Понятие и термин «атом» возникли в древности. Вопрос о том, какую роль играло это понятие в мышлении Демокрита (460-371 до н. э.) и его последователей, является скорее философским, чем естественнонаучным вопросом. Во всяком случае они не связывали это понятие с наблюдениями. Нельзя также, несмотря на знаменитые имена, дать благоприятную оценку литературе, посвященной атомистике, выходившей в течение нескольких столетий. Исключением является вскоре забытая статья *) Даниила Бернулли (1700-1782) о кинетической теории газов (1738). То, что появилось в этом роде в первой половине XIX столетия, до известной степени оправдывает, по мнению Гельмгольца, нерасположение ко всем теориям, которое проявлял, подобно многим своим современникам, например, заслуженный экспериментатор Г. Магнус (1802-1870).
Современное понятие атома и молекулы создала химия; как - это относится к истории химии. Мы фиксируем здесь три ее достижения, которые физика около 1850 г. могла просто перенять. В работах главным образом Джона Дальтона (1766-1844) было установлено, что атомы одного и того же химического элемента имеют совершенно идентичные свойства, а также дано определение атомного веса элемента как отношения массы одного атома этого элемента к массе
') В его великом произведении «Гидродинамика».
одного атома водорода. Амедео Авогадро (1776-1856) в 1811 г. дал правило, названное его именем, согласно которому идеальные газы при одинаковых температуре и давлении содержат в единице объема одинаковое количество молекул.
Если отвлечься от излагаемой в главе 12 идеи Л. А. Зеебера о структурах кристаллов (1824 г.), то первой формой физической атомистики является кинетическая теория газов. Около 1850 г. уже была признана эквивалентность теплоты и энергии; в связи с этим и стали рассматривать теплоту как молекулярное движение. С другой стороны, опыты Жозефа Луи Гей-Люссака (1778-1850) в 1807 г., а также аналогичные измерения Дж. Джоуля в 1845 г. подтвердили независимость внутренней энергии идеальных газов от их объемов, что доказывало, кроме того, ничтожность сил, действующих между их молекулами. В 1856 г. Август Карл Кредитив 1857 г. Рудольф Клаузиус (1822-1888) были вынуждены приписать молекулам газов прямолинейные движения до момента, когда они сталкиваются между собой или со стенкой сосуда. Закон сохранения импульса требовал, чтобы давление газа было пропорционально средней кинетической энергии молекул с некоторым универсальным коэффициентом пропорциональности. С другой стороны, из закона Бойля-Мариотта - Гей-Люссака вытекало, что эта энергия пропорциональна абсолютной температуре, - фундаментальное положение, которое не ограничивается газами и, согласно современной квантовой теории, имеет большие исключения только при очень низких температурах. Одновременно было дано верное вычисление скорости движения молекул. Для молекул водорода при температуре в 300° К она получилась равной 1,9 • 105см/сек; эта величина была неожиданно высокой и, как вначале казалось, несовместимой с фактом медленной взаимной диффузии газов с их малой теплопроводностью; прямое измерение было произведено О. Штерном лишь в 1920 г. Но в 1858 г. Клаузиус показал, что в этих явлениях имели дело не столько со скоростью молекул,
сколько со средними длинами свободного пробега между двумя столкновениями. Затем в 1860 г. Джемс Клерк Максвелл (1831-1879) на основе собственных измерений внутреннего трения дал числовые значения этих средних путей, объяснившие медленность диффузии газов. В той же самой работе он избавился от произвольной гипотезы о том, что все молекулы обладают одинаковой скоростью, и сформулировал названный по его имени закон распределения скоростей. Доказательство этого закона было усовершенствовано впоследствии им самим и главным образом Людвигом Больц-маном (1844-1906) в 1868 г. Сначала закон был недоступен экспериментальному исследованию, и лишь в 1932 г. О. Штерн преодолел все возникшие здесь трудности. Вскоре этот закон стал исходным пунктом для многих обобщений, следствия которых, как мы это увидим дальше, подтверждались измерениями. Основная заслуга, разумеется, принадлежит Максвеллу.
В это же время были получены некоторые ценные результаты относительно размеров и числа молекул газов. Рассматривая молекулы простейших газов как шары, Иосиф Лошмидт (1821-1895) в 1865 г. вычислил их диаметр из средних длин свободного пробега и объема моля газа в жидком состоянии. Он нашел для радиусов молекул правильную величину порядка 10-8см, а для числа молекул в моле 1023. Это число, которое теперь определено гораздо лучше, назвали числом Лошмидта.
Допущение шарообразности и твердости молекул являлось основой всей теории газов и, в частности, доказательства максвелловского распределения скоростей. Постепенно теория стала заниматься молекулами с внутренними степенями свободы, вращением и колебаниями атомов друг относительно друга. Она установила для этих явлений обобщенный закон распределения и вывела из него в качестве важнейшего следствия закон равномерного распределения: средняя кинетическая энергия любой степени свободы пропорциональна абсолютной температуре. Коэффициент пропорциональ-
ности - универсальная константа. Вычисление удельной теплоты многоатомных газов на основе этого закона дало результаты, полностью согласные с опытом. В применении к твердому телу закон, найденный в 1820 г. Пьером Луи Дюлонгом (1785-1838) и Алексисом Терез Пти (1791-1820), гласит, что теплоемкость грамм-атома простого тела имеет одно общее для всех тел значение: 6 кал/град. Вместе с этим пришел ответ на вопрос, как распределяются в пространстве молекулы газа под влиянием внешних сил, например силы тяжести. Все это были фундаментальные знания, которые впоследствии оказали влияние на многие другие области.
Основные черты кинетической теории газов были, таким образом, даны. Ничто не изменилось в них, когда М. Кнудсен, используя успехи вакуумной техники, в 1909 г. изучил особые явления при разрежении газов настолько высоком, что не происходят столкновения между молекулами газа. До настоящего времени сохранили свое значение основные черты кинетической теории газов. Важные теоретические исследования Д. Энского (1911) и С. Чэпмена (1917) по термодиффузии и последовавшее в том же году экспериментальное открытие этого явления С. Чэпменом и Ф. В. Дутсоном (1917); открытие К. Клаузиусом и Л. Вальдманом в 1943 г. обратного эффекта, относящегося к тепловым явлениям, связанным с диффузией двух газов, - все эти открытия полностью согласуются с основами, заложенными Клаузиусом, Максвеллом и Больцманом *).
Эти основные черты кинетической теории газов связаны с ньютоновской механикой. Однако с этой теорией в физику вводится и нечто совершенно новое: точка зрения вероятностного рассмотрения. Изучение
*) Термодиффузию в жидкостях наблюдал уже в 1856 г. Карл Людвиг (1816-1895) и в 1880 г. Чарльз Сорет (1854-1904).
зигзагообразных путей отдельных молекул было бы не только безнадежным, но также не имеющим научного значения предприятием. Важными являются средний свободный пробег, среднее число ударов, которые молекула испытывает в единицу времени. Давление и температура являются средними значениями для большого числа молекул.
Значение этой основной черты теории особенно ясно сознавал М. Планк, который концентрированно выразил ее в гипотезе «молекулярного беспорядка». Здесь мы видим преимущество метода Больцмана перед статистической механикой Джозайя Уилларда Гиббса (1839-1903), хотя она иногда проще и применяется не только к газам, а также ведет к закону равного распределения. Именно Больцман смог ввести в теорию газов основное различие между термическими и чисто механическими явлениями, которое неоднократно являлось аргументом против всякой кинетической теории. Механические явления по своей природе обратимы; каждое из них может так же хорошо протекать в обратном направлении; знак времени здесь не играет никакой роли. Наоборот, термические процессы по природе своей так же необратимы, как выравнивание двух различных температур (гл. 9). Если теория газов, опираясь на механику, все же указывает на необратимость этих и других явлений, то это основывается именно на гипотезе молекулярного беспорядка. Аналогия с принципом увеличения энтропии очевидна.
Вершиной дела жизни Больцмана явилась с 1877 г. все более ясно устанавливаемая связь между энтропией и вероятностью - одна из глубочайших мыслей всей физики. Этот принцип Больцмана утверждает: энтропия пропорциональна логарифму вероятности состояния системы, причем коэффициентом пропорциональности служит некий универсальный множитель - так называемая константа Больцмана. Числовое значение этой константы дал, правда, лишь в 1900 г. Планк (гл. 13). Увеличение энтропии, которое выражается вторым законом термодинамики, рассматривается как
переход ко все более вероятным состояниям. Но так как состояние максимальной вероятности близко к состоянию немного меньшей вероятности, то всегда будут встречаться - и это важный новый результат - небольшие, меняющиеся со временем отклонения от него.
Этими термодинамическими колебаниями объясняется открытое в 1827 г. ботаником Робертом Броуном (1773-1858) непрерывное движение взвешенных в жидкостях или газах ультрамикроскопических частиц, истолкованное, несмотря на многие сомнения, как результат теплового движения молекул. Статистическая теория броуновского движения дана в 1904 г. Мариа-ном Смолуховским (1872-1917), а в более завершенной форме А. Эйнштейном. Броуновское движение и многие другие явления статистических флюктуации дали наиболее убедительные доказательства атомистики и превратили многих скептиков в ее последователей.
Независимо от теории газов атомистика распространилась на учение об электричестве. В 1834 г. Михаил Фарадей (1791-1867) открыл электролитический закон эквивалентности. Этот закон утверждает, что грамм-молекула одновалентных ионов, независимо от природы ионов, несет на себе определенный электрический заряд, а в случае двухвалентных ионов этот заряд вдвое больше, и т. д. После этого открытия многие физики стремились приписать каждому иону один, два и т. д. электрических элементарных заряда. Так поступал, например, Сванте Арренйус (1859-1927) в своей теории электролитической диссоциации (1882). Вальтер Нернст (1864-1941) дополнил ее своей гениальной теорией диффузии в электролитических растворах и учением об электродвижущей силе гальванических элементов. Лармор и Лорентц в «электронной теории» приписали также носителю электрического заряда в
материи элементарный электрический заряд (гл. 4). Термин «электрон» для носителя отрицательного элементарного заряда ввел лишь в 1890 г. Джонстон Сто-ней (1826-1911).
Особенно большое значение атомистика имела для понимания разнообразных явлений, происходящих при электрических разрядах в газах.
В 1859 г. Юлиус Плюккер (1801-1868) открыл те лучи, которые мы называем «катодными» согласно термину, введенному в 1876 г. Евгением Гольдштейном (1850-1931). В 1869 г. Иоганн Вильгельм Гитторф (1824-1914) обнаружил их отклонение в магнитном поле, и, наконец, в 1871 г. Кромвель Варли (1828-1883) доказал, что их электрический заряд является отрицательным. В 1876 г. Гольдштейн указывал на их отклонения в электрическом поле; однако ни он, ни Варли не смогли дать достаточно убедительное доказательство. Лишь в 1895 г. Жан Перрен (1870-1942) и в 1897 г. Джозеф Джон Томсон (1856-1940) решили вопрос в согласии с выводами Варли и Гольдштейна. Под влиянием блестящих опытов Вильяма Крукса (1832-1919), произведенных в 1879 г., прочно установилось представление, что катодные лучи состоят из частиц, хотя Генрих Герц в 1883 г. на основе опытов, неправильных из-за недостаточной экспериментальной техники, хотел усмотреть в них продольные волны. В 1886 г. Гольдштейн описал каналовые лучи, противоположные катодным лучам. В 1898 г. Вильгельм Вин (1864-1928) определил из измерения отклонений этих каналовых лучей отношение массы к заряду. Он нашел значение, соответствующее порядку величины, вычисленной из фарадеевского закона эквивалентности для электролитических ионов. С 1897 г. некоторые исследователи, в том числе Вин и Дж. Дж. Томсон, а также Джордж Фитцжеральд (1851-1901) и Эмиль Вихерт (1861-1928), показали, что в катодных лучах отношение массы к заряду частиц приблизительно в 2000 раз
меньше, чем у атома водорода. Отсюда, решительно отклонив идею Герца, заключили, что частицы, образующие потоки каналовых лучей, являются обычными электрически заряженными атомами или молекулами; напротив, частицы катодных лучей являются «атомами» отрицательного электрического заряда - электронами.
В конце 1896 г., когда лорентцовская теория эффекта Зеемана (относящегося к спектральным линиям, обусловленным электронами в атомах; гл. 4) привела к тому же значению отношения заряда к массе, существование электронов после сорокалетних усилий было твердо установлено. Оно было подтверждено также в 1899 г. Э. Вихертом, который посредством электрических колебаний измерил прямым путем скорость катодных лучей и получил для отношения массы к заряду результат, полностью соответствующий значениям, полученным из опытов с отклонениями в электрическом и магнитном полях.
Поразительным свойством электронов является их способность проходить через значительные слои твердого вещества. Это заметил уже в 1892 г. Генрих Герц (1857-1894). В 1893 г. Ленард пропустил через «окно Ленарда» электроны из разрядной трубки. Последующие исследования касались главным образом поглощения и рассеяния электронов в веществе. Они еще и теперь не закончены. Особенно могущественным вспомогательным средством оказалась изобретенная в 1912 г. Ч. Т. Р. Вильсоном камера, которая дает возможность непосредственно наблюдать пути заряженных частиц, движущихся в газах, следовательно и электронов. Для объяснения проникающей способности электронов Ленард уже к 1900 г. развил свою динамическую теорию тел, которая имеет много общего с позднее появившейся моделью атома Резерфорда. В то же время, главным образом под руководством Дж. Дж. Томсона, полностью было объяснено прохождение электричества через газы; его причиной являются ионы обоих знаков, а также свободные электроны.
Начиная с 1897 г., многие исследователи старались определить абсолютное значение заряда электрона, а не только его отношение к массе. Порядок величины был установлен уже благодаря известному числу Лош-мидта. С другой стороны, был очень точно известен заряд грамм-молекулы одновалентного электролитического иона. Но численные значения для заряда электрона были вначале большей частью равны лишь 2/3 правильного значения. Интересно бросить ретроспективный взгляд на постепенное повышение значений элементарного заряда с течением времени. Из прямых методов измерения мы считаем теперь лучшим метод, данный в 1907 г. Эренгафтом, примененный в 1913 г. Милликеном и улучшенный им же в 1940 г., - метод парящей в электрическом поле масляной капли, несущей отрицательные элементарные заряды. Этот метод дал значение 4,796 • 10-10 электростатических единиц. Кроме того, с его помощью подтвердилось, несмотря на многочисленные сомнения, что не существует никаких меньших зарядов, никаких «субэлектронов». Применяются также многие непрямые определения, так как элементарный заряд тесно связан, с одной стороны, с числом Лошмидта, с другой стороны - с константой k Больцмана. Измерения посредством интерференции рентгеновских лучей дают для числа Лошмидта значение 6,0227 • 1023 и тем самым для элементарного заряда 4,803 • Ю-10 электростатических единиц; различие результатов обоих измерений зарядов не составляет даже 2%. С исторической точки зрения интересно, что Планк в 1900 г. получил на основе своего закона излучения и измерений излучения, осуществленных в то время, значение 4,69 • 10-10, которое было гораздо выше других известных в то время результатов измерений, но которое, как мы теперь знаем, далеко превосходило их в точности. Впрочем, согласно новейшим измерениям излучения, это значение еще повышается до 4,76 • 10-10, но его точность не может быть, конечно, сравнима с точностью двух других указанных чисел.
Неделимость, в связи с которой атом получил свое название, имеет место в химических превращениях, а также при соударениях атомов, о которых говорит кинетическая теория газов. Но более глубокие исследователи часто ставили вопрос, не состоит ли атом из меньших частей.
В 1815 г. Вильям Проут (1785-1850) думал, что можно из целочисленности атомных весов заключить, что все атомы состоят из атомов водорода как всеобщей первоматерии. Однако улучшение измерительных методов в течение XIX века привело к таким значительным отклонениям от этой целочисленности, что его гипотеза была погребена. Мысль о внутренней связи между всеми элементами появилась снова, когда в 1869 г. Дмитрий Иванович Менделеев (1834-1907) и Лотар Мейер (1830-1895) независимо друг от друга упорядочили элементы, согласно их химическому поведению, в периодическую систему. Все величие этой гениальной идеи обнаружилось лишь через 40 лет. Действительно, в 1911 г. Эрнст Резерфорд (позднее лорд, 1871-1937) предложил для объяснения рассеяния -лучей в веществе такую модель атома, в которой положительно заряженное маленькое, но заключающее в себе почти всю массу атома ядро окружено «планетной системой» электронов. Исследования отклонений -частиц Гансом Гейгером (1881-1945) и Е. Марсденом и особенно исследование рентгеновских спектров Генри Мозли (1887-1915) и другими показали, что место элемента в системе, его атомный номер, определяется числом элементарных зарядов ядра. Периодическая система является просто упорядочиванием элементов соответственно числам ядерных зарядов. Этот вывод сделал уже в начале 1913 г. А. ван-ден-Брук на основе размышлений о радиоактивности. Однако сделанное им допущение, что заряд ядра всегда равен половине атомного веса, не подтвердилось. Почему существует периодичность (хотя и неточная) химических свойств? Это объясняют с точки зрения теории квант В. Коссель и прежде всего Н. Бор (гл. 14).
Современная физика считает неделимыми только немногие элементарные частицы. Одна - это электрон, другая - ядро атома водорода, протон, с которым исследователи встречались прежде всего при электрических разрядах в газах, например в каналовых лучах. В одном и том же 1932 г. Карл Давид Андерсон открыл в камере Вильсона позитрон - частицу с положительным зарядом и массой, приблизительно равной массе электрона, а Чадвик в опытах с радиоактивными явлениями - нейтрон, незаряженную частицу, имеющую почти ту же массу, что и протон. В космическом излучении, открытом в 1910 г. В. Ф. Гессом и вскоре подтвержденном Вернером Кольхерстером (1887-1946), Андерсон в 1937 г. обнаружил, опять-таки с помощью камеры Вильсона, мезон, теоретически предсказанный в 1935 г. Юкавой. Это, повидимому, - частица с коротким временем жизни, имеющая положительный или отрицательный заряд; она приблизительно в 200 раз тяжелее, чем электрон, и, следовательно, в 10 раз легче, чем протон. Но ядро атома состоит из протонов и нейтронов согласно мысли, высказанной в 1932 г., с одной стороны, В. Гейзенбергом и, с другой стороны, И. Таммом и Д. Иваненко; число зарядов ядра дает количество содержащихся в ядре протонов, а число нейтронов таково, что масса всех протонов и нейтронов дает массу атома. В этой теории, возникшей и подтвержденной на основе изучения радиоактивности, вновь воскресла старая гипотеза Проута.
Возражения, связанные с отклонением от целочис-ленности атомного веса, давно уже больше не существуют. Открытие изотопии многих видов атомов Фр. Содди (1910) установило кажущийся характер этих отклонений. Сначала Содди приписал изотопию только радиоактивным элементам, но постепенно становилось все яснее, что почти каждое место в периодической системе занято не одним, а несколькими видами атомов, которые, конечно, имеют один и тот же ядерный заряд, поэтому также одинаковый порядок распо-
ложения электронов в атоме и одинаковое валентно-химическое поведение, но отличаются по массе. Атомный вес отдельного вида атома теперь действительно очень близок к целым числам - «массовым числам», поскольку единицей считают теперь не массу атома водорода, a 1/16 часть массы наиболее часто встречающегося изотопа кислорода. Это изменение - не очень значительное, поскольку теперь атомный вес обычного водорода получается равным 1,00813. но оно имеет принципиальное значение. Химия постоянно имеет дело со смесями изотопов и получает поэтому только средние значения атомных весов элементов; они вычисляются.из истинных атомных весов и относительной частоты распространения в природе различных изотопов. Небольшие отклонения атомных весов от массовых чисел, которые еще остаются после этого, объясняются на основе эйнштейновского закона инертности энергии (гл. 2) как следствие потери энергии при соединении протонов и нейтронов в атомное ядро.
Химическими методами изотопы нельзя разделить. Но можно их разделить, подвергая, например, канало-вые лучи действию магнитного и электрического полей; тогда изотопы описывают разные пути, так как они при одинаковом заряде имеют разные массы. Эта «масс-спектроскопия» возникла в 1898 г. в связи с уже упомянутыми опытами Вина по отклонениям в электромагнитном поле. Таким путем Дж. Дж. Томсон дал возбудившее сенсацию доказательство изотопно-сти двух видов атома, возникших нерадиоактивным путем, а именно изотопов неона с массовыми числами 20 и 22; с 1919 г. это доказательство было настолько усовершенствовано Ф. Р. В. Астоном, что в 1938 г. уже было известно 260 различных видов атомов (вместо 92 химических элементов). На одном лишь 50-м месте периодической системы, занимаемом цинком, стоят 10 видов атома с массовыми числами от 112 до 124 (химически определенный средний атомный вес равен 118,7). На первом месте стоит вместе с обычным водородом дейтерий, открытый в 1932 г. Г. К. Ури,
имеющий атомный вес 2,014725. С тех пор мы знаем «тяжелую воду», в молекуле которой один или даже оба атома водорода замещены атомами дейтерия. Чтобы точно установить атомные веса и дать твердую основу для заключений о потере энергии при связывании протонов и нейтронов в атомное ядро, необходимо было превратить масс-спектроскопию в точный метод, что сделали А. Дж. Демпстер и особенно Дж. Маттаух.
Среди современных физиков имеет всеобщее распространение убеждение, что не только атомы, которые являются уже довольно сложными образованиями, но также элементарные частицы имеют полную реальность, как и другие вещи внешнего мира. Но даже в XX веке были сомнения в этом. Людвиг Больцман, например, до конца своей жизни страдал оттого, что некоторые ученые не считали созданную им кинетическую теорию газов полноценным физическим методом объяснения. Поворот, который произошел с тех пор, связан с некоторыми новыми знаниями. Мы уже упоминали о термодинамических флюктуациях, как одной из причин этого поворота. Мы могли бы привести еще многое другое, например то, что при интерференции рентгеновских лучей считаются реальными волны рассеяния, возбужденные каждым отдельным атомом, благодаря чему можно построить правильную теорию этого явления (гл. 12). Но больше всего здесь сделала камера Вильсона, которая дала возможность видеть пути отдельных заряженных элементарных частиц или ионизованных атомов и тем самым положила конец всяким сомнениям. Во всяком случае XX век принес полную победу атомистике.
И" все же мы должны существенно пересмотреть наши прежние субстанциональные представления об элементарных частицах. Эти представления связаны с идеей неразрушимости и несоздаваемости, когда каждую элементарную частицу рассматривают как
индивидуум, который при всех испытываемых им изменениях все же остается самим собой и если не фактически в опыте, то мысленно в любой момент может быть признан тождественным себе. Это неприменимо, по крайней мере, к электронам и позитронам. Как установлено в 1933-1934 гг. в исследованиях, примыкающих к открытию позитрона, например в работах П. С. М. Блэккета и Г. П. С. Оккиалини, достаточно большой у-квант при попадании в ядро превращается в электрон и позитрон. И наоборот: при столкновении электрона и позитрона они взаимно уничтожаются, порождая два у-кванта (Отто Клемперер, 1934). При этом вся их масса - не только масса покоя, но и возросшая с движением масса - превращается в энергию излучения соответственно закону Эйнштейна об инертности энергии. Длину волны этого «излучения аннигиляции» измерил в 1949 г. Дж. Дюмонд при помощи кристалл-спектрометра и получил в соответствии с предварительным вычислением результат: 2,43 • 10-10см. Этот полностью подтвержденный во всех своих последствиях результат новейшей физики является самым потрясающим из всего, что когда-либо приносило развитие естествознания.