РАЗНЫЕ ТОЧКИ ЗРЕНИЯ НА ДВИЖЕНИЕ
Чемодан лежит на полке вагона. В то же время он движется вместе с поездом. Дом стоит на Земле, но вместе с ней и движется. Про одно и то же тело можно сказать: движется прямолинейно, покоится, вращается. И все суждения будут верны, но с разных точек зрения.
Не только картина движения, но и свойства движения могут быть совсем равными, если их рассматривать с разных точек зрения.
Вспомните, что происходит с предметами на пароходе, попавшем в качку. До чего они непослушны! Пепельница, поставленная на стол, опрокинулась и стремительно понеслась под кровать. Плещется вода в графине, и лампа колеблется, словно маятник. Без каких-либо видимых причин одни предметы приходят в движение, другие останавливаются. Основной закон движения, мог бы сказать наблюдатель на таком пароходе, состоит в том, что в любой момент времени незакрепленный предмет может отправиться в путешествие в любом направлении с самой различной скоростью.
Этот пример показывает, что среди различных точек зрения на движение имеются явно неудобные.
Какая же точка зрения наиболее «разумная»?
Если бы вдруг, ни с того ни с сего, лампа на столе наклонилась или пресс-папье подпрыгнуло, то вы подумали бы сначала, что это вам почудилось. Если бы эти чудеса повторились, вы настойчиво стали бы искать причину, которая выводит эти тела из состояния покоя.
Поэтому совершенно естественно считать рациональной точкой зрения на движение такую, при которой покоящиеся тела не сдвигаются с места без действия силы. Такая точка зрения кажется весьма естественной: покоится тело — значит, сумма сил, действующих на него, равна нулю. Сдвинулось с места — это произошло под действием силы.
Точка зрения предполагает наличие наблюдателя. Однако нас интересует не сам наблюдатель, а место, где он находится. Поэтому вместо «точка зрения на движение» мы будем говорить: «система отсчета, в которой рассматривается движение», или просто «система отсчета».
Для нас, обитателей Земли, важной системой отсчета является Земля. Однако зачастую системами отсчета могут служить и движущиеся по Земле тела, скажем, пароход или поезд.
Возвратимся теперь к «точке зрения» на движение, которую мы назвали рациональной. У этой системы отсчета есть имя — она называется инерциальной.
Откуда взялся этот термин, мы увидим немного ниже.
Свойства инерциальной системы отсчета, следовательно, таковы: тела, находящиеся в состоянии покоя по отношению к этой системе, не испытывают действия сил. Значит, в этой системе ни одно движение не начинается без действия силы. Простота и удобства такой системы отсчета очевидны. Ясно, что ее стоит взять за основу.
Чрезвычайно важно то обстоятельство, что система отсчета, связанная с Землей, не очень отличается от инерциальной системы. Мы можем поэтому приступить к изучению основных закономерностей движения, рассматривая их с точки зрения Земли. Однако надо помнить, что, строго говоря, все, что будет сказано в следующем параграфе, относится к инерциальной системе отсчета.
ЗАКОН ИНЕРЦИИ
Не приходится спорить — инерциальная система отсчета удобна и обладает неоценимыми преимуществами.
Но единственная ли это система или, может быть, существует много инерциальных систем? Древние греки, например, стояли на первой точке зрения. В их сочинениях мы находим много наивных размышлений о причинах движения. Эти представления находят завершение у Аристотеля. По мнению этого философа, естественным положением тела является покой, — конечно, по отношению к Земле. Всякое же перемещение тела по отношению к Земле должно иметь причину — силу. Если же причины двигаться нет, то тело должно остановиться, перейти в свое естественное состояние. А таковым является покой по отношению к Земле. Земля с этой точки зрения есть единственная инерциальная система.
Открытием истины и опровержением этого неверного, но очень близкого наивной психологии мнения мы обязаны великому итальянцу Галилео Галилею (1564–1642).
ГАЛИЛЕО ГАЛИЛЕЙ (1564–1642) — великий итальянский физик и астроном, впервые применивший экспериментальный метод исследования в науке. Галилей ввел понятие инерции, установил относительность движения, исследовал законы падения тел и движения тел по наклонной плоскости, законы движения при бросании предмета под углом к горизонту, применил маятник для измерения времени. Впервые в истории человечества он направил зрительную трубу на небо, открыл множество новых звезд, доказал, что Млечный Путь состоит из огромного числа звезд, открыл спутники Юпитера, солнечные пятна, вращение Солнца, исследовал строение лунной поверхности. Галилей активно поддерживал запрещенную в те времена католической церковью гелиоцентрическую систему Коперника. Гонения со стороны инквизиции омрачили последние десять лет жизни великого ученого.
Задумаемся над аристотелевым объяснением движения и поищем в знакомых нам явлениях подтверждения или опровержения мысли о естественном покое тел, находящихся на Земле.
Представим, что мы находимся в самолете, отбывшем из аэропорта на рассвете. Солнце не нагрело еще воздуха, нет «воздушных ям», причиняющих многим пассажирам неприятности. Самолет движется плавно, неощутимо. Если не смотреть в иллюминатор, то и не заметишь, что летишь. На свободном кресле лежит книга, на столике покоится яблоко. Все предметы внутри самолета неподвижны. Так ли должно быть, если прав Аристотель? Конечно, нет. Ведь естественным положением тела является, по Аристотелю, покой на Земле. Почему же тогда, все предметы не собрались у задней стенки самолета, стремясь отстать от его движения, «желая» перейти в состояние «истинного» покоя? Что заставляет лежащее на столе яблоко, едва соприкасающееся с поверхностью стола, двигаться с огромной скоростью в несколько сот километров в час?
Каково же правильное решение вопроса о причине движения? Поинтересуемся сначала, почему движущиеся тела останавливаются. Например, почему останавливается катящийся по земле шар. Чтобы дать правильный ответ, следует подумать, в каких случаях шар останавливается быстро, а в каких медленно. Для этого не нужны специальные опыты. Из житейской практики превосходно известно: чем более гладкой является поверхность, по которой движется шар, тем дальше он катится. Из этих и подобных опытов вырастает естественное представление о силе трения как о помехе движению, как о причине торможения предмета, катящегося или скользящего по земле. Различными способами можно уменьшить трение. Гладкость дороги, хорошая смазка, совершенные подшипники позволяют движущемуся телу пройти свободно без действия внешней силы тем больший путь, чем больше мы потрудимся над уменьшением всяческих сопротивлений движению.
Возникает вопрос: а что бы произошло, если бы сопротивления не было, если бы силы трения отсутствовали? Очевидно, в этом случае движение продолжалось бы бесконечно, с неизменной скоростью и вдоль одной и той же прямой линии.
Мы сформулировали закон инерции примерно в той форме, как он был дан впервые Галилеем. Инерция есть краткое обозначение этой способности тела двигаться прямолинейно и равномерно… без всякой причины вопреки Аристотелю. Инерция есть неотъемлемое свойство каждой частички во Вселенной.
Каким же образом проверить справедливость этого замечательного закона? Ведь невозможно создать такие условия, при которых на движущееся тело не действовали бы никакие силы. Это верно, но зато можно проследить обратное. В любом случае, когда тело изменяет скорость или направление своего движения, всегда можно найти причину — силу, которой это изменение обязано.
Тело приобретает скорость, падая на Землю; причина — сила притяжения Земли. Камень крутится на веревке, описывая окружность; причина, отклоняющая камень от прямолинейного пути, — натяжение веревки. Оборвется веревка — и камень улетит прочь в том направлении, в котором он двигался в момент обрыва веревки. Замедляется движение автомобиля, бегущего с выключенным мотором; причина — сопротивление воздуха, трение шин о дорогу и несовершенство подшипников.
Закон инерции есть тот фундамент, на котором покоится все учение о движении тел.
ДВИЖЕНИЕ ОТНОСИТЕЛЬНО
Закон инерции приводит нас к выводу о множественности инерциальных систем.
Не одна, а множество систем отсчета исключают «беспричинные» движения.
Если одна такая система найдена, то сразу же найдется и другая, движущаяся поступательно (без вращения), равномерно и прямолинейно по отношению к первой. При этом одна инерциальная система ничуть не лучше других, ничем не отличается от других. Нельзя никак отыскать среди множества инерциальных систем одну наилучшую. Законы движения тел во всех инерциальных системах одинаковы: тела приходят в движение лишь под действием сил, тормозятся силами, а при отсутствии действия сил или покоятся, или движутся равномерно и прямолинейно.
Невозможность какими-либо опытами выделить чем-либо одну инерциальную систему по отношению к другим составляет суть так называемого принципа относительности Галилея — одного из важнейших законов физики.
Но хотя точки зрения наблюдателей, изучающих явления в двух инерциальных системах, вполне равноправны, суждения их об одном и том же факте различны. Скажем, один из наблюдателей скажет, что стул, на котором он сидит в движущемся поезде, находится все время в одном месте пространства, другой же наблюдатель, находящийся на платформе, станет утверждать, что этот стул перемещается из одного места в другое. Или один наблюдатель, выстрелив из ружья, скажет, что пуля вылетела со скоростью 500 м/с, а другой наблюдатель, если он находится в системе, движущейся в том же направлении со скоростью 200 м/с, скажет, что пуля летит значительно медленнее — со скоростью 300 м/с.
Кто же из двоих прав? Оба. Ведь принцип относительности движения не позволяет отдать предпочтение какой-либо одной инерциальной системе.
Выходит, что о месте в пространстве и о скорости движения нельзя выносить общих, безоговорочно справедливых, как говорят, абсолютных суждений. Понятия места пространства и скорости движения относительны.
Говоря о таких относительных понятиях, необходимо указывать, какая инерциальная система отсчета имеется в виду.
Таким образом, отсутствие одной-единственной «правильной» точки зрения на движение приводит нас к признанию относительности пространства. Пространство можно было бы назвать абсолютным лишь в том случае, если бы удалось найти покоящееся в нем тело — покоящееся с точки зрения всех наблюдателей. Но это как раз и невозможно.
Относительность пространства означает, что пространство нельзя представлять себе как что-то такое, во что вкраплены тела.
Относительность пространства была признана наукой не сразу. Даже такой гениальный ученый, как Ньютон, считал пространство абсолютным, хотя и понимал, что установить это никак нельзя. Неверная точка зрения была распространена среди значительной части физиков вплоть до конца XIX в. Причины этого имеют, видимо, психологический характер: уж очень мы привыкли видеть вокруг себя незыблемые «те же места пространства».
Теперь нам надо разобраться, какие абсолютные суждения можно выносить о характере движения.
Если тела движутся по отношению к одной системе отсчета со скоростями v1 и v2, то их разность (разумеется, векторная) v1 — v2 будет одинакова для любого инерциального наблюдателя, так как обе скорости v1 и v2 при изменении системы отсчета меняются на одинаковую величину.
Итак, векторная разность скоростей двух тел абсолютна. Если так, то и вектор приращения скорости одного и того же тела за определенный промежуток времени абсолютен, т. е. величина его одинакова для всех инерциальных наблюдателей.
ТОЧКА ЗРЕНИЯ ЗВЕЗДНОГО НАБЛЮДАТЕЛЯ
Мы решили изучать движение с точки зрения инерциальных систем. Не придется ли тогда отказаться от услуг земного наблюдателя? Ведь Земля вращается вокруг оси и вокруг Солнца, как доказал Коперник. Сейчас читателю, может быть, трудно почувствовать революционность открытия Коперника, трудно представить себе, что, отстаивая справедливость его идей, Джордано Бруно пошел на костер, а Галилей терпел унижение и ссылку.
В чем же подвиг гения Коперника? Почему открытие вращения Земли можно ставить в один ряд с идеями человеческой справедливости, за которые передовые люди были способны отдать жизнь?
Галилей в своем «Разговоре о двух главных системах мира, птолемеевой и коперниковой», за написание которого он подвергся гонениям церкви, дал противнику коперникианской системы имя Симпличио, что значит «простак».
Действительно, с точки зрения простого непосредственного восприятия мира, того, что не очень удачно называют «здравым смыслом», система Коперника кажется дикой. Как так Земля вертится? Ведь я ее вижу, она неподвижна, а вот Солнце и звезды, действительно, движутся.
Отношение богословов к открытию Коперника показывает такое заключение собрания теологов (1616 г.): «Учение, что Солнце находится в центре мира и неподвижно, ложно и нелепо, формально еретично и противно священному писанию, а учение, будто Земля не лежит в центре мира и движется, вдобавок обладая суточным вращением, ложно и нелепо с философской точки зрения, с богословской же по меньшей мере ошибочно».
Это заключение, в котором непонимание законов природы и вера в непогрешимость догматов религии перемешаны с ложным «здравым смыслом», лучше всего свидетельствует о силе духа и разума Коперника и его последователей, столь решительно порвавших с «истинами» XVII в.
Но вернемся к поставленному выше вопросу.
Если скорость движения наблюдателя меняется или если наблюдатель вращается, то он должен быть выведен из числа «правильных» наблюдателей. А ведь именно в таких условиях находится наблюдатель на Земле. Однако если изменение скорости или поворот наблюдателя за время, пока он изучает движение, невелики, то такого наблюдателя можно условно считать «правильным». Будет ли это относиться к наблюдателю на земном шаре?
За одну секунду Земля повернется на 1/240 градуса, т. е. примерно на 0,00007 радиана. Это не так уж много. Поэтому по отношению к очень многим явлениям Земля — вполне инерциальная система.
Однако при длительных явлениях забывать про вращение Земли уже нельзя.
Под куполом Исаакиевского собора в Ленинграде одно время был подвешен громадный маятник. Если привести этот маятник в колебательное движение, то через непродолжительное время можно заметить, что плоскость его колебания медленно поворачивается. Через несколько часов плоскость колебания повернется на заметный угол. Такой опыт с таким маятником впервые проделан французским ученым Фуко и с тех пор носит его имя. Опыт Фуко наглядно показывает вращение Земли (рис. 2.1).
Итак, если наблюдаемое движение продолжается долгое время, то мы вынуждены отказаться от услуг земного наблюдателя и взять за основу систему отсчета, связанную с Солнцем и звездами. Такой системой пользовался Коперник, считавший Солнце и окружающие нас звезды неподвижными.
Однако в действительности система Коперника не вполне инерциальна.
Вселенная состоит из множества звездных скоплений — островов Вселенной, которые называются галактиками. В той галактике, куда входит наша Солнечная система, имеется примерно сто миллиардов звезд. Вокруг центра этой галактики Солнце вращается с периодом около 180 миллионов лет со скоростью 250 км/с.
Какая же ошибка будет сделана, если считать солнечного наблюдателя инерциальным?
Для сравнения достоинств земного и солнечного наблюдателей подсчитаем, на какой угол повернется солнечная система отсчета за одну секунду. Если полный оборот совершается за 180∙106 лет (6∙1015 с), то за одну секунду солнечная система отсчета повернется на 6∙10-14 градуса или на угол в 10-15 радиана. Можно сказать, что солнечный наблюдатель в 100 миллиардов раз «лучше» земного.
Желая еще больше приблизиться к инерциальной системе, астрономы берут за основу систему отсчета, связанную с несколькими галактиками. Такая система отсчета — наиболее инерциальная из всех возможных. Лучшую систему найти уже невозможно.
Астрономы могут быть названы звездными наблюдателями в двух смыслах: они наблюдают звезды и описывают движения небесных светил с точки зрения звезд.
УСКОРЕНИЕ И СИЛА
Для того чтобы охарактеризовать непостоянство скорости, физика пользуется понятием ускорения.
Ускорением называют изменение скорости за единицу времени. Вместо того чтобы говорить: «скорость тела изменилась на величину а за 1 секунду», мы говорим короче: «ускорение тела равно а».
Если мы обозначим через v1 скорость прямолинейного движения в первый момент времени, а через v2 скорость в последующий, то правило расчета ускорения а выразится формулой
a = (v2 — v1)/t
где t — время, в течение которого нарастала скорость.
Скорость измеряется в см/с (или м/с и т. д.), время — в секундах. Значит, ускорение измеряется в см/с за секунду. Число сантиметров в секунду делится на секунды. Таким образом, единица ускорения будет см/с2 (или м/с2 и т. д.).
Разумеется, ускоренно может меняться во время движения. Однако мы не будем этим непринципиальным обстоятельством усложнять изложение. Будем молчаливо предполагать, что во время движения скорость набирается равномерно. Такое движение называется равномерно-ускоренным.
Что такое ускорение криволинейного движения?
Скорость есть вектор, изменение (разность) скоростей есть вектор, значит, и ускорение — тоже вектор.
Для того чтобы найти вектор ускорения, надо разделить векторную разность скоростей на время. А как строить вектор изменения скорости, мы уже говорили.
Шоссе делает поворот. Отметим два близких положения автомашины и скорости ее представим векторами (рис. 2.2).
Вычитая векторы, мы получим величину, вовсе не равную нулю; деля ее на промежуток времени, найдем величину ускорения. Ускорение имело место и тогда, когда величина скорости при повороте не менялась. Криволинейное движение всегда ускоренное. Неускоренное только равномерное прямолинейное движение.
Говоря о скорости движения тела, мы все время оговаривали точку зрения на движение. Скорость тела относительна. С точки зрения одной инерциальной системы она может быть большой, с точки зрения другой инерциальной системы — малой. Не нужно ли делать такие же оговорки, когда мы говорим об ускорении?
Конечно, нет. Ускорение в противоположность скорости абсолютно. С точки зрения всех мыслимых инерциальных систем ускорение будет одним и тем же. Действительно, ведь ускорение зависит от разности скоростей тела в первый и второй момент времени, а эта разность, как мы уже знаем, будет одинаковой со всех точек зрения, т. е. является абсолютной.
Если на тело силы не действуют, то оно может двигаться только без ускорения. Напротив, действие на тело силы приводит к ускорению, и при этом ускорение тела будет тем бóльшим, чем больше сила. Чем скорее мы хотим привести в движение тележку с грузом, тем больше придется напрягать свои мускулы. Как правило, на движущееся тело действуют две силы: ускоряющая — сила тяги, и тормозящая — сила трения или сопротивления воздуха.
Разность этих двух сил, так называемая результирующая сила, может быть направлена вдоль или против движения. В первом случав тело убыстряет движение, во втором — замедляет. Если эти две противоположно действующие силы равны одна другой (уравновешиваются), то тело движется равномерно, так, как если бы на него вообще не действовали силы.
Как же связаны сила и создаваемое ею ускорение? Ответ оказывается очень простым. Ускорение пропорционально силе:
а ~ F.
(Знак ~ означает «пропорционально».)
Но остается решить еще один вопрос: как влияют свойства тела на его способность ускорять движение под действием той или иной силы? Ведь ясно, что одна и та же сила, действуя на различные тела, придает им разные ускорения.
Ответ на поставленный вопрос мы найдем в том замечательном обстоятельстве, что все тела падают на Землю с одинаковым ускорением. Это ускорение обозначают буквой g. В районе Москвы ускорение g = 981 см/с2.
Непосредственное наблюдение, на первый взгляд, не подтверждает одинаковости ускорения для всех тел. Дело в том, что при падении тел в обычных условиях, кроме силы тяжести, на них действует и «мешающая» сила — сопротивление воздуха. Различие в характере падения легких и тяжелых тел весьма смущало философов древности. Кусок железа падает быстро, пушинка парит в воздухе. Медленно опускается на Землю раскрытый лист бумаги, однако, свернутый в комок, этот же лист падает значительно быстрее. То, что воздух искажает «истинную» картину движения тела под действием Земли, понимали уже древние греки. Однако Демокрит думал, что, если даже удалить воздух, тяжелые тела будут всегда падать быстрее, чем легкие. А ведь сопротивление воздуха может привести и к обратному — скажем, листок алюминиевой фольги (широко развернутой) будет падать медленнее, чем шарик, скомканный из кусочка бумаги.
Кстати говоря, сейчас изготовляется металлическая проволока настолько тонкая (несколько микрон), что она парит в воздухе, как пушинка.
Аристотель считал, что в вакууме все тела должны падать одинаково. Однако из этого умозрительного заключения он делал следующий парадоксальный вывод: «падение равных тел с одинаковой скоростью настолько абсурдно, что ясна невозможность существования вакуума».
Никто из ученых древних и средних веков не догадался проверить на практике, с разными или одинаковыми ускорениями падают на Землю тола. Лишь Галилей своими замечательными опытами (он исследовал движение шаров по наклонной плоскости и падение тел, сбрасываемых с вершины наклонной Пизанской башни) показал, что все тела, вне зависимости от массы, падают в одном и том же месте земного шара с одинаковым ускорением. В настоящее время эти опыты весьма просто продемонстрировать при помощи длинной трубки, из которой выкачан воздух. Пушинка и камень падают в такой трубке совершенно одинаково: на тела действует лишь одна сила — вес, сопротивление воздуха сведено к нулю. При отсутствии сопротивления воздуха падение любых тел является равномерно-ускоренным движением.
Теперь вернемся к вопросу, поставленному выше. Как способность тела ускорять движение под действием заданной силы зависит от его свойств?
Закон Галилея говорит, что все тела, вне зависимости от их массы, падают с одним и тем же ускорением; значит, масса m кг под действием силы в F кг с движется с ускорением g.
Теперь предположим, что речь идет не о падении тел и на массу m кг действует сила в 1 кгс. Так как ускорение пропорционально силе, то оно будет в m раз меньше g.
Мы пришли к выводу, что ускорение тела а при заданной силе (в нашем примере в 1 кгс) обратно пропорционально массе.
Объединяя оба вывода, мы можем записать:
a ~ F/m
при неизменной массе ускорение пропорционально силе, а при неизменной силе обратно пропорционально массе.
Закон, связывающий ускорение с массой тела и действующей на него силой, был открыт великим английским ученым Исааком Ньютоном (1643–1727) и носит его имя.
ИСААК НЬЮТОН (1643–1727) — гениальный английский физик и математик, один из величайших ученых в истории человечества. Ньютон сформулировал основные понятия и законы механики, открыл закон всемирного тяготения, создав тем самым физическую картину мира, остававшуюся неприкосновенной до начала XX в. Он разработал теорию движения небесных тел, объяснил важнейшие особенности движения Луны, дал объяснение приливов и отливов. В оптике Ньютону принадлежат замечательные открытия, способствовавшие бурному развитию этого раздела физики. Ньютон разработал могучий метод математического исследования природы; ему принадлежит честь создания дифференциального и интегрального исчисления. Это оказало громадное влияние на все последующее развитие физики, способствовало внедрению в нее математических методов исследования.
Ускорение пропорционально действующей силе и обратно пропорционально массе тела и не зависит ни от каких других свойств тела. Из закона Ньютона следует, что именно масса является мерой «инертности» тела. При одинаковых силах труднее ускорить тело большей массы. Мы видим, что понятие массы, с которой мы ознакомились как со «скромной» величиной, определяемой взвешиванием на рычажных весах, приобрело новый глубокий смысл: масса характеризует динамические свойства тела.
Закон Ньютона мы можем записать таю
k∙F = m∙а,
где k — постоянный коэффициент. Этот коэффициент зависит от выбранных нами единиц.
Вместо того, чтобы пользоваться уже имевшейся у нас единицей силы (кгс), поступим иным образом. Как это часто стараются делать физики, подберем единицу силы так, чтобы коэффициент пропорциональности в законе Ньютона равнялся единице. Тогда закон Ньютона примет такой вид:
F = m∙а
Как мы уже говорили, в физике принято измерять массу в граммах, путь — в сантиметрах и время — в секундах. Систему единиц, основанную на этих трех основных величинах, называют системой CGS (произносится «це-же-эс») или по-русски СГС.
Теперь подберем, пользуясь сформулированным выше принципом, единицу силы. Очевидно, сила равна единице в том случае, если она массе в 1 г придает ускорение, равное 1 см/с2. Такая сила получила в этой системе название дины (дин).
Согласно закону Ньютона, F = m∙а, сила выражается в динах, если m граммов будет умножено на а см/с2.
Поэтому пользуются такой записью:
1 дин = 1 г∙см/с2
Вес тела обозначается обычно буквой Р. Сила Р дает телу ускорение g, и, очевидно, в динах
P = m∙g.
Но у нас уже была единица силы — килограмм∙сила (кгс). Связь между новой и старой единицей находим сразу же из последней формулы:
1 кгс = 981 000 дин.
Дина — очень маленькая сила. Она равна примерно одному миллиграмму веса.
Мы упоминали уже о новой системе единиц (СИ), разработанной совсем недавно. Название для новой единицы силы ньютон (Н) вполне заслужено. При таком выборе единицы написание закона Ньютона будет наиболее простым, а определяют эту единицу так:
1Н = 1 кг∙м/с2
т. е. 1 ньютон — это сила, которая сообщает массе в 1 кг ускорение 1 м/с2.
Нетрудно связать эту новую единицу с диной и с килограмм∙силой:
1 Н = 100 000 дин = 0,102 кгс.
ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ С ПОСТОЯННЫМ УСКОРЕНИЕМ
Такое движение возникает, согласно закону Ньютона, тогда, когда в сумме на тело действует постоянная сила, подгоняющая или тормозящая тело.
Хотя и не вполне точно, такие условия возникают довольно часто: тормозится под действием примерно постоянной силы трения автомашина, идущая с выключенным мотором, падает с высоты под действием постоянной силы тяжести увесистый предмет.
Зная результирующую силу, а также массу тела, мы найдем по формуле a = F/m ускорение. Так как
a = (v — v0)/t
где t — время движения, v — конечная, a v0— начальная скорость, то при помощи этой формулы можно ответить на ряд вопросов такого, например, характера: через сколько времени остановится поезд, если известна сила торможения, масса поезда и начальная скорость? До какой скорости разгонится автомашина, если известна сила мотора, сила сопротивления, масса машины и время разгона?
Часто нам бывает интересно знать длину пути, пройденного телом в равномерно-ускоренном движении. Если движение равномерное, то пройденный путь находится умножением скорости движения на время движения. Если движение равномерно-ускоренное, то подсчет величины пройденного пути производится так, как если бы тело двигалось то же время t равномерно со скоростью, равной полусумме начальной и конечной скоростей:
S = 1/2(v0 + v)/t
Итак, при равномерно-ускоренном (или замедленном) движении путь, пройденный телом, равен произведению полусуммы начальной и конечной скоростей на время движения. Такой же путь был бы пройден за to же время при равномерном движении со скоростью 1/2(v0 + v). В этом смысле про 1/2(v0 + v) можно сказать, что это средняя скорость равномерно-ускоренного движения.
Полезно составить формулу, которая показывала бы зависимость пройденного пути от ускорения. Подставляя v = v0 +at в последнюю формулу, находим:
S = v0t + a∙t2/2,
или, если движение происходит без начальной скорости,
S = a∙t2/2
Если за одну секунду тело прошло 5 м, то за две секунды оно пройдет (4 x 5) м, за три секунды — (9 x 5)м и т. д. Пройденный путь возрастает пропорционально квадрату времени.
По этому закону падает с высоты тяжелое тело. Ускорение при свободном падении равно g, и формула приобретает такой вид:
S = (981/2)∙t2
если t подставить в секундах, a g в сантиметрах на секунду в квадрате.
Если бы тело могло падать без помех каких-нибудь 100 с, то оно прошло бы с начала падения громадный путь — около 50 км. При этом за первые 10 с будет пройдено всего лишь 0,5 км — вот что значит ускоренное движение.
Но какую же скорость разовьет тело при падении с заданной высоты? Для ответа на этот вопрос нам понадобятся формулы, связывающие пройденный путь с ускорением и скоростью. Подставляя в S = 1/2(v0 + v)/t значение времени движения t = (v — v0)/a получим:
S = (1/2a)∙(v2 — v02),
или, если начальная скорость равна нулю,
S = v2/2a, v = √(2aS)
Десять метров — это высота небольшого двух- или трехэтажного дома. Почему опасно прыгнуть на Землю с крыши такого дома? Простой расчет показывает, что скорость свободного падения достигнет значения v = √(2∙9,8∙10) м/с = 14 м/с ~= 50 км/ч, а ведь это городская скорость автомашины.
Сопротивление воздуха не намного уменьшит эту скорость.
Выведенные нами формулы применяются для самых различных расчетов. Применим их, чтобы посмотреть, как происходит движение на Лупе.
В романе Уэллса «Первые люди на Луне» рассказывается о неожиданностях, испытанных путешественниками в их фантастических прогулках. На Луне ускорение тяжести примерно в 6 раз меньше земного. Если на Земле падающее тело проходит за первую секунду 5 м, то на Луне оно «проплывет» вниз всего лишь 80 см (ускорение равно примерно 1,6 м/с2).
Написанные формулы позволяют быстро подсчитать лунные «чудеса».
Прыжок с высоты h длится время t = √(2h/g). Так как лунное ускорение в 6 раз меньше земного, то на Луне для прыжка понадобится в √6 ~= 2,45 раз больше времени. Во сколько же раз уменьшается конечная скорость прыжка (v = √(2g∙h))?
На Луне можно безопасно прыгнуть с крыши трехэтажного дома. В шесть раз возрастает высота прыжка, сделанного с той же начальной скоростью (формула h = v2/2g). Прыжок, превышающий земной рекорд, будет под силу ребенку.
ПУТЬ ПУЛИ
Задача бросить предмет как можно дальше решается человеком с незапамятных времен. Камень, брошенный рукой или выпущенный из рогатки, стрела, вылетевшая из лука, ружейная пуля, артиллерийский снаряд, баллистическая ракета — вот краткий перечень успехов в этой области.
Брошенный предмет движется по кривой линии, называемой параболой. Ее можно построить без труда, если движение брошенного тела рассматривать как сумму двух движений — по горизонтали и по вертикали, происходящих одновременно и независимо. Ускорение свободного падения вертикально, поэтому летящая пуля движется по горизонтали по инерции с постоянной скоростью и одновременно по вертикали с постоянным ускорением падает на Землю. Как же сложить эти два движения?
Начнем с простого случая — начальная скорость горизонтальна (скажем, речь идет о выстреле из ружья, ствол которого горизонтален).
Возьмем лист миллиметровой бумаги и проведем вертикальную и горизонтальную лилии (рис. 2.3).
Так как оба движения происходят независимо, то через t секунд тело переместится на отрезок v0t вправо и на отрезок gt2/2 вниз. Отложим по горизонтали отрезок v0t и из конца его — вертикальный отрезок gt2/2. Конец вертикального отрезка укажет точку, в которой окажется тело через t секунд.
Это построение надо сделать для нескольких точек, т. е. для нескольких моментов времени. Через эти точки пройдет плавная кривая — парабола, изображающая траекторию тела. Чем чаще будут отложены точки, тем точнее будет построена траектория полета пули.
На рис. 2.4 построена траектория для случая, когда начальная скорость v0 направлена под углом.
Вектор v0 следует прежде всего разложить на вертикальную и горизонтальную составляющие. На горизонтальной линии будем откладывать vгор∙t — путь, на который сдвинется пуля вдоль горизонтали через t секунд.
Но пуля совершает одновременно движение вверх. Через t секунд она поднимется на высоту h = vверт∙t — gt2/2.
По этой формуле, подставляя в нее интересующие вас моменты времени, надо рассчитать вертикальные смещения и отложить их на вертикальной оси. Сначала величины h будут возрастать (подъем), а затем убывать.
Теперь остается нанести на график точки траектории так же, как мы это сделали в предыдущем примере, и провести через них плавную кривую.
Если держать ствол ружья горизонтально, то пуля быстро зароется в землю; при вертикальном положении стола она упадет на то место, откуда был произведен выстрел. Значит, чтобы стрелять как можно дальше, нужно ствол ружья установить под каким-то углом к горизонту. Но под каким?
Используем опять тот же прием — разложим вектор начальной скорости на две составляющие; по вертикали скорость равна v1, а по горизонтали — v2. Время от момента выстрела до момента достижения пулей наивысшей точки пути равно v1/g. Обратим внимание на то, что столько же времени пуля будет падать вниз, т. е. полное время полета до падения пули на землю есть 2v1/g.
Так как движение по горизонтали равномерное, то дальность полета равна
S = 2∙v1∙v2/g
(при этом мы пренебрегли высотой ружья над уровнем земли).
Мы получили формулу, которая показывает, что дальность полета пропорциональна произведению составляющих скорости. При каком же направлении выстрела это произведение будет наибольшим? На этот вопрос ответит все то же геометрическое правило сложения векторов. Скорости v1 и v2 образуют прямоугольник скоростей; диагональю в нем служит полная скорость v. Произведение v1∙v2 равно площади этого прямоугольника.
Наш вопрос сводится к следующему: при заданной длине диагонали какие надо взять стороны, чтобы площадь прямоугольника была наибольшей? В геометрии показывается, что этому условию удовлетворяет квадрат. Значит, дальность полета пули будет наибольшей, когда v1 = v2, т. е. тогда, когда прямоугольник скоростей обращается в квадрат. Диагональ квадрата скоростей образует с горизонталью угол в 45° — под таким углом и надо держать ружье, чтобы пуля летела как можно дальше.
Если v — полная скорость пули, то в случае квадрата v1 = v2 = v/√2. Формула дальности полета для этого лучшего случая выглядит так: S = v2/g, т. е. дальность будет вдвое больше, чем высота подъема при выстреле вверх с той же начальной скоростью.
Высота подъема при выстреле под углом в 45° будет h = v12/2g = v2/4g, т. е. в четыре раза меньше дальности полета.
Надо признаться, что формулы, которыми мы оперировали, дают точные результаты лишь в случае, довольно далеком от практики, — при отсутствии воздуха. Сопротивление воздуха во многих случаях играет решающую роль и в корне меняет всю картину.
ДВИЖЕНИЕ ПО ОКРУЖНОСТИ
Если точка движется по окружности, то движение является ускоренным, уже хотя бы потому, что в каждой момент времени скорость меняет свое направление. По своему числовому значению скорость может оставаться неизменной, и мы остановим внимание именно на подобном случае.
Будем рисовать векторы скорости в последовательные промежутки времени, помещая начала векторов в одну точку. (Мы имеем на это право.) Если вектор скорости повернулся на небольшой угол, то изменение скорости, как мы знаем, изобразится основанием равнобедренного треугольника. Построим изменения скорости за время полного оборота тела (рис. 2.5).
Сумма вменений скорости за время полного оборота будет равна сумме сторон изображенного многоугольника. Строя каждый треугольничек, мы молчаливо предполагали, что вектор скорости изменился скачком, на самом же деле направление вектора скорости меняется непрерывно. Совершенно ясно, что ошибка будет тем меньше, чем меньше мы будем брать угол треугольничка. Чем меньше стороны многоугольника, тем он теснее прижимается к окружности радиуса v. Поэтому точным значением суммы абсолютных величин изменений скорости за время оборота точки будет длина окружности 2πv. Ускорение найдется делением ее на время полного оборота Т: a = 2π∙v/T.
Но время полного оборота при движении по окружности радиуса R может быть записано в виде T = 2π∙R/v. Подставив это выражение в предыдущую формулу, получим для ускорения: a = v2/R.
При неизменном радиусе вращения ускорение пропорционально квадрату скорости. При данной скорости ускорение обратно пропорционально радиусу.
Это же рассуждение показывает нам, как направлено в каждое данное мгновение ускорение кругового движения. Чем меньше угол при вершине равнобедренных треугольников, которые мы использовали для доказательства, тем ближе к 90° угол между приростом скорости и скоростью.
Значит, ускорение равномерного кругового движения направлено перпендикулярно к скорости; а как же скорость и ускорение направлены по отношению к траектории? Поскольку скорость есть касательная к пути, то ускорение направлено по радиусу и притом к центру окружности. Эти соотношения хорошо видны на рис. 2.6.
Попробуйте покрутить камень на веревке. Вы отчетливо ощутите необходимость для этого мускульного усилия. Зачем же нужна сила? Ведь тело движется равномерно? Вот в том-то и дело, что нет. Тело движется с неизменной по величине скоростью, но непрерывное изменение направления скорости делает это движение ускоренным. Сила необходима для того, чтобы отклонить тело от инерциального прямого пути. Сила нужна для того, чтобы создать то ускорение v2/R, которое мы только что вычислили.
Согласно закону Ньютона, куда направлено ускорение, туда «смотрит» и сила. Значит, тело, вращающееся по окружности с неизменной скоростью, должно находиться под действием силы, направленной по радиусу к центру вращения. Сила действующая на камень со стороны веревки, называется центростремительной; она и обеспечивает ускорение v2/R. Следовательно, эта сила есть mv2/R.
Веревка тянет камень, камень тянет веревку. Мы узнаем в этих двух силах «предмет и его изображение в зеркале» — силы действия и противодействия. Часто силу, с которой камень действует на веревку, называют центробежной. Центробежная сила равна, разумеется, mv2/R и направлена по радиусу от центра вращения. Центробежная сила приложена к тому телу, которое противодействует инерциальному стремлению вращающегося тела двигаться прямолинейно.
Сказанное относится и к случаю, когда роль «веревки» играет сила тяжести. Луна вращается вокруг Земли. Что удерживает нашего спутника? Почему, следуя закону инерции, он не уходит в межпланетное путешествие? Земля держит Луну «невидимой веревкой» — силой притяжения. Эта сила равна mv2/R,где v — скорость движения по лунной орбите, а R — расстояние до Луны. Центробежная сила приложена в этом случае к Земле, но благодаря большой массе Земли она лишь незначительно влияет на характер движения нашей планеты.
Положим, что требуется вывести искусственный спутник Земли на круговую орбиту на расстоянии 300 км от земной поверхности. Какова должна быть скорость такого спутника? На расстоянии 300 км ускорение свободного падения немного меньше, чем на поверхности Земли, и равно 8,9 м/с2. Ускорение движущегося по окружности спутника равно v2/R, где R — расстояние от центра вращения (т. е. от центра Земли) — примерно равно 6600 км = 6,6∙106 м. С другой стороны, это ускорение равно ускорению свободного падения g. Следовательно, g = v2/R, откуда находим скорость движения спутника по орбите;
v =√(g∙R) = √(8,9∙6,6∙106) = 7700 м/с = 7,7 км/c.
Минимальная скорость, необходимая для того, чтобы горизонтально брошенное тело стало спутником Земли, называется первой космической скоростью. Из приведенного примера видно, что эта скорость близка к 8 км/с.
ЖИЗНЬ БЕЗ ВЕСА
Выше мы отыскали «разумную точку зрения» на движение. Правда, «разумных» точек зрения, которые мы назвали инерциальными системами, оказалось бесконечное множество.
Теперь, вооруженные знанием законов движения, мы можем поинтересоваться, как выглядит движение с «неразумных» точек зрения. Интерес к тому, как живется жителям неинерциальных систем, вовсе не праздный, хотя бы уже потому, что мы сами являемся обитателями такой системы.
Представим себе, что мы, захватив измерительные приборы, погрузились на межпланетный корабль и отправились путешествовать в мир звезд.
Быстро бежит время. Солнце уже стало похоже на маленькую звездочку. Двигатель выключен, корабль далеко от притягивающих тел.
Посмотрим теперь, что делается в нашей летающей лаборатории. Почему висит в воздухе и не падает на пол сорвавшийся с гвоздика термометр? В каком странном положении застыл отклонившийся от «вертикали» маятник, висящий на стене. Мы тут же находим разгадку: ведь корабль не на Земле, а в межпланетном пространстве. Предметы потеряли вес.
Полюбовавшись на необычную картину, мы решаем изменить курс. Нажатием кнопки включаем реактивный двигатель, и вдруг… предметы, окружающие нас, словно ожили. Все тела, которые не были наглухо закреплены, пришли в движение. Термометр упал, маятник начал качаться и, постепенно успокаиваясь пришел в вертикальное положение, подушка послушно прогнулась под лежащим на ней чемоданом. Посмотрим на приборы, которые указывают, в какую сторону наш корабль начал ускоренное движение. Конечно, оно направлено вверх. Приборы показывают, что мы выбрали движение с небольшим для возможностей корабля ускорением 9,8 м/с2. Наши ощущения вполне обычны, мы чувствуем себя, как на Земле. Но почему так? По-прежнему невообразимо далеко находится корабль от притягивающих масс, нет сил притяжения, а предметы приобрели вес.
Выпустим из рук шарик и измерим, с каким ускорением он падает на пол корабля. Оказывается, ускорение равно 9,8 м/с2. Эту цифру мы только что прочли на приборах, измеряющих ускорение ракеты. Корабль движется с таким же ускорением вверх, с каким тела в нашей летучей лаборатории падают вниз.
Но что такое «верх» и «низ» в летящем корабле? Как просто дело обстояло, когда мы жили на Земле. Там небо было верхом, Земля была низом. А здесь? У нашего верха есть неоспоримый признак — это направление ускорения ракеты.
Смысл наших наблюдений понять нетрудно: на шарик, выпущенный из рук, никакие силы не действуют. Шарик движется по инерции. Это ракета движется с ускорением по отношению к шарику, и нам, находящимся в ракете, кажется, что шарик «падает» в сторону, обратную направлению ускорения ракеты. Разумеется, ускорение этого «падения» равно истинному ускорению ракеты. Ясно также, что все тела в ракете будут «падать» с одинаковым ускорением.
Из всего сказанного мы можем сделать интересный вывод. В ускоренно движущейся ракете тела начинают «весить». При этом «сила притяжения» направлена в сторону, противоположную направлению ускорения ракеты, а ускорение свободного «падения» равно ускорению движения реактивного корабля. И самое замечательное то, что практически мы не можем отличить ускоренное движение системы от соответствующей силы тяжести. Находясь в космическом корабле с закрытыми окнами, мы не могли бы узнать, покоится ли он на Земле или движется с ускорением 9,8 м/с2. Равноценность ускорения и действия силы тяжести называется в физике принципом эквивалентности.
Этот принцип, как мы сейчас увидим на множестве примеров, позволяет быстро решать многие задачи, добавляя к реальным силам фиктивную силу тяжести, существующую в ускоренно движущихся системах.
Первым примером может служить лифт. Захватим с собой пружинные весы с гирями и отправимся на лифте вверх. Следим за поведением стрелки весов, на которые положен килограмм продуктов (рис. 2.7).
Подъем начался; мы видим, что показания весов возросли, как будто гиря стала весить больше килограмма. Принципом эквивалентности легко объяснить этот факт. Во время движения лифта вверх с ускорением а возникает дополнительная сила тяжести, направленная вниз. Так как ускорение этой силы равно а, то дополнительный вес равен ma. Значит, весы покажут вес mg + ma. Ускорение кончилось, и лифт движется равномерно — пружина вернулась в исходное положение и показывает 1 кг. Приближаемся к верхнему этажу, движение лифта замедляется.
Что будет теперь с пружиной весов? Ну, конечно, теперь груз весит меньше одного килограмма. При замедлении движения лифта вектор ускорения смотрит вниз. Значит, дополнительная, фиктивная сила тяжести направлена вверх, в сторону, противоположную направлению земного тяготения. Теперь а отрицательно, и весы показывают величину, меньшую mg. После остановки лифта пружина возвращается в исходное положение. Начнем спуск. Движение лифта ускоряется; вектор ускорения направлен вниз, значит, дополнительная сила тяжести направлена вверх. Сейчас груз весит меньше килограмма. Когда движение станет равномерным, дополнительная тяжесть пропадет, и перед окончанием нашего путешествия на лифте — при замедленном движении вниз — груз будет весить больше килограмма.
Неприятные ощущения, испытываемые при быстром ускорении и замедлении движения лифта, связаны с рассмотренным изменением веса.
Если лифт падает с ускорением, то тела, находящими в нем, становятся как бы легче. Чем больше это ускорение, тем больше потеря веса. Что же произойдет при свободном падении системы? Ответ ясен: в этом случае тела перестанут давить на подставку — перестанут весить: сила притяжения Земли будет уравновешиваться дополнительной силой тяжести, существующей в такой свободно падающей системе. Находясь в таком «лифте», можно спокойно положить на плечи тонну груза.
В начале этого параграфа мы описывали жизнь без веса в межпланетном корабле, вышедшем за пределы сферы тяготения. При равномерном и прямолинейном движении в таком корабле веса нет, но то же самое происходит и при свободном падении системы. Значит, нет нужны выходить за пределы сферы тяготения: веса нет во всяком межпланетном корабле, который движется с выключенным двигателем. Свободное падение приводит к потере веса в подобных системах. Принцип эквивалентности привел нас к выводу о почти (см. примечание на стр. 60) полной равноценности системы отсчета, движущейся прямолинейно и равномерно вдали от действия сил притяжения, и системы отсчета, свободно падающей под действием тяжести. В первой системе веса нет, а во второй «вес книзу» уравновешивается «весом кверху». Никакой разницы между системами мы не найдем.
В искусственном спутнике Земли жизнь без веса наступает с того момента, когда корабль выведен на орбиту и начинает свое движение без действия ракеты.
Первым межпланетным путешественником была собака Лайка, а вскоре и человек освоился с жизнью без веса в кабине космического корабля. Первым на этом пути был советский летчик-космонавт Ю. А. Гагарин.
Нельзя назвать жизнь в кабине корабля обычной. Много изобретательности и выдумки понадобилось, чтобы сделать послушными вещи, столь легко подчиняющиеся силе тяжести. Можно ли, например, налить воды из бутылки в стакан? Ведь вода льется «вниз» под действием тяжести. Можно ли готовить пищу, если нельзя нагреть на плитке воду? (Теплая вода не будет перемешиваться с холодной.) Как писать карандашом по бумаге, если легкого толчка карандаша о стол достаточно, чтобы откинуть пишущего в сторону? Ни спичка, ни свеча, ни газовая горелка гореть не будут, так как сгоревшие газы не будут подниматься вверх (ведь верха-то нет!) и не дадут доступа кислороду. Пришлось подумать даже о том, как обеспечить нормальное протекание естественных процессов, происходящих в организме человека, — ведь эти процессы «привыкли» к силе земного тяготения.
ДВИЖЕНИЕ С «НЕРАЗУМНОЙ» ТОЧКИ ЗРЕНИЯ
Теперь займемся физическими наблюдениями в ускоренно движущемся автобусе или трамвае. Особенность этого примера, отличающая его от предыдущего, состоит в следующем. В примере с лифтом дополнительная тяжесть и притяжение Землей были направлены вдоль одной линии. В тормозящем или набирающем скорость трамвае дополнительная сила тяжести направлен под прямым углом к земному притяжению. Это вызывает своеобразные, хотя и привычные, ощущения у пассажира. Если трамвай набирает скорость, то возникает дополнительная сила, направленная в сторону, обратную направлению движения. Сложим эту силу с силой земного притяжения. В сумме на человека, находящегося в вагоне, будет действовать сила, направленная под тупым углом к направлению движения. Находясь в вагоне, как обычно, лицом к движению, мы ощутим, что наш «верх» переместился. Чтобы не упасть, мы захотим стать «вертикально» — так, как показано на рис. 2.8, а. Наша «вертикаль» косая. Она наклонена под острым углом к направлению движения. Если же человек будет стоять под прямым углом к движению, не держась ни за что, он обязательно упадет назад.
Наконец, движения трамвая стало равномерным, и мы можем стоять спокойно. Однако приближается новая остановка. Вагоновожатый тормозит и… наша «вертикаль» отклоняется. Теперь она направлена, как видно из построения на рис. 2.8, б, под тупым углом к движению. Чтобы не упасть, пассажир отклоняется назад. Однако в таком положении он остается недолго. Вагон останавливается, замедление исчезает, и «вертикаль» теперь направлена под прямым углом к Земле. Приходится опять менять положение тела. Проверьте ваши ощущения. Не правда ли, в момент начала торможения кажется, что вас толкнули в спину, а когда вагон остановился, вы испытываете ощущение толчка в грудь.
Похожие явления происходят и при движении трамвая по закруглению. Мы знаем, что движение по окружности даже с неизменной по величине скоростью является ускоренным. Ускорение v2/R будет тем больше, чем быстрее движется трамвай и чем меньше радиус закругления R. Ускорение этого движения направлено по радиусу к центру. Но это эквивалентно возникновению дополнительной тяжести, направленной от центра. Значит, на пассажира трамвая во время поворота будет действовать дополнительная сила mv2/R, отбрасывающая его во внешнюю сторону закругления. Радиальная сила mv2/R называется центробежной. С этой же силой, рассмотренной, правда, с несколько иной точки зрения, мы встречались уже раньше, на стр. 57.
Действие центробежной силы в поворачивающем трамвае или автобусе может привести лишь к небольшим неприятностям. Сила mv2/R в этом случае невелика. Однако при быстром движении на закруглении центробежные силы могут достигнуть больших величин и стать опасными для жизни. С большими значениями mv2/R сталкиваются летчики, когда самолет совершает так называемую мертвую петлю. Когда самолет описывает окружность, на летчика действует центробежная сила, прижимающая его к сидению. Чем меньше окружность петли, тем больше дополнительная тяжесть, с которой прижимается к сидению летчик. Если эта тяжесть велика, человек может «порваться» — ведь ткани живого организма обладают ограниченной прочностью, они не могут выдержать любую тяжесть.
Насколько же может «потяжелеть» человек без существенной опасности для жизни? Это зависит от длительности нагрузки. Если она продолжается доли секунды, то человек способен выдержать восьми-десятикратный вес, т. е. перегрузку на 7–9 g. В продолжение десяти секунд летчик может выдержать, перегрузку на 3–5 g. Космонавтов интересует вопрос о перегрузке, которую человек способен выносить десятки минут, а может быть, и часы. В таких случаях перегрузка, вероятно, должна быть гораздо меньше.
Вычислим радиусы петель, которые самолет может описать без опасности для летчика, на различных скоростях. Произведем расчет для ускорения, равного v2/R = 4g и R = v2/4g. При скорости 360 км/ч = 100 м/с радиус петли будет 250 м; если же скорость будет в 4 раза больше, т. е. 1440 км/ч (а эти скорости уже превзойдены современными реактивными самолетами), радиус петли должен быть увеличен в 16 раз. Минимальный радиус петли становится равным 4 км.
Не оставим без внимания и более скромный вид транспорта — велосипед. Все видели, как наклоняется велосипедист при повороте. Предложим велосипедисту описывать окружность радиуса R со скоростью v,т. е. двигаться с ускорением v2/R, направленным к центру. Тогда, кроме силы земного притяжения, на велосипедиста будет действовать дополнительная, центробежная сила, направленная по горизонтали от центра окружности. На рис. 2.9 показаны эти силы и их сумма.
Ясно, что велосипедист должен держаться «вертикально», иначе он упадет. Но… его вертикаль не совпадает с земной. Из рисунка видно, что векторы mv2/R и mg — катеты прямоугольного треугольника. Отношение катета, противолежащего углу α, к прилежащему называется в тригонометрии тангенсом угла α. У нас tg α = v2/Rg; масса сократилась в полном согласии с принципом эквивалентности. Значит, угол наклона велосипедиста не зависит от его массы — и толстому седоку и худому надо наклоняться одинаково. Формула и изображенный на рисунке треугольник показывают зависимость наклона от скорости движения (возрастает с увеличением) и от радиуса окружности (возрастает с уменьшением). Мы выяснили, что вертикаль велосипедиста не совпадает с земной вертикалью. Что же он будет чувствовать? Придется рис. 2.9 повернуть. Дорога теперь выглядит как склон горы (рис. 2.10, а), и нам становится ясным, что при недостаточной силе трения между шинами и дорожным покрытием (влажный асфальт) велосипед может соскользнуть, и крутой поворот закончится падением в кювет.
Для того чтобы этого не произошло, на крутых поворотах (или, как говорят, виражах) шоссе делают наклонным, т. е. горизонтальным для велосипедиста — так, как на рис. 2.10, б. Таким способом можно сильно уменьшить, а то и вовсе уничтожить стремление к соскальзыванию. Именно так устроены повороты на велосипедных треках и автострадах.
ЦЕНТРОБЕЖНЫЕ СИЛЫ
Теперь займемся вращающимися системами. Движение такой системы определяется числом оборотов в секунду, которое совершает эта система, поворачиваясь вокруг оси. Надо, конечно, знать и направление оси вращения.
Чтобы лучше понять особенности жизни во вращающихся системах, рассмотрим «колесо смеха» — известный аттракцион. Устройство его очень несложно. Гладкий диск диаметром в несколько метров быстро вращается. Желающим предлагается сесть на него и попробовать удержаться. Даже люди, не знающие физики, быстро постигают секрет успеха: надо устроиться в центре диска, так как чем дальше от центра, тем труднее удержаться.
Такой диск представляет собой неинерциальную систему с некоторыми особыми свойствами. Каждый предмет, скрепленный с диском, движется по окружности радиуса R со скоростью и, т. е. с ускорением v2/R. Как мы уже знаем, с точки зрения неинерциального наблюдателя это означает наличие дополнительной тяжести mv2/R, направленной по радиусу от центра. В любой точке «чертова колеса» будет действовать эта радиальная сила тяжести, в любой точке она будет создавать радиальное ускорение v2/R. Для точек, лежащих на одной окружности, величина этого ускорения будет одинаковой. А на разных окружностях? Не торопитесь сказать, что ускорение, согласно формуле v2/R, будет тем больше, чем меньше расстояние от центра. Это неверно; ведь скорость более удаленных от центра точек колеса будет больше. Действительно, если обозначить буквой n число оборотов, совершаемых коленом в секунду, то путь, проходимый точкой колеса, находящейся на расстоянии R от центра, за одну секунду, т. е. скорость этой точки, можно выразить так: 2π∙Rn.
Скорость точки прямо пропорциональна ее расстоянию от центра. Теперь формулу ускорения можно переписать:
а = 4π2n2R.
А так как число оборотов, совершаемых в секунду, одинаково для всех точек колеса, то мы приходим к результату: ускорение силы «радиальной тяжести», действующей на вращающемся колесе, возрастает пропорционально расстоянию точки от центра колеса.
В этой интересной неинерциальной системе сила тяжести на разных окружностях разная. Значит, и направления «вертикалей» для тел, находящихся на разных расстояниях от центра, будут разные. Сила притяжения Землей, разумеется, одна и та же во всех точках колеса. А вектор, характеризующий дополнительную радиальную тяжесть, становится длиннее по мере удаления от центра. Значит, диагонали прямоугольников отклоняются все больше и больше от земной вертикали.
Если представить последовательные ощущения человека, соскальзывающего с «колеса смеха», придерживаясь его точки зрения, то можно сказать, что по мере удаления от центра диск «наклоняется» все больше и больше и удержаться на нем становится невозможно. Чтобы удержаться на диске, надо стараться поместить свой центр тяжести на «вертикаль», которая тем больше наклонена к оси вращения, чем дальше от нее находятся фигурки человека, нарисованные на рис. 2.11.
Однако нельзя ли придумать для этой инерциальной системы устройство, похожее на наклонное шоссе? Конечно, можно, но придется заменить диск такой поверхностью, чтобы в каждой ее точке полная сила тяжести была перпендикулярна к поверхности. Форму такой поверхности можно рассчитать. Она называется параболоидом. Название это не случайно: в каждом своем вертикальном сечении параболоид дает параболу — кривую, по которой падают тела. Параболоид возникает при вращении параболы вокруг ее оси.
Очень легко создать такую поверхность, если привести в быстрое вращение сосуд с водой. Поверхность вращающейся жидкости и есть параболоид. Частицы воды перестанут перемещаться как раз тогда, когда сила, прижимающая каждую частицу к поверхности, будет перпендикулярна к поверхности. Каждой скорости вращения соответствует свой параболоид (рис. 2.12).
Если изготовить твердый параболоид, то можно наглядно показать его свойство. Маленький шарик, помещенный в любой точке вращающегося с определенной скоростью параболоида, останется в покое. Это значит, что действующая на него сила будет перпендикулярна к поверхности. Иначе говоря, поверхность вращающегося параболоида обладает как бы свойствами горизонтальной поверхности. По такой поверхности можно ходить, как по земле, и чувствовать себя при этом вполне устойчиво. Однако при ходьбе направление вертикали будет изменяться.
Центробежные явления широко используются в технике. На использовании этих явлений основано, например, устройство центрифуги.
Центрифуга представляет собой барабан, быстро вращающийся вокруг своей оси. Что будет, если в такой барабан, наполненный до краев водой, бросать разные предметы?
Опустим в воду металлический шарик — он пойдет ко дну, но не по нашей вертикали, а все время удаляясь от оси вращения и остановится у стенки. Теперь бросим в барабан пробковый шарик — он, наоборот, сразу начнет движение по направлению к оси вращения и там расположится.
Если барабан этой модели центрифуги большого диаметра, то мы заметим, что ускорение резко нарастает по мере отдаления от центра.
Происходящие явления нам вполне понятны. Внутри центрифуги имеется дополнительная радиальная тяжесть. Если центрифуга вращается достаточно быстро, то ее «низ» — это стенки барабана. Металлический шарик «погружается» в воду, а пробковый «всплывает». Чем дальше от оси вращения, тем «тяжелее» становится «падающее» в воду тело.
В достаточно совершенных центрифугах скорость вращения доводится до 60 000 оборотов в минуту, т. е. 103 оборотов в секунду. На расстоянии 10 см от оси вращения ускорение радиальной силы тяжести будет равно примерно
40∙106∙0,1 = 4∙106 м/с2,
т. е. в 400 000 раз больше земного ускорения.
Ясно, что земную тяжесть для таких машин можно не учитывать, мы действительно вправе считать, что «низ» в центрифуге — это стенки барабана.
Из сказанного становятся понятными области применения центрифуги. Если мы хотим отделить в смеси тяжелые частицы от легких, всегда целесообразно применение центрифуги. Всем известно выражение: «мутная жидкость отстоялась». Если грязная вода постоит достаточно долго, то муть (обычно более тяжелая, чем вода) осядет на дно. Однако процесс оседания может продолжаться месяцами, а при помощи хорошей центрифуги можно очистить воду мгновенно.
Центрифуги, вращающиеся со скоростью в десятки тысяч оборотов в минуту, способны выделять тончайшую муть не только из воды, но и из вязких жидкостей.
Центрифуги применяются в химической промышленности для отделения кристаллов от раствора, из которого они выросли, для обезвоживания солей, для очистки лаков; в пищевой промышленности — для разделения патоки и сахарного песка.
Центрифуги, применяемые для отделения от большого количества жидкости твердых или жидких включений, называют сепараторами. Главное их применение — обработка молока. Молочные сепараторы вращаются со скоростью 2–6 тысяч оборотов в минуту, диаметр их барабана доходит до 5 м.
В металлургии широко применяется центробежное литье. Уже при скоростях 300–500 оборотов в минуту жидкий металл, поступающий во вращающуюся форму, со значительной силой прижимается к внешним стенкам формы. Так отливают металлические трубы, которые при этом получаются более плотные, более однородные, без раковин и трещин.
Вот и другое применение центробежной силы. На рис. 2.13 изображено простое устройство, служащее для регулировки числа оборотов вращающихся частей машины. Это устройство называется центробежным регулятором.
При увеличении скорости вращения возрастает центробежная сила, шарики регулятора отходят дальше от оси. Тяги, скрепленные с шариками, отклоняются и при определенном рассчитанном инженером отклонении могут разомкнуть какие-либо электрические контакты, а в паровой машине, например, могут открыть клапаны, выпускающие излишек пара. При этом скорость вращения уменьшится и тяги займут нормальное положение.
Интересен такой опыт. На ось электрического мотора наденем картонный кружок. Включим ток и поднесем к вращающемуся кружку кусок дерева. Брусок изрядной толщины перепиливается пополам так же легко, как и стальной пилой.
Попытка распилить дерево картонкой, если ею действовать как ручной пилой, может вызвать только улыбку. Почему же вращающийся картон разрезает дерево? На частички картона, расположенные на окружности, действует громадная центробежная сила. Боковые силы, которые могли бы исказить плоскость картонки, ничтожны по сравнению с центробежными. Сохраняя свою плоскость неизменной, картонный круг и получает возможность вгрызаться в дерево.
Центробежная сила, возникающая благодаря вращению Земли, приводит к различиям в весе тела на разных широтах, о чем говорилось выше.
На экваторе тело весит меньше, чем на полюсе, по двум причинам. Тела, лежащие на поверхности Земли, находятся на разных расстояниях от земной оси в зависимости от широты местности. Разумеется, при переходе от полюса к экватору это расстояние возрастает. Кроме того, на полюсе тело находится на оси вращения, и центробежное ускорение
а = 4π2n2R = 0
(расстояние от оси вращения R = 0). Напротив, на экваторе это ускорение максимально. Центробежная сила уменьшает силу притяжения. Поэтому на экваторе давление тела на подставку (вес тела) наименьшее.
Если бы Земля имела точно шарообразную форму, то килограммовая гиря, перенесенная с полюса на экватор, теряла бы в весе 3,5 грамма. Вы легко найдете эту цифру по формуле
4π2n2Rm,
подставив n = 1 об/сут., R = 6300 км и m = 1000 г. Не забудьте только привести единицы измерения к секундам и сантиметрам.
Однако на самом деле килограммовая гиря теряет в весе не 3,5, а 5,3 грамма. Это происходит из-за того, что Земля представляет собой сплюснутый шар, называемый в геометрии эллипсоидом. Расстояние от полюса до центра Земли меньше земного радиуса, выходящего на экваторе, примерно на 1/300 его часть.
Это сжатие земного шара имеет своей причиной ту же центробежную силу. Ведь она действует на все частички Земли. В далекие времена центробежная сила «сформировала» нашу планету — придала ей сплюснутую форму.
СИЛЫ КОРИОЛИСА
Своеобразие мира вращающихся систем не исчерпывается существованием радиальных сил тяжести. Познакомимся с еще одним интересным эффектом, теория которого была дана в 1835 г. французом Кориолисом.
Поставим перед собой такой вопрос: как выглядит прямолинейное движение с точки зрения вращающейся лаборатории? План такой лаборатории изображен на рис. 2.14. Чертой, проходящей через центр, показана прямолинейная траектория какого-то тела. Мы рассматриваем тот случай, когда путь тела проходит через центр вращения нашей лаборатории. Диск, на котором размещена лаборатория, вращается равномерно; на рисунке показаны пять положений лаборатории по отношению к прямолинейной траектории. Так выглядит взаимное положение лаборатории и траектории тела Через одну, две, три и т. д. секунды. Лаборатория, как вы видите, вращается против часовой стрелки, если смотреть на нее сверху.
На линии пути нанесены стрелки, соответствующие отрезкам, которые тело проходит за одну, две, три и т. д. секунды. За каждую секунду тело проходит одинаковый путь, так как речь идет о равномерном и прямолинейном движении (с точки зрения неподвижного наблюдателя).
Представьте себе, что движущееся тело — это свежевыкрашенный катящийся по диску шар. Какой след останется на диске? Наше построение дает ответ на этот вопрос. Отмеченные окончаниями стрелок точки с пяти рисунков перенесены на один чертеж. Остается соединить эти точки плавной кривой. Результат построения нас не удивит: прямолинейное и равномерное движение выглядит с точки зрения вращающегося наблюдателя криволинейным. Обращает на себя внимание такое правило: движущееся тело отклоняется на всем пути вправо по ходу движения. Предположим, что диск вращается по часовой стрелке, и предоставим читателю повторить построение. Оно покажет, что в этом случае движущееся тело с точки зрения вращающегося наблюдателя отклоняется влево по ходу движения.
Мы знаем, что во вращающихся системах появляется центробежная сила. Однако ее действие не может служить причиной искривления пути — ведь она направлена вдоль радиуса. Значит, во вращающихся системах кроме центробежной силы возникает еще дополнительная сила. Ее называют силой Кориолиса.
Почему же в предшествующих примерах мы не сталкивались с силой Кориолиса и превосходно обходились одной центробежной? Причина в том, что мы до сих пор не рассматривали движение тел с точки зрения вращающегося наблюдателя. А сила Кориолиса появляется только в этом случае. На тела, которые покоятся во вращающейся системе, действует лишь центробежная сила. Стол вращающейся лаборатории привинчен к полу — на него действует одна центробежная сила. А на мячик, который упал со стола и покатился по полу вращающейся лаборатории, кроме центробежной силы действует и сила Кориолиса.
От каких величин зависит значение силы Кориолиса? Его можно вычислить, по расчеты слишком сложны для того, чтобы приводить их здесь. Опишем поэтому лишь результат вычислений.
В отличие от центробежной силы, значение которой зависит от расстояния до оси вращения, сила Кориолиса не зависит от положения тела. Она определяется скоростью движения тела, и при этом не только значением скорости, но и ее направлением по отношению к оси вращения. Если тело движется вдоль оси вращения, то сила Кориолиса равна нулю. Чем больше угол между вектором скорости и осью вращения, тем больше сила Кориолиса; максимальное значение сила примет при движении тела под прямым углом к оси.
Как мы знаем, вектор скорости всегда можно разложить на какие-либо составляющие и рассмотреть раздельно два возникающих движения, в которых одновременно участвует тело.
Если разложить скорость тела на составляющие и — параллельную и перпендикулярную к оси вращения, то первое движение не будет подвержено действию силы Кориолиса. Значение силы Кориолиса FК определится составляющей скорости Расчеты приводят к формуле
Здесь m — масса тела, а n — число оборотов, совершаемых вращающейся системой за единицу времени. Как видно из формулы, сила Кориолиса тем больше, чем быстрее вращается система и чем быстрее движется тело.
Расчеты устанавливают и направление силы Кориолиса. Эта сила всегда перпендикулярна к оси вращения и к направлению движения. При этом, как уже говорилось выше, сила направлена вправо по ходу движения в системе, вращающейся против часовой стрелки.
Действием силы Кориолиса объясняются многие интересные явления, происходящие на Земле. Земля — шар, а не диск. Поэтому проявления сил Кориолиса сложнее. Эти силы будут сказываться как на движении вдоль земной поверхности, так и при падении тел на Землю.
Падает ли тело строго по вертикали? Не вполне. Только на полюсе тело падает строго по вертикали. Направление движения и ось вращения Земли совпадают, поэтому сила Кориолиса отсутствует. Иначе обстоит дело на экваторе; здесь направление движения составляет прямой угол с земной осью. Если смотреть со стороны северного полюса, то вращение Земли представится нам против часовой стрелки. Значит, свободно падающее тело должно отклониться вправо но ходу движения, т. е. на восток. Величина восточного отклонения, наибольшего на экваторе, уменьшается до нуля с приближением к полюсам.
Подсчитаем величину отклонения на экваторе. Так как свободно падающее тело движется равномерно-ускоренно, то сила Кориолиса растет по мере приближения к земле. Поэтому мы ограничимся примерным подсчетом. Если тело падает с высоты, скажем, 80 м, то падение продолжается около 4 с (по формуле t = √(2h/g)). Средняя скорость при падении будет равна 20 м/с.
Это значение скорости мы и подставим в формулу кориолисова ускорения 4π∙n∙v. Значение n = 1 оборот за 24 часа переведем в число оборотов в секунду. В 24 часах содержится 24∙3600 секунд, значит, n = 1/86400 об/с и, следовательно, ускорение, которое создает сила Кориолиса, равно π/1080 м/c2. Путь, пройденный с таким ускорением за 4 с, равен 1/2∙(π/1080)∙42 = 2,3 см. Это и есть величина восточного отклонения для нашего примера. Точный расчет, учитывающий неравномерность падения, дает близкую, но несколько иную цифру.
Если отклонение тела при свободном падении максимально на экваторе и равно нулю на полюсах, то обратную картину мы будем наблюдать в случае отклонения под действием кориолисовой силы тела, движущегося в горизонтальной плоскости.
Горизонтальная площадка на северном или южном полюсах ничем не отличается от вращающегося диска, с которого мы начали изучение силы Кориолиса. Тело, движущееся по такой площадке, будет отклоняться силой Кориолиса вправо по ходу движения на северном полюсе и влево по ходу движения на южном. Читатель без труда подсчитает, пользуясь той же формулой кориолисова ускорения, что пуля, выпущенная из ружья с начальной скоростью 500 м/с, отклонится от цели в горизонтальной плоскости за одну секунду (т. е. на пути 500 м) на отрезок, равный 3,5 см.
Но почему же отклонение в горизонтальной плоскости на экваторе должно равняться нулю? Без строгих доказательств понятно, что так должно быть. На северном полюсе тело отклоняется вправо по движению, на южном — влево, значит, посередине между полюсами, т. е. на экваторе, отклонение будет равно нулю.
Вспомним опыт с маятником Фуко. Маятник, колеблющийся на полюсе, сохраняет плоскость своих колебаний. Земля, вращаясь, уходит из-под маятника. Такое объяснение дает опыту Фуко звездный наблюдатель. А наблюдатель, вращающийся вместе с земным шаром, объяснит этот опыт силой Кориолиса. Действительно, сила Кориолиса направлена перпендикулярно к земной оси и перпендикулярно к направлению движения маятника; иначе говоря, сила перпендикулярна к плоскости колебания маятника и будет эту плоскость непрерывно поворачивать. Можно сделать так, чтобы конец маятника вычерчивал траекторию движения. Траектория представляет собой «розетку», показанную на рис. 2.15.
На этом рисунке за полтора периода колебания маятника «Земля» поворачивается на четверть оборота. Маятник Фуко поворачивается иного медленнее. На полюсе плоскость колебания маятника за одну минуту повернется на 1/4 градуса. На северном полюсе плоскость будет поворачиваться вправо по ходу маятника, на южном — влево.
На широтах центральной Европы эффект Кориолиса будет несколько меньше, чем на экваторе. Пуля в примере, который мы только что привели, отклонится не на 3,5 см, а на 2,5 см. Маятник Фуко повернется за одну минуту примерно на 1/6 градуса.
Должны ли учитывать силу Кориолиса артиллеристы? Пушка Берта, из которой немцы вели обстрел Парижа во время первой мировой войны, находилась в 110 км от цели. Отклонение Кориолиса достигает в этом случае 1600 м. Это уже не маленькая величина.
Если летающий снаряд будет отправлен на большое расстояние без учета силы Кориолиса, то он значительно отклонится от курса. Этот эффект велик не потому, что велика сила (для снаряда в 10 т, имеющего скорость 1000 км/ч, сила Кориолиса будет около 25 кгс), а потому, что сила действует непрерывно длительное время.
Конечно, влияние ветра на неуправляемый снаряд может быть не менее значительным. Поправка к курсу, которая дается пилотом, обусловлена действием ветра, эффектом Кориолиса и несовершенством самолета или самолета-снаряда.
Какие специалисты, кроме авиаторов и артиллеристов, должны принять эффект Кориолиса во внимание? К ним относятся, как ни странно, и железнодорожники. На железной дороге один рельс под действием кориолисовой силы истирается изнутри заметно больше другого. Нам ясно, какой именно: в северном полушарии это будет правый рельс (по ходу движения), в южном — левый. Лишены хлопот по этому поводу лишь железнодорожники экваториальных стран.
Размытие правых берегов в северном полушарии объясняется точно так же, как и истирание рельсов. Отклонения русла во многом связаны с действием силы Кориолиса. Оказывается, реки северного полушария обходят препятствия с правой стороны.
Известно, что в район пониженного давления направляются потоки воздуха. Но почему такой ветер называется циклоном? Ведь корень этого слова указывает на круговое (циклическое) движение.
Так оно и есть — в районе пониженного давления возникает круговое движение воздушных масс (рис. 2.16).
Причина заключается в действии силы Кориолиса. В северном полушарии все устремляющиеся к месту пониженного давления воздушные потоки отклоняются вправо по своему движению. Посмотрите на рис. 2.17 — вы видите, что это приводит к отклонению дующих в обоих полушариях от тропиков к экватору ветров (пассатов) к западу.
Почему же такая небольшая сила играет такую большую роль в движении воздушных масс?
Это объясняется незначительностью сил трения. Воздух легко подвижен, и малая, но постоянно действующая сила приводит к важным следствиям.