НФ: Альманах научной фантастики. Выпуск 22

Ларионова Ольга

Амнуэль Павел

Журавлева Валентина

Дымов Феликс

Филимонов Евгений

Кубатиев Алан

Силецкий Александр

Руденко Борис

Гуин Урсула Ле

Парнов Еремей

Альтов Генрих

СТАТЬИ

 

 

Парнов Еремей

В УВЕЛИЧИТЕЛЬНОМ ЗЕРКАЛЕ ФАНТАСТИКИ

Зеркало памяти и вогнутое, укрупняющее масштабы, зеркало фантазии… Мне показалось весьма интересным, что известный футуролог Роберт Юнг отдал пальму первенства в разработке прогнозов не логическому мышлению и даже не критическому исследованию имеющихся данных, а творческому воображению.

«Оно характеризует эпоху, — говорит он в работе «Роль воображения в исследовании будущего», — и очень часто выводит ум за пределы противоречий, которые характеризовали прошлое и представлялись неразрешимыми».

В этом определении содержится характеристика научной фантастики как метода исследования.

«Я отлично представляю себе, что такое время, — говаривал Блаженный Августин, — пока не просят пояснить, что это такое, и совершенно перестаю понимать, как только пытаюсь объяснить».

Многие современные физики признавались, что испытывают нечто подобное, когда их просят понятно и «в двух словах» рассказать о времени, пространстве или начальном моменте нашего мироздания, который космологи поэтически называют «большим взрывом». Во всяком случае парадоксальное изречение средневекового философа прекрасно иллюстрирует ситуацию, сложившуюся в научной фантастике. Все — писатели, критики, читатели — прекрасно понимают, что представляет собой эта удивительная муза, рожденная научно-технической революцией. Но понимают внутренне — для себя. Как тот студент из анекдота, который знал, что такое электричество, и вдруг забыл на экзамене.

Парадокс объясняется просто. Чудесный сплав искусства и точного знания, которым, собственно, и является фантастика, не вмещается в узкие рамки определений. Быть может, по той простой причине, что составляющие его начала знание и крылатый вымысел — всякий раз берутся в самых различных дозах. От чистого эликсира до гомеопатических капель прогноза ближайшего развития техники.

Питаясь живительным соком научных идей, фантастика не перестает быть искусством. В отличие от науки, которая неудержимо ветвится, образуя все новые ячейки узкой специализации, научная фантастика всякий раз стремится создать целостную картину мира.

Полигон научных идей, исследование социальных моделей, блистающие солнца утопических миров и мрачные пророчества грядущих опасностей — все это лики изменчивой музы. Мгновенные черты, по которым едва ли возможно судить о всем облике. В утопическом зеркале радостных предчувствий, в сумеречном зеркале тревог и сомнений грозного мира антиутопий лишь случайно проскальзывают отблески неоткрытого будущего, потому что параболические антенны фантастики призваны лоцировать настоящее. В них всегда отражается, пусть и гипертрофированно, современный писателю мир.

Что же касается пророчеств — поразительных предвосхищений или случайных угадываний, то они возникают как своего рода побочный продукт. Аналитическое исследование прорастающих зерен будущего — именно этим и занимается фантастика — неизбежно дает некий неожиданный результат, который очень часто «сбывается». Здесь нет никакого чуда, если не считать чудом самое искусство. Потому что именно искусству присущ тот обобщенный мгновенный синтез, который наука достигает кропотливым и долгим путем.

Широко мыслящий и компетентный в вопросах науки художник вольно или невольно приходит к научной фантастике.

Вот пример, ставший чуть ли не хрестоматийным:

Мир — рвался в опытах Кюри Атомной, лопнувшею бомбой На электронные струи Невоплощенной гекатомбой.

Эти строки Андрей Белый, получивший солидное физико-математическое образование, написал в 1921 году. За четверть века до того, как предсказанная им гекатомба воплотилась горами сожженных тел в Хиросиме и Нагасаки. Здесь в чистом классическом виде реализовался прыжок художника, отталкивающегося от твердой почвы достоверных фактов. Это великолепный пример именно синтеза, а не захватывающего дух пророчества новой Кассандры.

По свидетельству К. Н. Бугаевой, поэт «любил факты, опыт и точное знание. Физика, химия, их достижения интересовали его до конца. Он говорил о Боре и Резерфорде, когда о них знали еще только узкие специалисты».

Вот, собственно, и весь «секрет технологии», рождающей пророчества: знание и воображение, которое часто является синонимом таланта.

Промышленные революции, как и революции социальные, не возникают мгновенно. Они подготавливаются всем ходом исторического развития. Наступление атомной эры чуткие нервы художника ощутили задолго до того, как это стало ясно самим ученым. Пожалуй, ни в какой другой области не проявилось столь полно присущее научной фантастике свойство улавливать тревоги и ожидания общества, как в атомной проблеме. В жизненно важной для всего человечества проблеме, которая усугубилась ныне нейтронной бомбой.

Летом сорок четвертого года в редакцию журнала научной фантастики «Эстаундинг сайенс фикшн» («Поразительная научная фантастика»), который издавал знаменитый Джон Кемпбелл, нанесли визит агенты ФБР. Они не скрывали своего крайнего беспокойства по поводу только что опубликованного рассказа малоизвестного в то время фантаста К. Картмилла. Речь шла не более и не менее, как о разглашении сведений высочайшей категории секретности, затрагивающих суть «Манхеттенского проекта». Картмилл ухитрился «выболтать» самые страшные тайны, причем такие, о которых еще не могли знать до конца лучшие умы Лос-Аламоса. В своем рассказе он раскрыл возможный (для фантаста он был уже реальным) тротиловый эквивалент, силу ударной волны, радиус теплового и радиационного поражения. Короче говоря, все факторы атомного взрыва.

«К описываемому моменту, — так и ложатся сюда слова Лесли Гровса, хоть атомный генерал произнес их по иному поводу, — мы были уверены, что сможем испытать «Толстяка» — бомбу взрывного типа — примерно в середине июля. Планирование операции по испытанию «Толстяка», получившей кодовое название «Троица», началось весной 1944 года, после того как мы с Оппенгеймером решили, что с точки зрения проверки сложной теории взрывной бомбы, правильности ее конструкции, изготовления и сборки, в общем, ее действенности, такое испытание весьма целесообразно».

Ученые особенно рьяно любят фантастику. И взрыв, произведенный рассказом Картмилла «Линия смерти», в тиши секретных лабораторий был воистину подобен атомному. Ярости секретной службы во всяком случае не было предела.

Напрасно издатель лепетал что-то насчет веяния времени и характерной для фантастов привычки забегать вперед. Факт чудовищного нарушения атомного моратория представлялся бесспорным, хотя ни сам Кемпбелл, ни агенты ФБР не догадывались, что «пророчество» Картмилла сбудется через считанные месяцы.

Строжайшее расследование, однако, показало, что писатель не имел ни малейшего касательства к проекту, который возглавляли доктор Оппенгеймер и генерал Гровс. В своих прогнозах он пользовался лишь открытыми научными сообщениями довоенных времен. Представил доказательства своего «алиби» и сам Кемпбелл. Он не только показал агентам рассказ Хайнлайна «Неудовлетворительное решение», датированный сорок первым годом и повествующий об атомной войне и послевоенной гонке вооружений (!), но и сослался на «Освобожденный мир» Уэллса. Этот роман, вышедший в 1914 году, уж никак нельзя было заподозрить в причастности к «Манхеттенскому проекту». В год начала первой мировой войны прославленный фантаст писал о войне атомной, о тотальном истреблении сотен тысяч людей и почти полном разрушении городов.

Это был, в полном смысле слова, роман-предупреждение, заглянувший в будущее на целых четыре десятилетия. При желании Кемпбелл мог бы сослаться еще на одно литературное произведение — на роман В. Орловского «Бунт атомов», увидевший свет в 1928 году. Тем более, что его мгновенно перевели на английский и опубликовали в американском журнале научной фантастики. Как в свое время спешно перевели уэллсовский «Освобожденный мир» в охваченной пожаром империалистической войны России.

Очевидно, писатели чутко уловили неясные ожидания и вполне конкретные тревоги мира. Не слишком ошибся В. Орловский и в выборе места, где, по его убеждению, было создано новое испепеляющее оружие, В романе превосходно передана атмосфера шовинизма и оголтелого милитаризма, которая пышным цветом расцветала в те годы в некоторых кругах Веймарской республики. Та самая атмосфера, которая, собственно, и породила немецкий «урановый проект».

«Дело» против Кемпбелла и Картмилла, таким образом, не состоялось, хотя опасения, что даже такая, казалось бы, невинная публикация, как научно-фантастический рассказ, может о многом поведать противной стороне, остались.

К счастью, физиков третьего рейха, застрявших на самых начальных ступенях «уранового проекта» (это вскоре выяснила специальная разведывательная миссия «Алсос»), фантастика не интересовала. Впрочем, журнал «Поразительная научная фантастика», кроме действительно «поразительных» эмоций, едва ли мог им что-нибудь дать. Не было уже в мире силы, способной спасти гитлеризм от заслуженной кары.

«К описываемому моменту», как это говорится у Гровса, победоносная Советская Армия громила захватчиков на территориях сопредельных стран, освобождала народы Европы от нацистской чумы.

Но оставим на время реальную атомную проблему и продолжим рассказ о том, как она преломлялась в параболических антеннах научной фантастики. Точнее, в гиперболических, потому что логика повествования подводит нас к популярнейшему роману Алексея Толстого «Гиперболоид инженера Гарина».

Алексей Толстой зорко подмечал мельчайшие ростки нового. «Аэлиту» от «Гиперболоида инженера Гарина» отделяют каких-нибудь три с небольшим года. Но как не схож научный колорит этих книг! Да и Петроград Лося и Гусева существенно отличен от Ленинграда Тарашкина и Шельги. Не менее чем сам Лось от молодого ученого Хлынова. Это тоже было знамением времени. Страна перестала быть полем сражения, она превращалась в исполинскую строительную площадку. На повестке дня стояло создание каналов, железных дорог, шахт, металлургических гигантов, электростанций. Такому грандиозному строительству должна была отвечать и соответствующая научно-техническая база. Создавалась та особая научная атмосфера, без которой уже немыслим современный мир.

А. Толстой был по образованию инженером. В разработке научно-фантастических идей он не отступал от научного метода отбора и переработки информации. В «Гиперболоиде инженера Гарина» — роман начал печататься в 1925 году в «Красной нови» — мы найдем даже обстоятельный чертеж грозного аппарата. Пусть мы знаем теперь, что никакого гиперболоида построить по этим эскизам нельзя, так как по законам линейной оптики нерасходящийся луч не имеет права на существование, это ничего не значит. Рисунок не только не разрушает нашу читательскую веру, но и сообщает ей необходимую опору, придает осязаемую конкретность. И все потому, что научная логика неотрывна у А. Толстого от поэзии. Той самой невыразимой поэзии, которая всегда волнует нас близостью откровений.

Устами инженера Хлынова Толстой высказал свое глубокое убеждение в том, что «от кабинета физика до мастерской завода шаг невелик. Принцип насильственного разложения атома должен быть прост, чрезвычайно прост».

И далее:

«Мы подбираемся к самому сердцу атома, к его ядру. В нем весь секрет власти над материей. Будущее человечества зависит от того, сможем ли мы овладеть ядром…»

В те годы, когда газеты кричали о шарлатанской чепухе, вроде «лучей смерти» Гриндель — Матьюза, писатель не ограничивался приключениями с гиперболоидом, а сумел разглядеть рождение совершенно новой — атомной эры! Конечно, он вносил в роман постоянные поправки, слегка подновлял его в соответствии с новейшими достижениями науки. Но ведь основа-то была! А Толстой определенно предвосхитил тот «невеликий шаг», который был сделан участниками «Манхеттенского проекта» и «лабораторией № 2», которую возглавил И. В. Курчатов.

Ясно понял он и то, что именно в растоптанной Версальским договором Веймарской республике зреют зерна грядущей коричневой чумы. И не ошибся в социальной природе этого явления, как не ошибся в своем герое, объединившем в довольно-таки жалкой эклектичной доктрине идейки наивной еще технократии с практикой откровенного фашиста.

Лихорадочной ночью, накануне первого массового убийства в гостинице «Черный дрозд», Гарин выскажет Зое Монроз свое кредо:

«Но — власть! Упоение небывалой на земле властью. Средства для этого у нас совершеннее, чем у Чингисхана. Вы хотите божеских почестей? Мы прикажем построить вам храмы на всех пяти материках…»

А в шахте, вгрызающейся в оливиновый пояс, Шельга внесет свою поправку:

«— Гарин и его предприятие — не что иное, как крайняя точка капиталистического сознания. Дальше Гарина идти некуда: насильственное превращение трудящейся части человечества в животных путем мозговой операции, отбор избранных — «царей жизни», — остановка хода цивилизации».

Объяснит рабочим, поклявшимся взорвать себя вместе с шахтой, классовую природу явления:

«Империализм упирается в систему Гарина».

Квантовая электроника, создавшая лазер и нелинейную оптику, перечеркнула идею гиперболоида, а «Маринер», опустившийся среди красных песков Марса, отснял его пресловутые каналы и не обнаружил ни их, ни покинутых городов, ни следов какой-либо органической жизни. Только разве в этом дело? История полностью подтвердила прогнозы А. Толстого-футуролога. На обломках Веймарской республики, как мы знаем, вырос третий рейх. Его заправилы тоже не избежали своеобразного столкновения с научной фантастикой. Речь идет о двух фильмах режиссера Фрица Ланга «Метрополис» (1926 г.) и «Женщина на Луне» (1928 г.).

«Метрополис» — первая социальная утопия в мировом кинематографе, побила все тогдашние рекорды постановочной стоимости. Шестьдесят тысяч метров пленки, из которых Ланг смонтировал потом, двухчасовую ленту, обошлись студии УФА в четыре миллиона марок.

Фильм начинался титрами: «Мы живем в мире материальных достижений, небывалого развития науки. Но что происходит с нашими сердцами и нашим разумом? Будет ли наше будущее таким, как в этом фантастическом городе?» И словно в ответ на вопрос, в последних частях фильма была показана апокалиптическая сцена тотального вандализма, когда обыватели поверженного города будущего открывают шлюзы и подземный бушующий поток сметает с лица земли последние убогие лачуги, затягивая в водовороты отчаянно барахтающихся ребятишек. Как знать, может быть, именно эта сцена пришла на память мечущемуся в бункере имперской канцелярии Гитлеру, когда он отдал последний чудовищный приказ — пустить воды Шпрее в туннель метро, где укрылись от бомбежки тысячи берлинцев: женщин, стариков, детей. Гиммлеру «Метрополис» подсказал контуры будущего «государства СС», которое обер-палач планировал создать в Бургундии, а молодому Вернеру фон Брауну «Женщина на Луне» подбросила кое-какие идейки насчет оформления ракетодромов.

Консультантом фильма «Женщина на Луне» был, кстати, один из пионеров ракетной техники — профессор Оберт, нарисовавший эскизы пусковых установок и баллистических ракет. Конструкция стартовых платформ, которую разработал потом фон Браун для своих «фау», оказалась настолько похожей на «киношную», что нацистские бонзы забеспокоились, и гестапо на всякий случай наложило свою лапу на все копии фильма. Потом их обнаружили в подвалах управления имперской безопасности на Принц Альберхштрассе, 8.

Но вернемся к событиям куда более значимым, оставившим неизгладимый отпечаток на всей послевоенной истории. Речь идет об истоках интересующей нас проблемы, которая, как это будет вскоре показано, оказалась самым тесным образом связана с фантастикой не только извне, но и изнутри, не только прямой связью, но и обратной.

Доктор Лиза Мейтнер навсегда покинула Германию, когда большая работа над синтезом трансурановых элементов была, казалось, завершена. Однако связь ее с Ганом и Штрассманом не прервалась. Они продолжали переписываться. Ган коротко сообщал о наиболее важных результатах, а Мейтнер комментировала их. Цель виделась близкой. Бомбардировка урана нейтронами как будто бы обещала подарить несуществующие в природе трансурановые элементы. Следовало торопиться. Ведь аналогичные работы велись Ирэн Жолио-Кюри и Савичем во Франции, а несколькими годами ранее бомбардировку урана нейтронами осуществил в Риме Энрико Ферми. В Советском Союзе пристальное внимание этому процессу уделяли Флеров и Петржак. Широкую известность получили работы Вернадского, Бродского, статья Зельдовича и Харитона о возможности цепной самоподдерживающейся реакции.

Но пока речь шла «всего лишь» о новых элементах, ни о чем более…

Ган и Штрассман первые убедились в том, что мишень не содержит новых сверхтяжелых элементов. Напротив, они обнаружили осколки деления. Уран под давлением нейтрона расщеплялся на более легкие элементы. 22 декабря 1938 года они направили сообщение о проведенных работах в научный еженедельник «Ди Натюрвиссеншафт». Директор издательства клятвенно заверил Отто Гана, что статья появится в ближайшем выпуске, ровно через две недели — 6 января 1939 года.

На карту была поставлена безупречная репутация Гана. Либо это ошибка, либо… Он написал обо всем в Стокгольм Лизе Мейтнер.

Письмо нашло ее в небольшой уютной гостинице чистенького, почти игрушечного городка Кунгельв. Доктор Мейтнер приехала сюда на рождественские каникулы вместе с племянником Отто Фришем. Как и его прославленная тетка, он тоже был физиком и беженцем из третьего рейха. Она получила должность в Стокгольмском физическом институте, он — у Нильса Бора, в Копенгагене.

Лиза Мейтнер слишком хорошо знала Гана, чтобы допустить возможность ошибки в химической идентификации элементов. Сомнений быть не могло: уран действительно расщепляется на барий и криптон, хотя это и представлялось невероятным.

Отто Фриш так и сказал: «Невероятно». Он даже слышать не хотел о подобной версии. Схватил лыжи, открыл балконную дверь и выпрыгнул из лоджии на снег.

Но пока он застегивал крепления, Мейтнер тоже успела сбежать вниз. И они пошли вместе по бескрайнему заснеженному полю, над которым качались от ветра колючие верхушки сухого репейника. Она шла, задыхаясь, по его лыжне и что-то кричала ему, одинокая, пожилая женщина, затерянная среди чужой белой равнины.

Потом Отто Фриш писал:

«Ей потребовалось довольно много усилий, чтобы заставить меня слушать, но в конце концов мы начали спорить о природе открытия, сделанного Ганом… Самой поразительной чертой этой новой формы ядерной реакции было высвобождение огромной энергии».

Он был совершенно растерян. В письме к матери он признался: «Я чувствую себя как человек, который, пробираясь сквозь джунгли, не желая этого, поймал за хвост слона и сейчас не знает, что с ним делать».

В день выхода из печати статьи Гана и Штрассмана Фриш возвратился в Копенгаген и рассказал обо всем Бору.

«Как мы могли не замечать этого так долго!» — взволновался Бор.

Через несколько часов он был уже на борту парохода, отправлявшегося в шведский порт Гетеборг. А ровно через сутки огромный шведско-американский лайнер «Дроттнинг-холм» уносил его за океан.

Так начала раскручиваться бешеная пружина беспримерной атомной эпопеи.

Судно Бора еще болталось в Атлантике, когда Отто Фриш провел классический по простоте эксперимент. «Атомный термометр» Фриша показал энергию, в 50 миллионов раз превышавшую сжигание водорода в кислороде. 15 января 1939 года стал отсчитывать первые секунды грозный атомный век. Английский «Нейчур» в рекордный срок опубликовал статью Мейтнер и Фриша «Деление урана с помощью нейтронов — новый тип ядерной реакции». Джинн был выпущен из бутылки.

А Нильс Бор, прибыв в Нью-Йорк, не торопился в Принстонский институт перспективных исследований, где его ожидал Эйнштейн. Абстрактные проблемы космоса и статистической природы причинности отступили на задний план. Обсудив открытие Гана с Уилером, Бор встретился с лучшими физиками Америки, в числе которых к тому времени был уже и Ферми, навсегда покинувший фашистскую Италию.

Но пропустим ряд исторических и хорошо известных теперь вех, которые привели в конце концов к взрыву в пустыне Аламогордо и к взрыву над Хиросимой…

3 марта 1939 года бежавший из хортистской Венгрии в США Лео Сциллард совместно с Уолтером Зинном поставили опыт, который должен был воспроизвести деление урана.

«Появление вспышек света на экране, — писал Сциллард, — могло означать, что в процессе деления урана излучались нейтроны, а это, в свою очередь, означало, что освобождение атомной энергии в больших масштабах было не за горами.

Мы повернули выключатель и увидели вспышки.

Некоторое время мы наблюдали за ними, а затем все выключили и пошли домой.

В ту ночь у меня почти не оставалось сомнений, что мир ждет беда».

Вспышки на экране осциллографа, которые шепотом подсчитывал Сциллард, были гирляндами фонарей вдоль дороги, ведущей к пропасти, имя которой «цепная реакция». Космическая сила, запрятанная в уране, могла быть высвобождена не только в реакторе, но и в бомбе.

А в Германии в это время уже вовсю велись работы по расщеплению урана. Нацисты тянулись к чешским рудникам, к норвежским заводам тяжелой воды. Гитлер мог получить атомную бомбу.

Приехавший в Америку профессор Петер Дебай подтвердил самые худшие ожидания.

В 1945 году, отвечая на вопросы сенатской комиссии, Лео Сциллард скажет:

«Они (немцы. — Е. П.) могли бы начать работы по созданию атомного оружия в 1940 году, а приложив максимум усилий, успешно завершили бы их к весне 1944 г. Они победили бы прежде, чем у нас появилась возможность осуществить вторжение в Европу».

Жизнь показала, что немецкие физики были гораздо дальше от создания атомной бомбы, чем это казалось в 1940 году. Сокрушительные удары Советской Армии решили судьбу войны задолго до операции «Оверлорд». Битва на Волге, а не высадка в Нормандии, явилась поворотным пунктом в истории.

Но в начале войны у ученых-антифашистов были самые реальные опасения, что Гитлер сможет получить атомную бомбу. По предложению Сцилларда, они приняли решение обратиться к Рузвельту.

Кто мог рассчитывать на самое внимательное отношение президента? Только Эйнштейн. И они обратились к великому творцу теории относительности.

— Я не знаком с президентом, и президент не знает меня, — ответил Эйнштейн.

— Он знает и уважает вас. Вы — единственный человек, которого он выслушает. Для Америки и всего мира крайне необходимо что-либо предпринять. Нельзя терять ни минуты.

2 августа 1939 года Сциллард и Геллер повезли в канцелярию президента историческое письмо Эйнштейна.

Так началась беспрецедентная гонка за бомбу, которой не суждено было сокрушить нацизм, которая взорвалась потом над Хиросимой, сброшенная «летающей крепостью» Б-29, поднявшейся в роковое утро с секретной базы на острове Тиниан.

Я привел эти эпизоды не только для того, чтобы напомнить о том, кто такие Сциллард и Фриш. Причастные к величайшей эпопее века, они вновь встретились на куда более скромной ниве научной фантастики. И мне хочется проанализировать, почему это произошло.

Обратимся теперь к произведениям Фриша (новелла «О возможности создания электростанций на угле») и Сцилларда (рассказ «К вопросу о центральном вокзале»). Словно сговорившись, оба они выбрали почти одинаковую форму изложения. В первом случае — это стилизация под научную статью, во втором своего рода обзор, как принято говорить, «современного состояния проблемы». Даже заголовки и те удивительно похожи! Но если вспомнить, что названия доброй половины научных публикаций начинаются со слов «К вопросу о…» или «О возможности (невозможности)…», то все становится на свои места. Поэтому речь пойдет не о случайном сходстве, а о сходстве, обусловленном близостью поставленных задач. В научно-фантастической литературе, где исходные параметры обычно задаются весьма жестко, это бывает часто.

Наверное, если бы это только было возможно, овладей человек атомной энергией до начала эры тепловых электростанций, новелла Фриша могла бы быть зарегистрирована в реестре открытий. Примерно так мог бы описать инженер-атомщик только что изобретенную им угольную топку. Зачем понадобилась Фришу такая временная инверсия? Может быть, просто ради шутки? Недаром ведь эта новелла была включена в сборник «Физики шутят». Обратимся, однако, к заключительным словам новеллы:

«Существует возможность, хотя и весьма маловероятная, что подача окислителя выйдет из-под контроля. Это приведет к выделению огромного количества ядовитых газов. Последнее обстоятельство является главным аргументом против угля и в пользу ядерных реакторов, которые за последние несколько лет доказали свою безопасность».

Какой жестокой иронией звучат они на фоне газетных сообщений о крушениях атомных бомбардировщиков над испанским селением Паламарес и над гренландскими ледниками, о захоронении контейнеров с радиоактивными отходами в океане, что поставило под вопрос саму возможность сохранения жизни на планете. Нет, не ради шутки взялся за перо член Королевского общества и профессор Кембриджского Тринити-колледжа Отто Фриш, который был в числе тех первых, шагнувших к атомному веку.

Сотрудники Лос-Аламосской лаборатории, где был осуществлен «Манхеттенский проект», пытались, когда уже дымился поверженный Берлин, остановить роковые шаги к бездне. Сциллард был одним из наиболее активных участников «Манхеттенского проекта» и одним из наиболее яростных противников бомбардировки японских городов. Он знал, что бомба уже находится в руках генералов, что цели намечены: Хиросима, Кокура, Нагасаки и Ниигата. Жестокая шутка судьбы. Он отдал свои руки, свой мозг, всего себя одной задаче — спасти мир от угрозы тотального уничтожения. И детище рук его грозит теперь миру новой, неслыханной катастрофой.

И вновь Лео Сциллард отправляется к Эйнштейну. Цикл замыкается, все возвращается на круги своя. Стремясь остановить чудовищную колесницу, Эйнштейн и Сциллард направляют письмо Рузвельту. Но президент умер, так и не прочитав его.

«Весь 1943 и отчасти 1944 г.,- писал потом Сциллард, — нас преследовал страх, что немцам удастся сделать атомную бомбу раньше… Но когда в 1945 году нас избавили от этого страха, мы с ужасом стали думать, какие же еще опасные планы строит американское правительство, планы, направленные против других стран».

Точно в 2.45 по марианскому времени в понедельник 6 августа 1945 года с трех параллельных дорожек взлетели три Б-29. Новый президент Трумэн прочел письмо. Это был ответ.

«Не трудно вообразить, как мы были потрясены, когда, совершив посадку в этом городе, обнаружили, что он необитаем…» Так начинается рассказ Сцилларда «К вопросу о центральном вокзале». Чужие ученые чужой далекой цивилизации проводят раскопки на совершившей атомное самоубийство Земле. Рассказ ведется от лица исследователя, олицетворяющего «здравый смысл». Он полемизирует с оппонентом, выдвинувшим гипотезу о том, что «между обитателями двух континентов шла война, в которой побеждали обе стороны». Это юмор с оттенком самоубийства, немой крик, почти истерика. Для Сцилларда картина испепеленной Земли — не досужая фантазия, а неотступное апокалипсическое видение. Он был одним из тех, кто освободил джинна и не сумел потом загнать его обратно в бутылку. Он был драматургом и жертвой трагедии, которая разыгралась вокруг него. Казалось, что за гранью смерти пепел живых, еще беззаботно смеющихся людей будет стучать в его большое сердце.

Этот «здравый смысл», неумение видеть дальше собственного носа заставляет героев его рассказа подменить трагедию фарсом, копаться вокруг проблемы загадочных для инопланетян укромных помещений с буквами «Ж» и «М» на дверях. Мертвая, навсегда мертвая Земля! А если на секунду вернуться к истории, может быть, это его «здравый смысл» поставил теперь человечество на острие ножа? Нет, очевидно, это не так… Не «здравый смысл» вел его в то пасмурное утро к Эйнштейну, а эмбарго, наложенное немцами на чешский уран, и пущенные на полную мощность электролизные батареи завода «Норск Хайдро» в Веморке.

Так тем страшнее роковые шаги, чем менее они случайны, чем жестче предопределены.

Лео Сциллард до самых последних дней жизни продолжал бороться за мир. Все было подчинено этой сверхзадаче, как он ее называл. В том числе и литературное творчество. Кошмары оживали на бумаге, чтобы никогда не стать явью. Сциллард был гениальным физиком. Но после Хиросимы физика отошла для него на второй план. Вот почему рассказы Сцилларда-фантаста нельзя рассматривать просто как хобби ученого. Он относился к ним очень серьезно. Он верил, что мир на Земле зависит от воли каждого человека.

В декабре 1960 года, уже тяжело больной, он прилетел в Москву на очередную Пагуошскую конференцию. На аэродроме ему сообщили, что его дожидается посылка — тяжелая каменная пепельница в виде взлетающего на гребне волны дельфина.

Тихий седой человек снял очки, недоуменно прищурился, потом вдруг улыбнулся:

— Это, наверное, к моему докладу!

Сциллард построил доклад на выдержках из своей фантастической книги «Голос дельфина», где показал, что дружбе всегда предшествует взаимопонимание.

Так фантастическое произведение, созданное крупнейшим физиком, оказалось причастным к борьбе за мир на Земле. Может быть, это был закономерный финал пути, начатого в Лос-Аламосе.

Первые фантастические фильмы-предупреждения, сфокусированные на атомных кошмарах, появились в 1951 году, в эпоху усиленных разработок сверхбомбы. Действие фильма «Ракетный корабль X-М» Курта Ньюмана развертывается на Марсе, где после атомной бомбардировки сумела выжить лишь горстка одичавших, забывших все достижения своей высокой цивилизации полуидиотов. С первых же эпизодов зритель мог легко догадаться, что на самом деле имеют в виду создатели кинокартины.

В фильме «Пять» режиссера Оболера не нужно было разгадывать даже такую столь поверхностную аллегорию. С откровенной публицистичностью демонстрировал он обезображенные, отравленные радиоактивной пылью ландшафты нашей планеты, где смогли уцелеть только пять человек, которым предстояло вновь возродить разумную жизнь.

Наиболее ярким явлением того времени стала лента Роберта Уайза «День, когда остановилась Земля». Она выгодно отличалась от бесчисленных поделок «масс-культуры», где многократно варьировались всевозможные космические чудовища, изрыгающие атомное пламя, порожденные радиоактивным заражением уродливые мутанты и доисторические ящеры, пробужденные громом атомных испытаний («Годзила», «Чудовище с глубины 20 тысяч сажен», «Смертельные кузнечики», «Паук» и т. п.).

В отличие от всех этих киноподелок «День, когда остановилась Земля» показывал реальную ситуацию, потому что истинная фантастика всегда отталкивается от наиболее жизненных в данную историческую эпоху проблем. Приземлившийся в центре Вашингтона космический корабль привез людям призыв к разоружению и всеобщему миру. Призыв от имени миллионов погибших обитателей далекой планеты, чью роковую ошибку повторяет теперь Земля. И то, что звездный посланец, случайно уцелевший в ходе молниеносной термоядерной войны, не может преодолеть стены недоверия (ученые оказались бессильными что-либо сделать, чиновники продемонстрировали превосходный образец бюрократической волокиты, а агенты ФБР тут же принялись «прояснять связи» космического гостя), исчерпывающе характеризует американское общество временї «холодной войны».

Можно лишь согласиться с мыслью Олвина Тоффлера, высказанной в его книге «Шок будущего»:

«Если научную фантастику рассматривать скорее как своего рода социологию будущего, чем как литературу, то она приобретает огромную ценность… Научную фантастику следует сделать обязательным чтением для самоориентации в будущем».

Во всяком случае мгновенный стереоснимок современного художнику общества она дает безупречный. Убийственный, надо добавить, коль скоро речь идет о фильме «День, когда остановилась Земля».

Подобных «дней» у кинофантастики будет достаточно. «День, когда всплыла рыба» греческого режиссера Михаила Какояниса покажет потом, каким кошмаром обернется упавшая в Средиземное море бомба, которую «случайно потерял» американский патрульный самолет. Но это будет уже фильм (1967 г.) о другой эпохе. Фильм, поставленный после знаменитого «На берегу» и, разумеется, после реальных случаев с бомбами, которые «случайно» обронили где-то в Гренландии и у испанского берега.

Годы, наступившие за испытанием атомной, а затем и водородной бомбы в СССР, когда были развеяны иллюзии периода атомного шантажа, по своему историческому значению действительно равнозначны целой эпохе.

Чувствительный барометр искусства сразу уловил изменение мирового психологического климата. Однако сам факт, что советские ученые вопреки распространенным прогнозам (типа: «Россия сможет иметь бомбу через десять, а то и через двадцать лет») решили урановую проблему уже к 1949 году, не отрезвил наиболее рьяных рыцарей атомного шантажа. Несмотря на заявление Советского правительства о готовности запретить и уничтожить ядерное оружие, если США и их союзники последуют этому примеру, гонка над пропастью продолжалась. Эдвард Теллер не только подстегнул программу водородной «Эйч-бомб», но и некоторое время спустя в комнате 2022, где собралась комиссия по делу Оппенгеймера, дал показания против бывшего шефа «Манхеттенского проекта», обвинив его чуть ли не в саботаже. Прямым результатом этого явился пресловутый «пункт три», который гласил:

«Поведение доктора Оппенгеймера по вопросу о водородной бомбе весьма сомнительно, чтобы разрешить ему в будущем участвовать в правительственных программах…»

Гонка вооружения, таким образом, продолжалась. И пока в эпигонских антиутопиях всячески варьировались атомные кошмары, человечество на крыльях «холодной войны» летело навстречу реальным ужасам, которые несла ему супербомба.

Теоретически принцип термоядерного оружия секрета не составлял. Еще за месяц до открытия деления урана профессор Ганс Бете из Корнельского университета разработал первую схему синтеза водорода в гелий. И когда атомный заряд стал реальностью, ни у кого не осталось сомнений, что именно он и послужит запалом для термоядерного устройства. Не дожидаясь очередного опробования, опережая события, американские ядерщики буквально фонтанировали опасными своим безумием идеями. Словно одержимые горячечным бредом, соревновались друг с другом в разработке все более смертоносных образцов нового оружия.

Но 8 августа 1953 года Советское правительство заявило о том, что «Соединенные Штаты не обладают монополией и на производство водородной бомбы». Через четыре дня после этого самолеты-разведчики обнаружили в небе над Азией следы термоядерного взрыва.

«Правительственная программа», в которой уже не было места людям вроде Оппенгеймера или Сцилларда, между тем продолжала катиться по накатанной дорожке. На сцену вышла кобальтовая бомба — порождение поистине дьявольского ума. Тем более что от идеи до воплощения было рукой подать. Никаких технических трудностей для изготовления кобальтового чудовища не существовало. При желании можно было в любой момент поместить термоядерное устройство в кобальтовую оболочку, которая при взрыве способна образовать радиоактивное облако в 320 раз более смертоносное, чем чистый радий.

Людоедская одержимость далеко превзошла на сей раз самые мрачные прогнозы писателей и сценаристов антиутопического жанра. Речь шла, по сути, о самоубийстве во всемирном масштабе.

Радиохимики из Калифорнийского технологического института подсчитали, что кобальтовая бомба с одной тонной дейтерия способна создать полосу абсолютно выжженной земли протяженностью до 5000 и шириной до 2300 километров.

Четыреста таких бомб, по мнению Сцилларда, способны испустить радиацию, достаточную для уничтожения жизни уже во всепланетном масштабе.

Дальше, как говорится, ехать было некуда. Но даже такая, поистине убийственная арифметика не отрезвила атомных маньяков. Сверхмощная по тем временам машина «МАНИАК» — игра слов, которую не могли предвидеть даже авторы «черного юмора», — полностью подтвердила выкладки специалистов.

Синтезируясь в гелий, тонна дейтерия дает 113 килограммов свободных нейтронов, которые сделают радиоактивными 7500 килограммов кобальта, что эквивалентно 2,3 миллиона килограммов радия. Количество людей на планете известно, смертельная человеко-доза — тоже. Казалось бы, любой школьник справится с подобной задачей. Рекордный по лаконичности научно-фантастический рассказ по крайней мере решил бы ее однозначно: «Мелькнула невероятная вспышка света, пронесся оглушительный гул… В эту минуту началась и закончилась третья мировая война».

Но нужен был порыв ветра (в прямом смысле слова), чтобы хоть как-то остудить горячие головы. Сейчас, когда проблемы экологии начинают решаться действительно во всемирном масштабе, такое покажется невероятным, но тогда, в разгар «холодной войны», стратеги Пентагона не приняли в расчет именно ветер. Планируя молниеносный упреждающий удар, упустили из виду, что в атомный век следует считаться с капризом стихий, непредсказуемым, своенравным.

Прогноз погоды на 1 марта 1954 года предсказывал направление ветра к северу от атолла Бикини. Но вопреки ожиданиям задуло в противоположном направлении, к югу, на острова Ронгерик и Утерик.

Снежный заряд, который принес с собой этот «незапланированный» шквал, обрушился посреди океана, накрыв случайно оказавшийся в том районе японский траулер «Счастливый дракон». За какие-нибудь минуты все вокруг: море, палуба, роканы рыбаков — сделалось белым. Обычное, казалось бы, происшествие на море, но через две недели о нем с ужасом узнал весь мир. Потому что белые хлопья, усеявшие палубу, не хотели таять, а японских рыбаков, которые еле-еле добрались до порта Яидзу, пришлось срочно госпитализировать.

Крупинки «снега», обнаруженные японскими учеными в швах корабельной обшивки, показали высокую радиоактивность. Это был пепел, выпавший после очередного испытания на далеких коралловых островах. Вскоре следы испытания под кодовым названием «Майк» обнаружились в дождях над Японией, в смазочном масле самолета индийской авиакомпании, в небе над Австралией, Северной Америкой и даже Европой.

Призрак смерти витал без виз, не тревожа ни радары противовоздушной обороны, ни мирный сон детей. Но там, где выпали дожди, невидимый яд проник в травы, в молоко, затаился в человеческом теле. Генетические мутанты готовы были шагнуть с экрана в жизнь. И шагнули, когда стали известны случаи внезапных заболеваний детей, рожденных после Хиросимы.

Какой же вывод сделали для себя атомные стратеги? Адмирал Рэдфорд, предлагавший использовать «тактическую атомную бомбу» в Индокитае, где вот-вот должна была тогда пасть крепость Дьен-Бьен-Фу, с воодушевлением ухватился за идею… «чистой бомбы». «Самые последние испытания, — заявил позднее Эйзенхауэр, — дают нам возможность обуздать и дисциплинировать наше оружие, резко сокращая выпадение осадков и позволяя более точно направить его на военную цель, если в этом будет необходимость».

Вот зерно, из которого выросла нейтронная бомба, омрачившая ныне политический горизонт. Она пришла к нам как динозавр, переживший породившую его эру «холодной войны». Именно тогда, в разгар дискуссий о кобальтовой бомбе, появились абсурдные, кощунственные в применении к оружию прилагательные «чистое», «гуманное». Принципиальная же идея была высказана еще раньше, в период Лос-Аламоса.

«Является ли нейтронная бомба новым оружием, — задается вопросом Э. Бурон, член Королевского общества, президент Всемирной федерации научных работников, лауреат международной Ленинской премии «За укрепление мира между народами», разработка которого в других странах маловероятна? Нет, не является. В принципе здесь нет ничего очень сложного. Впервые я услышал о нем еще в 1944 г., когда работал над Манхеттенским проектом…»

Да, это лишь иная ипостась чудовища, новая голова пережившей самое себя атомной гидры, особенно опасной, когда яростным атакам реакционных сил подвергаются завоевания международной разрядки. Той самой жизненно важной для человечества разрядки, которая ознаменовалась прекращением атомных испытаний а трех средах и отодвинула опасность ядерной войны.

Фильм Стэнли Креймера «На берегу» вышел на мировой экран в 1959 году, когда еще только закладывались первые кирпичи новых взаимоотношений между ядерными державами. Премьера состоялась одновременно в восемнадцати странах и оказала колоссальное воздействие на мировое общественное мнение.

Зрителю дано было взглянуть на мир после глобальной ядерной войны, в которой погибли Америка и Европа и лишь Австралия доживала последние недели болезненно-изломанной надрывной жизни, ожидая, когда ветры и течения донесут до нее смертоносное эхо. (Вспомним радиоактивный пепел в австралийском небе после операции «Майк»). «Это история, которая не произошла и не произойдет, если люди объединятся», — оповещали всех и каждого начальные титры.

«История» — в фильме фигурирует календарь с датой 1964 — действительно не произошла. Усилиями традиционно мирной политики Советского Союза, всех социалистических стран, всех миролюбивых правительств именно в шестидесятые годы наметился решительный поворот от конфронтации к разрядке и взаимопониманию.

Разумеется, путь к всеобщему миру не был столь прям и безоблачен, как этого можно было желать. Тишина, наступившая за прекращением ядерных взрывов в атмосфере, на море и на земле, неоднократно нарушалась, а противники разрядки на Западе осложняли международный климат различными безответственными акциями.

Именно в этот период были преданы огласке и различного рода проекты атомного оружия «нового поколения»: гамма-бомбы, нейтронной и т. д.

В научно-фантастической повести «Возвратите любовь», опубликованной в середине шестидесятых годов, мы с М. Емцевым описали действие нейтронной бомбы на живой организм и показали секретный полигон, в котором легко угадывается гипертрофированный аналог Лос-Аламоса. Грустная ирония видится в том, что за какие-нибудь двенадцать-тринадцать лет эта повесть из фантастической превратилась в простой политический памфлет. Вполне, впрочем, злободневный.

Да и могло ли быть иначе, если речь шла о реальных коллизиях века? Идея, как принято говорить, носилась в воздухе, да и в бредовых планах по части очередного сверхоружия недостатка никогда не ощущалось.

Внимания заслуживает лишь быстрота, с какой все свершилось. Поразительный темп, когда на глазах одного поколения стали явью величественнейшие свершения разума и его же постыдные падения. Слишком уж тонкая эта судьбоносная линия, разделившая жизнь и смерть. Не успели ядерщики получить первый антипротон, как проскользнули идейки насчет бомбы из антивещества, способной разом взорвать уже всю Землю. До такого, к счастью, еще далеко, и вообще овчинка не стоит выделки, потому как суммарный запас мегатонн и без того достаточен для превращения нашей планеты в необитаемое небесное тело.

Уповать на то, что нейтронный детонатор не пробудит весь этот затаившийся яд, могли только люди, лишенные даже зачаточной способности предвидеть. Лишь роботы, решающие все жизненные вопросы над ящиком с песком, способны жонглировать иллюзиями насчет «оружия устрашения» или «локального тактического использования». Достаточно представить себе, в чьи руки могли попасть размещенные где-нибудь по берегам Рейна нейтронные боеголовки к ракетам «Лэнс», чтобы домыслить остальное.

Среди ста сорока генералов бундесвера только трое не служили в гитлеровском вермахте. Передача нового оружия в арсеналы НАТО означала допуск к «чистой» бомбе людей, в той или иной мере причастных к невиданной в истории индустрии смерти. Сами собой напрашиваются исторические аналоги.

Античеловечная идея обезлюженных, хотя и не тронутых разрушением, городов под стать преступной цели: уничтожить человека и завладеть его имуществом, будь то нехитрый скарб, средства производства, творения искусства или даже оружие. Впервые за много лет о таких вещах говорят совершенно открыто. Как о преимуществах новой бомбы над старой. От таких речей попахивает крематорием Освенцима. Что-то очень знакомое проскальзывает в вывернутой наизнанку логике. Газовые камеры тоже гримировались под душевые, что не мешало процветающей фирме «Топф и сыновья» ставить фабричные клейма на образцовых печах.

Доводы, с помощью которых милитаристы пытались оправдать создание нового ужасного оружия, неоригинальны. Во всяком случае за последние тридцать лет мы узнали слишком много о гонке вооружений, чтобы поверить, что еще одно «супероружие» даст кому-либо постоянное преимущество. Его появление приведет лишь к новой эскалации.

В докладе, посвященном 60-й годовщине Октябрьской революции, Генеральный секретарь ЦК КПСС, Председатель Президиума Верховного Совета СССР Леонид Ильич Брежнев сказал: «Сегодня мы предлагаем сделать радикальный шаг: договориться об одновременном прекращении всеми государствами производства ядерного оружия. Любого такого оружия — будь то атомные, водородные или нейтронные бомбы или снаряды. Одновременно ядерные державы могли бы взять обязательство приступить к постепенному сокращению уже накопленных его запасов, продвигаясь вперед вплоть до полной, «стопроцентной» их ликвидации. Энергия атома — только для мирных целей — с таким призывом обращается к правительствам и народам в год своего шестидесятилетия Советское государство». Другого пути у человечества не было и нет. Об этом свидетельствует короткая, в масштабах цивилизации, но поразительная по напряженности атомная эпопея.

Фантасты обычно не задаются целью во что бы то ни стало предвосхитить будущее. Они только очень чутко прислушиваются к биению пульса современного мира и еще стараются не забывать о прошлом.

 

Генрих Альтов

ЭТЮДЫ О ФАНТАЗИИ

ЧТО ТАКОЕ ФАНТАЗИЯ?

Увы, я не могу ответить на этот вопрос. Я не знаю, что такое фантазия. Этого никто не знает, хотя в формулировках недостатка нет. Скажем, в словаре Даля фантазия характеризуется как «изобретательная сила ума, творческая сила художника, самобытная сила созидания». А что такое «самобытная сила созидания»? Видимо, «самобытность» — когда много фантазии… Получается так: продукт маслянист, когда в нем много масла, а масла много в том случае, когда продукт маслянист.

Есть и другие определения. Психолог А. П. Нечаев писал в двадцатые годы (и это часто повторяют до сих пор), что воображение «обозначает состояние сознания, аналогичное восприятию, но не соответствующее действующим раздражителям». Беда, однако, в том, что за редчайшими исключениями невозможно установить, что соответствует действию раздражителя, а что не соответствует. Два человека смотрят на картину Пиросманишвили — и воспринимают ее по-разному. «Какое спокойствие и достоинство, — взволнованно думает один. — Они сидят за столом и не спешат, не суетятся… Вот так надо жить…» «Какой примитив, — с раздражением думает другой, — нелепые фигуры, безжизненные лица… Все должно быть иначе…» У кого из них больше фантазии, если оценивать по А. П. Нечаеву?

Мы судим о фантазии примерно так, как судили о природе теплоты в конце восемнадцатого века. Теплота — это когда в теле много теплорода. А что такое теплород? Это, знаете ли, такая невесомая, незримая, неосязаемая субстанция, которая является носителем тепла… Впрочем, рассуждения о теплороде не мешали объективно и точно измерять температуру. А вот «градусы фантазии» мы совершенно не умеем определять.

Существует знаменитый тест Роршаха. Возьмем лист бумаги и посадим на него чернильную кляксу. Перегнем листок пополам так, чтобы линия сгиба прошла через кляксу. Получится симметричное чернильное пятно с причудливыми очертаниями. Надо посмотреть и сказать — на что похоже это пятно. Чем оригинальнее сравнение — тем, считается, сильнее фантазия. К сожалению, в самой идее теста заложено неустранимое противоречие. Испытуемый не знает, чего от него хотят, и потому не «включает» фантазию. А если знает, ничего не стоит получить высокие показатели.

Однажды на курсах по изобретательству ко мне подошел слушатель и протянул бумажку с чернильной кляксой: «На что это похоже?» Я сделал вид, что внимательно рассматриваю бумажку, и сказал фразу, не имеющую никакого отношения к кляксе:

— Это белый медведь, идущий в полдень по раскаленным пескам Каракума. Он в тапочках, но они ему жмут.

— Почему белый медведь и в пустыне? — спросил ошарашенный слушатель. Почему белый медведь, ведь клякса темно-синяя!

— Белый медведь, — твердо повторил я. — Он потемнел от загара. В пустыне сильное солнце.

— А тапочки? — с отчаянием произнес слушатель. — Где вы увидели тапочки?!

Я наугад ткнул пальцем в кляксу:

— Здесь.

— Но тут две сходящиеся линии…

— Это две ноги в одной тапочке. Поэтому и жмет.

Слушатель долго разглядывал кляксу, потом вздохнул и сказал:

— У вас потрясающая фантазия… Я показывал эту кляксу нашим ребятам, они говорили банальные вещи: бабочка, дерево, куст…

«ПРЕКРАСНОЕ ПЛАМЯ ОСЕНИ»

Мы не знаем, что такое фантазия, но это не мешает использовать ее в творчестве. Огнем тоже пользовались, не имея понятия об окислении, плазме и т. д. Правда, огонь фантазии намного капризнее и таинственнее обычного огня…

«Свидетельских показаний» о том, как именно работает фантазия, чрезвычайно мало. К тому же, не все показания достоверны. Рассказывая о ходе творческого процесса, человек — вольно или невольно — вносит поправки, что-то выделяя и что-то, наоборот, оставляя в тени.

Одно из наиболее интересных «показаний» — воспоминания шведского изобретателя Платена о том, как появилась идея пресса для получения алмазов. Вот что рассказывает Платен:

«Был прекрасный осенний день. Я только что поступил в университет города Лунда. Проходя мимо факультета ботаники, я увидел, что одна из стен здания покрыта виргинским плющом. Его листья были замечательного красного цвета. Каждая осень сопровождается переходом от зеленого к красному, и прохожие останавливаются от внезапного восторга при виде прекрасной игры цвета. Я был одним из этих прохожих и не мог себе представить, что позднее это явление укажет мне путь к созданию установки, производящей алмазы…»

Какова же связь между восторженным восприятием красных листьев и созданием пресса?

Два года спустя знакомый ботаник так объяснил Платену происхождение красного цвета листьев:

«Листья осенью становятся красными не потому, что они умирают, а потому, что они не хотят умирать. Мертвый лист отличается от живого тем, что некоторые вещества в нем разрушились, и такое разрушение должно произойти рано или поздно, до смерти листа или после нее. Листья выбирают первую возможность. Они предпочитают, чтобы эти вещества разрушились при их жизни, а не после того, как они умрут. Такое разрушение молекул, сопровождающееся изменением цвета, начинается осенью в живых еще листьях, и пока длится этот процесс, листья продолжают жить. Как бы устремляясь навстречу смерти, листья получают больше двух недель жизни и дарят нам прекрасное пламя осени».

Сейчас нам не важно — так ли на самом деле. Важно другое — как это воспринял Платен. Он понял это так: допустим, есть десять молекул, они могут все разрушаться постепенно; но молекулы действуют иначе — две из них принимают на себя всю «дозу» разрушения, а остальные по-прежнему живут в полную силу.

Мысль ботаника запомнилась Платену. И когда в начале 1930 года физик Тэндберг в разговоре с Платеном выразил сомнение в том, что сталь сможет выдержать давление, необходимое для синтеза алмазов, Платена осенило: «Внезапно я понял, каким образом принцип, продлевающий жизнь листьев, может быть применен и в установке для изготовления алмазов…»

Действие равно противодействию: рабочие части пресса, давящие на сжимаемое вещество, должны на что-то опираться. Это давление воспринимает кольцевая станина пресса. На каждую частицу трубы действуют две силы: радиальная сжимающая и тангенциальная растягивающая. При этом наибольшие силы действуют на внутренние участки трубы. Платен решил заранее пойти навстречу разрушению металла. Он разделил станину на отдельные полосы, слои (кольцевые). Внутренние слои разрезал («умертвил»), они стали воспринимать только сжимающие усилия. А наружные слои стали воспринимать только растягивающие усилия. Внутренние слои сделали из металла, хорошо работающего на сжатие, а наружные — из металла, хорошо работающего на растяжение: металлические секторы обмотали рояльными струнами…

Итак, цепочка: прекрасное пламя осени — принцип «пусть часть погибнет во имя целого» — применение этого принципа для решения изобретательской задачи. Когда я впервые прочитал эту историю, два последних звена цепочки не произвели на меня никакого впечатления. Принцип «пусть часть погибнет во имя целого» хорошо известен в современной теории решения изобретательских задач. К использованию этого принципа теперь ведут точные правила и формулы. Но прекрасное пламя осени… Я живу в Баку, у нас нет этого пламени. Зеленые листья сохраняются до ноября — декабря, блекнут, чуть-чуть желтеют и постепенно опадают. Настоящее пламя осени я впервые увидел в Подмосковье и в Ленинграде, и впечатление было очень сильное. Читая историю Платена, я вспомнил об этом, и несколько дней перед глазами у меня стояли огненные деревья…

А потом я подумал, что при переносе в технику сохранился принцип, но потерялась красота. И сразу возникла идея: перенесем «прекрасное пламя осени» не в технику, а в литературу, в фантастику. Предположим, создан способ увеличения длительности жизни: человеческий организм ведет себя подобно листу. Человек не чувствует наступления старости, собственно, старость исчезает: часть молекул гибнет, принимая на себя удары времени, но организм в целом остается молодым… И только цвет кожи меняется — появляется «прекрасное пламя осени». Как бронзовый загар, но ярче и неизмеримо богаче оттенками.

Для литературы не имеет значения научная достоверность. Важны только две вещи: видимая, кажущаяся достоверность (она тут на все 100 %) и яркость образа, которая в данном случае достигает потрясающей силы. Человек с годами «пламенеет», становится красивее, прекраснее… Одна эта идея способна украсить фантастический роман, создавая неповторимый колорит фантастического мира, прекрасного и в чем-то трагического…

Я несколько раз пробовал ввести эту идею в повесть «Третье тысячелетие» и каждый раз отступал, чувствуя, что получается не так, как надо. Идея еще не перебродила…

Впрочем, это уже не относится к делу. Важно другое: на этом примере хорошо видно, насколько близки и взаимосвязаны фантазия техническая и фантазия художественная. А если так, то техническую фантазию можно развивать, используя фантазию художественную, воплощенную в научно-фантастических произведениях. Когда я высказал эту мысль в одной из статей, к величайшему моему удивлению, она отнюдь не показалась очевидной. «Прочитаешь такое, — писал литературовед Ал. Горловский, — и сразу хочется всех членов секции научной фантастики зачислить пожизненными членами Госкомитета по изобретательству или в Президиум АН СССР». Лет сорок назад, когда появились первые работы по технической эстетике, их встретили с тем же весельем непонимания: что же, зачислить художников и скульпторов в научно-исследовательские институты?! Ныне Государственный комитет по делам изобретений и открытий выдает авторские свидетельства на образцы художественного оформления машин, механизмов, приборов. Участие художника-дизайнера в принятии инженерных решений стало повседневной практикой. Но ведь не зря была высказана ироничная и горькая мысль: единственный урок истории заключается в том, что мы не извлекаем уроков из истории…

Научная фантастика — прежде всего художественная литература. Поэтому главной функцией НФЛ, бесспорно, является человековедение. Однако НФЛ многогранна. Одна из таких граней — способность ее развивать воображение. А развитое воображение необходимо для творчества в науке, технике, искусстве, словом, в любой области человеческой деятельности. Использование НФЛ для «утилитарной» цели развития воображения отнюдь не мешает хорошим фантастическим произведениям оставаться художественной литературой.

СНЕГОПАД ВНУТРИ ЧЕЛОВЕКА

Я пришел к изобретательству от фантастики, случай нередкий. Прочитал в пятом классе «Двадцать тысяч лье под водой» и начал придумывать скафандры. В десятом классе получил первое авторское свидетельство на водолазный дыхательный аппарат. Особого значения этому событию я не придавал: меня манил океан, глубоководные спуски. Скафандры были только средством. Год за годом я возился со скафандрами, росло число авторских свидетельств, но кислородные дыхательные аппараты в принципе годились только для глубин до двадцати метров. И однажды я взбунтовался. Капитан Немо ходил по дну океана, вот какой нужен скафандр!..

Разумеется, мое начальство не выразило восторга. Представьте себе, что авиационный инженер приходит в свое конструкторское бюро и со ссылкой на фантастический роман заявляет: надоело возиться с самолетами, давайте проектировать межгалактический корабль для перелетов дальностью в миллионы световых лет… Примерно такая ситуация была и в моем случае: никто еще серьезно не задумывался о спуске на глубины в 5-10 километров.

Человек на дне океана… Достаточно было поставить такую задачу, как на меня обрушился град вопросов: выдержит ли человек давление в 500-1000 атмосфер? Сможет ли он дышать в таких условиях? Сохранит ли способность видеть, слышать, двигаться? Как перенесет возвращение к нормальным условиям?.. Воображение перенесло меня в мир, не менее фантастический, чем мир планеты Месклин из повести Хола Клемента «Экспедиция «Тяготение». Или мир, спрятанный под облачным покровом Венеры. Обыкновенный воздух под давлением, царящим на дне океана, приобретает плотность жидкости; как дышать таким воздухом, если дыхательные мышцы не осилят и десятка вдохов?..

Наверное, можно написать книгу о приключениях мысли при решении подобных задач. Я ограничусь здесь только одним эпизодом. Он позволяет увидеть причудливое переплетение фантазии и трезвого расчета, образующее единую ткань творчества.

Кислород, азот, гелий, водород на любых глубинах остаются газами. У них очень низкие критические температуры: без охлаждения их никаким давлением не переведешь в жидкость. Однако, вдохнув, скажем, смесь кислорода и гелия, человек выдохнет ту же смесь, но с примесью нескольких процентов углекислого газа. А углекислый газ очень легко сжижается и даже превращается в твердую углекислоту. Критическое давление составляет для углекислого газа всего 73 атмосферы. С таким давлением океанавт встретится на глубине 730 метров.

До этого я думал только об обеспечении человека кислородом; все, связанное с углекислым газом, не попадало в поле зрения. Потом переключился на обдумывание «выдыхательной части» — и сразу замаячил новый факт: при погружении углекислый газ перестанет быть газом.

Я был ошеломлен. Поскольку океанавт находится под давлением, равным наружному, конденсация углекислого газа должна произойти прямо в организме! Возник углекислый газ в тканях тела, в кровеносных сосудах — и тут же выпал в виде снега… Снегопад внутри человека!..

Этот снегопад я увидел с предельной отчетливостью. Как в мультфильме: фигура человека, а внутри фигуры, медленно кружась, падают хлопья снега…

Было жаркое бакинское лето. После работы, втискиваясь в раскаленный, переполненный трамвай, я закрывал глаза и видел: человек в маске идет по дну в прохладной и чистой воде океана… Бывали и другие видения. Затонул батискаф, никто не может его спасти — и вот я ныряю, нахожу лодку, закрепляю тросы… Глупые фантазии? Конечно. Но ведь они стимулировали работу над «Задачей из XXI века». Какие могли быть другие стимулы, если задача была явно преждевременной?..

При быстром всплытии газы, растворенные в крови, выделяются в виде пузырьков. Это давно известная кессонная болезнь. А тут — «снежная болезнь», в чем-то обратная кессонной: газы превращаются в снежинки… Получается, что сама природа поставила предел глубоководным погружениям человека.

Я вспомнил, однако, что критическая температура для углекислого газа равна 31+-, Вспомнил и вздохнул с облегчением: в теле человека температура с гарантией выше 31+-, Углекислый газ внутри организма останется газом, дыхательные процессы не нарушатся! Природа очень разумно подобрала константы для веществ, из которых устроен мир…

Удивительное дело: когда выяснилось, что океанавту не угрожает «снежная болезнь», мне было жаль расставаться со «снегопадом внутри человека». Я продолжал разглядывать эту странную и по-своему поэтичную картину. Без всякого энтузиазма я перешел к идее «снегопада вне человека», в этом не было ничего необычного. Но именно здесь блеснула находка: выдохнутая газовая смесь, содержащая несколько процентов углекислого газа, охладится (кругом сколько угодно холодной воды), и углекислый газ станет жидким или твердым. Смесь очистится, ее можно будет снова использовать для дыхания!

Дыхательный прибор, грубо говоря, состоит из двух подсистем: одна дает кислород, другая убирает углекислый газ. В аквалангах только первая подсистема, выдыхаемый воздух выбрасывается (а в нем всего 4 % углекислоты), поэтому акваланги рассчитаны на непродолжительную работу — быстро расходуется запас воздуха. В дыхательных приборах с замкнутым циклом выдыхаемый воздух идет в поглотительный патрон, наполненный зернами щелочи или тетраокиси калия. Патроны тяжелы, громоздки, дороги, их работу трудно контролировать. А тут полная возможность удалять углекислый газ «без ничего», только за счет давления! Еще одна трогательная забота природы об изобретателях глубоководных скафандров…

Воздух в скафандре надо очищать не только от углекислого, но и от небольших количеств других газов. Я стал листать справочники, уточняя критические температуры и критические давления этих газов, и вдруг напоролся (иначе не скажешь) на потрясающую идею: у каждого газа есть критическая глубина, выше которой он — газ, а ниже — жидкость. Выше критической глубины пузырек газа остается пузырьком и всплывает, а ниже — превращается в жидкость и тонет. Например, у инертного газа ксенона критическое давление всего 50 атмосфер. Значит, ниже 500 метров ксенон станет жидкостью. Плотность у этой жидкости больше, чем у воды: жидкий ксенон должен тонуть…

На суше ксенон выделяется из трещин земной коры. Почему бы этим трещинам не быть на дне океана?.. Тут фантазия заработала на полную мощность: я представил себе ксеноновые подводные озера на океанском дне. И не обязательно ксеноновые. Есть сорта нефти, имеющие плотность чуть ниже единицы. Такая нефть может плавать на поверхности воды. Но на глубине в несколько сот метров давление воды уплотнит нефть (сама вода, напоминаю, почти несжимаема) — и нефть утонет…

Я сидел в опустевшем читальном зале, передо мной лежал скучнейший справочник по свойствам жидкостей и газов (цифры, одни только цифры), я лихорадочно подсчитывал сжимаемость очередного газа и открывал подводные озера, которые могли быть где-нибудь на дне Тихого океана… Читальный зал кончал работу в десять вечера, я успел найти полдюжины веществ, теоретически вполне пригодных для образования подводных озер. Потом я шел по ночным улицам города, и воображение рисовало удивительные картины: вот какая-то сила (землетрясение?) подтолкнула подводное озеро ксенона, лежащее около критической глубины. Озеро начало всплывать и, достигнув критической глубины, превратилось в газ, поток бурлящего газа, стремительно рвущийся вверх…

(Позже я встретил в «Золотой розе» Паустовского такую фразу: «Насколько более величественной стала бы любимая поэтами тема звездного неба, если бы они хорошо знали астрономию». Я не раз вспоминал эту мысль, читая «подводную» фантастику. Ах, если бы авторы знали мир, о котором они пишут…)

Идеи, возникшие при работе над фантастическим глубоководным скафандром, я использовал несколько лет спустя, проектируя первый в мире, но вполне реальный газотеплозащитный скафандр для горноспасателей, спускающихся в охваченные огнем шахты.

«СВЕРХКАТИМОСТЬ»

Шла скучная лекция. Что-то такое об электронных оболочках атомов. Передо мной лежала раскрытая книга — курс общей химии Глинки (кажется, этот учебник в ходу и поныне). Там был изображен атом водорода — ядро, а вокруг него бегает электрон:

Я дорисовал глаза и рот. Вот так:

Атом ухмылялся, его не одолевала скука и не смущала мысль об угрожающе близком экзамене. На той же странице были еще два рисунка — атомы лития и бериллия:

Они походили на колеса, эти атомы с двойными электронными оболочками. Пришлось немного подрисовать, и сходство получилось полное:

Такие прекрасные колеса просто жаль было не использовать. Я провел несколько линий, появился гоночный автомобиль:

Почему бы, подумал я, и в самом деле не использовать атомы вместо колес? Очень естественная мысль для человека, воспитанного на фантастике… Вот на столе лежит книга, ее переплет состоит из множества атомов. Книга опирается на стол этими атомами. Как будто лежит на колесиках. И самое главное: колесики вращаются. Они все время крутятся с бешеной скоростью. Книга неподвижна, потому что атомы-колесики крутятся в разные стороны. Если бы атомы согласованно крутились в одну сторону, книга рванулась бы с места — да еще как!..

Несколько дней я размышлял: а не взяться ли за эту проблему? У меня не было ни малейших сомнений в том, что удастся закрутить атомы в одну сторону. Промелькнула, правда, мысль о затруднениях, возникающих, если рассматривать проблему с позиций квантовой физики: все электроны должны быть в одном и том же квантовом состоянии, а на этот счет существует запрет Паули. Но подобные мелочи меня не смущали. Загвоздка была в другом. Придется отдать этой проблеме всю жизнь, а выбор уже давно сделан, я занимаюсь подводной техникой…

Вот тут я впервые ощутил ужасающую несправедливость того, что человеку дана только одна жизнь. Какой бы путь я ни выбрал, это будет один путь, одна дорога, и никуда не денешься от мысли, что там, на другой дороге, осталось нечто несбывшееся. Человеку нужны десятки жизней, чтобы быть художником, изобретателем, музыкантом, летчиком, революционером, физиком, артистом, моряком, хирургом, писателем, биологом, путешественником, воином, педагогом, историком, строителем… и везде на уровне Мастера или Гроссмейстера, а это требует всей жизни.

У таких идей огромная сила притяжения. Все чаще и чаще я возвращался к мысли о том, что человек должен все знать и все уметь. Эта проблема не решалась механическим наращиванием освоенных специальностей. Нужна была Общая Теория Сильного Мышления: как решать трудные задачи, как развивать талантливое, творческое мышление. Для начала — как решать творческие задачи в технике. Это уже была конкретная и реальная (по моим представлениям) постановка проблемы. Я оставил скафандры и занялся теорией творчества.

Об атомах-колесиках я вспомнил через много лет, когда появились первые сообщения о лазерах. В квантовых генераторах электронные оболочки атомов «раздуваются», а потом «опадают» — и происходит это согласованно, по команде. Ну а если согласовать вращение атомов?..

Встречи со старыми идеями похожи на встречи со старым знакомым: несколько лет не видишь человека, забываешь даже о его существовании, а потом неожиданно сталкиваешься с ним, прежним и в чем-то изменившимся. С годами число таких знакомых идей увеличивается, они живут сами по себе и вместе с тем где-то рядом, в твоем мире.

Однажды мне пришлось копаться в литературе по сверхпроводимости. И снова замаячила идея атомов-колесиков: «сверхкатимость» по своей природе должна быть таким же макроскопическим квантовым эффектом, как сверхпроводимость и сверхтекучесть.

А еще через несколько лет я натолкнулся на стихи Сергея Орлова:

Кто был изобретатель колеса? Никто не знает. Все о нем забыли…

Меня поразили эти стихи, Орлов писал о том, что в природе существовали только рычаги — ноги, крылья, — а колеса не было. Чтобы изобрести колесо, понадобился взрыв фантазии:

Крыло в природе человек узрел И рычагов машинных сочлененье, А он на мир не так, как все, смотрел, Без подражанья мыслил, без сравненья. Он смастерил однажды колесо, И покатилось колесо по свету, А он свернул, должно быть, сигарету И сам себе воскликнул: «Хорошо!»

Если бы фантазии потребовалась эмблема, такой эмблемой могло бы послужить колесо. Созданное силой воображения в незапамятные времена, колесо и по сей день является основой нашей цивилизации. Меняются материалы и двигатели, осваиваются новые виды энергии, возникают все более сложные машины, неизменным остается только использование колеса.

Я перечитывал стихи Сергея Орлова и думал, что воображение, создавшее колесо, не остановится на этом и неизбежно придет к отрицанию колеса и замене колес «сверхкатимостью». Найдется человек, который осилит эту проблему, и в один прекрасный день какая-нибудь тяжелая свинцовая плита, спрятанная в недрах экспериментальной установки, впервые сдвинется на микрон или сразу на два миллиметра, и это будет началом новой эры. А «закрыватель колеса» закурит сигарету и сам себе скажет: «Хорошо».

«ФАНТАЗИИ НЕ НАДО…»

Преодолев черную бездну космоса, «Поиск», звездолет дальней разведки, вынырнул у планеты Искра, одной из двенадцати планет желтой звезды Гамма Геркулеса. В отличие от других одиннадцати планет, огромных газовых гигантов, Искра была похожа на Землю. Такая же атмосфера, такие же горы, леса, моря, растения, животные. Необычными оказались только некоторые насекомые (космонавты назвали их «мухами») — они летали со сверхзвуковой скоростью. Воздух был наполнен живыми пулями… С «Поиска» высадили двух космонавтов (разумеется, в скафандрах высшей защиты) — и едва удалось их спасти. Даже закрытый вездеход был быстро выведен из строя «мухами». Возник вопрос: что делать в этой ситуации?..

Такую задачу предложила своим читателям «Пионерская правда». Редакция получила 1103 письма, в основном от учащихся 5-8-х классов. Вот спектр идей, содержащихся в этих письмах:

1. Уничтожить «мух» 451(41 %) 2. Спрятаться от «мух» под землей, в лесу, под водой и т. д. 187(17 %) 3. Снабдить вездеход броневой защитой 161(14,5 %) 4. Использовать для ограждения от «мух» силовое поле 48(4,4 %) 5. Отказаться от разведки планеты из-за опасности 56(5,1 %) 6. Отказаться от разведки планеты из-за недопустимости вторжения в чужой мир 36(3,3 %) 7. Выяснить, почему «мухи» не сталкиваются с животными и растениями; использовать этот способ для защиты космонавтов 62(5,6 %) 8. Прочие идеи 102(9,1 %)

Задача входила в «Изобретательское многоборье» и называлась «Проверьте свою фантазию». Одно из писем начиналось так: «Фантазии не надо. Обработать «мух» хлорофосом и дустом…» Необходимо подчеркнуть, что газета много и регулярно пишет об охране природы, о проблемах экологии и т. д. Об опасности бездумного вмешательства в равновесие природы говорят сейчас все — школа, кино, телевидение, журналы. Но мысль эта, видимо, воспринимается в частной форме («Если уничтожить волков, начнутся эпидемии среди оленей») и применительно к нашей планете. И вот — 41 % «уничтожительных» ответов! Фактически даже больше: «мухи» будут разбиваться о броню вездехода, о силовое поле. Да, есть над чем задуматься…

Ответы на задачу можно разделить на три слоя. Первые пять ответов составляют самый низший слой: есть враг, надо его уничтожить или спрятаться от него, чтобы не быть уничтоженным. Один «ход» мысли, очевидный по условиям задачи. Природа опасности не исследована. «Мухи» рассматриваются изолированно от биосферы планеты. Второй слой — ответ № 6. Тут уже два «хода» мысли. Первый «ход»: есть система («мухи»), входящая в обширную надсистему («чужой мир»), и любое изменение системы может пагубно отразиться на надсистеме. Второй «ход»: нельзя нарушать экологическое равновесие на чужой планете, исследование невозможно, придется вернуться. В письмах, содержащих ответ № 7 и составляющих третий слой, сделан еще один ход: растения и животные в «чужом мире» каким-то образом сосуществуют с «мухами»; надо выяснить, как им это удается, — и использовать этот способ.

Вот, как выглядит распределение писем по слоям:

Поступило писем. всего. в том числе. Ссылки в письмах на научно-фантастическую литературу.

3-5-й классы. 6-й класс. 7-й класс. 8-10-й классы

1-й слой

451 87 126 107 131 18(4 %)

2-й слой

36 2 7 15 12 12(33 %)

3-й слой

62 11 39 12 16(26 %)

В конце XIX века французский психолог Рибо установил, что фантазия достигает максимума где-то в районе 15 лет, а потом идет на спад. На первый взгляд таблица подтверждает вывод Рибо: наиболее благоприятное соотношение сильных (2-й и 3-й слой) и слабых (1-й слой) ответов — у семиклассников.

Решение задач, конечно, зависит не только от фантазии. На фантазию приходится лишь часть работы, и оценка этой части поневоле субъективна. Но за пять лет через «Пионерскую правду» прошло около 100 задач и упражнений. Я просмотрел десятки тысяч писем, и у меня сложилось впечатление, что «пик фантазии» в наше время сместился к 11–12 годам. Это впечатление укрепляется при анализе ответов на задачи, решение которых требует почти чистой фантазии. Например: «Художник задумал нарисовать время. Подскажите, как это сделать?» Или: «Придумайте фантастическое природное явление». При публикации таких задач в «Пионерской правде» резко уменьшилось число писем от старшеклассников; в основном отвечали учащиеся 5-6-х классов. «Пик фантазии» отчетливо смещался к 5-му классу, а в некоторых случаях — даже к 4-му. Фантазия современного ребенка быстрее достигает максимума и быстрее идет на спад. Да и сам «пик фантазии», по-видимому, становится ниже. Стресс точных знаний, испытываемый школьником, приглушает фантазию. В письмах нередко чувствуется нежелание «фантазировать». Задача о «мухах» была дана с пояснением, что ситуация взята из фантастического рассказа, но многие письма первого слоя начинались с упрека: так не может быть, в плотной атмосфере «мухи» не смогут развивать сверхзвуковую скорость. Сказку убивали обстоятельно, со ссылками на физику и примерами из авиации и космонавтики. А потом следовало беглое указание, как уничтожить «мух».

Без точных представлений о природе фантазии рискованно делать категорические выводы. Единственное, что можно констатировать без колебаний: противодействует спаду фантазии только обильное чтение научной фантастики. В ответах на задачу о «мухах» много ссылок на рассказ Р. Брэдбери «И грянул гром», упоминаются рассказы «Спасти декабра!» С. Гансовского и «Срубить дерево» Р. Янга. В таких письмах не только хорошие ответы. Радует, а порой просто поражает, готовность принять «игру» и умение войти в нее. В одном из писем такая деталь. Место высадки оградили силовым полем. «Мухи» разбивались о «стенки» этого ограждения. И вот «стенки» быстро почернели, не стало видно солнца… Может быть, чуть-чуть наивно, но, право же, иным писателям-фантастам не мешало бы с такой же ясностью представлять то, о чем они пишут.

О СМЫСЛЕ ЖИЗНИ

Представьте себе встречу двух футбольных команд, состоящих из спортсменов-невидимок. По полю «сам по себе» носится мяч — перемещается по замысловатой траектории, резко меняя направление движения. Иногда мяч взмывает высоко вверх, иногда замирает на месте, и невозможно сказать, что будет с ним в следующий миг. Представьте далее, что все это видит человек, ничего не знающий о футболе. Интересно было бы послушать его предположения и догадки, не правда ли?.. Суждения о фантазии во многом похожи на высказывания по поводу мяча, который бегает «сам по себе». Поэтому мы оставим на некоторое время фантазию и посмотрим, как вообще работает мышление при решении творческих задач.

Предположим, задача связана с необходимостью увеличить скорость корабля. Получив задачу, человек представляет себе то, что есть, — обычный корабль. Вспыхивает мысленный экран, и на нем возникает изображение корабля. Потом в этом изображении что-то меняется: корабль удлиняется и укорачивается, появляются и исчезают подводные крылья, корпус сдваивается — корабль становится катамараном… У слабого изобретателя этот фильм бывает коротким и не очень оригинальным. Повторяются одни и те же кадры, лента часто рвется, сеанс быстро кончается. У сильного изобретателя мысленное кино идет круглосуточно, день за днем; сначала проходят тривиальные кадры, а потом все чаще и чаще начинают появляться изображения необычные, дикие. Вот на экране корабль… в тигровой шкуре. Странное зрелище, не правда ли? Но мех (разумеется, искусственный) уменьшает сопротивление движению: меньше возникает вихрей, можно повысить скорость. Недавно такое изобретение и в самом деле было зарегистрировано. (Кстати, у этой идеи богатые художественные возможности. Представьте себе порт с такими кораблями. Подтянутые лайнеры в искусственных гепардовых мехах, тяжелый танкер в медвежьей шкуре, стройные яхты в горностаевых шубках… Казалось бы, идея чисто техническая. Но как легко она превращается в краску на палитре художника! Машины, обтянутые мехом, приобретают живые черты. Всего лишь деталь будущего мира, но как не хватает фантастике таких деталей…)

Ну а если задачу решает не просто сильный изобретатель, а человек исключительно талантливый, даже гениальный? Как работает его мысленное кино в тот звездный час, когда рождается великая идея?

Мир устроен системно. В системах целое зависит от частей, а части зависят от целого. Автомобиль, дома, заводы, электрическое освещение — это системы. И человеческий организм — система. Книги, деревья, звезды — тоже системы. Две важнейшие особенности систем: системы развиваются — это раз, системы образуют иерархию — это два. Мышление должно отражать эту фундаментальную особенность мира. Хорошо мыслить — значит прежде всего хорошо представлять системную картину мира. Поэтому над обычным экраном, на котором идет мысленный фильм о системе (в нашем примере системой является корабль), должен быть экран для фильма о надсистеме (флот). А под обычным экраном — еще один экран для фильма о подсистемах (части корабля). Более того, на каждом этаже должны быть три экрана — для прошлого, настоящего и будущего, — чтобы все видеть в развитии. Это как минимум. Гений просматривает задачу на несколько этажей вверх от системы и на несколько этажей вниз. Видит не только прошлое, но и далекое прошлое. Не только будущее, но и далекое будущее. Сложный кинозал, не так ли?..

Но еще сложнее фильмы, которые идут в этом зале. Меняются размеры объекта, меняются темпы действия. Одновременно с фильмом идет антифильм: видна, например, не только система, но и антисистема. Корабль и антикорабль. Корабль плавает, это его главное свойство. Антикорабль тонет. А почему он тонет? Перегружен? Чем? Чем надо перегрузить корабль, чтобы он умел развивать большую скорость? Двигателями. И вот возникает новая идея: давайте построим корабль, до предела заполненный двигателями. Такой корабль не будет держаться на воде… пока он неподвижен. Что ж, неподвижный самолет тоже не держится в воздухе. Обычные корабли подобны тихоходным, громоздким дирижаблям. Корпус корабля всегда рассчитывают так, чтобы он держался на плаву. И расплачиваются за это колоссальным сопротивлением громоздкого корпуса. Даже поднятый над водой корабль испытывает огромное сопротивление воздуха. Антикораблю, способному держаться на воде только в движении, не нужен большой корпус.

Впрочем, антикорабль — это только так, для примера. Важно другое: структура гениального мышления. Много экранов, фильм и антифильм. И другие трюки. Скажем, постоянное изменение размеров объекта на каждом экране. Как выглядит корабль, если его размеры превышают размеры океана? Как выглядит корабль, если он меньше молекулы?..

Теперь, когда хотя бы в первом приближении вырисовывается кинотеатр гениального мышления, можно вернуться к вопросу о фантазии. Какую роль она играет во всем этом?

Во-первых, фантазия разворачивает экраны, помогает перейти от одного экрана к системе многих экранов. Во-вторых, фантазия осуществляет все кинотрюки (сочетание фильма и антифильма, изменение размеров изображения, смена темпов действия и т. д.). В-третьих, фантазия улавливает в этом сложном кинодействии необычное, даже если оно лишь промелькнуло на одном из экранов. Фантазия помогает вцепиться в Необычное, не поддаваться страху (а Необычное всегда страшит), не отбросить Необычное из-за того, что оно необычно…

Этому можно учить. Хотя и очень нелегко. Современную теорию решения изобретательских задач осваивают, в общем, все инженеры. Это точная наука как физика или химия. Законы, правила, формулы, таблицы… А вот курс РТВ (развитие творческого воображения), входящий в учебные программы многих школ и институтов технического творчества, идет тяжело. Воображение надо развивать еще в раннем детстве, инженеры — даже молодые — уже староваты для таких занятий. И все-таки игра стоит свеч: занятия трудны, но в конце концов курс РТВ делает мышление ярче, талантливее.

На таких занятиях я часто задавал вопрос: «В чем смысл жизни?» Разумеется, я не ожидал исчерпывающего ответа по существу. Меня интересовал подход к решению задачи: сколько экранов зажглось и что на них показывают. До обучения и на начальных этапах обучения вопрос оказался непосильно тяжелым. Воспринимали вопрос узко: в чем смысл жизни человека? Загорался один экран, и начинался вялый перебор вариантов. Часто пытались отделываться шутками типичный для второй половины XX века прием ухода от серьезных размышлений.

Однажды я задал этот вопрос хорошо подготовленной группе. Отличная была группа: молодые инженеры и студенты, занимавшиеся уже два года и прошедшие не только курс РТВ, но и факультативный курс научно-фантастической литературы. Вопрос я задал в коварной форме, нарочно сужая задачу: «В чем смысл жизни человека?» Но с этой группой такие номера не проходили. Мне снисходительно объяснили, что к подобным проблемам нужен системный подход. Кто-то нарисовал на доске девять экранов:

Прошлое

Настоящее

Будущее

Общество

Человек

Клетка

«Экранную» схему мы проходили, группа обязана была так сработать. А вот как пойдет дело дальше?.. В аудитории был галдеж. У доски толпились пять или шесть человек. В схему внесли поправки, и я увидел нечто новое:

— Это же очевидно, — пояснили мне. — Общество возникло сравнительно недавно. Человек («И вообще организмы», — вставил кто-то) древнее общества. А клетки древнее организмов.

— Ну и что? — спросил я, уже догадываясь, в чем тут дело. Стоявшие у доски снова загалдели, удивляясь моей недогадливости, и нарисовали для ясности стрелку:

— Развитие идет на уровне клеток. Потом переходит на уровень организма, а клетки перестают развиваться. Далее идет развитие организмов — от амебы до человека. А потом новый переход — на уровень общества. Развивается общество, биологическая эволюция человека прекращается или во всяком случае сильно замедляется.

— Ну и что? — вновь спросил я.

На этот раз вопрос был задан впустую. Почти вся группа собралась у доски. Схему подправляли и развивали. Появился этаж ниже «клеточного» — развитие органического вещества. И еще ниже — развитие неорганического вещества. Сверху пристроили этаж «Надобщество». И вот тут кто-то решительно стер схему и нарисовал ее заново: чем выше этаж, тем короче путь к следующему этажу. Эволюция неорганической материи началась тринадцать миллиардов лет назад. Органическое вещество появилось на Земле два миллиарда лет назад. Одиннадцать миллиардов лет на переход с этажа на этаж. А потом — за каких-нибудь два миллиарда лет — сразу два этажа (организмы и общество). Скорость эволюции по вертикали нарастает. И если эта закономерность, действовавшая тринадцать миллиардов лет, сохранится хотя бы еще миллион лет, возникнут пять или десять новых этажей…

Ребята действовали отлично, и я подумал, что сегодня и впрямь можно докопаться до смысла жизни. Но в это время кто-то резко изменил задачу:

— Послушайте, а ведь теперь понятно, почему нет сигналов от внеземных цивилизаций. Мы думаем, что развитие цивилизации идет на этаже «Общество», а сверхцивилизации должны быть на несколько этажей выше. Мы относимся к ним так, как амеба относится к нам. А разве наша цивилизация посылает сигналы амебам? Зачем ей это?..

Наступило молчание.

Вот и Необычное, подумал я. Нечто такое, чего не заметили профессионалы и по сей день спорящие о том, на какой волне ловить радиосигналы далеких сверхцивилизаций и как расшифровывать эти сигналы. Сколько средств и усилий потрачено на поиски этих сигналов!.. А на очереди проекты еще более сложные. Отсутствие фантазии обходится дорого, очень дорого…

Возможен ли контакт по вертикали — через несколько этажей? А может быть, наша цивилизация уже входит в состав какой-то сверхцивилизации, как клетка входит, не подозревая об этом, в состав организма?

Молчали долго. И только перед самым звонком кто-то вполголоса сказал:

— Нет, если мы понимаем ситуацию, мы уже не амебы. Что ж, все верно: если мы умеем мыслить, мы всесильны. Если умеем мыслить.