами. Пользуясь той же методикой, которая принесла ему успех в науке, он приступил к решению различных технологических проблем, получив несколько патентов и участвуя в масштабных проектах.

Вся эта деятельность позволила ученому заработать огромное состояние.

В 1889 году была образована компания Niagara Falls Power Company для строительства завода по производству электроэнергии на Ниагарском водопаде. Предприятие рассчитывало на участие Cataract Construction Company в качестве дочерней компании и на финансирование со стороны магнатов Уильяма Вандербильта, Джона Моргана и Джона Астора (последний считался самым богатым человеком своего времени, он погиб при крушении «Титаника» ). Президентом компании был Эдвард Адамс. Cataract Construction Сотрапу финансировала создание Международной ниагарской комиссии, в состав которой вошли Уильям Анвин, британский специалист по гидравлике, Теодор Турреттини, швейцарский инженер с обширным опытом строительства гидростанций, Элётер-Эли-Никола Маскар, французский физик, исследователь в сфере оптики, электромагнетизма и метеорологии, Коулмен Селлерс, американский инженер и исследователь, и Уильям Томсон, возглавивший комиссию.

Целью комиссии было решение двух важных проблем: как вырабатывать электричество на водопаде и, особенно, как передавать его на большие расстояния для коммерческого использования. Первая проблема была решена довольно легко с помощью турбин, построенных женевской компанией Faesch & Piccard. Однако передача произведенной энергии была в то время довольно сложным делом. Комиссия объявила конкурс решений со значительной премией (22 тысячи долларов), и в итоге была принята трехфазная система переменного тока, которую за несколько лет до этого изобрел сербский инженер Никола Тесла (1856-1943).

Компания Westinghouse Electric & Manufacturing Соmраnу отвечала за монтаж систем. Станция произвела первую энергию 26 августа 1895 года, а 15 ноября следующего года произведенное электричество дошло до города Буффало, расположенного на расстоянии примерно 30 км.

В 1890 году Томсон был избран президентом Королевского общества, сменив на этом посту своего друга Стокса. В то время он уже носил титул сэра: королева Виктория посвятила ученого в рыцари за участие в инженерном проекте по прокладке трансатлантического телеграфного кабеля, что принесло ему международную известность.

НИКОЛА ТЕСЛА, ВЫДАЮЩИЙСЯ ИНЖЕНЕР

Никола Тесла родился 10 июля 1856 года в Смиляне (сегодня — Хорватия) и с 1875 года изучал электротехнику в Университете Граца (Австрия).

В 1884 году он приехал в Нью-Йорк, где изобретатель и предприниматель Томас Алва Эдисон принял его на работу в Edison Machine Works. В 1887 году Тесла сконструировал индуктивный мотор, питающийся от переменного тока, а в 1888 году начал работать с американским изобретателем Джорджем Вестингаузом. Разработки талантливого серба были связаны с переменным током и многофазным питанием и изучением характеристик вращающихся магнитных полей. В 1893 году Тесла сконструировал первый радиопередатчик— за несколько лет до того, как итальянец Гульельмо Маркони запатентовал подобный прибор.

Война токов

В том же году он столкнулся с Эдисоном в так называемой войне токов: Тесла и Вестингауз были убеждены, что именно переменный ток позволяет передавать электроэнергию на большие расстояния. Эдисон выступал за постоянный ток, хотя существовал ряд аргументов против этого. Закон Джоуля указывает на то, что потери тепла пропорциональны квадрату силы тока, проходящего через проводник. Мощность, с одной стороны, задана произведением силы тока на напряжение. Следовательно, можно увеличить мощность, повысив напряжение, но оставив прежнюю силу тока и, значит, не увеличивая потерь тепла. В случае с переменным током напряжение легко увеличивается с помощью трансформатора, что в случае с постоянным током невозможно. В 1893 году предприятие Westinghouse Electric получило контракт на освещение Международной выставки в Чикаго и на проект гидроэлектростанции на Ниагарском водопаде. Любопытно, что строительство линий электропередачи в город Буффало (он первым получил энергию завода) было поручено компании Эдисона General Electric, которая, однако, вынуждена была пользоваться патентами Теслы. Тесла умер в Нью-Й1орке 7 января 1943 года — похоже, он к тому времени был разорен. В 1960 году на Генеральной конференции по мерам и весам было принято решение дать единице измерения плотности магнитного потока (или магнитной индукции) название «тесла».

Тесла внес больший вклад в электрическую науку, чем кто-либо до него.

Уильям Томсон

ТРАНСАТЛАНТИЧЕСКИЙ КАБЕЛЬ

Прокладка первого трансатлантического телеграфного кабеля оказалась очень масштабным предприятием для своего времени. После пяти попыток к сентябрю 1866 года два кабеля соединили Фойлхоммерум Бей на острове Валентия (Ирландия) с Хартс Контентом (Ньюфаундленд) и Лабрадором (Канада). Инициатором проекта был Сайрус Филд, американский финансист и бизнесмен, который решил реализовать идею Фредерика Гисборна, канадского изобретателя, мечтавшего проложить телеграфную линию между различными территориями Новой Шотландии (Канада). В 1856 году совместно с англичанами — инженером-телеграфистом Джоном Бреттом и инженером-электриком Чарльзом Брайтом — Филд основал Atlantic Telegraph Company, имевшую целью продолжить и коммерчески эксплуатировать кабель между Европой и Америкой. В качестве главного электрика к компании присоединился Эдвард Уайтхаус. Проект получил одобрение американца Сэмюэла Морзе, одного из авторов кода, носящего его имя. Филд добился частичного финансирования проекта со стороны правительств Великобритании и США, а также сам пожертвовал четверть необходимых средств, которая составила примерно 10 миллионов евро по сегодняшнему курсу.

Первая попытка прокладки состоялась в 1857 году, в ней участвовали два самых крупных военных корабля того времени — «Агамемнон» (со стороны Британии) и «Ниагара» (со стороны США). Но уже через день кабель вышел из строя. Летом 1858 года была предпринята вторая попытка. Два корабля встретились на полпути, каждый из них перевозил половину кабеля. После состыковки фрагментов началась прокладка, которая закончилась раньше времени из-за обрыва кабеля «Ниагары»; к тому времени было проложено более 350 км. Через месяц была предпринята новая попытка. В этот раз оба корабля достигли своих берегов. Королева Виктория и президент Джеймс Бьюкенен обменялись 16 августа первыми сообщениями. Эффективность новой связи была не очень высокой: чтобы послать сообщение королевы, включающее 98 слов, потребовалось 16 часов.

В 1856 году Томсон был назначен научным консультантом Atlantic Telegraph Company. Одной из основных проблем передачи была низкая интенсивность сигнала, затруднявшая расшифровку сообщений. Уайтхаус запатентовал устройство, малочувствительное к получению и требовавшее использования высокого напряжения при отправке, чтобы гарантировать минимально различимый сигнал. Решение поддержали Фарадей и Морзе, но Томсон считал, что оно вызовет проблемы, в частности может повредить изоляцию кабеля.

По этой причине Томсон выступал за использование низкого напряжения, а так как это предполагало чрезвычайно слабые сигналы, разработал принимающее устройство, которое назвал зеркальным гальванометром и запатентовал в 1858 году. На самом деле ученый улучшил изобретение, сделанное немецким физиком Иоганном Христианом Поггендорфом в 1826 году.

ПРЕДШЕСТВЕННИКИ ТРАНСАТЛАНТИЧЕСКОГО КАБЕЛЯ

Одним из первых ученых, которые говорили о возможности использования подводных телеграфных кабелей, был испанец Франсиско Сальва-и- Кампильо - врач, физик и метеоролог, который в конце XVIII века предложил проложить такой кабель между Аликанте и Пальмой-де-Мальоркой. В начале IX века немецкий врач и изобретатель Самуэль Томас фон 3ёммеринг, эстонский дипломат Павел Львович Шиллинг и британский ученый и изобретатель Чарльз Уитстон осуществили различные эксперименты по испытаниям кабелей этого типа, но дальше всего в разработках продвинулся Сэмюэл Морзе, который в 1842 году осуществил пробную передачу сообщения в Нью-Йорке, используя кабели, погруженные в реку Гудзон. Первым рабочим подводным кабелем был кабель, проложенный братьями Брепами (Джон Уоткинс и Джакоб) между Дувром (Англия) и Кале (Франция) через Ла-Манш в 1850 и 1851 годах. В 1852 году был проложен кабель между Лондоном и Парижем, а в 1853 году связанными через Северное море оказались Оксфорд (Англия) и Гаага (Голландия). В 1855 году по всему миру было проложено примерно 600 км подводного кабеля -19 линий, из которых 13 все еще работали, когда был проложен трансатлантический кабель.

Карта трансатлантического телеграфного кабеля.

Гальванометр — это аппарат, позволяющий зафиксировать и измерить электрический ток. Прибор (см. рисунок 1) состоит из катушки, к которой подсоединена индикаторная стрелка. Катушка помещается внутрь постоянного магнитного поля (производимого, например, постоянным магнитом) так, что она может вращаться вокруг оси, перпендикулярной ее плоскости. Когда ток, который нужно измерить, проходит через катушку, она вращается под воздействием магнитного поля, и при надлежащей калибровке можно измерить силу тока на основе угла вращения, определяемого с помощью индикаторной стрелки.

РИС.1

Сигналы, посылаемые по кабелю, представляют собой сообщения на азбуке Морзе, то есть последовательность точек и тире. Каждый из этих символов обозначался с помощью тока различного знака. Точки и тире, следовательно, вызывали перемещение стрелки гальванометра влево и вправо (и наоборот) от положения равновесия, которое соответствовало отсутствию сигнала. Но так как интенсивность сигналов при получении была очень низкой, возникали сложности в определении: так сдвинулась стрелка или нет.

Томсон изменил конструкцию гальванометра (см. рисунок 2 на следующей странице). Он убрал стрелку и увеличил катушку, которая стала неподвижным элементом устройства. В центр катушки, внутрь воздушной камеры, он поместил небольшое искривленное зеркало, повешенное на тонкой шелковой нити, с крошечными магнитами, прикрепленными к его задней части. На зеркало он направил узкий луч света от лампы, который после отражения проецировал световую точку на шкалу, расположенную на расстоянии нескольких метров. Когда ток, принимаемый в кабеле, вызывал вращение катушки, магниты заставляли вращаться зеркало, и световая точка перемещалась в ту или иную сторону от нулевого деления шкалы. Воздух в камере, где было расположено зеркало, сжимался, в связи с чем колебания, которые могли возникнуть после каждого сигнала, максимально сокращались. Увеличенное отражение позволяло намного легче различить движения, даже когда они были очень незначительными. Зеркальный гальванометр также использовался для обнаружения дефектов в конструкции кабелей. Томсон придумал и другие средства для их применения на борту при прокладке кабеля, чтобы собственные движения корабля не вызывали нежелательных перемещений стрелки.

РИС. 2

Спор между Томсоном и Уайтхаусом было сложно разрешить, потому что один оппонент находился на европейском конце кабеля, а второй — на американском. Сначала Уайтхаус как главный электрик проекта настаивал на своем мнении, но Томсон был уверен: высокое напряжение способно повредить изоляцию кабеля. В результате интенсивность принятого сигнала снизится, и для решения этой проблемы потребуется еще больше увеличивать напряжение. В итоге так и вышло, и участники проекта начали использовать зеркальный гальванометр, однако кабель уже был поврежден. Через несколько дней он перестал работать, и на компанию обрушилась критика за то, что она наняла Уайтхауса, который на самом деле был врачом в отставке и электриком-самоучкой, то есть не имел необходимой квалификации.

КОД МОРЗЕ

Сэмюэл Финли Бриз Морзе родился в Бостоне (США) 27 апреля 1791 года и умер в Нью-Й1орке 2 апреля 1872 года. Он был изобретателем и художником.

Альфред Вейл и сам Морзе разработали зашифрованный язык для отправки сообщений по телеграфу. Итоговый код получил название кода Морзе, буквы и числа в нем были представлены последовательностью точек и тире, которые соответствовали звукам определенной длительности: уточки была минимальная длительность, а у тире - тройная длительность по сравнению с точкой. Между символами одной буквы (или числа) устанавливается нулевая длительность, равная длительности точки, между буквами одного слова интервал имеет длительность, равную трем точкам, а интервал между словами равен пяти точкам. Очевидно, что способы кодирования точек и тире могут быть другими, и, как уже было сказано, в случае с трансатлантическим кабелем точки и тире соответствовали токам с противоположным знаком. Со входом в употребление радиопередатчиков код Морзе потерял популярность и сегодня используется очень редко. Морзе пытался проложить телеграфные линии в своей стране, но только в 1844 году ему удалось получить разрешение конгресса на прокладку первой линии, которая соединила Балтимор и Вашингтон. Первое сообщение было отправлено 1 мая того же года.

Код Морзе, опубликованный в 1922 году.

Филд довольно долго не предпринимал новых попыток прокладки. В 1864 году он смог достать средства и создал новое предприятие — Telegraph Construction and Maintenance Company, - которое взяло на себя производство кабеля и его прокладку с помощью корабля Great Eastern. Несмотря на то что опыт других, более коротких прокладок, осуществленных в Средиземном и Красном морях, позволил внести значительные изменения в конструкцию кабеля, снова произошел обрыв - на этот раз после прохождения почти 2000 километров. Новая попытка состоялась 15 июля 1865 года.

Филд не отступал от своих намерений. Он создал Anglo-American Telegraph Соmраnу и 13 июля 1866 года предпринял новую попытку, опять с помощью Great Eastern. Его команда достигла канадского берега 27 числа того же месяца, а на следующий день выяснила, что кабель работает. Корабль снова вышел в море 9 августа, чтобы найти кабель, потерянный в прошлом году, и дополнить его недостающим куском. А 7 сентября небывалый проект был завершен. Новый кабель работал 6 лет, восстановленный - 12.

После неудачи 1858 года роль Томсона в проекте значительно выросла. Итоговый успех во многом был связан с применением его научного подхода к решению практической проблемы. Первый вопрос, стоявший перед ученым, заключался в необходимости установления строгого контроля над изготовлением кабеля. При двух первых попытках производство поручили двум разным фабрикам, не дав им детальных указаний. Фабрики изготовили фрагменты длиной две мили, и каждый производитель переплел медные жилы кабеля в противоположных направлениях, тем самым сильно затруднив соединение кусков.

Томсон также очень внимательно относился к чистоте используемой меди. Например, он проанализировал проводимость кабеля 1857 года и нашел значительное снижение качества в некоторых его частях. В июне 1857 года он представил Королевскому обществу статью под названием «06 электрической проводимости коммерческой меди», в которой приводил результаты сравнения многочисленных образцов. Так Томсон добился того, чтобы в контрактах на изготовление кабеля 1858 года уточнялись не только вес и размер жил, но и их химический состав, электрическая проводимость, а также оговаривалась необходимость фабричного контроля. В контракте на изготовление такой язык использовался впервые. Также ученый разработал необходимые устройства контроля и добился, чтобы был проверен практически каждый сантиметр кабеля, при этом участки, не удовлетворявшие заданию, отвергались. Томсон - снова впервые - заложил основы того, что сегодня называют контролем качества.

Кроме того, проблемы, стоявшие в то время перед Томсоном, выходили за пределы области электричества. В 1857 году он смоделировал процесс сбрасывания кабеля с кормы корабля, что позволило ему сформулировать дифференциальные уравнения, учитывавшие задействованные силы, и, зная скорость корабля и диапазон углов кабеля при вхождении в воду, ученый смог установить причину разрыва, которая состояла в напряжении, оказанном на кабель системой торможения. Благодаря расчетам Томсона были внесены изменения в процесс сбрасывания кабеля и уточнены детали соответствующих операций.

Постоянный контроль также позволял находить новые характеристики поведения кабеля. Так, в свидетельстве, которое подписали ответственные за проект в 1865 году, значилось:

«Изоляция кабеля сильно улучшается после его погружения в глубокие и холодные воды Атлантического океана, и, следовательно, его проводящая способность значительно увеличивается. [...] Кабель 1865 года более чем в 100 раз лучше изолирован, чем кабель 1858 года. [...] Электрические проверки могут осуществляться с такой точностью, что это позволяет электрикам определить наличие ошибки сразу же после того, как она произойдет, и очень быстро обнаружить ее местонахождение в кабеле».

ТОМСОН И ТЕЛЕГРАФИЯ

Работа Томсона над проектом прокладки трансатлантического телеграфного кабеля оказалась неблагодарной. Он не получил за нее никакого вознаграждения, поэтому удивляет его преданность этому проекту в течение всего долгого периода его реализации, особенно если учитывать образование Томсона и его предыдущие интересы, в основном связанные с теоретическими научными исследованиями. Его отец и особенно брат Джеймс интересовались практическими вопросами намного больше. Фон Гельмгольц познакомился с Джеймсом во время визита, который нанес в Глазго в 1863 году. Он так отзывался о брате ученого:

«Он уравновешенный человек, полный хороших идей, но его беспокоит исключительно инженерное дело, которым он занимается неустанно днем и ночью, поэтому невозможно заниматься чем-то другим, когда он присутствует рядом. Действительно забавно смотреть, как два брата разговаривают друг с другом, ни один из них не слушает второго, и они не перестают говорить — каждый о своем. Но инженер — самый упрямый из них, и в итоге они всегда начинают ссориться из-за своих тем».

Причины, по которым Томсон так углубился в проблемы телеграфии, были довольно тривиальными. Речь шла о технологии, основанной на использовании электричества. В этой сфере Томсон был экспертом, его интересовали процесс распространения сигналов в металлических проводах и их поведение в изоляторах с научной точки зрения. Но проблемы, связанные с использованием подводных кабелей, привели к тому, что он полностью погрузился в их решение.

В отличие от того, что происходит с наземными кабелями, в которых сигналы с одного конца почти мгновенно и без видимых искажений доходят до другого конца, в случае с подводными кабелями сигналы принимались с большими трудностями и искажались до такой степени, что часто было сложно различить, действительно получено какое-то сообщение или это просто помехи. Кроме того, в 1823 году английский метеоролог и изобретатель Фрэнсис Рональде заметил, что в закопанных кабелях сигналы подвергаются при передаче значительным задержкам, а под водой этот эффект был выражен еще сильнее.

В 1853 году Джордж Биддель Эйри, английский астроном и математик, а также королевский астроном и директор Гринвичской обсерватории (Англия), пытался проложить телеграфную линию к Парижской обсерватории, чтобы синхронизировать наблюдения, осуществляемые одновременно из обеих точек. Задержка сигналов была для него большой проблемой, и Эйри проконсультировался с английским инженером-электриком Джозайей Кларком, который сравнил поведение кабеля длиной примерно 150 м, свернутого и погруженного в бассейн, с поведением кабеля длиной примерно 2 км, образующего круг над открытой территорией. В первом кабеле были очевидны задержка и потеря четкости сигнала, и это зафиксировал Фарадей, присутствовавший при одном из испытаний.

Следуя, как всегда, своей интуиции, Фарадей дал этому качественное объяснение, которое позже опубликовал в «Философском журнале». Любой электрический сигнал, который передается по кабелю, создает вокруг себя «электронное возмущение». Если кабель окружен сухим воздухом, не происходит ничего значительного. Но вода обладает электрической проводимостью, которой нельзя пренебрегать. Эта проводимость явно больше проводимости сухого воздуха, следовательно, когда кабель погружают в воду, появляются местные индуцированные электрические токи, которые тормозят исходящий сигнал. В статье Фарадей, как это было характерно для него, не приводил никаких конкретных расчетов, ограничиваясь только изложением своего видения проблемы.

Однако публикация Фарадея заинтересовала Уильяма Роуэна Гамильтона, который на собрании Британской ассоциации развития науки в 1854 году, прошедшей в Ливерпуле, обратился к Томсону за консультацией на этот счет. Томсон посоветовал Гамильтону побеседовать со Стоксом, что тот и сделал. Но Стокс не смог решить вопрос и снова передал проблему Томсону, который в итоге сформулировал основные уравнения телеграфии. Сделал он это исключительно чтобы удовлетворить свое любопытство. В первом из писем, которыми Томсон обменялся со Стоксом, после краткого вступления («Когда я перечитывал твое письмо этим утром, чтобы ответить на него, я понял, что все это должно вычисляться следующим образом») ученый привел все необходимые действия для анализа передачи электрических сигналов в изолированных подводных кабелях.

В декабре этого же года Томсон написал Стоксу письмо, в котором просил его не публиковать полученные результаты, поскольку он совместно с Ранкином и Джоном Томсоном (братом Уильяма, преподавателем медицинской практики в Университете Глазго) подал заявку на патент. При этом Томсон не обладал никакими знаниями в вопросах, связанных с промышленностью и интеллектуальной собственностью. Так, в письме брату Джеймсу он отмечал:

«[Ранкин] предложил взять патент, о чем я не имел никакого представления ранее. Надеюсь, через несколько дней он будет нам предоставлен; между тем не рассказывай ничего из того, что я говорил тебе на эту тему. Не думаю, что смог многое сделать по ней, но, возможно, она окажется продуктивной».

Внезапно, как это часто происходит с учеными, которые вступают в прикладные области, Томсон открыл для себя правила, действующие в промышленной сфере и очень отличающиеся от возвышенных академичексих норм.

Интерес Томсона к технологическим и прикладным аспектам физики не был новым. В этом смысле решающую роль сыграла лаборатория, которую он начал оборудовать, как только приехал в Университет Глазго в 1846 году. Кроме достижения основных целей (дополнять теоретическое образование и получать новые экспериментальные данные, необходимые для развития научных теорий), это помогло Томсону разработать новые измерительные приборы, особенно в области электромагнетизма. Ученый тесно сотрудничал с фирмой Jаmеs White Optician and Philosophical Instrument Makers: основанная в Глазго в 1850 году, она со временем изготовила и ввела в торговый оборот многие устройства, придуманные Уильямом.

Модель кабеля, изготовленная Томсоном, была относительно простой. Кабель состоял из медной жилы, окруженной изолятором и водоупорной защитой. Томсон предположил, что это равносильно сочетанию сопротивления и конденсатора, особые характеристики которых определялись конкретными деталями кабеля. В этой модели электрическое поведение кабеля было простым: чем больше толщина медной жилы, тем меньше сопротивление; чем шире изолирующий слой, тем меньше соответствующая способность конденсатора. Последний отвечал за накопление заряда по мере того, как электрический импульс проходил по кабелю. Томсон вычислил время, необходимое сигналу на то, чтобы дойти до другого конца кабеля, и выяснил, что при неизменном значении сопротивления и пропускной способности время пропорционально квадрату длины кабеля. Этот результат для проекта трансатлантического кабеля обескураживал, но Томсон не терял надежды, отмечая, что при достаточно интенсивном сигнале, некотором терпении со стороны операторов и, безусловно, довольно низкой стоимости передачи сигнала общение все же возможно.

Томсон опубликовал эти результаты в статье под названием «Ü теории электрического телеграфа», в которой снова провел аналогию с теорией Фурье: переданный электрический импульс аналогичен теплу, движущемуся через твердое металлическое тело. Томсон очень любил проводить аналогии между проблемами из разных областей, и это его пристрастие было общеизвестным.

Некоторые экспериментаторы, в частности английские инженеры Генри Дженкин и Кромвель Флитвуд Варли, подтвердили расчеты Томсона. Но закон квадратов — как стали называть полученное ученым отношение - вызывал споры. В 1856 году на собрании Британской ассоциации развития науки Уайтхаус представил результаты, противоречащие выводам Томсона. Основываясь на смутных экспериментах и недостоверных гипотезах, он сделал вывод, что время передачи должно быть пропорционально длине кабеля (а не ее квадрату), и не без некоторой чванливости указал:

«И каков, могли бы вы спросить меня, общий вывод, который можно сделать в результате этого исследования о законе квадратов применительно к подводным цепям? Со всей искренностью я могу рассматривать его только как выдумку преподавателей, принужденную и насильственную адаптацию принципа физики, хорошего и истинного в других обстоятельствах, но ошибочно примененного здесь».

Томсон позирует с компасом. Снимок около 1900 года.

Сайрус Филд, инициатор проекта трансатлантического телеграфного кабеля.

Члены Международной ниагарской комиссии, Томсон сидит в центре.

После этого представления между Томсоном и Уайтхаусом состоялся обмен репликами, во время которого каждый защищал свою позицию. Первый выявил неточиости в экспериментах второго; тот ответил, что расчеты оппонента сделаны на основе идеальной модели. Независимо от того, понял ли Уайтхаус предложение Томсона, также верно, что анализ последнего не был и не мог быть полным. Однако ученый верил в полученные результаты, что полностью подтверждают сказанные во время дебатов с Уайтхаусом слова: «Как и любая теория, эта является всего лишь сочетанием установленных истин». Очевидно, что такой подход не гарантирует абсолютной точности. Подводный кабель был намного более сложным объектом, чем способна описать модель, а с другой стороны - разработка электромагнитной теории также еще не была завершена. И все же у анализа Томсона было два преимущества. Одно - общего характера: рационализация, которая предполагала подход к проблеме с научной точки зрения. Другое - более прагматичное: он объяснял, хотя и очень приблизительно, поведение подводных кабелей.

О том, чем история закончилась, мы уже рассказали. Некоторые замечания Томсона были учтены при строительстве кабелей, и в итоге связь была установлена, а ученый получил титул сэра.

ДРУГИЕ ДОСТИЖЕНИЯ И ИЗОБРЕТЕНИЯ

Не оставляя телеграфии, Томсон с 1867 по 1870 год занимался разработкой так называемого сифонного отметчика (или регистратора). Использование зеркального гальванометра позволило осуществить связь с помощью трансатлантического кабеля, но за световой точкой требовалось постоянное наблюдение. С помощью сифонного отметчика Томсон хотел автоматизировать прием сообщений, которые записывались бы при получении на бумажную ленту. Также ученый занимался поддержанием точности зеркального гальванометра.

В новом устройстве, которое схематически показано на рисунке 3, бумага в катушке и в постоянном магните поменялись местами. Кабель доходил до прямоугольной катушки, которая могла вращаться вокруг своей наибольшей оси между полюсами мощного электромагнита. Движения катушки при приеме сигнала передавались трубке узкого стеклянного сифона, к которому с одной стороны была подсоединена емкость с чернилами, а с другой он опирался на маленькую металлическую подставку, удерживавшую бумажную ленту. Между чернилами и подставкой поддерживалась определенная разница потенциалов. При получении сигнала сифон двигался влево или вправо от своего положения равновесия и одновременно на бумаге появлялись капли чернил, так что на ней вычерчивалась тонкая линия. При отсутствии сигнала сифон чертил прямую линию.

Сифонный отметчик оказался намного более экономичным и достоверным устройством, чем зеркальный гальванометр, поэтому он постоянно использовался при такой связи с помощью подводных кабелей. Также некоторые решения Томсона позволили улучшить другие электрические измерительные приборы. В 1874 году работа ученого в области телеграфного дела была увенчана избранием его президентом Общества телеграфных инженеров (до этого он был членом-основателем и вице-президентом общества).

Другой эмпирический результат, найденный Томсоном, значительно повлиял на конструкцию электромагнитов. Ученый нашел связь между линейными размерами ядра мягкой стали, длиной медного провода (он наматывается для образования электромагнита), током (им питается магнит) и интенсивностью поля, которое он производит. Стало возможным изготавливать электромагниты, производящие поле одинаковой интенсивности из ядер различного размера, работающих с одной и той же силой тока. Косвенно Томсон установил характерные параметры изготовления электромагнитов.

Не может быть большей ошибки, чем смотреть с презрением на практическое применение науки. Жизнь и душа науки - ее практическое применение.

Уильям Томсон

В области электричества Томсон разработал многочисленные устройства и методы измерения различных показателей. В 1867 году он изобрел квадрантный электрометр, позволявший осуществлять абсолютное измерение электростатического потенциала. В определенной конфигурации этот прибор мог использоваться для измерения атмосферного электричества. Ученый разработал токовые весы для определения единицы силы тока — ампера. В благодарность за его вклад в электрическую стандартизацию Международная электротехническая комиссия на собрании, состоявшемся в Лондоне в июне 1906 года, избрала Томсона своим первым председателем.

Также можно выделить нововведения ученого в морском деле. После смерти супруги в 1870 году он приобрел 126-тонный корабль, который назвал «Лалла Рук». Работа с ним позволила увеличить опыт Томсона в связи с прокладкой кабеля. Также он разработал прибор для исследования морского дна. Раньше использовался лот на веревке, который опускали с борта корабля, пока веревка не ослабевала, когда лот сталкивался с дном. Томсон заменил веревку стальным кабелем и использовал манометр для регистрации давления и косвенного определения глубины. Этот усовершенствованный лот в свое время интенсивно использовался вплоть до 1960 года, в том числе и на Королевском флоте.

Кроме того, бортовые работы в связи с прокладкой подводных кабелей увеличили знания Томсона в мореходном деле и привели к постановке новых проблем. Так, он предложил, чтобы маяки, вместо того чтобы испускать постоянный луч, мигали, передавая уникальную для каждого из них информацию с помощью кода типа Морзе: таким образом моряки получали дополнительные сведения о своем реальном местонахождении. Ученый долго настаивал на этом своем предложении, и со временем оно начало внедряться на практике.

Также Томсон интересовался морскими компасами, которые он начал изучать около 1870 года, чтобы написать статью для журнала Good Words, издателем которого был его друг. В 1874 году в связи со смертью Арчибальда Смита Томсон выяснил, что тот исследовал отклонения, которым подвергались компасы, используемые на борту кораблей. Если первые корабли изготавливались из дерева, то постепенно в их конструкции использовалось все больше металла, пока они не стали полностью металлическими. Это повышало надежность судна, но порождало новые проблемы. Железо корабля обладало собственным магнитным полем, которое было постоянным и называлось эффектом сильного магнетизма, а в зависимости от своего положения корабль оказывал воздействие на магнитное поле Земли, этот эффект был переменным и назывался эффектом слабого магнетизма.

Также было известно, что привычная на море качка, особенно в случае плохой погоды, или сотрясение, которому подвергается военный корабль из-за отдачи при пушечной стрельбе, расстраивают работу компасов, поскольку меняют слабый магнетизм.

ГАРМОНИЧЕСКИЙ АНАЛИЗАТОР ПРИЛИВОВ

Начиная с 1860 года Томсон начал интересоваться характеристиками приливов, предсказание которых имело большую важность для Британского адмиралтейства, поскольку его корабли бороздили моря всей планеты.

Так стартовал проект предсказания приливов под руководством Томсона, разработавшего гармонический анализатор приливов.

Он вновь использовал разработки гармоник Фурье, проявив свою гениальность. Дэвид Линдли, автор биографии Томсона, писал: «Математика, которую она [эта проблема] включала в себя, принадлежала всем, в основном Лапласу во Франции и Эйри в Англии. Зачаток механизма [расчета] происходил от [его брата] Джеймса Томсона. Но именно Уильям Томсон нашел сочетание теоретических и практических элементов, переформулировал математику доступным образом, развил новшество своего брата в устройство более точного расчета и создал машину, которая делала ровно то, что ей было предназначено, не требуя при этом участия оператора».

Гармонический анализатор приливов, разработанный Уильямом Томсоном и выставленный в Музее науки в Лондоне.

Эйри изучал проблему и нашел приемлемое решение, включив в компас пару постоянных магнитов, ориентированных определенным образом. Но это решение не было абсолютно удовлетворительным, поскольку позволяло только скорректировать, и то не полностью, действие сильного магнетизма. Позже Смит разработал процедуру коррекции, в которую включался слабый магнетизм, но она была слишком сложной, поскольку требовалось, чтобы каждый корабль прошел ряд измерений, результаты которых следовало обработать и составить таблицы, включающие специфические поправки для каждого конкретного корабля. И все же, несмотря на свою сложность, эта процедура использовалась в британском флоте долгие годы.

Томсон в своем анализе учел другую проблему, связанную с движением стрелки компаса, которая стремилась вращаться вокруг своей оси, выравниваясь в одну линию с осью корабля. Этот чисто механический эффект накладывался на магнитное выстраивание, но мог влиять на движение стрелки, особенно когда она имела больший, чем обычно, вес (такие компасы использовали на некоторых кораблях, полагая, что благодаря своему большему весу такие стрелки будут стабильнее, однако эффект был обратным). Со временем корабли становились все больше, компасы — тоже, и проблема была все острее.

Решение Томсона казалось очевидным. В задаче участвовали хорошо знакомые элементы: магнитное поле Земли, сильный и слабый магнетизм корабля, намагниченные элементы и динамика. Томсон искал решение, которое не требовало бы от моряков знаний в таких дисциплинах, как физика или математика. Он разработал конструкцию из легких элементов, чтобы избежать динамических эффектов и облегчить компенсацию явлений, вызванных использованием железа в конструкции корабля.

Однако его компас был оценен не очень высоко. Ни Эйри, ни руководство адмиралтейства не поняли улучшений, предложенных ученым. Несмотря ни на что Томсон добился использования своей конструкции на некоторых кораблях и на основании отчетов об эксплуатации и наблюдений пользователей вносил в прибор усовершенствования. К 1880 году компас Томсона начал использоваться на коммерческих судах.

Прикладная работа, которой занимался ученый в эти годы, безусловно, заставила его отложить темы, связанные с базовой наукой. Фон Гельмгольц, навестивший его в 1884 году, написал:

«У меня впечатление, что сэр Уильям может делать нечто лучшее, чем применять свою выдающуюся проницательность к промышленным проектам; его инструменты кажутся мне слишком утонченными для того, чтобы давать их в руки необразованных рабочих и служащих. [...] Он одновременно решает в уме глубокие теоретические проблемы, но у него нет времени спокойно поработать над ними».

Однако уже был близок новый этап в плодотворной научной жизни Томсона.