Что такое машина?
«Человек — существо, способное создавать орудия», — так охарактеризовал человека Вениамин Франклин, один из замечательных американских ученых и общественных деятелей XVIII века.
Во времена Франклина (1706–1790) машина еще не получила такого значения в производстве, какое мы наблюдаем теперь и в производстве XIX века. Иначе Франклин охарактеризовал бы человека несколько шире — как «животное, способное создавать орудия и машины». Работа при помощи машин и ее полное торжество — вот что характерно для нашей эпохи.
Римский «инженер-строитель» Витрувий, живший 2000 лет назад, в своем сочинении «Об архитектуре» определяет машину, как «деревянное приспособление, оказывающее величайшие услуги при подъеме грузов».
Такое определение машины в то время вполне обнимало собой все области ее применения. Все машины того времени были деревянные и служили исключительно для подъема грузов. В портах были «портовые машины», при постройке больших зданий — «строительные машины» и т. д.
В наше время машина строится из металла, и, помимо машин для подъема грузов («краны»), мы различаем «машины-орудия», — добывающие и обрабатывающие железо, дерево, хлопок, шелк. Это всевозможного рода станки. Затем мы различаем «машины-двигатели», «машины для измерения» (весы, часы, счетные машины) и т. п.
Но что такое машина в современном смысле слова? Глубоко уверен, что с понятием «машина» у вас связано представление о чем-то сложном и хорошо прилаженном, о приспособлении, использующем какую-либо силу природы.
В действительности зачатки машины уже можно подметить в том камне, который схватил первобытный человек, защищаясь от нападения.
Из первобытного «камня-молота» выработался впоследствии молот, приводимый в движение водяным колесом, затем паровой молот — «молот-машина». Точно так же. наши «транспортные машины» ведут свое начало от того первобытного способа перевозки, который был в употреблении у египтян и вавилонян.
Рис. 20. Наш обезьяноподобный предок, вооруженный палкой и камнем — первыми орудиями.
Взгляните на древневавилонский рисунок (рис. 21). Из круглых бревен образовалось впоследствии колесо, — один из основных элементов транспортной машины.
Рис. 21. Перевозка статуи в древнем Вавилоне, 6000 лет назад.
Точно так же из заостренной палки, которой копал землю первобытный человек, образовался сначала сук, содержащий в себе уже все элементы современного плуга, а затем в наше время многолемешный плуг, влекомый мощным трактором, т. е. «плуг-машина».
Трудно указать в истории любого орудия, когда оно стало более всего походить на машину. Даже в ножном токарном станке кустаря уже имеется наличие «машины-двигателя» (сам кустарь) и «машины-орудия» (станок).
Машины древних культурных народов
У всех древних культурных народов рабочей силой служили рабы и скот. Поэтому, например, римские инженеры довольно забавно разделяли орудия производства: они говорили, что есть: 1) «немые» орудия — например, топор, плуг и пр., 2) «живые» орудия — домашние животные и 3) орудия, «обладающие даром речи», — рабы.
При помощи этих трех типов «орудий» и осуществлялись те грандиозные постройки Египта, Греции и Рима, многие из которых сохранились до наших дней.
В строительном деле, высоко развитом в этих древних государствах, земляные работы не представляли особых затруднений. Иначе обстояло дело с переноской камней из каменоломен. Здесь приходилось прибегать к специальным приспособлениям: к салазкам, каткам, рычагам.
Геродот (V век до н. э.) рассказывает, что «сто тысяч человек в течение трех месяцев тащили камни для пирамиды Хеопса — самой большой пирамиды, — и понадобилось десять лет, чтобы проложить дорогу от места добычи камня до Нила». Какая разница в сравнении с нашими способами переправления тяжестей при помощи кранов, поездов, пароходов, электровозов!
И все же древним инженерам удалось в некоторых областях техники достигнуть огромных результатов.
Благосостояние Египта зависело от разлива Нила, от орошения. Поэтому вопрос об орошении всегда был для Египта самым важным, — был вопросом жизни. И в области водных сооружений египетские инженеры не имели себе равных в античном мире. Обширные водоемы, искусственные озера и плотины запасали воду во время разлива Нила, чтобы потом использовать ее для орошения. Как в древнем Египте, так и сейчас на Востоке при орошении полей прибегают к «водочерпательным колесам».
Водяное колесо, появление которого знаменует собой новую эпоху в истории машины, возникло как раз из такого водочерпательного колеса. У Витрувия мы встречаемся с описанием того и другого колеса, так что, по-видимому, 2000 лет назад водяное колесо начало вытеснять силу раба. Это тем более вероятно, что как раз в то время, когда жил Витрувий, в I веке до н. э., иссякли источники свежих притоков рабов, и на рынке почувствовался недостаток в них. Глядя на два рисунка, воспроизводящих два водочерпательных колеса, описанных Витрувием, вы поймете, как напали на изобретение водяного колеса: раб случайно заметил, что колесо может вертеться само, если приделать к нему лопатки. Водяное колесо стало двигателем.
Рис. 22. Как было изобретено водяное колесо. Налево — водочерпальное колесо, движимое рабом. Направо — то же колесо, движимое силою воды (по Витрувию).
С точки зрения современной техники водяное колесо можно назвать уже «машиной» без всяких оговорок. Оно работает без усилия человека, — силами природы. Водяные мельницы с такими колесами появляются в Риме уже в I веке нашей эры. Таким образом, настоящая машина-двигатель возникла примерно две тысячи лет назад в Римской империи. Рим — родина двигателя.
Посмотрим теперь, как развивалось машиностроение в последующих веках.
Машины в средние века и в эпоху возрождения
Третий век был кризисом для Римской империи; основанная на рабском труде, встречая все больший отпор со стороны эксплоатируемых «варваров», Римская империя начала разлагаться. Усобицы из-за императорской власти, постоянные мятежи, вторжение варваров и т. п. нарушили порядок в империи, и вскоре мы наблюдаем попятное движение от сложной меновой хозяйственной системы к простым формам натурального хозяйства, которое не благоприятствует развитию машины.
Сильный удар натуральному хозяйству средних веков нанесла развивающаяся торговля с Востоком или «Левантом», как тогда говорили. Ткани, цветные стекла, вышитые золотом одежды, разные благовония, пряности, широким потоком полились с Востока на Запад, и роскошь, почти совершенно отсутствовавшая в жизни средневекового европейца, начинает выступать на сцену, требуя от него большого напряжения. В VIII и IX вв. Вся торговля была в руках арабов, потом она перешла к венецианцам. Начинается соперничество городов. Но все же техника развивается медленно.
Лишь в XI веке почти все производства Запада — мукомольное, лесопильное, суконное, бумажное, масляное и т. п. переходят на водяной — даровой двигатель.
В связи с появлением водяного двигателя усложняются «машины-орудия» благодаря увеличению мощности двигателя.
Вот (рис. 23) как была устроена лесопилка приводимая в движение водой. Этот рисунок взят из одного сочинения XVII в.
Рис. 23. Водяная лесопилка (из соч. 1621 г.)
На историю машины оказало влияние также открытие пороха.
При изготовлении пушек требуется искусство в обработке и отливке металла. Для пушек нужно много металла, и потому спрос на него растет: развивается горное дело и металлургия. Шахты приходится рыть глубже и глубже. Откачка воды делается все труднее. Строятся водоотливные машины. Для крепости приходится некоторые части делать железными. Начинается борьба дерева с железом.
Рис. 24. Мельница работающая помощью супального колеса; оно приводится в движение быками (из соч. Цонка 1621 г.)
Завоевание туркам Константинополя в 1453 г., занятие берегов Черного моря татарскими полчищами пересекло торговый путь, соединяющий Черное море с Балтийским, подорвало значение Средиземного моря. В связи с этим начинаются поиски «западного пути» в Индию.
Колумб думал, что он нашел этот путь, но только Васко да Гама, обогнув Африку, находит решение поставленной задачи, а затем Магеллан в 1521 г. совершает первое кругосветное путешествие, достигнув впервые Индии, плывя на запад.
Зарождается мировая торговля.
Прогрессирует судостроение. Судно Колумба в 1492 г. имело всего 246 тонн водоизмещения. Но через сто лет мореплаватели располагали уже кораблями водоизмещением в 700–800 тонн.
Рис. 25. Коллекция старинных ткацких станков, работу которых можно наблюдать в Мюнхенском музее.
Возникают новые промышленные центры. В развившейся борьбе за первенство на море побеждает сначала Голландия, потом Англия.
В XVI и XVII вв. в связи с ростом промышленности замечается особенное увеличение мощности машин, появляются сложные трансмиссии (передаточные механизмы).
Человек, овладев силой воды, начинает строить «машины-орудия». Так появляются водяные лесопилки, водяные сверла для пушек, водяные молота, но водяной двигатель, несмотря на все свои достоинства, имеет, однако, ряд недостатков. Хороший двигатель нужен очень часто как раз там, где мало воды: в городах, в центре «мануфактур». Кроме того зимою в умеренных странах — в Швеции, России и пр. — сила воды не действует. Является мысль использовать какую-либо другую силу. Кроме воды такой силой может служить ветер.
Рис. 26. Коллекция сверл, начиная от первобытного и кончая современными.
Ветер начали использовать очень давно — на морях, применяя парус. Ветряные же двигатели появились в XV–XVI вв. Наиболее раннее изображение такого двигателя мы находим в рукописях Леонардо да Винчи (1452–1519). Ветряный двигатель — даровой двигатель, но у него есть недостаток: часто, когда нужно, чтобы он работал, ветра нет. Вот почему даже в XVI и XVII вв. в порту, на мельницах и пр. продолжают работать всевозможные ступальные колеса, конные приводы и т. п.
Рис. 27. Ступальное колесо в порту XVIII века. Оно приводится в движение людьми.
Машины XVIII века
Делая набросок важнейших моментов в истории машины, я должен был бы перейти теперь к выяснению причин появления паровой машины и к описанию такой машины.
Однако, прежде чем это сделать, необходимо остановиться на тех изобретениях в области «машин-орудий», которые произвели промышленную революцию в конце XVIII века (главным образом, в Англии) и привели к зарождению нового класса — рабочего класса, состоявшего исключительно из наемных работников.
Рис. 28. Эскиз ветряной мельницы Леонардо да Винчи (около 1500 г.).
В конце XVIII века было сделано множество изобретений прежде всего в области машин по обработке «волокнистых веществ» — главным образом, хлопка. До середины XVIII бека бумажные ткани производились ткачами у себя на дому ручным способом по заказу скупщиков. Так как пряжа совершалась гораздо медленнее, чем тканье, то ткач постоянно нуждался в большем количестве пряжи. Спрос на пряжу еще повысился, когда появился «самолетный челнок». Это замечательное изобретение было сделано англичанином Кэем в 1733 г.
Улучшение, введенное Кэем, толкало мысль изобретателя на улучшение прядения, сильно отстававшего от тканья. Однако, только в 1769 г. была изобретена «прядильная машина» — тоже англичанином, Аркрайтом, и получила название «ватер-машина» (ватер или, вернее, «уотер» — английское слово, означающее «вода»). Машина Аркрайта получила название «водяной машины» потому, что приводилась в движение силой воды.
Затем в 1775 г. появляются улучшенные прядильные машины. Они сделали то, что теперь прядильщик начал обгонять ткача; чтобы последний мог «идти в ногу» с прядильщиком, надо улучшить ткацкий станок. Появление в 1785 г. механического ткацкого станка разрешило это затруднение. Замечательно, что все эти открытия сделали английские инженеры: только английская промышленность в них нуждалась.
Прядильные и ткацкие машины и произвели ту промышленную революцию, о которой я уже говорил. Исчезла мелкая мастерская, победила фабрика. Ткач-ремесленник уже не мог выдержать конкуренции ткацкой машины. Ему выгоднее было поступить на ткацкую фабрику — сделаться рабочим. Так зародился пролетариат.
Появившийся в 1808 г. знаменитый ткацкий станок Жаккарда только довершил эту революцию.
Зарождение паровой машины
Посмотрим теперь, чем было вызвано появление паровой машины. Родиной ее является также Англия.
Англия еще в XVII в., в связи с недостатком древесного угля, должна была перейти к выплавке чугуна на каменном угле. В летописях истории техники отмечено, что первый завод, который начал это делать, был завод Дерби (1735 г.).
При добыче угля из руд нужна постоянная откачка грунтовой воды, нужна работа насосов. Пока шахты неглубоки, как было в Англии в XVI и XVII вв., откачка воды еще может быть производима лошадьми или водяными колесами. Но по мере углубления борьба с водою становится все труднее и труднее. Как в древности мощность машины увеличивали числом рабов, так теперь мощность насосов начали увеличивать числом лошадей. В некоторых подъемных шахтенных устройствах число лошадей доходило до 500, а размеры колес, например, в Корнваллисе — до 14–16 м. Высота такого колеса равнялась высоте трехэтажного дома!
Настало, однако, время, когда понадобились не десятки лошадиных сил, чтобы бороться с природой, а сотни и даже тысячи. Хотя попытки построить паровую машину восходят еще к XVII в., однако первая практически пригодная машина была построена кузнецом Ньюкоменом в 1712 г., и это был как-раз паровой насос, откачивающий воду из шахт.
Паровой насос Ньюкомена был чрезвычайно просто устроен, работал больше атмосферным давлением, чем давлением пара. Полезное действие этой машины выражалось в сотых долях процента. Это значит, что больше 99 % топлива пропадали даром!
Посмотрите (рис. 29) на схему «парового насоса» Ньюкомена.
Рис. 29. Машина Ньюкомена. Вода вводится в цилиндр В из бака L при отвертывании крана.
Пар, получаемый в котле А, давит на поршень и заставляет его подниматься. Вниз поршень двигается под влиянием атмосферного давления, после того как пар путем впрыскивания воды из бака L конденсировался.
Несмотря на то, что машина Ньюкомена столь несовершенна, она все же лучше справлялась с задачей, чем «живые машины» или водяные двигатели. Угля было достаточно, жечь его даже в большом количестве не было убыточно для владельца каменноугольных шахт. Но на других производствах такая машина не годилась. Поэтому, днем «рождения» паровой машины следует признать тот день, когда Уатт взял свой главный патент — 5 января 1769 г.
Рис. 30. Джемс Уатт (1736–1819), изобретатель паровой машины.
Замечу, что Уаттом взято очень много патентов, касающихся паровой машины, в течение ряда лет, и этот великий изобретатель довел паровую машину до такого совершенства, что она стала экономически выгодной не только для владельцев шахт. Но патент 1769 г. — его главный патент. Уатта по справедливости обычно и считают изобретателем паровой машины. Он же был тот механик, который заменил последнюю деревянную часть машины железом. После Уатта паровые машины строятся уже целиком из металла.
Машины-орудия в XVIII веке
«Если вы хотите знать, в чем заключается главное препятствие к устройству машин, — пишет в одном из своих писем Уатт, — так я скажу вам, что самое важное затруднение это недостаток кузнечной работы. Кузнецы не умеют изготовлять такой цилиндр, чтобы поршень в нем ходил хорошо».
Уатту пришлось прибегнуть к ртути, стекольной замазке, войлоку, чтобы лучше «пригнать» поршень к цилиндру. Случалось, однако, что один конец цилиндра по диаметру был менее на целую восьмую дюйма в сравнении с другим. Как могли быть прилажены поршни к такому цилиндру? Вот почему одной из первых задач, вставших перед тогдашней техникой, было улучшение методов обработки металлов. И уже в 1797 г. появляется улучшенный токарный станок Модлея «с супортом», который позволил механизировать работу и изготовлять одинаковые блоки, шайбы и пр.
Рис. 31. Машина Уатта 1788 г. в одном из Лондонских музеев.
С появлением хороших станков возможно было дальнейшее улучшение паровой машины, которая, в свою очередь, позволила улучшать машины по обработке металла и т. д.
История паровой машины в XIX веке
Говорят, что XIX век — век пара. Такая характеристика станет вполне понятна, когда мы увидим те новые машины начала XIX в., которые позволили «парофицировать» почти все производства и транспорт.
В 1805 г. появился первый паровоз, перевозивший уголь; в 1807 г. заработал первый пароход.
В 1814 г. впервые паровой двигатель был применен к типографским машинам: немецкий изобретатель Кёниг поставил машину для английской газеты «Таймс», приводимую в действие паровым двигателем, и сразу стало возможно иметь до 1000 экземпляров газеты в час. Тогда эта цифра поражала типографов: сейчас, когда существуют «ротационные машины», эта цифра не велика.
В 1842 г. на заводах Крезо начал работать паровой молот.
В 1855 году в Англии входят в употребление паровые плуги.
Однако, XIX век замечателен не только своей «парофикацией». В этом веке произошли и другие события, которые подготовили новый переворот в истории всей техники.
Вечный двигатель
Говоря о достижениях в области машины в XVIII веке, я не упомянул об одном интересном явлении, которое наблюдается на протяжении почти всей истории машины — о попытках построить так называемый «вечный двигатель».
Нельзя указать точно, когда возникла эта идея о «перпетуум мобиле» (латинское название «вечного двигателя»), кто был первый ее автор и вдохновитель. Нет сомнения, однако, что задача о вечном двигателе казалась чрезвычайно соблазнительной по своим последствиям. Вечный двигатель — это двигатель, который работает даром.
Магнит, по-видимому, благодаря своей неиссякаемой силе, должен был очень рано толкнуть на размышление о вечном двигателе. Есть основание предполагать, что использование воды и ветра как двигателей должно было навести также на идею (совершенно ложную) о вечном движении. Несерьезному созерцателю водяной мельницы казалось, что остается сделать один шаг, как-то приспособить колеса, которые подымали бы воду, — и вечный двигатель готов. Изобретение часов с гирями и различных автоматов — также должно было вдохновить механиков-часовщиков к созданию «вечных часов».
Увлечение вечными двигателями и всевозможными автоматами несколько ослабело, когда был установлен закон сохранения энергии (1847 г.). С тех пор перед техниками стал вопрос о так называемом «коэффициенте полезного действия машины». Все улучшения паровой машины в XIX и XX вв. были направлены на повышение их полезного действия (т. е. к уменьшению траты угля). Желая повысить полезное действие, изобретатели придумали ряд новых тепловых двигателей: паровую турбину, дизель. Самая лучшая паровая машина имеет коэффициент полезного действия — 18 %, дизель — 25 %, бензиновый мотор — 40 %. В этом виден прогресс XIX века.
Начало электрификации
Я должен упомянуть еще об одном замечательном изобретении XIX века — «динамомашине». Такую машину вы можете видеть на любой электрической станции. Можно точно сказать, кем она изобретена, указать не только год, но даже день рождения этой машины. Этот день — 1 января 1867 г., когда германским изобретателем Вернером Сименсом был сделан знаменитый доклад Берлинской Академии наук на тему — «О превращении механической энергии в электрический ток — без посредства постоянных магнитов».
Рис. 32. Знаменитый германский электротехник Вернер Сименс (1816–1892).
В этом состоит принцип динамомашины. Благодаря счастливой идее Сименса, стало возможным то развитие электротехники, которое мы наблюдаем в наше время, а вместе с тем и тот экономический переворот, который несет в себе электрификация промышленности.
Появление динамомашины, а затем изобретение методов передачи энергии по проводам — один из последних моментов не только в истории двигателя, но и в истории машин-орудий. Так, вместо «паровых орудий» и паровых транспортных машин мы наблюдаем в XX веке, благодаря развитию электротехники, — электрический телеграф, электрическую тягу, электрическое паяние, электрический плуг, электрическую швейную машину и т. п.
Рис. 33. Одна из первых динамомашин Вернера Сименса.
В борьбе с энергетическим голодом
Мне остается указать на многочисленные попытки изобретателей в строительстве машин, использующих различные другие виды энергии, которыми пренебрегал прежде человек.
В богатых солнцем странах строятся — «солнечные машины», которым, по-видимому, суждено сыграть большую роль в виду надвигающегося мирового голода энергии.
Не менее интересны машины, использующие энергию морских волн, энергию приливов и отливов…
Наконец, делаются попытки использовать при помощи специальных машин теплоту земного шара, — этот последний может быть источником имеющихся запасов энергии на земле, когда иссякнут запасы черного угля и будут до конца использованы угли «белый» (вода) и «синий» (ветер)…
Первые солнечные машины
Солнце — единственный пополнитель имеющихся запасов энергии на Земле. Когда иссякнут все запасы топлива, перед человеком будет стоять вопрос о том, чтобы как можно лучше использовать ту энергию, которую посылает нам Солнце.
Температура поверхности Солнца — около 6000° Ц. По подсчетам Аррениуса, в год температура поверхности Земли достигает 530·108 биллионов больших калорий.Попробуем представить себе это число. Для сравнения возьмем количество тепла, содержащееся в том угле, который сжигается на всех заводах, фабриках, паровозах и пр. По подсчетам того же Аррениуса, это число равно около 7000 биллионов калорий (для 1921 г.). 530 000 000 и 7000 —вот те числа, которые вы должны сравнить.
Вы видите, что тепло, доходящее от Солнца на Землю, более чем в 75000 раз превосходит тепло, добываемое от топлива на Земле.
На квадратную поверхность, находящуюся на высоте 20 м над уровнем моря, перпендикулярную к солнечным лучам, размером в 1 кв. м, каждую минуту падает приблизительно 9 калорий лучистой энергии (по Аррениусу), при чем количество получаемой энергии увеличивается с высотой. По измерениям физика Крова, на высоте 1900 м количество «упавших» калорий уже будет 14, вместо 9. Русский ученый Ганский, пользовавшийся очень чувствительными приборами, произвел измерения на Монблане (высота 4810 м) и нашел, что там на каждый квадратный метр Солнце посылает 34 больших калорий в минуту.
Разница эта объясняется тем, что на высоте 1900 м содержится приблизительно в 5 1/2 раз меньше водяных паров, чем на высоте 20 м. Пары воды в атмосфере являются главными поглотителями лучистой энергии. Так как одна калория тепла соответствует 427 килограммометрам работы и так как одна лошадиная сила равна 75 килограммометрам в секунду, то 9 калорий в минуту равносильны приблизительно 0,86 лошадиной силы. Если подсчитать, сколько это выйдет на квадр. километр, то получим 860 000 лошадиных сил!
Сделаем небольшое отступление, чтобы помочь читателю уяснить себе, как велика мощность в одну лошадиную силу.
Лошадиная сила соответствует мощности такой машины, которая совершает 75 килограммометров работы каждую секунду, т. е. машины, которая, скажем, в состоянии поднимать ежесекундно 15 кг на высоту 5 м или 75 кг на высоту одного метра. Надо заметить, что лошадь такую работу может совершать лишь с перерывами.
Интересно происхождение этой единицы мощности. Ее установил Уатт. Одна из первых паровых машин, построенных этим изобретателем, должна была приводить в движение насос, работавший раньше с приводом в одну лошадь. При переходе на паровую силу было условлено, что машина должна делать в день такую работу, какую в состоянии произвести лошадь. При этом хозяин предприятия, где производилась установка, сам решил проверить, какова же мощность лошади. Чтобы получить машину возможно сильнее, заказчик при определении работы лошади заставил сильное животное работать под ударами кнута в течение 8 часов до полного истощения. При таких ненормальных условиях ему удалось получить от лошади работу, соответствующую мощности около 75 килограммометров в секунду. Впоследствии оказалось, что при длительной нормальной работе мощность лошади составляет всего 1/3 лошадиной силы.
Мощность человека, как машины, еще меньше. Чернорабочие совершают в час приблизительно ту же работу, что красноармеец при часовом ходе. Высчитано, что человек, например, при часовом нормальном переходе (около 5 км в час) совершает работу от 20 000 до 25 000 килограммометров. Поэтому мощность чернорабочего равна, самое большое, 1-й доле лошадиной силы.
Теперь вернемся к вопросу о том, сколько же лошадиных сил может дать Солнце. Если бы солнечные машины смогли работать в тех же условиях, что и паровые (с коэффициентом полезного действия от 10 до 15 %), то с каждого квадратного километра, заставленного такими машинами, мы могли бы получить не 860 000 лош. сил, а только от 86 000 до 129000 лошадиных сил.
На довоенных трансатлантических пароходах ставились паровые машины мощностью от 20000 и больше лошадиных сил; значит, солнечные двигатели, поглощающие солнечную энергию с площади в 1 кв. км, могут заменить около 5 или 6 таких крупных паровых машин.
Если теперь вспомнить о пустынях Азии (наш Туркестан), Африки (Сахара), Австралии и Америки, бесплодно накаляемых горячими лучами солнца, а также то, что температура в Туркестане бывает выше 60° Ц, а почва Аравийской пустыни накаляется даже до 90° Ц, то станет ясным, какой огромный запас энергии мы имеем в лучах Солнца.
Вот почему уже давно предпринимались попытки использовать солнечную энергию путем специальных солнечных двигателей.
Один из первых таких двигателей был устроен Соломоном де-Ко (рис. 34).
Рис. 34. Солнечный двигатель Соломона де-Ко (1615 г.). Лучи падают на 16 зажигательных стекол, в фокусе которых помещены герметически закрытые и налитые до половины водою ящики.
В нем солнечные лучи падали на 16 двояковыпуклых «зажигательных стекол», в главном фокусе которых были поставлены герметически закрытые металлические ящики. В ящики до половины их высоты была налита вода, а в нее почти до самого дна опущены трубы. Воздух в ящиках нагревался, расширялся, давил на поверхность воды, заставляя ее по трубе подниматься и бить фонтаном. Книга, в которой описана эта машина, относится к 1624 году (второе издание).
Первые опыты, рассчитанные на более серьезные применения, были произведены французом Мушо в Алжире в 1860 году. Его «солнечный котел» (рис. 35) состоял из приемника А, закрытого пробкой и прикрытого стеклянным колпаком В.
Рис. 35. Солнечная машина Мушо (1860 г.), где с помощью электрического зеркала С направляются лучи на котел А, прикрытый стеклянным колпаком В.
Рядом с ним ставилось зеркало, представляющее цилиндрическую посеребренную поверхность; фокус зеркала, — та точка, в которой собираются падающие на поверхность зеркала лучи солнца, — находился на котле. Образующийся пар может выходить через трубу, а вода, необходимая для питания котла, поступает по другой трубке. При помощи такого солнечного котла Мушо удавалось в 90 минут нагревать три литра воды до 85°, а два литра воды нагревались до 90° Ц и в один час. В общем Мушо получал только 0,03 лошадиной силы на квадратный метр, т. е. в 4 раза меньше, чем следовало ожидать. Полезное действие оказалось меньше 3 %. Такой низкий коэффициент объясняется, разумеется, несовершенствами паровых машин того времени.
Более 200 000 рублей затратил на опыты е солнечной машиной шведский инженер Эриксон. Вот некоторые данные об этих опытах. Зеркало, имеющее отверстие 9,3 кв. м, давало в Нью-Йорке в полуденное время приблизительно 0,1 лошадиной силы. В 1898 г. Эриксону в Калифорнии при помощи зеркала с общей поверхностью в 930 кв. м удалось получить всего 10 лошадиных сил. Изобретенное инженером Эриксоном зеркало имеет в диаметре 10 м и в глубину — 5 м и состоит из 1788 маленьких плоских зеркал, отражающих лучи к паровому котлу. Сам же котел представляет медный цилиндр, зачерненный поверху, и вмещает 670 литров воды.
Это зеркало-гигант вращается около своей оси в течение дня, все время будучи обращенным к Солнцу. Через час после восхода Солнца эта машина доводила давление в котле до 12 атмосфер, и котел мог приводить в движение девятисильную паровую машину, приводившую в действие насосы, которые доставляли воду для орошения. Но вследствие дешевизны угля и больших затрат на установку, машина оказалась невыгодной и разорила изобретателя.
Рис. 36. Шведско-американский инженер Эриксон, разорившийся на опытах с солнечными машинами.
В большем масштабе производились опыты американским инженером Шуманом, который в 1913 г. соорудил машину на 500 лошадиных сил в Египте, около Каира. Устройство машины следующее. В отличие от машины Эриксона, зеркала здесь возвышались невысоко над землей. Пять цилиндрических зеркал длиной в 60 м и шириной в 4 м были расположены горизонтально с севера на юг на общей площади в 3500 кв. м. В полуденное время зеркала затеняли приблизительно треть общей площади участка. Когда Солнце опускалось до 20° над горизонтом, тени зеркал сливались вместе, так что вся площадь оказывалась затененной. При дальнейшем опускании Солнца они уже начинали затенять друг друга. Паровые котлы помещены в фокусе зеркала и состоят из зачерненных цинковых коробок, проходящих по всей длине зеркала. С одной стороны в коробки поступает вода, а с другой принимается пар. Вся установка дала 0,06 лош. силы на каждый кв. метр. Стоимость каждой лошадиной силы в установке Шумана —300 рублей, втрое дешевле установки Эриксона. Поэтому машина Шумана, по-видимому, может получить распространение.
В последнее время предложено много проектов машин, устройство которых основано на новых началах. Назовем, например, опыты ленинградского физика проф. Б. П. Вейнберга, проектирующего устройство солнечных машин в Туркестане.
Знаменитые автоматы
В Америке имеется специальная фабрика, которая изготовляет чрезвычайно забавные игрушки для детей— «говорящие куклы». Куклы эти могут спеть песню, рассказать сказку: для этого нужно только переменить валик. Эти говорящие куклы — выдумка Эдисона; появились они почти одновременно с «фонографом» — первой говорящей машиной. Механизм их такой же, как у фонографа или граммофона. Пружина вращает валик, а игла, скользя по валику, передает колебания мембране…
Не таковы говорящие и поющие куклы-автоматы XVIII века, которые выставлены в Венском, в Парижском и Мюнхенском музеях… Среди этих автоматов есть много интересных, чрезвычайно сложных по устройству механизмов, на изготовление которых мастер тратил целые годы, если не всю жизнь. Любопытно, что изготовлением автоматов занимались такие ученые, как Рожер Бэкон, Леонардо да Винчи, Региомонтанус (астроном XVI в.), Альберт Великий (ученый XII в.).
Автомат Альберта Великого представлял человека, отпирающего дверь и кланяющегося входящим. Его разбил палкой испугавшийся приятель Альберта Великого — схоластик Фома Аквинский, решив, что автомат движет «нечистая сила».
Астроном Региомонтанус изготовил два автомата: бегающую муху и орла, хлопающего крыльями и кивающего головой. Своим орлом-автоматом Региомонтанус приветствовал императора Максимилиана при его въезде в г. Нюренберг. Надо заметить, что город Нюренберг (Германия) является родиной целого ряда искусных механиков. Изобретатель «карманных часов» с пружиной Петер Генлейн (1480–1542) — уроженец этого города: ему поставлен там памятник.
Леонардо да Винчи, находясь на службе у различных князей Италии, потешал их «хитрой механикой», строил ползающих черепах, слонов, поющих птиц.
Особенно богаты «автоматчиками» — XVII и XVIII вв. Еще сейчас, например, в Зальцбурге (Германия) можно видеть автомат 1613 г., который воспроизводит целую картину. Сначала вылетает из скалы дракон, затем слышится кукование кукушки и пение других птиц. На фоне этой «музыки природы» работает водяное колесо, приводя в движение молот; гончар, сидя за станком, работает над горшком, точильщик точит нож… Медленно выползает и прячется черепаха.
Наиболее знаменитые «автоматчики» жили в XVIII веке: наш Кулибин (1735–1818), французы: Вокансон (1709–1782), отец и сын — Дро (1721–1790 и 1752–1791).
Автоматы Вокансона появились перед публикой в 1838 г. Изобретатель разъезжал с ними по всей Европе (был и в России). На рис. 37 воспроизведена фотография афиши, которую расклеивал Вокансон.
Рис. 37. Афиша Вокансона о его автоматах. На ней изображены: флейтист, утка и барабанщик — знаменитые автоматы Вокансона.
Из афиши узнаем, что Вокансон, член Парижской Академии Наук, предполагает демонстрировать флейтиста; музыкант-автомат играет 11 арий, сопровождая свою игру теми движениями, которые производит человек. Будет демонстрироваться пастух, который играет 20 различных арий на флейте и барабане, и, наконец, — «утка».
Игрок на флейте имел натуральный рост человека и сидел на ящике, где был скрыт механизм. Особенно поражала публику физиономия и движения «музыканта», как бы старающегося очаровать своей игрой. Пружина приводила в действие девять свистков, которые при помощи барабана со штифтами (как в музыкальном ящике) попеременно замолкали или производили различный по силе и высоте свист.
Игра автомата сопровождалась движениями пальцев. Этот «флейтист» и сейчас хранится в Венском музее.
Самым интересным автоматом Вокансона была утка: она пила воду, крякала, двигала головой, крыльями, чистила перья, ела зерна, и, что самое поразительное, — выбрасывала из желудка переваренную пищу. Чертеж несколько поясняет устройство внутренности этой машины-утки. Эта утка сгорела в Нижнем-Новгороде во время пожара.
Рис. 38. Механизм утки-автомата Вокансона. Эта утка плавала, крякала, чистила перышки, ела и даже переваривала пищу. Утка погибла в Нижнем Новгороде во время пожара.
Первым «русским автоматчиком» был, по-видимому, некий Петр Высоцкий. В 1673 г. он устроил для Коломенского дворца «рыкающих и двигающихся львов, а на дворцовой башне — часы». Первые башенные часы с автоматом были поставлены в России в 1404 г. на башне княжеского дворца; летописец говорит, что часы эти установил за 150 рублей некий пришедший с Афона «сербин Лазарь». На часах была механическая фигура человека, выбивающего молотом каждый час. По-видимому, часы эти сгорели во время большого пожара в Москве в 1493 г.
Замечательный автомат-часы изготовил И. П. Кулибин — русский механик-самоучка, известный своим проектом арочного моста в один пролет, впоследствии смотритель над механическими и оптическими мастерскими при Академии Наук.
Рис. 39. И. П. Кулибин (1735–1818 г.), русский механик-самоучка, изобретатель замечательных часов с автоматом.
Часы И. П. Кулибина имели форму гусиного яйца. Каждый час растворялись маленькие двери, за которыми виднелся великолепный храм и в нем «гроб Христа», по сторонам которого стояли два стража-воина. Воины были сделаны из серебра. Через полминуты являлся в храм «ангел». Тогда камень от дверей отваливался, двери разрушались, стража падала ниц и начиналось пение «Христос воскресе». В описании этих часов сказано; что в них имеется свыше 1000 различных частей!
Современниками Вокансона и Кулибина являются два замечательных механика XVIII века — отец и сын Дро. Большинство построенных ими автоматов сохранилось до наших дней, чего нельзя сказать о других. Дро изобрели часы, которые отвечали боем, когда их спрашивали, который час. Секрет этих часов был, по-видимому, основан на механическом действии звука. Интересен также автомат, представляющий собаку у корзины с фруктами; стоило вам дотронуться до фруктов, как собака начинала лаять.
Всего больше прославился Дро автоматами «пианисткой» и «пишущим мальчиком».
«Пианистка» не только играла, но и держала себя, как настоящая пианистка.
Перед началом игры осматривала ноты, делала рукой некоторые предварительные движения, во время же самой игры ее < глазки и головка следили по нотам.
«Пишущий и рисующий мальчик» умел изобразить собачку и подписать под рисунком «мой Туту»; он рисовал портреты Людовиков XV и XVI и Марии-Антуанетты.
Рис. 40. «Пишущий мальчик» — автомат Дро-отца (1760 г.).
Рис. 41. Механизм пишущего мальчика.
В 1906 г. немецкий механик Фрелих привел в порядок эти автоматы, и сейчас они демонстрируются в одном из музеев Германии.
Из автоматов, находящихся в СССР, наибольшим успехом пользуется механический соловей Государственного Политехнического музея. Он заводится, как часы. Пружина приводит в движение меха, которые и заставляют свистать единственный находящийся в механизме свисток. Различная высота свистка, прищелкивание, подсвистывание и пр. достигается тем, что свисток по временам закрывается и передвигается поршень, заставляющий свисток укорачиваться или удлиняться. Соловей вертит головкой и хвостиком при помощи проволочной нитки, продетой внутри палочки, на которой сидит соловей. Весь механизм скрыт внутри клетки — внизу.
Мастер этого автомата, вывезенного в музей из Зимнего дворца, неизвестен.
Рис. 42. Механизм «соловья». Госуд. Политехнического музея. Автомат заводился, как часы. «Пение» соловья производилось одним свистком с подвижным дном.
В наше время подобные механизмы уже не интересуют механиков. Для нас подобные автоматы — лишь интересная игрушка, и только.
История одного заблуждения
Заблуждение, о котором здесь идет речь, есть стремление построить машину, которая двигалась бы вечно: задача эта всегда соблазняла умы и продолжает соблазнять еще в наши дни. Соблазнительно построить машину, которая, будучи раз приведена в движение, непрерывно двигалась бы сама, совершая некоторую полезную работу, скажем, поднимала бы воду, молола зерно… Машину, которая не требовала бы для преодоления сопротивления при работе никакой посторонней движущей силы, — давления пара, действия текущей воды или ветра, а черпала бы энергию из самой себя.
Где искать корни этого заблуждения?
Первых наблюдателей поражал процесс, происходящий в природе. Солнце встает каждое утро и затем, совершив свой путь, исчезает за морем, чтобы на другой день проделать то же самое. Солнце, луна, планеты, звезды находятся в движении.
Другой «вечный процесс» происходит на самой земле. Вода испаряется с поверхности моря, подымается, сгущается в облака и в более холодных областях опускается на землю в виде дождя. Дождевая вода отчасти идет на питание растений, отчасти собирается в реках, которые текут в море, затем вода снова испаряется, и т. д.
Теперь, когда установлен так называемый закон сохранения энергии, мы знаем, что машину надо «кормить топливом», что энергию нельзя создать «из ничего». Мы знаем, что круговорот воды в природе совершается за счет энергии Солнца. Ученые античного мира, средних веков, XVI–XVIII веков вплоть до середины XIX века не знали этого основного закона.
Впрочем, в античном мире не было надобности изобретать машины, которая работала бы даром. Промышленность была слабо развита, а многочисленный класс рабов давал работу почти даром. У древних греков поднимались такие вопросы, как «сквадратить круг», разделить угол на три равные части при помощи циркуля и линейки, но о вечном двигателе греки не поднимали вопроса.
Затем, когда почувствовался недостаток в рабской силе, уже в эпоху Римской империи, появился водяной двигатель. Водяное колесо, стоящее на реке и работающее без усилий со стороны человека, должно было будить мысль о постройке машины, которая работала бы даром — вечно. Появление так называемых «колесных часов», т. е. часов, приводимых в движение энергией поднятой гири, также дразнило человеческую мысль и вызывало на размышления о вечном двигателе. Было заманчиво построить часы, которые ходили бы без завода.
Известный под именем «Архимеда XV века» механик Марианус из Сиены дает рисунок (см. рис. 43) вечного двигателя, где делается попытка использовать силу тяжести.
Рис. 43. Колесо, которое будто бы должно вечно вращаться («вечный двигатель» Мариануса, 1483 г.).
Рукопись Мариануса хранится в Мюнхенской библиотеке и относится к 1438 г.
Машина эта — чрезвычайно типична: на нее похожи многочисленные более поздние проекты.
Легко сообразить, на что рассчитывал автор этого проекта. Если колесу дать толчок для движения по часовой стрелке, то спицы, попадая на правую сторону, будут распрямляться, благодаря чему правая сторона будто будет «тяжелее», и если на вал колеса насадить ременную передачу, то такая машина могла бы производить работу даром.
Замечательно, что видоизменение этой машины мы встречаем на протяжении ряда веков и в наши дни. Такова машина Порхунова, устройство которой ясно из чертежа. Сотни и тысячи изобретателей пытались осуществить на практике двигатель, подобный двигателю Мариануса и Порхунова, и все напрасно: двигатель не вращался.
Причина ясна. В машине Мариануса справа действуют пять грузов-палок, но зато в противоположную сторону шесть; это уничтожает преимущество, созданное различием плеч рычагов. Кроме того, палки-грузы, двигаясь сверху вниз (в правой стороне), не могут совершить большей работы, чем сколько было потрачено работы на них для поднятия на левой стороне.
Курьезно, что многие изобретатели вечного двигателя были настолько уверены в успехе своего изобретения, что боялись, как бы от быстрого вращения не разорвалась машина на части; потому они помещали у колеса тормоз.
Можно было бы составить целую книгу из различных моделей и чертежей, претендующих на название «вечный двигатель». При этом история повторяется: в XIX веке часто предлагаются проекты XVII и XVIII веков. Из таких проектов XVII века приведем только два, хотя их насчитывают тысячи.
В книге (XVII века) некоего Вилькинса под заглавием «Математическая магия» приведен следующий мнимый вечный двигатель.
Пусть АВ — деревянный цилиндр со спиральным ходом и имеет водяные колеса Н, I, К. В сосуде CD находится вода. Когда цилиндр АВ вращается, вода, которая поднялась из CD при помощи спирального цилиндра из цистерны, выливается сначала в сосуд Е и заставляет вращаться колесо Н, которое приводит в движение цилиндр АВ. Если одного колеса недостаточно, тогда пусть вода падает в сосуд F, из которого, выливаясь, приводит в движение колесо I и т. д.
Рис. 44. Мнимый вечный двигатель Вилькинса (XVII век).
«Когда я напал на эту мысль, — пишет Вилькинс, — я едва не закричал: „Нашел“, „нашел“, — слова, которые когда-то восклицал Архимед при открытии своего закона. Однако, опыты обнаружили следующее:
1) Вода, которая поднялась на некоторую высоту, развивает при падении с небольшой высоты слишком незначительную силу.
2) Поток воды не в состоянии повернуть винт при помощи водяных колес.
3) Медленное движение винта не в состоянии поднять так много воды, чтобы привести в движение водяные колеса!»
Как видим, автор сам отказывается от своего проекта.
Другой проект XVII века, приводимый здесь, принадлежит инженеру-изобретателю по фамилии Цонка. В сочинении «Новый театр машин и зданий» он дает проект вечного двигателя, основанного на свойстве сифона. Как известно, при неравных коленах сифона равновесие невозможно: произойдет переливание жидкости из верхнего сосуда в нижний, но не наоборот. Чтобы добиться обратного, Цонка делает левое колено трубы более широким. Но это не поможет. Подсчитайте давление в верхнем сечении слева и справа — и вы убедитесь, на основании законов гидростатики, что вода и в этом случае потечет из верхнего сосуда в нижний.
Рис. 45. Машина Цонка (XVII в.), могущая будто бы вечно обслуживать мельницу.
Из всех мнимых вечных двигателей XVIII века самым замечательным является — «колесо Орфиреуса», с которым связана одна из любопытных страниц истории вечного двигателя.
Колесо Орфиреуса, согласно описанию, данному известным голландским физиком Гравезандом в его «философских статьях», представляло собой «большой барабан, 12 футов диаметром и 14 вершков глубины», т. е. 3 1/2 м диаметром и около 60 см глубины. Колесо состояло из множества отделений, пространство между которыми было обито клеенкой, с целью скрыть внутренность. Давая колесу, покоящемуся на железной оси, легкий толчок в какую-либо сторону, наблюдали постепенное ускорение вращения. Наконец, колесо приобретало такую быстроту, что делало 25 или более оборотов в минуту и, по-видимому, вечно сохраняло это быстрое движение… По крайней мере, специальная комиссия с ландграфом во главе через два месяца после пуска нашла колесо в движении после снятия своей печати. Так пишет Гравезанд.
В рисунке, данном самим Орфиреусом в выпущенном им в 1719 г. сочинении о своем двигателе, механизм, разумеется, не указан. Эту машину хотел купить царь Петр I, и по этому поводу начались переговоры с немецким философом Вольфом. Орфиреусу удалось получить лестные отзывы от ряда комиссий, от польского короля Августа II, от ландграфа Гессен-Кассельского и др.
Мошенничество было раскрыто чисто случайно. Он поссорился со своей женой и прислугой, которые знали его тайну, и они раскрыли секрет этой машины. Оказалось, что «вечный двигатель» приводился в движение людьми, искусно спрятанными вне помещения и незаметно дергавшими за шнурок.
Рис. 46. Леонардо да Винчи (1452–1519). «О, вы, искатели вечного двигателя! Сколько создали вы напрасных проектов его осуществления. Присоединяйтесь к делателям золота!» (Из его записной книжки).
Хотя в наше время закон сохранения энергии, который представляет собой только другую формулировку невозможности построить вечный двигатель, лежит в основе всей физики и техники, проекты вечных двигателей еще продолжают поступать. За время от 1617 г. по 1903 г. одно только Британское патентное бюро получило около 600 проектов вечных двигателей, из которых более 500 приходится на вторую половину XIX века, т. е. в такое время, когда закон сохранения энергии был уже установлен.
Много проектов таких двигателей получали и Лондонское Королевское О-во, Парижская Академия Наук, наше Леденцовское О-во и др. Парижская Академия еще в 1775 г. постановила: «…впредь не рассматривать проекты машин, притязающих служить вечными двигателями».
Однако, и это постановление не ослабило энергии изобретателей вечного двигателя.
Говорящие машины
Первому аппарату для передачи речи — телефону — сейчас больше пятидесяти лет. Это изобретение было «гвоздем» Филадельфийской выставки 1876 г. Его выставил американец Белл, которого и принято считать изобретателем этого прибора.
Рис. 47. Одно из первых описаний телефона Белла (из американского популярно-научного журнала).
Однако, в тот самый день, когда Белл принес заявку на получение патента, через два часа явился в Бюро другой изобретатель — Грэй — и сделал заявку на патент, который тоже касается передачи звука при помощи электрического тока по проводам. Случай замечательный, единственный случай в истории изобретений!
Через два года после того, как был изобретен телефон, т. е. в 1878 г., наделала много шуму другая «говорящая» машина — фонограф Эдисона.
Рисунок представляет факсимиле того эскиза, который сделал Эдисон, заказывая мастеру построить фонограф. Чертеж помечен 22 августа 1877 г. Патент же взят 19 февраля 1878 г.
Рис. 48. Рабочий эскиз Эдисона. Заказ мастеру на изготовление фонографа был сдан 12 августа 1877 г.
В чем сущность этого изобретения Эдисона?
В первом аппарате Эдисона запись речи и музыки производилась иглой, прикрепленной к мембране из слюды на листе станиоля. При этом за ручку вращался барабан, и игла скользила по борозде барабана, отмечая все колебания, которые она испытывала. При воспроизведении записанного надо было поставить иглу на борозду, которую она начертила, и затем вращать барабан. Скользя по борозде, игла приходила в колебание, которое передавалось мембране, а мембрана воспроизводила звук.
Эдисон прочил своему аппарату огромное будущее. Он говорил, что при помощи его аппарата можно:
1. Производить запись под диктовку, не прибегая к стенографистке.
2. Читать «фонографические книги» слепым.
3. Изучать иностранные языки.
4. Воспроизводить музыкальные номера.
5. Сохранять «семейные реликвии» — записи речей отдельных членов семьи, их последние слова и пр.
6. Осуществлять музыкальные игрушки, например, куклы.
7. Осуществлять часы, которые будут извещать путем речи о начале обеда, окончании работы и пр.
8. Производить запись различных наречий… и пр.
История показала, однако, что у фонографа явился сильный конкурент — граммофон, а в наше время — радио. Граммофон изобретен спустя 10 лет после фонографа.
Изобретатель его — также американец, Берлинер — взял патент на свое изобретение в 1888 г. По существу граммофон мало чем отличается от фонографа; разница только в том, что вместо валика у граммофона — диск. Опыт показал, что граммофон легче осуществить и диск более удобен для записи. Он воспроизводит лучше валика все оттенки звука.
И фонограф Эдисона, и граммофон Берлинера, и «громкоговоритель» (по существу этот прибор обычно тот же телефон, но только с рупором) — все передают звук с шипением, свистом и др. недостатками.
«Говорящая машина» интересовала ученых еще в конце XVIII века. Петербургская Академия Наук объявила в 1779 г. даже премию тому, кто построит такую машину.
Между тем на Западе машина, похожая на говорящую, уже существовала. Она была построена в 1778 г. «королевским советником» немцем Кемпеленом. В ней было всего 13 клавиш, при помощи которых можно было заставить машину издавать звуки речи. Рис. 49 изображает ее внешний вид.
Сбоку в увеличенном виде представлены «губы» этой машины. Разумеется, так грубо устроенная машина вряд ли могла хорошо выговаривать слова. Вот почему о машине Кемпелена забыли.
Рис. 49. Говорящая машина Кемпелена 1778 г. Сбоку в увеличенном виде показаны «губы» этой машины.
Рис. 50. Один из первых фонографов (хранится в Гос. Политехническом музее в Москве).