GPS: Все, что Вы хотели знать, но боялись спросить

Леонтьев Б. К.

Часть 1.

GPS для начинающих и не только

 

 

Глава 1.

Глобальная система местоопределения

Когда негодяй Негоро подкладывал под судовой компас «Пилигрима» железный брусок, он точно знал, что сложность навигационных расчетов не по плечу хоть и смышленому, но еще очень молодому пятнадцатилетнему юноше. Шутка ли, управиться с секстантом, ведь и в наше время его использование требует больших знаний и навыков.

Цифровой век высоких технологий революционизировал методы решения навигационных задач. Сегодня две дюжины небольших спутников окутывают всю Землю навигационными сигналами, а портативный приемоиндикатор, представляющий собой, по сути, небольшой специализированный компьютер, вычисляет по этим сигналам координаты местоположения с точностью до 10-30 метров. Навигация при этом облегчается настолько, что создается впечатление самодостаточности этой чудо-коробочки, GPS-приемника. Среди профессиональных «навигаторов» — моряков, летчиков и путешественников — уже вырастает целое поколение специалистов, не умеющих работать с классическими навигационными приборами.

Ничто не останавливает победного шествия GPS. Приемники стремительно уменьшаются в размерах: прибор со спичечный коробок уже можно купить всего за 150 долларов; навигационные чипы встраиваются в часы и мобильные телефоны, становятся составной частью автомобильных сигнализаций. А компания Applied Solution в следующем году намерена наладить серийное производство чипов, предназначенных для имплантации в тело человека. Приемники GPS находят применение при решении самых разнообразных задач: геологи в реальном времени следят за малозаметным перемещением участков земной коры, зоологи делают ошейники с портативными примоиндикаторами и радиопередатчиками для изучения миграции животных, военные строят самонаводящиеся ракеты и бомбы, а экспедиция Национального географического общества США в прошлом году с сантиметровой точностью измерила высоту Эвереста.

GPS — глобальная система местоопределения (часто ошибочно называется Глобальной системой позиционирования). Состоит из низкоорбитальных 24-х спутников, передающих сигналы на частоте более 1 ГГц и пользовательских приемников, определяющих по этим сигналам свои координаты. Для работы GPS приемника необходима прямая видимость небосвода (сигнал GPS спутников экранируется металлом, некоторыми пластиками, бетоном).

Навигация

По радиосигналам спутников GPS-приемники пользователей устойчиво и точно определяют текущие координаты местоположения. Погрешности не превышают десятков метров. Этого вполне достаточно для решения задач НАВИГАЦИИ подвижных объектов (самолеты, корабли, космические аппараты, автомобили и т.д.).

Землемерие

Новое понятие «Система местоопределения» — является существенно более общим, чем «навигационная система». Оно охватывает и чрезвычайно важные для человечества проблемы и задачи ЗЕМЛЕМЕРИЯ (геодезия, картография, планиметрия, геофизика, строительство уникальных промышленных сооружений и дорог и т.д.). Для этих целей погрешности местоопределения не должны превышать долей метра и даже долей сантиметра. Специальные приемники и методы обработки сигналов обеспечивают эту точность.

Микроэлектроника

Если ракеты и спутники — это механическая основа системы, ее кости и мышцы, то радиотехнические и вычислительные микроэлектронные устройства — это ее мозг и нервы. Вместе с теоретическими методами это информационная основа системы, без которой ее существование невозможно. Плата приемника содержит: высокочастотный приемный тракт, устройства сложной математической обработки принятых из космоса сигналов, первоклассный компьютер с большим быстродействием и значительной памятью, микроэлектронные схемы его сопряжения с внешними устройствами и другие сложные элементы. Сама плата имеет шесть слоев печатного монтажа и обеспечивает одновременный прием и обработку сигналов до восьми спутников. Управляют этим ансамблем уникальные математические алгоритмы, реализованные в виде машинных программ. Не будет преувеличением сказать, что GPS — дитя микроэлектроники и вычислительной техники. Что в каждом из своих проявлений GPS — одновременно и продукт и средство современных высоких технологий.

Новая «общественная потребность»

До 1991 года существовали практические ограничения на применение GPS из-за отсутствия в России разработок этой техники гражданского применения. Сейчас же спутниковое местоопределение становится для нас новой «общественной потребностью», такой же необходимой и доступной, какой давно стала телефонная связь.

Более 300 млн. человек в мире пользуются системой GPS, с помощью которой путешественник может определять свои координаты, а пилот посадить самолет в зоне с нулевой видимостью. В ближайшее десятилетие возможности глобальной системы позиционирования значительно расширятся.

Возможности системы глобального позиционирования в ближайшие 10 лет станут намного шире. Пользователь сможет определять свои координаты с точностью до метра. Возможности системы GPS будут расширяться за счет модернизации, подразумевающей: введение дополнительных каналов сигнала на спутнике, увеличение мощности сигнала и усовершенствование системы его коррекции, использование направленных антенн, а также интеграцию с телевизионными и телефонными сотовыми сетями.

Ее новыми возможностями в первую очередь смогут воспользоваться военные, для которых она и создавалась. Самолеты военно-морских сил США смогут приземляться на палубу авианосца в полной темноте. Система сможет отслеживать местонахождение воздушных судов на всем протяжении полета. В ближайшее время GPS поможет контролировать движение автомобильного транспорта, обеспечивая безопасность дорожного движения, усовершенствованная система сможет быть применена в электроэнергетике, в телекоммуникациях, при добыче полезных ископаемых, картографии и даже в сельском хозяйстве. Кроме того, любой путешественник сможет воспользоваться GPS на всей территории земного шара.

Небо ограничивает

Создание глобальной системы позиционирования началось в США в 1978 г. с запуска первого спутника Navstar. В то время министерство обороны решило помочь 40 тыс. американским военнослужащим научиться определять свои координаты на земле, в воде и воздухе. Лишь в 80-х гг. картографы и геофизики получили доступ к сигналам спутников, а гражданские лица стали пользоваться системой с начала 90-х гг., когда на орбите находились 24 спутника системы GPS. Сегодня около 30 млн. человек используют GPS-навигацию, благодаря которой капитаны судов, водители автомобилей и любители приключений определяют свои координаты. В магазинах каждый месяц продается около 200 тыс. приемников. В 2003 г. по всему миру их продано на $3,5 млрд., и, по прогнозам маркетинговой фирмы Frost@Sallivan, с 2010 г. ежегодные показатели могут вырасти до $10 млрд. (Цифры не включают доходы от предприятий, работающих в отрасли.) Более 50% оборудования приобретают частные лица, 40% — коммерческие структуры, и лишь 8% — военные.

Америка не одинока, разворачивая космические навигационные системы. В период «холодной войны» Россия разместила на космической орбите спутники Glonass. В ближайшее время эта отрасль будет стремительно развиваться и GPS-приемниками будут оборудованы как легковые автомобили, так и мобильные телефоны. Вскоре стартует европейский проект Galileo, который может произвести передел рынка спутниковой навигации.

Приобретя GPS-приемник стоимостью в $100, человек может рассчитывать на отклонение в 5-10 м. Армейские приборы позволяют определять местонахождение с точностью до 5 м. Если же GPS-приемник получает сигнал от наземной станции и проводит соответствующую коррекцию данных, его точность возрастает до 0,5 м.

Информационный дождь из космоса

Чтобы понять, что нас ждет в будущем, давайте разберемся, чем мы располагаем сегодня. Спутники передают сигналы двух видов. Один из них несет информацию о местонахождении спутника и времени передачи сигнала. Он принимается стационарными наземными станциями, обрабатывается и отправляется на спутник, который передает его всем пользователям системы. Второй сигнал — код, необходимый для определения времени передачи сигнала. Создатели системы называют его псевдослучайным шумом.

Чтобы преодолеть расстояние в 20 тыс. км, сигналу требуется время. Если пользователь сможет с помощью своего приемника, в который заложен код, определить время его отправления, то несложно будет зафиксировать время его прохождения и, умножив полученные данные на скорость распространения, рассчитать расстояние до спутника.

Если в GPS-приемник установить часы, то, получив удаление от трех спутников, пользователь сможет определить широту, долготу и высоту своего местонахождения. Сигнал, идущий от спутников, напоминает три сферы, пересекающиеся в различное время в разных точках. Для пользователя, находящегося на Земле, существует только один момент их соприкосновения в данный промежуток времени. Для более слаженной синхронизации сигнала на спутниках установлены атомные часы, обеспечивающие точность хода до одной миллиардной. В большинстве GPS-приемников они могут отставать на одну или более секунд в день. Можно подсчитать, что ошибка всего в одну секунду изменит расстояние от спутника до пользователя на 300 тыс. км. Инженеры называют процесс измерения расстояния между спутником и пользователем псевдоизмерением. Дело в том, что погрешность присутствует и в сигналах от четырех спутников, в результате чего мы получаем четыре уравнения с четырьмя неизвестными.

Современные GPS-приемники способны учитывать доплеровский эффект в случае, если измерения проводятся в движении. При перемещении приемника в сторону распространения волны ее длина становится больше, а при встречном ходе — меньше. Каждый спутник напоминает скоростной поезд. Если он движется на вас, то его гудок по мере приближения становится громче, а если удаляется, то сигнал теряет мощность. Учитывая данный эффект, можно получить скорость движения GPS-приемника. Такой метод измерения скорости очень точен.

Таким образом, GPS-приемники определяют три координаты и три вектора скорости, а также производят синхронизацию времени через сеть. При этом сами приемники не передают сигналов в эфир. В скором времени GPS будут оборудованы сотовые телефоны, что приведет к подорожанию последних всего на $5.

Преодолевая ионосферу

Спутники GPS-системы передают сигнал, обладающий классической синусоидальной формой, на обычной радиочастоте. Сейчас на микроволновой частоте передаются два сигнала — L-1, L-2. Канал L-1 доступен для всех. Считается, что он предназначен для гражданских пользователей, хотя и военные про него не забывают. Канал L-2 предназначен для военнослужащих. Гражданские пользователи принимают на свои GPS-приемники этот канал, но в силу того, что они не имеют доступа к PRN-коду, возникает ошибка в позиционировании. Только дорогие приемники позволяют гражданским пользователям работать в диапазоне L-2. Поэтому большинство из них принимает сигнал L-1, позволяющий точно определять координаты от 5 до 10 м.

Сложности при приеме сигнала вызваны главным образом тем, что радиоволны на своем пути преодолевают ионосферу Земли, которая представляет собой плазменное облако, образованное Солнечным ветром. Ее границы простираются от 70 до 1300 км над поверхностью Земли, и при прохождении через ионосферу радиосигналы ослабляются и искажаются. В ночное время, когда ионосфера находится в состоянии покоя, задержка передачи сигнала составляет 1 м, а днем, когда активность плазмы высока, — более 10 м.

Для того чтобы минимизировать влияние ионосферы, используют дифференцированный D-GPS. В такой схеме используются два приемника: один мобильный, а второй находится в точке с известными координатами. Данные, поступающие с этих GPS, сравниваются и обрабатываются, после чего происходит корректировка показаний мобильного приемника. Чем ближе они находятся, тем точнее определяются координаты.

Сильные и направленные сигналы

Начиная с 2005 г. спутники будут передавать дополнительные сигналы, которые помогут исключить помехи от ионосферы. По два сигнала добавятся к военным L-1 и L-2 и один — к гражданскому L-1, а существующие ныне сигналы не претерпят каких-либо изменений. Следующий этап совершенствования системы начнется в 2008 г. Спутники будут передавать еще один гражданский сигнал L-5, который будет в 5 раз более мощным, чем сейчас. Сдвоенный сигнал позволит минимизировать влияние ионосферы. GPS-приемники будущего смогут сравнивать искажения двух сигналов, внося необходимые коррективы в расчеты.

Операторы, использующие D-GPS-приемники, также окажутся в выигрыше. Напомним, что точность работы D-GPS-системы снижается по мере того, как увеличивается расстояние между фиксированным приемником и мобильным GPS. Это связано с тем что на приемники попадают сигналы от спутников, прошедшие через разные слои ионосферы. При работе с двумя сигналами мобильный GPS способен оценить влияние ионосферы, а данные от фиксированного приемника помогут свести к минимуму остальные погрешности, которые могут составлять от 30 до 50 см.

Чтобы получить точность позиционирования в пределах сантиметров или даже миллиметров, пользователи могут воспользоваться D-GPS-приемниками. Их современные модели, имея связь со стационарной станцией по радиоканалу, передают сведения о своем местонахождении и получают откорректированные данные. Длина волны, на которой ведется передача сигнала со спутника, составляет 19 см. Приемник может измерить время получения сигнала с точностью до 1%. В абсолютном выражении эта величина составит несколько миллиметров.

Для проведения более точных измерений приемник должен идентифицировать волну сигнала со спутника. Современные GPS сопоставляют сигналы от спутников по каналам L-1 и L-2. В системе GPS длины волн отличаются на 85 см, что позволяет проводить измерения с точностью до 8 мм. Надежность такой системы измерения в сотни раз больше, чем у систем, работающих с PRN-кодами. Их предел — 50 см. D-GPS приемники, работающие с одним каналом L-1, обеспечивают точность измерения до 19 см. Дорогие модели GPS имеют возможность повысить точность измерения посредством сопоставления частот сигналов, поступающих по каналам L-1 и L-2. С началом передачи дополнительных сигналов со спутников существенно возрастет точность и надежность работы GPS-приемников. Гражданские пользователи получат доступ к открытой части канала L-2 и новому каналу L-5. В будущем GPS смогут производить сравнение трех пар каналов (L-1 с L-2, L-2 с L-5, L-2 с L-5L).

Полеты с GPS

Какие еще возможности откроются перед пользователями GPS? Федеральное управление гражданской авиации США разрабатывает новые правила полетов с использованием системы GPS. Многие самолеты уже оснащены подобными приемниками, но возможности их использования ограниченны. Новое оборудование позволит производить посадку при нулевой видимости. Однако для этого потребуется, что бы, во-первых, в любой ситуации пилот учитывал, что показания приборов не всегда соответствуют реальному местонахождению самолета, и в экстренных случаях вносил поправки в режим полета. (При посадке отклонение от заданной траектории не должно превышать 10 м.) Во-вторых, авиационные системы должны иметь очень высокую степень надежности.

Представители Федерального управления гражданской авиации США предложили две системы, основанные на базе D-GPS-технологии. В наземную часть комплекса входят приемно-передающие антенны, связанные с центром управления. В 2003 г. появилась сеть наземных станций WAAS, которая позволяет в режиме реального времени корректировать координаты всех пользователей GPS. (Над подобными системами работают инженеры Европы, Китая, Японии, Индии, Австралии и Бразилии.) В случае ошибки WAAS в течение 7 секунд вносит коррекцию в D-GPS-пользователя. Благодаря этому при заходе на посадку пилот может вести самолет до высоты 100 м. В зоне аэропорта экипаж переходит на режим пилотирования с использованием наземного навигационного оборудования.

Со временем навигационные комплексы LAAS, работающие в коротковолновом диапазоне, смогут обеспечить приземление при нулевой видимости с использованием канала L-5. Военно-морские силы США разрабатывают для авианосцев систему точного наведения и посадки самолета JPALS, в основе которой лежит принцип D-GPS-системы, работающей с каналами L-1 и L-2. При заходе на посадку и приземлении летчик морской авиации должен контролировать расстояние до палубы авианосца с точностью до 1 м, чтобы специальный крюк на корпусе самолета смог зацепить тормозной канат. Испытания системы JPALS начнутся в 2006 г.

Ученые и инженеры уже трудятся над созданием GPS-системы третьего поколения. Запуск новых спутников произойдет не ранее 2012 г. За счет использования спутниковой связи и установки на них более мощных вычислительных комплексов существенно расширятся u1074 возможности системы.

 

Глава 2. Cистема позиционирования

Очевидно, что любому человеку, сознательно или интуитивно, хочется знать, где он находится. В житейских случаях он задает свое местоположение относительно знакомых ему ориентиров. Например: «Я нахожусь по такому-то адресу». Или: «Я лечу где-то посередине между Жмеринкой и Парижем». Самой же универсальной формой задания местоположения, той, которой пользуются навигаторы и геодезисты, является использование какой-либо системы координат. Поэтому, прежде чем говорить о позиционировании, необходимо сказать о том, что такое координаты пункта в нашем понимании.

Рассмотрим геоцентрические системы координат. Их начало совпадает с центром (или, точнее говоря, с центром масс) Земли. Глобальная система позиционирования использует прямоугольную (декартову) систему X, Y, Z и эллипсоидальную систему B, L, H. Поясним, о каком эллипсоиде идет речь. Общеземной эллипсоид является самой простой в математическом смысле моделью Земли. Эллипсоид подбирают так, чтобы его поверхность как можно ближе подходила к поверхности геоида. Геоид можно представить себе как поверхность, совпадающую с невозмущенной поверхностью мирового океана и мысленно продолженную под материками. В строгом определении геоид — это уровневая поверхность, содержащая точку, принятую за начало отсчета высот. В России таковой является нуль-пункт кронштадтского футштока. Опорными плоскостями в рассматриваемых системах координат являются плоскость экватора и плоскость начального (гринвичского) меридиана. От экватора отсчитывают геодезические широты B. От Гринвича отсчитывают геодезические долготы L. Геодезические высоты H отсчитывают от поверхности эллипсоида по нормали. К этому же эллипсоиду относится и прямоугольная система координат. С осью суточного вращения Земли совпадает малая ось эллипсоида и ось Z, проходящая через северный полюс. Ось X является линией пересечения плоскости экватора и плоскости гринвичского меридиана. Ось Y также лежит в плоскости экватора. Системы спутниковой радионавигации не исключение. Рассмотрим несколько основополагающих идей.

А — местоопределение по расстоянию до спутников. Зная координаты навигационных спутников и умея измерять расстояние до них, определить координаты наблюдателя — дело техники. Например, если мы знаем, что от нас до навигационного спутника, скажем, 11 тыс. км, то это значит, что мы находимся где-то на воображаемой сфере радиусом в 11 тыс. км с центром, совпадающим с этим спутником. Если одновременно с этим расстояние до другого спутника составляет 12 тыс. км, то наше местоположение будет где-то на окружности, являющейся пересечением двух таких сфер. И, наконец, знание дальности до третьего спутника сократит количество возможных точек нашего местонахождения до двух, одна из которых будет находиться где-то далеко в космосе (и мы ее отбрасываем), а другая — на земле, рядом с нами.

Б — измерение расстояния до спутника. Школьная истина гласит: «расстояние есть скорость, умноженная на время движения». Навигационный приемник так и работает. Он измеряет время, за которое радиосигнал доходит от спутника до нас, а затем по этому времени вычисляет расстояние. Главной трудностью при измерении времени прохождения радиосигнала является точное выделение момента его передачи со спутника. Для этого на спутнике и в приемнике в одно и то же время генерируется одна и та же кодовая последовательность. Теперь остается только сравнить время их рассогласования, умножить его на скорость распространения радиоволн, и, казалось бы, дело в шляпе. Однако если спутник и приемник имеют расхождение временных шкал только в одну сотую секунды, то ошибка измерения расстояния составит около 3 тыс. км!

В — совершенная временная привязка. Чтобы избежать таких ошибок, на спутнике устанавливают атомные часы, точность которых составляет наносекунды, а стоимость — сотню тысяч долларов. Иметь такие же часы в приемнике — слишком дорогое удовольствие. Однако можно обойтись и простыми часами, если измерять дальность не до трех, а до четырех спутников. В этом случае четыре неточных измерения (с «расстроенными» часами) позволяют исключить относительное смещение шкалы времени приемника. И вот каким образом. Предположим, часы приемника несовершенны, не сверены с единым временем навигационной системы и отстают от него, например, на полсекунды. Если измерить время прохождения сигнала от четырех спутников и получить неистинные или псевдодальности до них, то окажется, что воображаемые сферы с радиусами, соответствующими этим псевдодальностям, не пересекаются в одной точке. Тогда для уточнения дальностей компьютер приемника прибавляет ко всем измерениям (или вычитает) некоторый один и тот же интервал времени до тех пор, пока не найдет решение, при котором все четыре воображаемые сферы пересекаются в одной точке.

Г — определение положения спутника в космическом пространстве. Чтобы все вышеизложенное успешно выполнялось, необходимо точно знать местоположение каждого навигационного спутника. Для этого, во-первых, спутники запускают на высокие орбиты (около 20 тыс. км), где движение стабильно и прогнозируемо с большой точностью. А во-вторых, незначительные изменения в орбитах постоянно отслеживаются. При этом сведения о местоположении спутника записываются в память бортового компьютера и затем передаются на приемник вместе с кодовой последовательностью.

Д — коррекция задержек сигнала. Как бы совершенна ни была система, есть несколько источников погрешностей, которые очень трудно избежать. Самые существенные из них возникают при задержке радиосигнала в ионосфере (слое заряженных частиц на высоте 120-200 км) и тропосфере (8-18 км) Земли. Величина задержек непостоянна и зависит от солнечной активности и погодных условий.

Существуют два метода, которые можно использовать, чтобы сделать ошибку минимальной. Во-первых, мы можем предсказать, каково типичное изменение скорости распространения радиоволн в обычный день, при средних ионосферных условиях, а затем ввести поправку в измерения. Но, к сожалению, не каждый день является обычным.

Другой способ состоит в использовании двух частот несущих колебаний. По разности задержек двух разночастотных сигналов нетрудно выяснить величину замедления скорости света в атмосфере.

В американской GPS используется World Geodetic System (WGS84) — всемирная геодезическая система, принятая в 1984 году. В глобальной навигационной спутниковой системе «Глонасс» используется ПЗ90 — система параметров Земли, принятая в 1990 году. Они отличаются параметрами земного эллипсоида, поэтому координаты, используемые в этих геодезических системах, могут расходиться на 100-150 м.

Global Positioning System (GPS) переводится как глобальная система позиционирования. Термин «позиционирование» — более широкий по отношению к термину «определение местоположения». Позиционирование помимо определения координат включает определение вектора скорости движущегося объекта. Полное название системы GPS Navstar (Navigation System with Time and Ranging) — навигационная система на основе временных и дальномерных измерений.

GPS состоит из трех частей: космического сегмента, сегмента управления и контроля и сегмента пользователей. Спутниковый сегмент состоит из созвездия функционирующих в эпоху наблюдений спутников. Сегмент управления и контроля содержит главную станцию управления и контроля, станции слежения за спутниками и станции закладки информации в бортовые компьютеры спутников. Сегмент пользователя — это совокупность спутниковых приемников, находящихся в работе.

Номинально в каждый момент времени имеется 24 работающих спутника, которые распределены по шести круговым орбитам. На каждой орбите, таким образом, находится четыре спутника. Плоскости орбит разнесены по долготе на 60 градусов. Наклон плоскости орбиты к плоскости экватора составляет 53 градуса. Расстояние спутников от поверхности Земли — 20,2 тыс. километров. При такой высоте орбиты период обращения равен половине звездных суток. Наблюдателю это удобно. Он знает, что если сегодня в такое-то время спутник находится в такой-то точке небосклона, то ровно через сутки тот же спутник будет примерно там же. Удобно планировать наблюдения. Самым дорогим оборудованием спутников являются атомные эталоны частоты-времени, обеспечивающие наносекундную точность хода бортовых часов.

В задачи сегмента управления и контроля (Operational Control System) входит слежение за спутниками для определения параметров их орбит (эфемерид) и поправок часов относительно системного времени GPS, прогноз орбит спутников и их местоположения на орбитах (прогноз эфемерид), временная синхронизация часов относительно времени системы, загрузка навигационного сообщения в бортовые компьютеры спутников. Главная станция управления и контроля (Consolidated Space Operations Center) находится в Колорадо-Спрингс (США). Центр собирает и обрабатывает данные со станций слежения, вычисляет и предсказывает эфемериды спутников, а также параметры хода часов.

Затем данные передают на одну из трех наземных станций для закладки информации в память бортовых компьютеров. Пять станций слежения за спутниками, равномерно расположенные по всему миру, каждые полторы секунды определяют дальность до всех находящихся над горизонтом спутников. Данные слежения передаются на главную станцию управления и контроля.

Пользователи системы разделяются на категории по нескольким признакам: военные и гражданские, авторизованные и неавторизованные, навигаторы и геодезисты. Задачи навигации в значительной мере сводятся к определению текущих координат транспортного средства с ошибкой 10-15 м, а также к определению скорости и направления его движения. Кроме того, навигационный приемник указывает требуемый и реальный курс на заданный объект, отклонение от маршрута, предписывает маневры, желательные для возвращения на курс. Навигационный режим измерений является кодовым, поскольку приемник обрабатывает сигнал спутника именно как кодовый сигнал.

Измеряемыми величинами являются: задержка сигнала и доплеровское смещение частоты, позволяющие вычислять дальность и радиальную скорость. При геодезических измерениях точность определения текущих координат на несколько порядков выше, чем в навигации. В этом случае одновременно работают несколько приемников, причем по крайней мере один из них должен быть установлен на пункте с известными координатами. Геодезический приемник кроме анализа кодовой последовательность непрерывно регистрирует мгновенное значение фазы. Обработка этих данных специальным программным обеспечением позволяет достигать сантиметровой точности в определении местоположения.

Одновременное обеспечение требований по измерению дальности и скорости при простой структуре сигнала невозможно, поэтому приемлемым для таких измерений является использование шумоподобных сигналов, таких, например, как псевдослучайная последовательность импульсов. Упрощенный вид подобного сигнала представлен на рисунке. Здесь фаза высокочастотной несущей модулируется навигационным кодом, который содержит дальномерный код (его автокорреляционная функция имеет очень острый максимум) и код двоичной служебной информации.

Такой принцип формирования сигнала системы позволяет по измерению доплеровского сдвига частоты несущей определять скорости, а по задержке элементов дальномерного кода — дальность до спутника, при этом служебный код несет всю вспомогательную информацию (эфемериды спутников, альманах системы и др.), необходимую для обеспечения работы навигационного приемника.

 

Глава 3. Принцип работы систем спутниковой навигации

Возможность определять координаты вне зависимости от капризов природы и времени суток появилась с началом освоения космоса. Днем рождения спутниковой навигации принято считать 4 октября 1957 года, когда был запущен первый искусственный спутник Земли. Однако лишь в конце 70-х годов была создана первая спутниковая радионавигационная система (СРНС), которая позволяла определить координаты объекта при помощи радиосигналов, передаваемых со спутника.

СРНС применяются для определения положения и ориентации сухопутных, воздушных и морских подвижных объектов. При строительстве туннеля под Ла-Маншем строители начали копать с противоположных сторон, сопоставляя свои местоположения при помощи СРНС NAVSTAR (GPS), что, в результате, позволило им встретиться ровно посередине. Системы навигации используются геодезистами, спасателями, работают на баллистических ракетах. Не первый год за рубежом в комплектацию некоторых моделей автомобилей входит приемник GPS-сиг-налов (при ввозе автомобилей в Россию приемники отключаются — этого требует наше законодательство).

Основными требованиями, которые предъявляются к СРНС, являются точность определения координат и времени и возможность получать навигационную информацию в любой момент. СРНС первого поколения — «Транзит» в США и «Цикада» в СССР — этим требованиям не удовлетворяли: во-первых, длительные перерывы между сеансами навигации (до 30 минут в приполярных районах и до 2 часов в экваториальных) не позволяли пользователю определять свое местоположение, когда захочется. Во-вторых, погрешность определения горизонтальных координат подвижного объекта была довольно большой — от 10 до 100 м. Кроме того, СРНС первого поколения не давали информации о высоте и скорости объекта.

В СРНС второго поколения был внесен ряд изменений. Проблема точности и оперативности определения координат была решена за счет увеличения количества спутников в системе.

Чтобы пользователь мог в любой момент узнать свое местоположение и время, необходимо было обеспечить одновременную радиовидимость как минимум четырех спутников, расположенных определенным образом.

Для решения этой задачи достаточно, чтобы на орбите находилось 18 спутников, однако было решено использовать 24 — для повышения точности определения координат самих спутников.

Принцип работы систем спутниковой навигации таков. Приемник навигационных сигналов измеряет задержку распространения сигнала от каждого из видимых спутников до приемника. Задержка сигнала, умноженная на скорость света, — это расстояние от спутника в момент излучения до приемника в момент приема. Из принятого сигнала приемник получает информацию о положении спутника.

Геометрически работу спутниковой навигационной системы можно продемонстрировать следующим образом: пользователь находится в точке пересечения нескольких сфер, центрами которых являются видимые спутники. Радиусы сфер равны дальности до каждого из спутников. Для определения широты и долготы приемнику необходимо принимать сигналы как минимум от трех спутников; прием сигнала от четвертого спутника позволяет определить и высоту объекта над поверхностью. Эти данные позволяют найти координаты пользователя, решив некоторую систему уравнений. При определении координат объекта возникают ошибки, связанные с влиянием ионосферы, температуры воздуха, атмосферного давления и влажности (каждый фактор вносит погрешность до 30 м). Эфемеридная погрешность (разница между расчетным и реальным положением спутника) составляет от 1 до 5 м; интерференция тоже вносит свой вклад. Суммарная ошибка может достигать 100 м. 

Для уменьшения погрешностей используется так называемый дифференциальный режим GPS (Differential GPS). В этом режиме приемник пользователя получает поправки к своим координатам от базовой станции. Обычно поправки передаются в реальном времени по радиоканалу. В результате точность определения координат достигает 1-5 м. Новым классом систем относительной навигации являются системы, обеспечивающие (в реальном времени) точность местоопределения порядка 1 см. Суть технологии такова: опорная станция и приемник пользователя получают сигналы от спутников. Затем опорная станция посылает результаты измерения фазы и псевдодальности всех видимых спутников на приемник пользователя. В результате обработки на приемнике относительные координаты определяются с точностью до 1 см в реальном времени с надежностью 0,999.

На сегодняшний день существует две крупные спутниковые радионавигационные системы: NAVSTAR и ГЛОНАСС.

NAVSTAR

NAVSTAR (Navigation System with Time and Ranging) (или Global Positioning System — GPS) — СРНС, созданная в США при реализации проекта СОИ. В ее создание было вложено более 19 млрд. долларов. Система работает в двух режимах: PPS (Precise Positioning Service — высокая точность измерений) и SPS (Standard Positioning Service — стандартная точность измерений). PPS-режим используется в основном военными и обеспечивает точность до нескольких сантиметров, а режим SPS (благодаря заботе Минобороны США о национальной безопасности) позволяет определить координаты объекта лишь с точностью до 100 м. Отметим, что режим SPS стал общедоступен только после гибели «Боинга 747» над Татарским проливом в 1983 году.

СРНС NAVSTAR состоит из космического сегмента, сегмента контроля и пользовательского сегмента. Космический сегмент образуют 24 спутника, которые находятся на шести орбитах (по четыре спутника на каждой) на высоте примерно 20200 км. Период их обращения составляет около 12 ч., угол наклона орбиты относительно плоскости экватора — 55… Рабочих частот, на которых излучаются навигационные сигналы NAVSTAR, две: 1227,6 МГц (диапазон L1) и 1575,42 МГц (диапазон L2). В диапазоне L1 излучаются сигналы С/А, предназначенные для гражданских пользователей, а также сигналы военного кода P (который может заменяться зашифрованной версией — Y-кодом) в режиме PPS. В диапазоне L2 передаются только сигналы военного кода. Аппаратура пользователя принимает сигналы в обоих диапазонах, что позволяет исключить ионосферные погрешности.

Сегмент контроля — это станции наблюдения, расположенные на Гавайях, атолле Кваджелейн (Kwajalein), островах Вознесения (Ascension Island) и Диего-Гарсия (Diego Garcia) и в Колорадо-Спрингс (Colorado Springs), три наземные антенны (на островах Вознесения, Диего-Гарсия и атолле Кваджелейн), а также главная контрольная станция, расположенная на базе Falcon военно-воздушных сил США в Колорадо. Станции наблюдения следят за спутниками, записывая всю информацию об их движении, которая передается на главную командную станцию для корректировки орбит и навигационной информации.

Пользовательский сегмент — это приемники пользователей, где производится обработка данных и расчет координат, скоростей и времени.

Круг пользователей системы GPS широк. Дешевизна и миниатюрность приемников GPS-сигналов (некоторые из них по размерам не больше наручных часов обусловили их популярность за рубежом. Недавно компания SiRF Technology сообщила о разработке однокристального приемника GPS. К октябрю 2001 года планируется встраивать GPS-при-емники в мобильные телефоны — для удобства работы службы спасения 911 (естественно, и Большому Брату удобно). SiRF Technologies утверждает, что будущее станет «location-enabled», то есть и дети нигде не заблудятся, и при поломке автомобиля не придется долго объяснять диспетчеру автосервиса, где ты находишься. Красота! Более подробно со сценариями этого будущего можно ознакомиться на . Интересно, правда, как же все это будет работать в России?

Если в ближайшее время законодательство в отношении систем спутниковой навигации не будет изменено (об этом — ниже), то все владельцы «мобильных» с GPS-приемниками будут «ходить под статьей». А с иностранцами вообще беда: либо сотовый оставляй на границе, либо оформляй документы на приемник. Хотя наши чекисты (впрочем, как и их иностранные коллеги) вряд ли упустят шанс контролировать всех владельцев GPS-приемников — это покруче СОРМа будет.

ГЛОНАСС

Первый отечественный навигационный спутник «Космос-192» был выведен на орбиту 27 ноября 1967 года, а в 1979 году была создана навигационная система первого поколения «Цикада», в составе которой было 4 низкоорбитальных спутника. В ответ на создание американцами NAVSTAR, советские военные начали разрабатывать систему ГЛОНАСС (ГЛОбальная Навигационная Спутниковая Система). В 1982 году были запущены первые ее спутники. До штатного же состояния количество спутников ГЛОНАСС было доведено в 1996 году. Помимо военных задач, советские навигационные системы использовались и в гражданском флоте.

Спутники ГЛОНАСС, находящиеся на высоте 19100 км, излучают навигационные сигналы в двух диапазонах L1 (1200 МГц) и L2 (1600 МГц). Они размещены на трех орбитах (по 8 спутников на каждой) под углом 45… Период обращения спутников — 11 ч. 15 мин. Точность определения горизонтальных координат составляет 50-70 м, вертикальных — 70 м (с точностью 99,7%).

СРНС ГЛОНАСС распространена не столь широко, как GPS: до недавних пор пользоваться услугами ГЛОНАСС могли лишь немногие. В 1995 году правительство издало постановление за номером 237 «О проведении работ по использованию глобальной навигационной спутниковой системы ГЛОНАСС в интересах гражданских потребителей». В этом постановлении министерству обороны, РКА и министерству транспорта предписывалось обеспечить услугами ГЛОНАСС «отечественных военных и отечественных гражданских потребителей и зарубежных гражданских потребителей». А 18 февраля 1999 года вышло распоряжение президента, где он соглашается с «предложением правительства об отнесении глобальной навигационной спутниковой системы <…> к космической технике двойного назначения, применяемой в научных, социально-экономических целях, в интересах обороны и безопасности Российской Федерации».

При использовании систем спутниковой навигации в нашей стране возникает ряд проблем, обусловленных знаменитой российской спецификой. Дело в том, что высокая точность определения координат может пойти во вред пользователю. «Компетентные органы» могут заподозрить в использовании оборудования спутниковой навигации злой умысел. Это случилось с одним из сотрудников фирмы Qualcom, которого чуть не засадили за решетку по обвинению в шпионаже. Системы спутниковой навигации, установленные в зарубежных автомобилях, теряют смысл на территории России. Хотя и не полностью: например, фирма «Фольксваген» предлагает использовать экран навигационной системы как панель для высвечивания режимов работы аудиосистемы. А все потому, что любой автомобильный навигационный комплекс полезен только при наличии карты местности, записанной на CD. Федеральная же служба геодезии и картографии (Роскартография), опираясь на закон «О государственной тайне», отнесла к секретным «…сведения о рельефе местности, отображенные на любом носителе, с точностью и подробностью нанесения на карты масштабов 1:50000 и крупнее, на площади, превышающей 250 кв. км <…> координаты географических объектов, определенные с точностью 30 метров и выше…». Так что «счастливые» обладатели автомобильных систем спутниковой навигации должны написать заявку, письменно обосновать необходимость использования навигационной системы, приложить к этим документам полную техническую документацию на оборудование и пойти в местное отделение Госсвязьнадзора. Все это придумано, видимо, для того, чтобы «привлечь» как можно больше гражданских пользователей систем спутниковой навигации. Однако будем надеяться, что привилегия определять свое местоположение рано или поздно будет доступна и нам.

 

Глава 4. Я и GPS

Большинство из тех, кто увлекается рыбалкой, знают, а многие и пользуются таким прибором, как эхолот. Он всегда поможет определить глубину, покажет, есть ли рыба в данном месте. При наличии дополнительных датчиков определит вашу скорость, температуру воды, положение слоев с разной температурой и позволит просматривать толщу воды по бортам судна. А вот другое полезное изобретение человечества, такое как GPS еще мало знакомо и редко применяется рыболовами, хотя предоставляемые им преимущества позволяют сделать рыбалку еще более успешной.

GPS — это сокращение от Global Positioning System (Глобальная Система Позиционирования), система позволяющая определять свои географические координаты в любой точке земного шара, в любое время и с достаточно высокой точностью. Система состоит из 32-х спутников (24 работающих, 8 резервных) вращающихся вокруг земли по 6 точно определенным орбитам. Эти спутники передают, с определенным интервалом времени, сигналы, которые улавливаются специальными приемниками — GPS навигаторами. Сигнал спутника содержит информацию о номере спутника и точном времени отправки сигнала. Спутники используют высокоточные атомные часы, а в процессор навигатора заложена информация, где и в какое время каждый спутник должен находится. Сопоставляя время прохождения сигнала и местоположение спутников, навигатор и определяет свои точные географические координаты. Раньше этой системой пользовались только военные и спортсмены, но уже несколько лет система GPS доступна рыболовам и охотникам.

Прибор поможет вам найти однажды посещенное место там, где ориентация с помощью окружающих объектов невозможна или затруднена (море, водохранилище, лес). С ним вы никогда не заблудитесь в незнакомой местности даже в полной темноте. Вы всегда сможете сохранить в памяти прибора координаты, например, сомовьей ямы посреди большой реки или водохранилища, чтобы в следующий раз не тратить время на ее поиски с помощью только эхолота. Увлекшись рыбалкой до темноты, всегда сможете вернуться к нужному месту на берегу наикратчайшим путем. Используя интерфейсный кабель, вы можете сохранить координаты интересных мест в персональном компьютере и передавать их знакомым и друзьям. Если в вашем компьютере есть электронная карта местности с координатной привязкой, вы можете перед поездкой определить координаты мест, которые собираетесь посетить, а затем ориентироваться на местности уже только с помощью GPS приемника.

Точность, с которой приемник определяет свое местоположение зависит от состояния ионосферы, количества доступных спутников, и их взаимного расположения. В лесу или городе, из-за создаваемых деревьями или зданиями помех точность ниже, а на открытой местности (поле или море) она максимальна. В среднем точность составляет от 5 до 30 метров.

На сегодняшний день существует большое количество разных GPS навигаторов, и каждый может выбрать себе прибор наиболее подходящий ему по своим техническим возможностям и цене. Отдельную группу составляют приборы, использующие географические карты. С ними можно планировать автомобильные маршруты и ориентироваться в незнакомом городе. Существовавшая до недавнего времени проблема отсутствия подробных электронных карт Украины для таких приемников сейчас успешно решается, и в скором времени эти карты будут доступны практически во всех используемых GPS форматах.

 

Глава 5. Основы GPS

Во всех сегментах и элементах GPS используется оборудование, построенное на самых современных «высоких технологиях», но идеи в ее основе удивительно просты. Давайте рассмотрим из них пять наиболее важных.

1. Местоопределение по расстояниям до спутников

2. Измерение расстояний до спутников

3. Обеспечение точной привязки по времени

4. Определение положения спутника в пространстве

5. Компенсация погрешностей

Идея первая: Местоопределение по расстояниям до спутников.

GPS основана на определении координат местоположения по расстояниям до спутников. Это означает, что наши координаты на земле вычисляются на основе измеренных системой расстояний до группы спутников в космосе. Спутники выполняют роль точно координированных точек отсчета.

Например, если мы знаем, что от нас до спутника А, скажем, 11000 км, то это значит, что мы находимся где-то на воображаемой сфере радиусом в 11000 км с центром, совпадающим со спутником А.

Если одновременно расстояние до спутника В составляет 12000 км, то это еще больше сократит пространство, где мы можем находиться. Так как единственная область, где мы будем на расстоянии 11000 км от спутника А и 12000 км от спутника В, есть линия пересечения двух сфер, т.е. окружность.

Затем, если мы произведем измерение дальности еще и до третьего спутника, то сможем свести возможное местоположение до двух точек. Эти две точки находятся там, где сфера радиусом в 13000 км пересекается с окружностью, получившейся от пересечения сфер с радиусами 11000 км и 12000 км.

Обычно, одна из двух точек — это неправдоподобное решение. Вычислители GPS-приемников снабжены различными устройствами, автоматически определяющими истинное местоположение из двух возможных.

Вместе с тем, если вы точно знаете свою высоту, как например моряки, находящиеся на уровне моря, вы можете исключить одно из спутниковых измерений. Одна из сфер может быть заменена на сферу с центром в центре Земли и радиусом, равным радиусу Земли плюс высота.

Таким образом:

• Координаты местоположения вычисляются на основе измеренных дальностей до спутников.

• Для определения местоположения необходимо провести четыре измерения.

• Трех измерений достаточно, если исключить неправдоподобные решения.

• Еще одно измерение требуется по техническим причинам, которые будут рассмотрены ниже.

Идея вторая: Измерение расстояния до спутника.

Удивительно, но идея, лежащая в основе измерения расстояния до спутника, есть всего-навсего старое равенство, c которым все мы встречались в школе: «расстояние есть скорость, умноженная на время движения». GPS работает, измеряя время, за которое радиосигнал доходит от спутника до нас, а затем по этому времени вычисляет расстояние.

Радиоволны распространяются со скоростью света: 300 000 км в секунду. Если мы сможем точно определить момент времени, в который спутник начал посылать свой радиосигнал, и момент, когда мы получили его, мы будем знать, как долго он шел до нас. И тогда, умножая скорость распространения сигнала на время в секундах, получим расстояние до спутника.

Естественно, что наши часы должны быть весьма точны, так как свет распространяется непостижимо быстро. Если бы спутник находился прямо над головой, потребовалось бы всего около 0,06 секунды для прохождения радиосигнала от спутника до нас.

GPS строится с применением совершенного способа измерения времени, основанного на атомном стандарте частоты, который обеспечивает ход бортовых часов спутника с наносекундной точностью. А это 0,000000001 секунды!

Главной трудностью при измерении времени прохождения радиосигнала является точное выделение момента времени, в который сигнал передан со спутника. Для этого разработчики GPS обратились к разумной идее: синхронизировать спутники и приемники так, чтобы они генерировали один и тот же код точно в одно и то же время.

А далее, все, что нам остается сделать, так это принять код от спутника и посмотреть, как давно наш приемник сгенерировал тот же код. Выявленный таким образом сдвиг одного кода по отношению к другому будет соответствовать времени прохождения сигналом расстояния от спутника до приемника. Преимуществом использования кодовых посылок (кодовых последовательностей) является то, что измерения временного сдвига могут быть проведены в любой момент времени.

Как спутники, так и приемники генерируют очень сложные цифровые кодовые последовательности. Коды усложняются специально, чтобы их можно было бы надежно и однозначно сравнивать, а также по некоторым другим причинам. Так или иначе, коды настолько сложны, что они выглядят как длинный ряд случайных импульсов. В действительности они являются тщательно отобранными «псевдослучайными последовательностями», которые повторяются каждую миллисекунду.

Таким образом, расстояние до спутника определяется путем измерения промежутка времени, который требуется радиосигналу, чтобы дойти от спутника до нас.

Мы считаем, что как спутник, так и приемник генерируют один и тот же псевдослучайный код строго одновременно в общей шкале времени.

Мы определяем, сколько времени потребовалось сигналу со спутника, чтобы дойти до нас, путем сравнения запаздывания его псевдослучайного кода по отношению коду приемника.

Идея третья: Обеспечение совершенной временной привязки.

Если спутник и приемник имеют расхождение шкал времени (выходят из синхронизации) даже на 0,01 с, измерение расстояния будет произведено с ошибкой в 2993 км!

По крайней мере одну сторону проблемы синхронизации часов обеспечить достаточно просто.

На борту спутников установлены атомные часы. Они исключительно точные и дорогие. Они стоят около 100000 долларов, и каждый спутник имеет их 4 штуки, чтобы можно было бы гарантировать, что во всяком случае хотя бы одни работают обязательно.

К счастью, существует способ обойтись в наших приемниках часами умеренной точности — секрет в том, чтобы произвести измерение дальности еще до одного спутника.

Он состоит в том, что если три точных измерения определяют положение точки в трехмерном пространстве, то четыре неточных позволят исключить относительное смещение шкалы времени приемника.

Конечно, GPS — трехмерная система, но принцип, который мы обсуждаем, для простоты изложения мы рассмотрим на плоскости, т.е. в двух измерениях.

Вот как это происходит. Предположим, часы приемника не так совершенны, как атомные. Их ход соответствует кварцевым часам, но они не вполне сверены с единым временем системы. Скажем, они отстают на одну секунду. Давайте посмотрим, как это скажется на вычислении нашего местоположения.

Предположим, что мы находимся в четырех секундах от спутника А, и в шести секундах от спутника В. На плоскости этих двух измерений было бы достаточно для привязки нашего местоположения к какой-либо одной точке фактического местоположения. 

Если бы мы использовали приемник с часами, отстающими на секунду, он определил бы, что расстояние до спутника А составляет пять секунд, а до спутника В — семь секунд. В результате появятся две новые окружности, пресекающиеся уже в другой точке.

Давайте добавим еще одно измерение. В двухмерном варианте это означает использование третьего спутника.

Предположим, (если у нас совершенные часы) спутник С находится в восьми секундах от нашего истинного положения и все три окружности пересекаются в одной точке, так как они соответствуют истинным дальностям до трех спутников.

Если добавить одну секунду отставания ко всем трем измерениям, то новые окружности, соответствующие уже не истинным дальностям, а так называемым «псевдодальностям», не пересекутся в одной точке, а образуют некоторый треугольник, и вероятное местоположение окажется где-то внутри него.

Таким образом, не существует точки, которая может быть одновременно в 5, 7 и 9 секундах соответственно от точек А, В и С. Это физически невозможно.

При обработке ошибочных сигналов компьютер приемника начинает вычитание (или прибавление) некоторого (одного и того же для всех измерений) интервала времени, к измеренным им псевдодальностям. Он продолжает корректировать время во всех измерениях до тех пор, пока не найдет решение, которое «проводит» все окружности через одну точку.

Из сказанного следует, что при трехмерном местоопределении (т.е. при одновременном определении трех координат — долготы, широты и высоты точки над принятым в расчетах земным эллипсоидом) необходимо выполнить четыре измерения, чтобы исключить погрешность временной привязки часов приемника к единому системному времени.

Необходимость в 4-х измерениях самым существенным образом сказывается на проектировании GPS-приемников. Если необходимо выполнять непрерывное местоопределение в реальном масштабе времени, то следует использовать приемник, имеющий по крайней мере четыре канала измерений. То есть такой, у которого с каждым из четырех спутников постоянно работает отдельный канал приема и первичной обработки сигналов.

Таким образом:

• Точная временная привязка — ключ к измерению расстояний до спутников.

• Спутники точны по времени, поскольку на борту у них — атомные часы.

• Часы приемника могут и не быть совершенными, так как их уход можно исключить при помощи тригонометрических вычислений.

• Для получения этой возможности необходимо произвести измерение расстояния до четвертого спутника.

• Необходимость в проведении четырех измерений определяет устройство приемника.

Идея четвертая: Определение положения спутника в космическом пространстве.

До сих пор во всех наших рассуждениях мы принимали, что знаем точно, где в космическом пространстве находятся спутники и, исходя из этого, можем вычислить наше местоположение по их координатам и расстояниям до них. Но как узнать, где в космическом пространстве располагается нечто, двигающееся с большой скоростью и удаленное от нас на расстояние в 18000 км?

Англичане говорят: «Кому на месте не сидится, тот добра не наживает». Для высоколетящего спутника 18000-километровая высота является настоящим приобретением. Все на такой высоте находится полностью вне земной атмосферы. А это означает, что полет по орбите вокруг Земли будет описываться очень простой математикой. Подобно Луне, которая надежно вращается вокруг нашей старой планеты миллионы лет без каких-либо значительных изменений в периоде обращения, спутники GPS совершают такое же очень предсказуемое орбитальное движение вокруг Земли.

Орбиты известны заранее, а приемники имеют «альманах», размещаемый в памяти их компьютеров, из которого известно, где будет находиться каждый спутник в любой момент времени.

Чтобы сделать систему более совершенной движение спутников GPS находится под постоянным контролем специальных наземных станций слежения. Обращаясь вокруг планеты один раз за 12 часов, спутники GPS проходят над контрольными станциями дважды в сутки. Это дает возможность точно измерять их высоту, положение и скорость.

После того, как станции определили параметры движения спутника, они передают эту информацию обратно на спутник, заменяя ею в памяти бортового компьютера прежнюю. 

Далее эти небольшие поправки вместе с дальномерными кодовыми сигналами будут непрерывно передаваться спутником на Землю.

Спутники GPS передают не только псевдослучайный дальномер-ный код, но также и информационные сообщения о своем точном положении на орбите и о состоянии своих бортовых систем.

Все виды приемников GPS используют эту информацию вместе с информацией, заключенной в альманахе, для того, чтобы установить точное положение каждого спутника в космическом пространстве.

Таким образом:

• Для вычисления своих координат нам необходимо знать как расстояния до спутников, так и местонахождение каждого в космическом пространстве.

• Спутники GPS движутся настолько высоко, что их орбиты очень стабильны и их можно прогнозировать с большой точностью.

• Станции слежения постоянно измеряют незначительные изменения в орбитах, и данные об этих изменениях передаются со спутников.

Идея пятая: Ионосферные и атмосферные задержки сигналов.

Но как бы совершенна ни была система, существуют два источника погрешностей, которые очень трудно избежать. Наиболее существенные из этих погрешностей возникают при прохождении радиосигналом ионосферы Земли — слоя заряженных частиц на высоте от 120 до 200 км.

Эти частицы существенным образом влияют на скорость распространения света, а следовательно, и на скорость распространения радиосигналов GPS. А это делает невозможными наши вычисления расстояний до спутников, поскольку они построены на предположении о том, что скорость распространения радиоволн строго постоянна.

Существуют два метода, которые можно использовать, чтобы сделать ошибку минимальной.

Во-первых, мы можем предсказать, каково будет типичное изменение скорости в обычный день, при средних ионосферных условиях, а затем ввести поправку во все наши измерения. Но, к сожалению, не каждый день является обычным.

Другой способ состоит в сравнении скоростей распространения двух сигналов, имеющих разные частоты несущих колебаний.

Таким образом, если мы сравним время распространения двух разночастотных компонент сигнала GPS, то сможем выяснить, какое замедление имело место. Этот метод корректировки достаточно сложен и используется только в наиболее совершенных, так называемых «двухчастотных» приемниках GPS.

После того, как сигналы GPS пересекли ионосферу, расположенную очень высоко, они входят в атмосферу, в которой происходят все погодные явления. Водяные пары в атмосфере также могут влиять на радиосигналы. Ошибки по величине схожи с ошибками, вызываемыми ионосферой, но их почти невозможно скорректировать. К счастью, их суммарный вклад в погрешность местоположения значительно меньше, чем ширина обычной улицы.

Другие виды погрешностей

Как бы точны ни были атомные часы на спутниках, все же и у них имеются источники небольших погрешностей. Специальные станции следят за этими часами и могут выверить их, если выявиться хотя бы незначительный уход.

Наши приемники на Земле также иногда ошибаются. Компьютер приемника может округлить математическую операцию, или электрические помехи могут привести к ошибочной обработке псевдослучайных кодов.

Еще один тип погрешностей — это ошибки «многолучевости». Они возникают, когда сигналы, передаваемые со спутника, многократно переотражаются от окружающих предметов и поверхностей до того, как попадают в приемник.

Все источники погрешностей, которые мы до сих пор обсуждали, суммируются и придают каждому измерению GPS некоторую неопределенность.

Геометрия — некоторые углы лучше других

Для достижения наибольшей точности в хорошем приемнике GPS учитывается некоторый своеобразный геометрический принцип, названный «Geometric Dilution of Precision — GDOP» (геометрический фактор снижения точности).

Суть в том, что в зависимости от взаимного расположения спутников на небосводе геометрические соотношения, которыми характеризуется это расположение, могут многократно увеличивать или уменьшать все неопределенности, о которых мы только что говорили. 

Мы представляли наше местоположение относительно спутников в виде окружностей, центры которых совмещены со спутниками. Ну а теперь, когда мы знаем, что каждое измерение содержит в себе и небольшую неопределенность, нам следует эти четкие окружности вообразить размытыми.

Наличие областей неопределенности означает, что мы не можем больше считать, что находимся в четко определенной точке. Можно сказать лишь, что мы где-то внутри этой суммарной области неопределенности…

Вот что такое «Геометрический фактор уменьшения точности»

В зависимости от угла между направлениями на спутники область пересечения размытых окружностей (область неопределенности местоположения) может быть либо аккуратным небольшим квадратиком, либо сильно растянутым и неправильным четырехугольником.

Проще говоря, чем больше угол между направлениями на спутники, тем точнее местоопределение.

Исходя из этого, хорошие приемники снабжают вычислительными процедурами, которые анализируют относительные положения всех доступных для наблюдения спутников и выбирают из них четырех кандидатов, т.е. наилучшим образом расположенные четыре спутника.

Точность GPS

Результирующая погрешность GPS определяется суммой погрешностей от различных источников. Вклад каждого из них варьируется в зависимости от атмосферных условий и качества оборудования. Кроме того, точность может быть целенаправленно снижена Министерством обороны США в результате установки на спутниках GPS так называемого режима S/A («Selective Availability» — ограниченный доступ). Этот режим разработан для того, чтобы не дать возможному противнику тактического преимущества в определении местоположения с помощью GPS. Когда и если этот режим установлен, он создает наиболее существенную компоненту суммарной погрешности GPS.

Таким образом:

• Ионосфера и атмосфера Земли вызывают задержки сигнала, которые можно пересчитать в ошибки местоопределения.

• Некоторые из этих ошибок могут быть устранены математически и путем моделирования.

• Другие источники ошибок — это часы спутников, приемники, и многолучевость.

• Не наилучшее взаимное расположение спутников в небе приводит к увеличению всех компонент суммарной погрешности местоопределения.

 

Глава 6. GPS для пользователя системы слежения

Чтобы успешно использовать навигационную аппаратуру, работающую на технологии GPS требуется понимать некоторые особенности этой системы.

Система GPS Navstar базируется на 24-х спутниках, довольно быстро обращающихся вокруг земли.

GPS является пассивной системой навигации, и никоим образом не является системой связи. Это означает, что вы принимаете сигнал спутников системы, но ваша аппаратура ничего не передает.

Установка антенны

Сигнал спутников GPS имеет частоты 1.227 и 1.575 ГГц. Что это означает для пользователя? Для электромагнитной волны такой частоты будут непрозрачными металлические поверхности, некоторые пластмассы, дерево, бетон. При этом, стекло пропускает сигнал, листва деревьев пропускает, но ослабляет. Приблизительно оценить прохождение сигнала можно, проведя аналогию со светом.

Важно помнить это, выбирая место на транспортном средстве, куда будет устанавливаться антенна GPS приемника. Поскольку спутники системы могут находиться в любом месте небосвода, идеальной является такая установка антенны, когда с ее положения небосвод виден целиком. Антенна, лежащая на приборной доске автомобиля, «увидит» в лучшем случае 2/3 возможных спутников. Так как сигнал GPS будет также экранироваться окружающими зданиями и деревьями, обеспечение наилучшего обзора для антенны является необходимым.

Качество приема

Даже если приемник выдает координаты с установленной под стеклом автомобиля антенной, это не означает, что все хорошо. Качество определения координат может быть лучше или хуже, в зависимости от того набора спутников, с которыми работает прибор.

Дело в том, что для получения данных о местоположении (место-определении) приемник должен увидеть 4 спутника (в худшем случае — 3, но ошибка при этом может быть значительной). Как правило, на небосводе их присутствует намного больше. Если приемник имеет возможность выбрать из большого количества принимаемых сигналов лучшие, это положительно скажется на качестве определения координат. Если же выбора нет, то точность работы будет труднопредсказуемой.

Включение приемника

Сразу ли после включения GPS приемника начнет работать навигационная система? Увы, это не так.

Существует два периода выхода приемника на режим.

В первом — «горячий старт» — приемник запускается довольно быстро, но только при условии, что он бездействовал менее 30-ти минут.

Если времени прошло больше — то запуск приемника займет существенно больше времени, до нескольких минут. В течение этого времени могут быть получены данные о времени и скорости, но не координаты. Этот режим называется «Холодным стартом».

Слово «Бездействовал» относится не только к выключению питания, а также к потере GPS сигнала. Например, часовая стоянка со включенным приемником в железном ангаре вызовет необходимость в «холодном старте».

 

Глава 7. Основные функции GPS-приемников

Даже если вы намерены все лето проваляться на диване, безвылазно просидеть на даче или с утра до ночи кланяться грядкам на своем огороде, все равно не спешите утверждать, что будете точно знать свое местоположение. Разные бывают ситуации.

Как-то сосед по даче отправился прогуляться по лесу. Заплутал, продрог, промок, чуть ли не по пояс провалившись в болото, и часа три кружил по окрестностям, пока, наконец, не возвратился с противоположной стороны в изодранных штанах и скверном расположении духа. После чего философски заметил, что изголодавшийся за зиму по живой природе горожанин, резко расширяя с наступлением лета ареал обитания, попадает как бы в другое пространство, с иными расстояниями и ориентирами, потому и теряется. В общем, сделал выводы, вспомнил, с какой стороны растет мох на деревьях, как ориентироваться по солнцу, какие особенности месторасположения муравейников, и через пару дней, прихватив для уверенности компас, отправился за грибами и… снова заблудился.

Знаете, есть такие люди, умные, талантливые, во многом сведущие, только вот в чем-то им совершенно не везет. Точно как мой сосед. Великолепный программист и тонкий ценитель древнегреческой литературы, он оказался совершенно неспособным ориентироваться среди «березок средней полосы». Неравнодушный к достижениям цифровой электроники, сосед решил вопрос кардинально — перестал искушать судьбу и, здраво рассудив, что с техникой надежнее будет, следующую вылазку благополучно осуществил в компании с небольшим приборчиком…

Потрясающие возможности этого электронного устройства давно известны туристам, рыболовам и автомобилистам — тем, кто предпочитает отдыхать вдали от дома, суеты шумного города, душной квартиры и прочих благ цивилизации. Любители экстремальных путешествий, пара-планеристы и яхтсмены считают его незаменимым в своей непростой и богатой приключениями жизни. Он не позволит заблудиться, всегда подскажет дорогу и точное время. Что же это за чудо-прибор? Навигационный приемник системы глобального позиционирования (GPS) — маленький специализированный компьютер, способный вычислять местоположение по радиосигналам, принимаемым со спутника.

GPS первоначально строилась Министерством обороны США, но впоследствии была открыта для широкого использования во всем мире (в России, кстати, тоже есть своя навигационная система — ГЛОНАСС, пока не имеющая широкого применения). Спутников 24 штуки, и в каждый момент времени в любой точке земного шара (если только вы не в Гренландии, Антарктиде или на Земле Франца Иосифа, то есть не в приполярных областях) можно принимать сигналы чуть ли не половины из них. Радиосигнал слабенький, через плотную крону деревьев и внутрь зданий почти не проникает, но если открыта хотя бы треть неба, приемник «видит» четыре-пять спутников и определяет текущее местоположение (широта, долгота и высота над уровнем моря) с точностью до 15 метров и частотой раз в секунду. Вот, собственно, и вся его основная задача. И хотя сами по себе координаты мало что скажут простому пользователю, но их накопление, несложная обработка и двумерная визуализация дают впечатляющий эффект.

Допустим, вы заядлый грибник. Запомнив координаты точки входа в лес, можно уже не беспокоиться о том, куда вас леший заведет. Приемник — пока включен — будет постоянно вычерчивать на экране «нить Ариадны» — весь пройденный путь, благодаря чему всегда можно вернуться на исходный рубеж. Кроме того, в память приемника можно заносить грибные места и со временем собрать целую базу данных. А если вы человек предприимчивый, то, положив собранные данные на карту, можно и компакт-диск сваять, например «Грибные места Солнечногорского района вкупе с километровой картой местности». То же и в отношении рыбалки: сети ни в жизнь не потеряете, место вчерашнего клева найдется в два счета. А какой технологически продвинутый рыбак устоит от покупки, скажем, такого сидюка: «Заветные ямы Иваньковского водохранилища и места бурного клева леща». Впрочем, успех товара прогнозировать не берусь — не рыбак.

Кроме координат, GPS-приемник предоставляет своему хозяину массу полезной информации. Он с легкостью посчитает максимальную и среднюю скорость движения, которую вы развиваете при ходьбе, беге, езде на велосипеде или спуске на лыжах с горы; поможет оценить, правильно ли работает спидометр автомобиля; укажет стороны света, покажет направление на цель и примерное время, через которое вы там окажетесь, двигаясь с текущей скоростью.

Работать с GPS-приемником совсем не трудно. Общение с ним организовано на основе нескольких типовых экранов (их может быть четыре, а может и девять). Включаешь прибор, на экране — небо с видимыми спутниками и столбчатые диаграммы уровня принимаемого сигнала. Если прибор давно не включался, для определения координат ему потребуется около минуты, а то и больше (так называемый холодный старт), в ином случае данные появятся на экране уже через 15-20 секунд (это второй типовой экран приемника). Отдельно отображаются путевые точки (waypoint), курс движения и символическая (или реальная) карта местности. Любую точку маршрута можно запомнить как путевую, произвольно выбрать исходный пункт и цель маршрута, вернуться обратно по уже пройденному пути (режим «Trackback»). Выпускаемые сегодня модели можно подключать к настольному или карманному компьютеру, что позволяет загружать в приемник электронные карты и точки планируемого маршрута, а также считывать по окончании путешествия пройденную трассу.

Все это базовые функции, имеющиеся и у самых простых, и у навороченных устройств. Вторые отличаются от первых, как правило, более мощными картографическими возможностями и дополнительными фичами. Например, могут встраиваться: барометрический высотомер, магнитный компас (направление на север в обычном приемнике определяется только при движении по прямой линии), звуковой сигнал, поддержка картриджей расширения памяти, а также расчет времени восхода и захода солнца, ведение календаря, калькулятор охотника и рыболова.

Дополнительные картографические функции GPS-приемников повышают его цену в несколько раз. Так что в выигрыше оказываются владельцы карманных компьютеров: создав связку GPS-КПК, они имеют возможность пользоваться более мощной и, главное, более дешевой навигационной системой. Достаточно приобрести простейший навигатор, а всю вычислительную работу возложить на КПК, благо программного обеспечения и электронных карт для этих целей предостаточно.

Сегодня GPS-модули встраиваются в часы, мобильные телефоны, бортовые компьютеры автомобилей, выполняются в виде платы расширения для КПК. Разработано великое множество портативных навигационных приемников. Есть что выбрать горожанам в преддверии летних отпусков. Не пожалейте денег на это замечательное устройство, ведь оно позволит вам быть хозяином положения и уверенно двигаться в любом направлении.

В настоящее время существует около тысячи различных моделей GPS-приемников, выпускаемых более чем полутора сотнями компаний. В России наибольшую популярность завоевали портативные навигаторы Garmin и Magellan. Лидерами продаж являются приемники серии Garmin eTrex — новейших GPS-устройств индивидуального использования. Особенности этого семейства: малый вес (150 г.), стильный дизайн, разнообразие моделей в ценовом диапазоне от 170 до 450 долларов. Приемники другой группы — GPS II, III, V, StreetPilot, StreetPilot ColorMap — имеют широкие картографические возможности и обладают, с одной стороны, расширенным набором функций для навигации в автомобиле, с другой — большей массой (250-500 г.) и относительно высокой стоимостью (от 300 до 1200 долларов). Промежуточное положение занимают навигаторы серии GPS 12.

Отдельно упомянем приемники, предназначенные для работы с ноутбуками и КПК. Они не имеют навигационного экрана, и все сервисные вычисления приходится выполнять на компьютере. Например, Garmin GPS 35, похожий на мышь без кнопок, подключается к компьютеру через COM— или USB-порт и запитывается либо от автомобильного прикуривателя, либо от USB-порта. Он комплектуется магнитом (для установки, например, на крышу автомобиля) или присосками (на ветровое стекло или иллюминатор). Вес устройства 125 г., цена — 250 долларов.

Для некоторых КПК выпускаются специализированные модели GPS-приемников. Для Palm V/Vx — это StreetFinder (120 долларов) и Magellan GPS Companion (270 долларов). Последний работает и с Handspring Visor. Разработанные компанией Pharos миниатюрный внешний навигатор iGPS-180 (вес всего 68 г.) и iGPS-CF, выполненный в форм-факторе Compact Flash-I, пока на нашем рынке не замечены.

Кроме собственно приемников, есть и целый ряд комбинированных устройств, сочетающих функции GPS-навигатора и часов (Casio ProTrek PRT-2GP), GPS-приемника и GSM-телефона (Benefon ESC!, Benefon Track, Garmin Navtalk II).

Что выбрать?

Учитывая большое разнообразие моделей, перед покупкой необходимо четко уяснить, зачем нужен прибор и сколько денег не жалко на него потратить.

Основные навигационные возможности и эксплуатационные характеристики почти у всех устройств одинаковы: двенадцать параллельных каналов приема радиосигналов со спутника, примерно одинаковое время «холодного» (45 с) и «теплого» (10-15 с) старта, одна и та же точность определения координат — 15 м. Практически все модели могут подключаться к компьютеру. Цена же зависит от уровня предоставляемого сервиса.

Так как на выбор зачастую влияет именно цена, мы условно разделим модели на пять ценовых категорий.

До 200 долларов

Самые простые устройства: eTrex, GPS 12 и Magellan 300. Два последних выпускаются уже несколько лет, eTrex — модель относительно новая. GPS 12 немного легче своих собратьев, но по размерам чуть больше. Magellan и eTrex питаются от двух батареек АА, а GPS 12 — от четырех, зато и время его непрерывной работы больше. Самый дешевый среди них — Magellan (150 долларов). Наилучшее качество дисплея — у eTrex. И у него же недостаток — отсутствует функция прокрутки и масштабирования окна маршрута. У 300-го, правда, этого окна нет вообще. eTrex’ом удобно управлять одной рукой. GPS 12 отличается повышенной прочностью и влагонепроницаемостью.

До 300 долларов

В эту категории попадают: eTrex Venture, Magellan 315, GPS 12 XL. Их особенность — встроенная база данных по городам, то есть набор точек с названиями (конечно, еще не карта, но уже определенное удобство при ориентировании).

Venture отличается от своего «младшего брата» дополнительной встроенной памятью, в которую можно загружать различные точки (points of interest), например, поставляемые на компакт-дисках Garmin MapSource, и, кроме того, имеет джойстик для перемещения по картам и пунктам меню. К GPS 12 XL можно подключить выносную антенну.

К этой же группе относится eTrex Summit — модель аналогичная eTrex, но со встроенным барометрическим высотомером и электронным компасом.

До 400 долларов

Типичные представители этой группы — GPS 12СХ, eTrex Legend и eMap. Преимущества GPS 12СХ (360 долларов) над XL в том, что он имеет две дополнительные кнопки и трехцветный экран. Главная особенность eMap и eTrex — наличие дополнительной памяти, в которую можно загружать полноценные векторные карты. Legend имеет 8 Мбайт памяти, eMap — разъем для специальных картриджей флэш-памяти. Карты могут загружаться с компакт-дисков серии MapSource. Есть в продаже и специально подготовленные электронные карты России. К eMap можно подключить внешнюю антенну. Из-за низкой влагозащищеннос-ти, однако, использовать эту модель рекомендуется лишь автолюбителям.

До 500 долларов

В этом ценовом диапазоне рассмотрим три прибора — eTrex Vista и GPS III+ и StreetPilot.

Vista — самый навороченный приемник в серии eTrex: управляющий джойстик, встроенный высотомер и компас. Для загружаемых карт предусмотрена внутренняя память емкостью 24 Мбайт. GPS III+ имеет встроенную 5-мильную карту мира, которую можно пополнять данными из MapSource, а также съемную антенну. Оригинальная форма корпуса GPS III+ (треугольная призма) позволяет ориентировать экран горизонтально или вертикально, а кроме того, делает прибор удобным и для ношения в руке, и для размещения на «торпеде» автомобиля. StreetPilot позиционируется как сугубо автомобильный приемник, он включает подробную базовую карту (вплоть до основных улиц городов) Северной Америки, поддерживает работу с флэш-памятью, имеет три уровня янтарной подсветки.

Больше 500 долларов

GPS V — заметно более дорогая ($650) модель, идущая на смену III+. Новый навигатор отличается от предшественника расширенным набором функций для навигации в автомобиле.

Основное достоинство приемника StreetPilot ColorMap — 16-цветный дисплей повышенной четкости и улучшенная базовая карта. Ну и для самых крутых — модель StreetPilot III. Цена — $1200, дополнительные возможности: автоматический расчет маршрута от исходной точки до места назначения; голосовой суфлер, ведущий по маршруту; само собой разумеется, цветной экран и подробнейшие карты (увы, только Штатов).

Карты и программное обеспечение

Для загрузки в GPS-приемники картографической информации компания Garmin предлагает серию программных продуктов MapSource, включающих электронные карты нескольких уровней детализации и программную оболочку для десктопа. Подробные карты составлены только для Северной Америки, Европы и Австралии. Восточная Европа и Россия представлена поверхностно. Например, Москва состоит из МКАД, Садового кольца и нескольких основных трасс внутри города, точность прорисовки кольцевой автодороги примерно 2 км. Среди продуктов Garmin — карта мира, города Европы, топографическая карта США, навигатор по городам Австралии и даже «Рыбные места Америки» (Fishing Hot Spots). Цена компакт-дисков — от 50 до 110 долларов. Данные невозможно ни изменить, ни дополнить.

Существуют и электронные карты России. Они, как правило, создаются и распространяются компаниями, торгующими навигационным оборудованием. Карты не дешевы, например, двухкилометровка Московской области с картой Москвы до дома и планами городов Подмосковья обойдется в $95. Карта России в масштабе 1:1000000 — $200.

У владельцев карманных компьютеров выбор шире. Им достаточно приобрести простейший навигатор и интерфейсный кабель к КПК, а затем обратиться к любой поисковой машине, найти и опробовать в работе электронные карты и софт, поддерживающий работу КПК с GPS-приемником. В Сети есть и программы, предназначенные только для навигации (например, LaserMap, PocketStreet, «ПалмГИС GPS»), и программы, позволяющие, дополнительно к навигационным функциям, самостоятельно готовить карты и разрабатывать маршруты (например, Garmap или излюбленный туристами OziExplorer).

Мультиплексный

Мультиплексный приемник имеет только один канал. В один момент времени он принимает сигналы только одного спутника, переключаясь между несколькими доступными. Такие приемники лучше работают на открытом пространстве, т.к. сигнал легко может быть потерян из-за строений или других препятствий. Мультиплексные приемники уже практически не используются.

Параллельный

Параллельный приемник имеет несколько каналов (обычно — 12), с помощью которых может одновременно принимать сигналы от нескольких спутников. Такой приемник гораздо лучше «держит» сигналы спутников и более точно определяет координаты. Если вы планируете использовать GPS в большом городе или горах, ваш выбор — параллельный приемник.

Антенна

Внешняя антенна типа «четырехзаходная спираль» представляет собой спиральную катушку в пластиковом корпусе, вынесенную из корпуса приемника. Такая антенна наиболее приспособлена к приему сигналов спутников, расположенных около горизонта, и хуже принимает сигналы спутников сверху. Обычно эта антенна является съемной, вместо нее можно подключить выносную антенну, расположив ее, например, на крыше автомобиля, для более качественного приема.

Патч-антенна

Патч-антенна — плоская антенна, встроенная в корпус приемника. В противовес внешней, она более приспособлена для приема сигналов спутников вверху и хуже принимает сигналы спутников, расположенных около горизонта.

Источник питания

Большинство портативных GPS приемников работают от батарей. Это и обеспечивает их портативность. При выборе навигатора обратите внимание на тип и количество используемых батарей, продолжительность их работы.

Внешний источник

Многие портативные GPS приемники имеют возможность подключения внешнего источника питания. Это удобно, например, если вы собираетесь весь день ехать в машине по GPS приемнику и не хотите тратить батарейки. Автомобильные, морские и авиационные GPS, встраиваемые в приборную панель, питаются от внешнего источника.

Дисплей

Все GPS приемники отображают информацию на ЖКИ дисплее. Варианты: 2 цвета или 4 градации серого.

На цветном дисплее гораздо легче читаются карты, чем на обычном экране с градациями серого. Однако, цветные ЖКИ дисплеи потребляют гораздо больше электроэнергии, соответственно батарейки садятся быстрее.

Встроенная карта

Большинство GPS приемников отображают вашу долготу, широту и высоту, но они не смогут показать ваше положение на детальной карте. Перед покупкой приемника вы должны определиться какой вид карт подходит вам больше всего и убедится, что выбранный приемник поддерживает эти карты. Многие GPS приемники уже содержат общую карту мира (базовая карта), но на ней отображены только крупные города, дороги и участки воды. Некоторые навигаторы могут хранить в памяти более качественные карты или позволяют загружать требуемые карты.

Карты памяти

Некоторые навигаторы позволяют использовать специальные картриджи (флеш-карты), с более детальными картами районов.

Загрузка карт

Некоторые GPS приемники позволяют загружать себе в память векторные карты с компьютера.

Путевые точки

Вы можете сохранять в памяти навигатора некоторое количество (500 и более) путевых точек — на ходу или задавая их координаты по карте — и составлять из них маршруты. Ваш GPS сможет провести вас вдоль этого маршрута от точки к точке. Вы также можете спланировать маршруты по бумажной карте, сохранить всю информацию в навигаторе и ходить на местности по составленному маршруту.

Запись трека (Track Log)

GPS приемники с такой функцией могут записывать трек (путь), по которому вы движетесь. Эта функция пригодится, если вы заблудились или хотите сохранить пройденный трек, чтобы пройти его когда-нибудь еще раз. Также по треку можно определить, на сколько далеко вы прошли по маршруту.

Память

Если вы собираетесь активно использовать планирование маршрутов и запись треков, вы должны выбирать GPS с достаточным объемом памяти. Продумайте, сколько может вам потребоваться точек и выберите соответствующий навигатор. Так же удостоверьтесь, что GPS не сотрет ваши данные во время замены батареек. Последние модели навигаторов имеют энергонезависимую память для хранения точек, треков и маршрутов.

Разъем данных

Одним из путей, увидеть свое положение на детальной карте местности, является подключение навигатора к компьютеру (настольному, портативному или КПК). Разъем данных позволяет сопрягать GPS с большим количеством программного обеспечения. В связи с ограниченностью памяти приемника эта функция может быть очень полезна, т.к. позволяет сохранить на ПК практически не ограниченный объем данных (точки, треки, маршруты).

Время восхода/захода Солнца

Некоторые GPS приемники могут отобразить время восхода/захода Солнца в любой заданной точке. Это позволит вам так спланировать маршрут, чтобы вы не путешествовали в темноте. Полезно для скалолазов, моряков, пилотов и т.п.

Одометр

В большинстве современных навигаторов есть одометр, который позволяет вам контролировать пройденное расстояние. Как и одометр в автомобиле, этот в некоторых случаях может быть полезен.

Спидометр

Большинство GPS приемников могут показывать скорость вашего движения. Это полезно знать для расчета продолжительности пути при текущей скорости. Приемники, имеющие спидометр, могут выдать вам такие параметры как ETA (Estimated Time of Arrival — приблизительное время, оставшееся до прибытия в заданную точку) и ETE (Estimated Time Enroute — приблизительное время суток, по прибытии в заданную точку).

Единицы измерения

Убедитесь, что приемник может отображать параметры в единицах, требуемых вам. Например, если вам требуется GPS для навигации на море, вам понадобится навигатор отображающий данные в морских милях. Другим вариантом является выборочная настройка отображения единиц: например, высота в футах, расстояние в километрах.

Индикатор точности

Большинство GPS приемников могут предупреждать вас об ухудшившейся точности определения координат. Это может происходить вследствие плохого приема сигналов спутников или неисправности навигатора.

Дифференциальный GPS

Дифференциальный GPS — технология, использующая второй GPS приемник, для корректировки сигналов спутников. Этот приемник устанавливается в точке с точно известными координатами, формирует корректирующие сигналы и передает их в эфир. Эти сигналы, вместе с сигналами спутников, принимает GPS пользователя.

Встроенная база данных

GPS приемники, разработанные специально для авиации или морской навигации, могут уже иметь в памяти путевые точки, маркеры. Такие базы содержат данные по аэропортам, портам и т.д.

Поворотный экран

Некоторые GPS приемники имеют возможность поворота изображения на своем экране. Эта функция может быть полезна при одновременном использовании GPS в автомобиле/самолете (горизонтальное положение) и в руках (вертикальное положение).

Пользовательские поля путевого компьютера

Приемники с такой функцией позволяют более удобно получать путевую информацию. Вы можете настроить поля путевого компьютера на одновременный вывод именно тех данных, которые вам нужны в данный момент.

Водозащищенность

Если вы будете использовать GPS на рыбалке, охоте или в пеших походах, выбирайте приемник с хорошей водозащищенностью. Некоторые приемники имеют запаянный корпус, они хорошо защищены от воздействия влаги и могут находится в воде некоторое время. Другие же навигаторы имеют лишь уплотненные швы и могут защитится только от дождя. Подумайте, в каких условиях предполагается эксплуатировать приемник и сделайте правильный выбор.

Многих желающих приобрести GPS навигатор пугает мнимая сложность прибора. Я попытаюсь показать, что все довольно просто и даже не русифицированный прибор очень легок в эксплуатации. Принцип его работы достаточно понятен: получая сигналы от спутников (минимум трех), он рассчитывает географические координаты вашего местоположения на поверхности Земли. Все остальное — это производные от этой основной функции, т.е. — запоминание точек (местоположений), запись траектории движения (пройденный путь), создание маршрутов (движение по сохраненным в памяти точкам). Также аппарат может иметь разные дополнительные утилиты — время восхода и захода солнца и луны в любой точке земного шара, расчет средней скорости движения за определенный промежуток времени и многое другое. Исходя из базовых функций (сигнал от спутников, навигация по определенным точкам, местоположение на карте и дополнительная информация) строится и интерфейс прибора.

Все ручные приборы имеют общую схему вывода информации — т.н. страницы. Обычно этих страниц четыре:

Страница «Информация о спутниках»

Рисунок слева показывает, что опознанные спутники отсутствуют, и текущие координаты не определены; на центральном рисунке изображен процесс сканирования и на правом — конечная картина после фиксации необходимого количества спутников, определения действующей в данной местности системы позиционирования (GPS или WAAS) и трехмерных координат.

Страница «Навигация»

На этой странице находится схематическое изображение лимба компаса, стрелки которого показывают не только направление движения, но и направление к выбранной путевой точке. Когда выбран режим следования к путевой точке, навигационный экран выглядит как на рисунке, приведенном ниже.

Страница «Карта»

На этом экране ваш курс и маршрут отображается на фоне упрощенной карты местности, на которой вы в настоящее время находитесь. По умолчанию северное направление находится всегда в верхней части экрана (значения по умолчанию могут быть изменены, например верх экрана будет направлением вашего движения). Если вы следуете к заданной путевой точке, на карте также отобразится ваше начальное, текущее, конечное положение и линия курса вдоль которой вы следуете.

Мерцающий указатель в центре экрана указывает ваши текущие координаты и направлен в сторону конечной путевой точки. Пройденный маршрут изображается сплошной линией. Выбранный масштаб карты вы можете видеть в нижней левой части экрана. Например, масштаб 4000 миль означает, что расстояние между правой и левой границами карты равно 4000 миль. Клавишами ZIN и ZOUT можно управлять масштабированием. Диапазон изменения масштаба составляет 0.05 — 4000 миль. Все аппараты имеют метрическую систему и вместо расстояния и масштаба в милях, можно установить километры или, для использования на море, морские мили.

Если прибор не предполагает использование топографических карт, то на экране вместо карты будет просто чистая поверхность, на которой будут видны ваше местоположение и все сохраненные вами путевые точки, маршруты и треки (пройденный путь). Т. е. вы все равно легко сможете ориентироваться на местности, отмечая ориентиры по ходу своего движения.

Страница «Позиционирование»

Эта страница отображает детальную информацию о текущем положении курсора. Здесь вы можете определить свою широту, долготу, высоту над уровнем моря, время движения, скорость и прочие полезные данные.

Как видно из вышеизложенного, прибор сконструирован достаточно понятно даже для начинающего пользователя. В любом случае, как и с другими электронными приборами необходимо время для детального ознакомления с их возможностями. Очень полезно также внимательно читать инструкцию. Как показывает практика, большинство пользователей инструкцию практически не читают и, в случае возникновения проблем обращаются к продавцу, в то время как проблемы и не существует, есть просто недостаточная ознакомленность с прибором.

 

Глава 8. Точность системы слежения

При обычном использовании системы слежения ни абонент, ни оператор не видят координат наблюдаемого объекта в числовом представлении. Все, что доступно человеку, сидящему в диспетчерском центре — это положение значка относительно объектов электронной карты. Плюс — некоторые данные о попадании мобильного терминала в определенные зоны.

Как следствие — недостаточно сказать, что точность системы составляет, скажем, 50 метров. Это не даст никакой полезной информации пользователю, но будет благодатной почвой для спекуляций при сравнении систем.

Численно — и то, довольно условно — может быть выражена только точность работы GPS компонента. Почему условно? Надо четко понимать, что эта величина — вероятностная. То есть, если мы возьмем круг радиусом 100 метров, GPS приемник и встанем в центр круга, то одно из тысячи измерений, сделанных приемником, даст координаты вне этого круга. Как распределятся остальные точки? Большинство их попадет в 40-метровый круг. Шанс получить координаты, которые не впишутся в зону с диаметром 300 метров в нормальных условиях, пренебрежимо мал.

В математике для выражения вероятностных величин существуют определенные понятия. К сожалению, в рекламе и в законодательстве используются не они, а гораздо более туманные формулировки. То есть, заявляемая точность в 30 метров не даст вам никакого представления о том, сколько из 1000 измерений уложатся в 30-ти метровый круг.

Российское законодательство вынуждает производителей специально «загрублять» точность местоопределения приемников GPS. Работа с незагрубленным оборудованием может осуществляться только при наличии специальной лицензии. Поэтому, приобретая оборудование для системы слежения, необходимо, чтобы у продавца были все требуемые сертификаты на него. Число «100 м» приведенное в руководстве пользователя, может трактоваться по-разному и вовсе не означает, что точность аппаратуры соответствует законам РФ.

Лабораторные условия это одно, но на практике вмешиваются еще несколько факторов. Если бы GPS навигатор мог принимать сигнал со всех спутников системы, что взошли над горизонтом — все было бы просто, выбираем из них те 4, у которых сигнал помощнее и расположение (геометрия созвездия) оптимальнее и местоопределяемся.

В реальной ситуации «поле зрения» приемника ограничивают деревья, здания, крыша автомобиля — выберите нужное по ситуации. И из 8-12 остаются видимыми в лучшем случае 3-6 спутников. Соответственно, уровень принимаемых сигналов не лучший, геометрия созвездия тоже и точность падает. Насколько? Иногда — незначительно, иногда — в разы.

Правда, технический прогресс здесь налицо: некоторые экземпляры современных приемников уже способны работать в помещениях (возле окон), что еще три года назад казалось просто невозможным.

Второй компонентой аккуратности отображения положения мобильного объекта является электрона карта. Тут все еще сложнее, так как поставщики карт скромничают, приводя технические параметры своей продукции. Да и немудрено: на серьезной карте количество объектов измеряется десятками, а то и сотнями тысяч. Проверить каждый из них физически невозможно, приходится, в общем, доверять исходным материалам. Карта привязывается по нескольким десятка точек.

Для применения в системе слежения можно считать достаточной карту, координаты объектов которой отклоняются от реальных не более 5-10 метров. В противном случае очень высок шанс увидеть, как автомобиль едет по крышам домов.

Все это следует учитывать, определяя параметры контролируемой зоны. Если проверка попадания в заданную область производится на контроллере и исходные данные вводятся в числовом виде, то минимальный радиус должен составлять 20 метров, а рекомендуемый — 50. Если же зона указывается на изображении карты, то радиус уже должен равняться 50-100 метрам и более.

Конечно, все вышесказанное относится исключительно к системам общего применения. Существуют высокоточные системы, использующие специальные средства навигации, обеспечивающие точность 0.5-1.5 метра. Тут уже становится возможным прецизионный контроль за взаимным расположением различных объектов. Соответственно, существенно более строгими становятся требования к электронной карте.

Какую аппаратуру использовать?

На текущий момент выделилось два крупных класса оборудования: носимые аппараты и автомобильные модули.

Четкой границы в применении между ними нет. Если говорить точнее, то, конечно, таскать с собой автомобильный контроллер (да еще и аккумулятор к нему) никто не станет, но поставить на приборную доску носимый аппарат вполне можно (более того, так часто и делают, поскольку этот класс приборов дешевле), тем более что все они предусматривают подключение внешних антенн.

Носимые аппараты

Под носимыми аппаратами мы понимаем устройства, которые удобно взять с собой и которые могут продержаться без подзарядки хотя бы несколько часов (при работающих системах связи и навигации).

Первыми из них появились телефоны с GPS приемниками фирмы Benefon. Для замечательного журнала Компьютерра мною был написан обзор телефона Benefon ESC!, но для использования в системах слежения больше подходит по ряду причин (не последняя из которых продолжительность работы от одного заряда аккумулятора) Benefon Track.

Сейчас компания Garmin готовит к выпуску свой аппарат — NavTalk. Пока не совсем понятно, насколько хорошо он будет работать в системе слежения.

Автомобильные аппараты

Обычно они предназначены для стационарного монтажа в автомобиль. Часто их используют в противоугонных системах, поэтому вопрос скрытой установки особенно важен.

Разновидностей таких аппаратов появляется все больше и больше. Но большая их часть через некоторое время исчезает.

Довольно уверенно держится на рынке компания Falcom. Их бестселлер A2D уже давно завоевал признательность среди поставщиков систем слежения.

Несколько компаний пользуясь возможностью менять встроенное программное обеспечение контроллеров Falcom выпустили свои версии прошивок для него, существенно расширяющих возможности применения контроллера и исправляющие некоторые недостатки фирменного ПО Falcom GPS/Alarm.

К недостаткам серии Falcom можно отнести только пластмассовый корпус (впрочем, пластик высокопрочный) и не очень подходящий для наших зим температурный диапазон.

Существуют также отечественные разработки автомобильных контроллеров, однако пока не удалось собрать достаточную статистику по надежности их работы (при большом числе негативных отзывов на отдельные модели), поэтому рекомендуем не верить рекламе производителей, а обратиться за за отзывами к тем, кто этими контроллерами реально пользуется.

Стационарно устанавливаемая аппаратура обязательно требует использования внешних GPS и, желательно, GSM антенн. Но это не обязательно означает, что на крыше вашего автомобиля будут торчать два штыря. Сейчас существует множество совмещенных антенн, которые можно устанавливать под стекло автомобиля или встраивать в его крышу. Антенна имеет раздельные выводы для подключения GPS и GSM аппаратуры и, как правило, комплектуется кабелями трехметровой длины.

Большинство компаний (таких, как Центр телекоммуникационных решений), занимающиеся установкой аппаратуры слежения и, как следствие, антенн, отговаривают клиентов от установки антенн под стекло. Связано это с низким коэффициентом усиления таких устройств, что приводит к ослаблению сигнала спутников (для GSM cигнала ситуация не так тяжела).

Конечно, разница в качестве работы не настолько существенна, чтобы про такие антенны просто забыть. Есть ситуации, когда нельзя нарушать целостность крыши автомобиля, например, при временной установке оборудования. В этом случае может применяться только антенна, крепящаяся под стекло.

Необходимо также знать, что и антенны внешнего крепления различаются качественно.

Подключает клиент купленную на рынке антенну (известной фирмы) к модулю GPS/GSM (другой известной фирмы). Комплект не работает. Проверяем — модуль работает. Идет в фирму, где покупал антенну — антенна работает. Результат: пришлось покупать еще одну антенну.

Мораль: если хочется сэкономить на покупке готового комплекта у специалистов, то необходимо хотя бы получить консультацию по совместимости оборудования у тех, кто профессионально занимается GPS и GSM техникой, например, ЦТР, ПРИН, РЭК.

Существует, также, масса тонкостей, касающихся установки антенн (да и самих контроллеров) в автомобиле. Монтажники, способные устанавливать сложные электронные сигнализации, могут не знать, к примеру, что ВЧ кабели (GPS антенны, например) нельзя сгибать меньше определенного радиуса. Если вам предстоит ввод в эксплуатацию большого количества контроллеров, а поручать эту работу установочному центру кажется нерентабельным, то обязательно стоит провести обучение собственной бригады в таком центре. Посчитайте: один вышедший из строя контроллер сводит всю экономию на нет.

 

Глава 9. Как «это» работает

GPS (Global Postioning System, кодовое название — NAVSTAR) — спутниковая система, разработанная и обслуживаемая Министерством Обороны США. Предоставляет возможность точного определения своего местоположения на земной поверхности абонентам с GPS-приемни-ками. При разработке системы прежде всего подразумевалось, разумеется, ее военное использование, однако бытовая составляющая применения GPS-навигаторов стала столь популярной, что в мае 2000 г. решением президента США были сняты все помехи (т.н. Selective Availability — селективный доступ), которые прежде намеренно вводились в показания спутников для занижения точности определения координат бытовыми (не военными) устройствами. До этого события, точность приемника не превышала ±100 м 95% времени работы и лишь в оставшиеся 5% времени, приемник работал «на полную мощность».

Для того, чтобы приемник мог определять координаты, он, очевидно, должен иметь возможность «видеть» небо — т.е. в помещении система работать не будет. Современные приемники, как правило, все 12-канальные (т.е. позволяют отслеживать до 12 спутников одновременно) и имеют схожие остальные характеристики, различаясь, в основном, наличием или отсутствием встроенных картографических возможностей.

Процесс определения координат приемником выглядит примерно так: при включении приемника после достаточно долгого перерыва (т.н. «холодный старт»), приемник начинает принимать сигнал со спутников и определять, какие именно спутники из всей группировки доступны из этого местоположения. Группа спутников, видимых в данной точке называется «альманахом». После выключения, приемник некоторое время держит в памяти последний альманах и в случае повторного включения после кратковременного перерыва, время фиксации приемника существенно возрастает («горячий старт»).

Приемник, получая со спутников точное время (которое последние четко синхронизируют между собой), по задержкам вычисляет физические расстояния до них (скорость распространения радио-волны известна). Имея в видимости три или более спутника, приемник, методом триангуляции, очевидно получает возможность определить свое точное положение в 2D-пространстве. Имея в видимости четыре или более спутника, приемник может также определить и высоту абонента над уровнем моря, которая, правда, вычисляется с заведомо большей погрешностью, чем координаты на земной поверхности.

Очевидно, что чем больше спутников приемник имеет возможность опросить и чем больше разнесены эти спутники на небесной полусфере, тем более точными будут его показания. На данный момент (после отмены Соединенными Штатами SA), точность определения координат ЛЮБЫМИ GPS-приемниками при нормальных условиях составляет не более 5-15 метров.

Как подключить GPS-приемник к Палму (и какие приемники можно подключить)

К сожалению, как правило, картографических возможностей, которые может предоставить современный GPS-приемник, бывает недостаточно для полноценного и удобного использования всех тех возможностей, которые может предоставить пользователю система GPS. Особенно удручает ситуация с российскими картами, которые представлены в приемниках особенно убого. Возможность же загрузки собственных карт в большинстве приемников также отсутствует ввиду закрытости форматов карт почти всеми производителями GPS-навигаторов, а о регулярных обновлениях существующих карт остается только мечтать. Выход автору представляется в подключении к приемнику независимого интеллектуального устройства, которое будет иметь возможность выполнять эти, а также множество других полезных функций.

Для того, чтобы осуществить связку PalmGPS, прежде всего нужно проверить, что ваш приемник имеет серийный порт для связи с компьютером (как правило, многие современные приемники его имеют), что этот приемник имеет возможность отдавать данные, используя протоколы NMEA-0182, -0183 или EarthMate (proprietary протокол фирмы DeLorme для своих одноименных приемников EarthMate).

Для осуществления физического подключения, необходимы, очевидно, разъем для GPS-приемника, разъем для Palm’a и это все дело необходимо скомпоновать, учитывая особенности контактной разводки конкретного приемника и Палма. Способ проще — как правило, всегда можно достать шнур для подключения приемника к серийному порту компьютера (у производителя, или, если приемник производства таких известных фирм, как Garmin, Magellan и некоторых других, от сторонних производителей кабелей). Также, как правило, не представляет труда достать шнур для подключения к компьютеру и Палма. При соединении этих шнуров, нужно не забывать про нуль-модемную сущность обоих из вышеназванных кабелей, а также то, что конечное соединение Palm-GPS должно также получится нуль-модемным (ввиду того, что и Palm и GPS — суть DTE-устройства). Таким образом, помимо этих двух кабелей, нам также понадобится нуль-модемный переходник/кабель, которым мы «развернем» один из них.

Для работы с GPS-приемниками, программное обеспечение, существующее на данный момент для платформы Palm, можно разделить на три категории:

• Программное обеспечение для работы с растровыми картами

• Программное обеспечение для работы с векторными картами

• Сервисное программное обеспечение

Рассмотрим подробнее каждую из категорий.

Программное обеспечение для работы с растровыми картами

Выбор невелик — продукты фирмы GPS-Pilot — Atlas, Tracker, Fly. Во все три программы карты закачиваются программой Cartographer, которой можно задать как желаемую цветность получаемой карты, так и координаты угловых точек конвертируемого куска карты для привязки ее еще при конвертации. Если этого не сделать при конвертации, то после привязку можно осуществить уже на Palm’e (по двум точкам и направлению на север).

GPS-Atlas предназначен для простого ориентирования по карте. Как было упомянуто ранее, растровая карта конвертируется в Атласов-ский формат программой Cartographer. Местоположение отмечается стрелочкой по центру экрана, а карта относительно этого центра перемещается. Если отсканировать одну и ту же карту в нескольких масштабах, и привязать каждый из них, то по нажатию кнопки скроллинга вверх/ вниз Атлас будет переключаться между масштабами. Такая возможность становится исключительно полезной при изготовлении, например, увеличенных карт поселков, в совокупности с мелко-масштабными картами дорог данной области.

Над собственно рабочим экраном, помещается служебная шапка, показывающая количество «пойманных» спутников, скорость движения, масштаб карты и т.д. Картинка справа показывает другой возможный рабочий экран этой программы, на котором подробно отображается скорость, координаты, направление движения, высота над уровнем моря, etc. Тут же выбирается протокол, по которому будут общаться приемник и Atlas.

Ниже показаны настройки Atlas’а (где, в частности, можно поставить галку, чтобы Палм сам по себе не выключался, когда работает Atlas), экран определения новой «точки»-ориентира, которой можно дать имя и определить ее координаты (или получить их с приемника). Такие точки будут отображаться на карте и они же необходимы в случае привязки карты на ходу.

GPS-Tracker отличается от Atlas’a прежде всего возможностью прокладки маршрутов. Закаченные в Палм карты будут доступны в обоих приложениях сразу. Экраны настроек, калибровки, определения новых точек в обоих программах также идентичны. Единственное отличие — постоянная запись проходимого маршрута, который потом можно с комфортом проходить в обратном направлении.

GPS-Fly — продукт специфический и предназначен в первую очередь для пилотов самолетов и других летательных аппаратов.

Программное обеспечение для работы с векторными картами

На первый взгляд здесь выбор побольше, но при более внимательном рассмотрении становится понятно, что и здесь нам придется остановиться всего лишь на одном продукте — это программа HandMap от Evolutionary Software. Причина — закрытость форматов карт в остальных программах и политика, при которой карты готовятся и продаются исключительно самим разработчиком. HandMap в этом плане устроен несколько мудрее — продается только оболочка, а карты можно делать самому. В связи с чем уже существуют по крайней мере две карты для российских городов — Москвы и Санкт-Петербурга.

Ниже показана карта г. Москвы. Стрелка, показывающая текущее местоположение и направление движения, появляется при наличии установленного модуля GPS-Tracker (который идет в комплекте Professinal версии этого продукта). В информационном окошке внизу экрана показывается скорость движения, направление движения и высота над уровнем моря. К сожалению, формат карт не предусматривает использование интернациональных кодировок, поэтому все названия объектов набраны латиницей.

Сервисное программное обеспечение

Лично я остановил свой выбор на двух фриварных утилитах, которые я достаточно активно использую при навигации. Первая утилита называется TZ-GPS и единственная ее функция — изображение «неба» с зафиксированными точками-спутниками, а также информации, получаемой со спутников — т.е. точного времени, вычисленных приемником координат, скорости движения в узлах и т.д. Удобна при начале работы с системой для того, чтобы точно понять, сколько спутников «поймалось» и когда завершился процесс фиксации приемника на координатах.

Вторая утилита — NMEA-Monitor предназначена для отображения в реальном времени всей служебной информации, получаемой со спутников в режиме он-лайн. Удобна для выяснения причин слишком долгого процесса поиска спутников.

Достоинства и недостатки использования данной связки

Достоинства: долгое время работы от батарей Palm’a и наличие достаточно качественно продуманного и проработанного разнообразного программного обеспечения для целей GPS-навигации под эту платформу, делает эту связку практически идеальным комплексным решением. Отсутствие цвета кажется неудобством лишь на первый взгляд, зато за счет этого мы сильно выигрываем в долгом времени работы от батарей, малых размерах получаемых карт (векторная карты Москвы — всего 200 Kb).

Недостатки: все то же отсутствие цвета, а точнее такой побочный эффект отсутствия цветности экрана: его жидко-кристаллическая структура делает практически невозможной продолжительную работу с устройством на сильном морозе — экран замерзает. Еще проблема такого же плана — неприятная работа Li-Ion аккумуляторов (Palm V, Vx, Sony Clie, etc.) на все том же морозе. Но, в принципе, постоянное пользование GPS-навигацией в походах и не требуется — поэтому устройства можно держать рядом с телом в тепле, а доставать только для того, чтобы посмотреть свое текущее местоположение или отметить очередную точку на маршруте. Использование же связки в салонах автомобилей или просто в тепле, представляется более, чем удобной.