Неуправляемые термоядерные реакции происходят при взрывах водородных бомб. Они приводят к высвобождению громадного количества ядерной энергии, сопровождающемуся крайне разрушительным взрывом. Теперь задача ученых — найти пути осуществления контролируемой термоядерной реакции. По-видимому, это одна из величайших научных проблем, поставленных человечеством. Ее решение открывает необозримые энергетические возможности, превращая воду всех морей и океанов в отличное ядерное топливо. Если управляемый термоядерный синтез будет технически реализован в больших масштабах, будущие поколения смогут черпать из океана энергию, запасов которой хватит на громадный срок. Даже самые мрачные из современных мальтузианцев, предсказывающих все более печальное будущее бурно возрастающему населению Земли, вынуждены признать, что существует луч надежды, ведь энергетика — это основа материального благосостояния, а ресурсы ее, с учетом термоядерного топлива, чрезвычайно велики. Но эта энергия может быть получена лишь после того, как мы научимся нагревать до огромных температур довольно большие количества легких ядер и удерживать их в таком необычном состоянии на протяжении заметных интервалов времени.

Энергия, освобождаемая в ходе термоядерной реакции, возникает в результате работы ядерных сил, а они, как мы знаем, чрезвычайно короткодействующие. Для осуществления какого-либо термоядерного синтеза, например реакции

1 H 2 + 1 H 2 → 1 H 3 + p +4,0 Мэв ,

надо подвести заряженные ядра вплотную друг к другу. Но этому препятствуют силы электростатического отталкивания, на преодоление которых необходимо затратить некоторую энергию (энергию активации). Эта энергия может быть заимствована только у теплового движения ядер.

Даже первые признаки ядерных взаимодействий в нагретом веществе можно надеяться наблюдать лишь при температуре около миллиона градусов. В этих условиях атомы любого вещества распадаются, образуя своеобразный газ из положительно и отрицательно заряженных частиц. Если при этом концентрация частиц достаточно велика, чтобы автоматически (за счет сильных электрических полей) выравнивать всякие зарядовые неоднородности и обеспечивать квазинейтральность всей массы частиц, мы имеем не просто ионизованный газ, а плазму.

Основная и наиболее трудная задача, стоящая на пути к осуществлению интенсивных управляемых термоядерных реакций, заключается даже не в том, чтобы нагреть плазму до гигантских температур, а в том, чтобы изолировать такую плазму от стенок сосуда, в котором она заключена. Эта задача, сама по себе необычайно трудная, облегчается тем, что практически все частицы горячей плазмы электрически заряжены и могут удерживаться специально подобранными комбинациями магнитных сил. Впервые идею о магнитной изоляции горячей плазмы выдвинули академики А. Д. Сахаров и И. Е. Тамм.

Исследования по управляемым термоядерным реакциям находятся еще в стадии разведки различных путей подхода к проблеме. Наиболее детально исследованы разряды в прямых трубах из диэлектриков, тороидальные установки различных конфигураций и магнитные ловушки. Ни один из этих путей не разведан так далеко, чтобы обеспечить решение проблемы.

Плазма оказалась удивительно капризным объектом: она с поразительной легкостью сбрасывает с себя энергию, которую мы с таким трудом сообщаем ей на короткие мгновения. Наличие множества неустойчивостей разных типов приводит к тому, что каждый шаг на пути к заветной цели дается с большим трудом. И все же за сравнительно небольшой срок исследований пройден важный этап. Физики научились успешно ликвидировать наиболее опасные, так называемые гидродинамические неустойчивости, почти мгновенно разрушающие плазму. Теперь предстоит преодолеть новый барьер — научиться подавлять другой тип плазменных неустойчивостей, называемых кинетическими. Эти неустойчивости развиваются значительно медленнее. Как сказал недавно один из руководителей этих исследований в Советском Союзе академик Лев Андреевич Арцимович: «Грубо говоря, мы научились предохранять плазму от инфаркта, но все еще не умеем защищать ее от раковых опухолей».

Исследования управляемых термоядерных реакций почти одновременно были начаты в СССР и США в начале 50-х годов. Первоначально они велись в условиях сугубой секретности. Советский Союз первым в 1956 г. проявил инициативу по ликвидации секретности в этой важной области физики. С тех пор наши исследования в этой области неизменно занимают ведущее место в мире. С первых же шагов и до наших дней их возглавляют академики Л. А. Арцимович и М. А. Леонтович, воспитавшие много талантливой молодежи.

Советские физики первыми наблюдали возникновение нейтронного и жесткого рентгеновского излучения плазмы, причем они сразу же дали правильную оценку этому факту, показав, что возникающие нейтроны не являются, к сожалению, результатом термоядерных реакций. Они первые построили ряд крупных установок для исследования горячей плазмы (Огра-1, Огра-2, Токамак и т. д.). Недавно на установке ПР-5 в Институте атомной энергии им. И. В. Курчатова была получена плазма с рекордными характеристиками. Чтобы лучше уяснить полученные результаты, приведем следующую таблицу.

Характеристики плазмы Температура Концентрация Время жизни, сек
Необходимо для работы термоядерного реактора 10 8 10 15 10
Получено в США, Англии, Швеции 10 7 10 9 10 −5
Получено в СССР 4·10 7 10 10 10 −1

Как видно из этой таблицы, результаты, достигнутые советскими физиками, по всем основным показателям, оказались намного выше (температура в 4 раза, концентрация в 10 раз и время жизни плазмы в 10 000 раз!), чем у физиков других стран, проводящих аналогичные исследования. Особенно важным является резкое увеличение времени жизни горячей плазмы, достигнутое нашими учеными. Однако сравнение этих результатов с данными, необходимыми для работы термоядерного реактора, показывает, что хотя нашим физикам и удалось пройти большой путь, полное решение проблемы потребует еще немало времени и усилий.

Работы советских физиков в области физики атомного ядра и элементарных частиц, о которых мы рассказали в этом кратком обзоре, далеко не исчерпывают всех выполненных фундаментальных исследований. Ограниченные размерами брошюры, мы лишены возможности сколько-нибудь подробно рассказать об открытии ядерной изомерии у искусственных радиоактивных изотопов, сделанном в 1935 г. И. В. Курчатовым, Б. В. Курчатовым, Л. В. Мысовским и Л. И. Русиновым, или о первых наблюдениях ливней космических частиц, произведенных в 1927 г. академиком Д. В. Скобельцыным при помощи камеры Вильсона, находящейся в сильном магнитном поле. Следует также упомянуть о создании Л. В. Мысовским и А. П. Ждановым метода наблюдения элементарных частиц в специальных толстослойных фотоэмульсиях.

Необходимо также отметить ряд крупных теоретических исследований советских физиков в указанной области.

Академики Л. И. Мандельштам и М. А. Леонтович первыми создали теорию прохождения частиц через потенциальный барьер, вскрывшую механизм α-распада радиоактивных ядер.

Академик Л. Д. Ландау выдвинул «принцип комбинированной четности», весьма плодотворной для систематики элементарных частиц.

Академик В. Л. Гинзбург и член-корреспондент АН СССР И. С. Шкловский создали современную теорию происхождения космических лучей.

Академик И. Я. Померанчук создал теорию взаимодействия частиц и античастиц при очень высоких энергиях.

Профессор Д. Д. Иваненко первый предложил протонно-нейтронную модель атомного ядра.

Этот список можно было бы без труда значительно продолжить. Но и того, что уже было сказано, достаточно, чтобы составить представление о большом вкладе советских физиков в один из важнейших разделов современной физики.