Геометрическая рапсодия

Левитин Карл

Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике.

Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии.

Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию.

Научно-художественная книга для широкого круга читателей.

 

Издательство "Знание" Москва 1984

Рецензенты: Яглом И. М., доктор физико-математических наук, профессор; Виленкин Н. Я., доктор физико-математических наук, профессор.

Главный отраслевой редактор В. П. Демьянов

Редактор Н. Ф. Яснопольский

Мл. редактор Н. А. Васильева

Художник М. А. Дорохов

Худож. редактор Т. С. Егорова

Техн. редактор Н. В. Лбова

Корректор В. Е. Калинина

 

Об авторе

Карл Ефимович Левитин родился в 1936 году. После окончания Московского энергетического института несколько лет работал во Всесоюзном научно-исследовательском институте электромеханики. С 1966 года заведует отделом в журнале "Знание — сила". Он автор семи научно-художественных книг, а также более ста статей, очерков и репортажей, опубликованных в разных изданиях в СССР и за рубежом. Лауреат премии Московского отделения Союза журналистов СССР, Всесоюзного общества "Знание".

Книга "Геометрическая рапсодия", в 1976 году вышедшая первым изданием, была переведена в Народной Республике Болгарии в 1980 году.

 

Предисловие

Своеобразие геометрии, выделяющее ее из других разделов математики, да и всех областей науки вообще, заключается в неразрывном, органическом соединении живого воображения со строгой логикой. В своей сущности и основе геометрия и есть пространственное воображение, пронизанное и организованное строгой логикой. В ней всегда присутствуют эти два неразрывно связанных элемента: наглядная картина и точная формулировка, строгий логический вывод. Там, где нет одной из этих сторон, нет и подлинной геометрии.

Наглядность, воображение принадлежат больше искусству, строгая логика — привилегия науки. Сухость точного вывода и живость наглядной картины — "лед и пламень не столь различны меж собой". Геометрия соединяет в себе эти противоположности, они в ней взаимно проникают, организуют и направляют друг друга. Это относится в конечном счете также к современным абстрактным геометрическим теориям, которые при всей своей возвышенной отвлеченности вырастают из той же геометрической интуиции.

Стоит лишь вспомнить классические творения архитектуры, начиная с древнейших пирамид, как сразу становится очевидным, что геометрия в некотором смысле относится к искусству. Предлагаемая вниманию читателей книга Карла Левитина "Геометрическая рапсодия" представляет собой увлекательный рассказ о геометрии главным образом в этом ее аспекте. Искусство лучше всего воспринимать непосредственно. Тому способствуют гравюры М. К. Эсхера, иллюстрирующие книгу, особенно в той ее части, где они образуют своего рода художественно-геометрический фильм, дающий зрителю редкую возможность увидеть геометрическое начало во многих явлениях природы и красоту — в чисто геометрических конструкциях и построениях.

Так что же от истинного искусства всегда присутствует в истинной геометрии? Словами выразить это затруднительно. Но вглядитесь внимательно в столь естественно вплетенные в ткань книги работы художника, прочтите в ней о вышедших в последние годы трудах, где так неожиданно и оригинально использованы геометрические идеи. Замысловато и любопытно... Не правда ли?

Так и книга, которую вы держите в руках, — я уверен, что она будет прочитана с интересом и пользой.

Академик А. Д. Александров

 

Увертюра

Что-то произошло в самом начале семидесятых годов, отчего математика — не изысканно-утонченная и недосягаемо сложная, почтительно называемая "высшей", а самая обычная, безо всяких превосходных степеней алгебра и особенно геометрия — вновь оказалась в центре людских интересов. То там, то тут стали появляться книги, в которых читателю демонстрировались не одни лишь любопытные и занимательные черточки и штрихи, а полный загадочной прелести облик древнейшей науки, ее строгая красота и кристальной ясности логика.

Видимо, и я поддался этому искушению, растворенному в воздухе времени, и, отложив другие дела, стал писать цикл статей, для которого придумал название "Геометрическая рапсодия" — не потому даже, что оно красиво звучало, а просто во всех этих построениях и рассуждениях мне постоянно слышалась прозрачная хрустальная музыка, изящная и завершенная, хотя и бесконечная мелодия.

Вышло уже четыре номера журнала, а собранного и продуманного материала оставалось еще на столько же. Он и лег в основу новой серии очерков, получивших общее название "И видны в саду даже формулы...". Серия имела подзаголовок "Фантазия на тему о правильных, почти правильных, полуправильных и вырожденных много- и сверхмногогранниках", поскольку именно эти привычные и экзотические цветы из сада Геометрии грезились мне в то время во сне и наяву.

Так родилась книга, впитавшая в себя и те журнальные публикации и, естественно, много другого материала.

Между тем общественный интерес к простейшей, но вместе с тем и фундаментальнейшей геометрии отнюдь не снижался. Однажды в редакции появился не знакомый никому из нас человек, во внешности которого явно проглядывало нечто "художественное" (как оказалось, Виктор Николаевич Гамаюнов и в самом деле много лет посвятил профессиональным занятиям живописью) и, очевидно, несовместимое с какими-либо точными науками (в действительности же он был кандидатом технических наук). Он принес несколько страниц машинописи и огромное количество фотографий, которые вместе и составили опубликованный вскоре журнальный материал, начинавшийся словами:

"Дорогая редакция!

Человек, который в наше время все еще пытается найти что-то новое в Платоновых телах, выглядит чудаком, особенно если он профессиональный ученый. Но в том, что я оказался именно в этой роли, косвенно повинен ваш журнал.

Три года назад я защитил диссертацию и... продолжал выводить теорему за теоремой. Занятие это привело меня в такой восторг, что я решил создать даже эмблему этого события в моей жизни, некий прекрасный геометрический символ. И вот в минуту особого удовлетворения проделанной работой я взялся за строительство бумажной люстры, которая постоянно висела бы надо мной и озаряла меня светом геометрических идей.

Разумеется, первыми в голову пришли Платоновы тела, и я безо всякого труда раскроил их ножницами и склеил. Куб, тетраэдр октаэдр, додекаэдр и икосаэдр лежали передо мной, но их геометрическая правильность меня не удовлетворила. Я взялся за тела Кеплера-Пуансо. Три из них — большой додекаэдр, большой и малый звездчатый додекаэдры — я умудрился и раскроить и склеить. Но с последним, четвертым — большим звездчатым икосаэдром — ничего не получалось. Вместо него обычный икосаэдр, который я использовал как исходный пункт, как некое ядро, давал самые странные и необычные тела. Я долго бился над этой задачей, и число невиданных геометрических созданий росло на моем столе. Во всех них просматривалась некая система, какая-то скрытая закономерность. Надо было искать ее, а это значило — начинать новое исследование. Но мне было ясно — дело это никому не нужное, да и, пожалуй, бессмысленное: правильные тела исследованы вдоль и поперек целой армией геометров.

Видимо, я так бы и оставил ножницы и клей в покое, если бы как раз в это время не стали приходить номера "Знание — сила", в которых печаталась статья К. Левитина "И видны в саду даже формулы..." (№ 9, 10 и 11 за 1971 год). Я вдруг почувствовал себя не одиноким. Раз кому-то все еще интересны эти знаменитые тела, значит, их еще стоит пробовать исследовать — пусть даже в тысячу первый раз".

Мы с В. Н. Гамаюновым в те годы стали единомышленниками-"многогранцами" и часто встречались то на выставках архитекторов, художников и дизайнеров, использовавших любимые нами геометрические фигуры для своих суперсовременных проектов, то в мастерских, где клеились необычные макеты совсем уже непривычных нашему глазу строений, а то и в киностудии, где по моему сценарию снимался научно-популярный фильм, посвященный все тем же Платоновым телам. Он назывался "Великолепная пятерка" и удостоился нескольких похвал.

Жизнь таким образом постоянно, хотя и по-разному, поддерживала во мне интерес к геометрической тематике. Вестником следующего ее напоминания явился доставленный в редакцию толстый пакет, уклеенный марками авиапочты. В него была вложена книга на английском языке, название которой я перевел так: "Волшебное зеркало М. К. Эсхера". Знакомство с ней показало, что она представляет собой изложение любопытных взглядов на связь науки с искусством, подкрепленных анализом геометрического и физического смысла гравюр голландского художника-графика Эсхера, которые я уже частично использовал для иллюстрирования своих журнальных публикаций по геометрии и первого издания "Геометрической рапсодии".

Книга, показалось мне, достойна не только моего внимания. Так она попала в руки физиков, математиков, искусствоведов. Одним из первых отозвался о ней академик Николай Васильевич Белов, крупнейший советский кристаллограф. Вот что он написал:

"Рисунки голландского художника и графика М. Эсхера заслуженно пользуются мировой известностью. Необычная фантазия художника, его обостренное видение позволили ему создать удивительные работы, необычайно образно и наглядно иллюстрирующие многие глубокие законы окружающего нас мира, ими пользуются математики, кристаллографы, химики и даже философы".

Вслед за этим пришла весточка и из "другого конца" — от представителя наук не точных, а гуманитарных.

"Ознакомившись с книгой Бруно Эрнста "Волшебное зеркало М. К. Эсхера", хочу поддержать предложение о переводе и издании этой книги на русском языке. Не имея возможности судить о том, какой интерес представляет эта книга для людей, занимающихся или интересующихся математикой, скажу лишь о искусствоведческом интересе к тем проблемам, которые выдвигаются в книге. Разумеется, отдаю себе отчет в том, что этот аспект не является главным при оценке книги. Тем не менее он достаточно важен. Особенно если учесть, что в конце XIX-XX веков мы вновь являемся свидетелями органической связи художественного и научного мышления. Эсхер... является живым носителем этой новой тенденции, реализуя в одном лице и научные и художественные интересы. И дело здесь уже не в художественном качестве произведений, а в той перспективе в области познания Вселенной, которые он открывает.

Считаю, что книга будет воспринята с большим интересом и художниками и искусствоведами, которые в последнее время не случайно проявляют большое внимание к проблемам перспективы.

Доктор искусствоведения, профессор, зав. кафедрой, председатель совета отделения искусствоведения МГУ Д. В. Сарабьянов ".

Были и другие отзывы, некоторые из них процитированы в "Вариациях" к этой книге.

Естественно, что все это усилило желание поподробнее рассказать читателям о Маурице Корнелисе Эсхере, даже не столько о нем, сколько о его необычном творчестве, раскрыть связь его удивительных гравюр с геометрией и физикой нашего мира.

"Работы Эсхера цитируются и воспроизводятся очень часто как математиками, так и физиками... Книга Бруно Эрнста представляет собой очень хорошее введение в такую неожиданную область занимательной и содержательной науки. Было бы несправедливо оставить нашего читателя без книги об Эсхере" — эти слова профессора Якова Абрамовича Смородинского, известного советского физика и популяризатора науки, поддерживали меня, когда я работал над подготовкой своей книги ко второму изданию.

Эту работу "подтолкнул" и Международный конгресс научного кино в Киеве, на котором я увидел снятую голландцами небольшую ленту об Эсхере и его работах, названную "Приключения восприятия". Видимо, именно тогда родилась у меня мысль создать свой собственный фильм, пусть и воображаемый, но зато на этот раз мультипликационный, где бы геометрическое и философское начала его работ выступили на поверхность. Настроения тех лет нашли свое отражение в этой книге в одной из "Вариаций".

Еще одно обстоятельство, каким бы незначительным оно ни выглядело со стороны, способствовало тому, что геометрическая тема все эти годы прочно сохраняла свое место на моем письменном столе. Однажды я был неожиданно приглашен на математическую олимпиаду школьников, которую проводил Московский областной педагогический институт имени Н. К. Крупской, где меня ждали два приятных сюрприза: участники демонстрировали свои собственные способы вписывания друг в друга всех пяти милых моему сердцу правильных многогранников — платоновых тел, а в качестве призов победителям олимпиады ее организаторы приготовили "Геометрическую рапсодию".

Несколько позже состоялся вечер в московском молодежном музыкальном клубе, который вот уже четверть века раз в неделю собирается, чтобы обсудить нечто, имеющее отношение к музыке. Его бессменный руководитель Григорий Самуилович Фрид, известный советский композитор, предложил мне рассказать столь взыскательной аудитории о музыкальных аспектах творчества Эсхера, и мне пришлось расплачиваться за слово "рапсодия" в названии своей книги. В качестве иллюстрации к моему сообщению прозвучал один из самых удивительных канонов "Музыкального приношения" И. С. Баха, в котором звуки выстраиваются в "невозможный ряд": кажется, что они идут все выше и выше, без конца и начала, как люди на знаменитой эсхеровской гравюре "Поднимаясь и опускаясь". Когда, к немалому своему удивлению, я обнаружил, что даже далекие от интереса к математике члены музыкального клуба с большим сочувствием и вниманием отнеслись к моему выступлению, я отчетливо понял, что пора браться за переиздание "Геометрической рапсодии".

Таинственные причины, побудившие меня в свое время стать "рапсодом" геометрии, действовали, вероятно, одновременно во всем мире. Результатом этого явилось необычно большое число книг, так или иначе касающихся увлекательных проблем этой мудрой науки, которые появились на полках магазинов к концу семидесятых — началу восьмидесятых годов, отставая от времени выхода оригиналов на те несколько лет, что потребовал их перевод. Кроме их авторов, еще трем человекам обязан я чувством сопричастности к интересам и мыслям многих других людей — Ю. А. Данилову, переводчику многих прекрасных книг, а также уже упоминавшемуся Я. А. Смородинскому и доктору физико-математических наук И. М. Яглому — редакторам, авторам предисловий и послесловий к этим работам.

Будучи лишенным возможности перечислить все замечательные книги, имеющие отношение к красоте и изяществу геометрической мысли, которые появились за истекшее десятилетие, я хочу назвать лишь те из них, что в наибольшей мере подогрели мою решимость вернуться к геометрическим увлечениям прошедших дней. Это прежде всего "Симметрия природы и природа симметрии" Ю. А. Урманцева (М., Мысль, 1974), "Жар холодных чисел и пафос бесстрастной логики" Б. В. Бирюкова и В. Н. Тростникова (М., Знание, 1977), "Узоры симметрии" (М., Мир, 1980), затем "Флатланд" Э. Эбботта и "Сферландия" Д. Бюргера (М., Мир, 1976), "Пространственные построения в живописи" Б. В. Раушенбаха (М., Наука, 1980), "Новые встречи с геометрией" Г. Коксетера и С. Грейтцера (М., Наука, 1978), "Симметрия в науке и искусстве" А. В. Шубникова и В. А. Копцика (М., Наука, 1972), "Этюды о симметрии" Е. Вигнера (М., Мир, 1971), "Россыпи головоломок" Ст. Барра (М., Мир, 1978), третье издание "Наглядной геометрии" Д. Гильберта и С. Кон-Фоссена (М., Наука, 1981) и, наконец, "Модели многогранников" М. Веннинджера (М., Мир, 1974). Но, быть может, в наибольшей мере появлением своим книга эта обязана серии переводов прекрасных книг Мартина Гарднера, бессменного ведущего математического раздела журнала "Сайентифик Америкэн" — "Математические головоломки и развлечения" (М., Мир, 1971), "Математические досуги" (М., Мир, 1972) и "Математические новеллы" (М., Мир, 1973), а также совсем уж поразительной и по форме и по содержанию книге "Гедель, Эсхер, Бах: вечная золотая цепь" Дугласа Хофстадтера, который пришел на смену оставившему все-таки свой журнальный пост Гарднеру (о ней речь тоже пойдет в "Вариациях").

Это перечисление работ, оставивших свой след в предлагаемой вниманию читателя книге, можно было бы без особого труда продолжить и тем самым, пусть и в косвенной форме, выразить благодарность их авторам.

К. Левитин Добринка, 1984 г.

Строгость математическая, которая состоит в том, чтоб ничего, кроме известного и ясно доказанного, за основание не принимать, нечувствительно приучает рассуждать о вещах твердо и основательно.
Степан Яковлевич Румовский

 

Интродукция

I

"Рапсодия — это вариации на известные темы", — утверждает "Музыкальный словарь".

Темы бывают разные, в том числе вечные. Устройство мира, его геометрия — одна из них.

II

"Большинство людей получают определенное удовольствие от математики, так же как большинство людей могут наслаждаться прекрасной мелодией, но при этом больше людей интересуются все-таки математикой, а не музыкой" — это утверждение принадлежит Готфриду Гарольду Харди, известному современному математику.

III

Никто, конечно, не подсчитывал, сколько людей интересуется математикой, а сколько — музыкой, хотя на интуитивной основе с Харди можно, вероятно, согласиться: ведь математика не только доставляет удовольствие; изучая "пространственные формы и количественные отношения действительного мира" (Ф. Энгельс), она удовлетворяет практические потребности людей. Однако природа удовольствия, которое получают люди, увлекающиеся математикой, и природа удовольствия, доставляемого музыкой, действительно одна и та же. "Живопись — это музыка для глаз", — говорил французский живописец и график Делакруа. "Ни один живописец не может писать, не зная геометрии", — утверждал Альберти, видный итальянский ученый, архитектор и теоретик искусства Раннего Возрождения.

IV

"Понимание математики не приобретается только безболезненно развлекательными способами — как нельзя овладеть музыкальной культурой, читая журнальные статьи, пусть даже превосходно написанные, надо слушать — внимательно и сосредоточенно" — такого мнения держится Рихард Курант, еще один известный современный математик.

V

"Предмет математики настолько серьезен, что полезно не упускать случая сделать его немного занимательным", — повторял Блез Паскаль, один из великих ученых прошлого.

VI

Паскаль и Курант не спорят друг с другом — в их словах нет противоречия. Сама математика, особенно часть ее, называемая геометрией, таит в себе массу занимательных историй, которые хочется слушать внимательно и сосредоточенно.

VII

...Вот вы и начали читать книгу, построенную так же, как и эти несколько предваряющих ее фраз... Главы ее — вариации на различные геометрические темы. Каждые две из них, как кольца, "нанизаны" на третью, связывающую воедино идеи, заключенные в "кольцах". Тот же Харди писал: "Узоры математика, так же как узоры художника или поэта, должны быть прекрасны; идеи, так же как цвета или слова, должны гармонически соответствовать друг другу. Красота есть первое требование: в мире нет места для некрасивой математики". Быть может, именно тут и следует искать объяснение поразительной универсальности геометрических законов, которые действуют с равной эффективностью в кристаллах и в живых организмах, в атоме и во Вселенной, в произведениях искусства и в научных построениях.

"Наука и искусство так же тесно связаны между собой, как легкие и сердце", — писал Лев Николаевич Толстой. Ему, великому писателю, вторят прославленные на весь мир ученые.

А. П. Карпинский, геолог: "Связь между научным открытием и творчеством в искусстве — несомненна. И то и другое обусловливается вдумчивым наблюдением и изучением действительности, и они идут рядом к общей благородной цели".

А. Е. Арбузов, химик-органик: "Не могу представить себе химика, не знакомого с высотами поэзии, с картинами мастеров живописи, с хорошей музыкой. Вряд ли он создаст что-либо значительное в своей области".

А. А. Потебня, филолог-славист: "Поэзия... не изредка, от времени к времени, а постоянно служит источником науки, которая в свою очередь питает новое поэтическое творчество".

В. И. Вернадский, геохимик, биогеохимик, радиогеолог: "Ученые, натуралисты в том числе, часто бывали и художниками в широком смысле этого слова".

И. И. Мечников, биолог: "Великими мастерами в искусстве становятся люди ученые, владеющие математикой и измерительными методами, как, например, Альберти, Леонардо да Винчи, Микеланджело".

С. В. Ковалевская, математик: "Мне кажется, что поэт должен только видеть то, чего не видят другие, видеть глубже других. И это же должен и математик".

П. Л. Капица, физик: "Наука — дело творческое, как искусство, как музыка".

Эти высказывания, касающиеся науки вообще, а математики лишь в частности, особо применимы к геометрии. Ее внутренняя гармония, строгая и законченная красота не только делают геометрию наукой о фундаментальных свойствах объективного, существующего независимо от нас, нашего сознания мира, но и дают каждому из нас возможность пройти несколько шагов по геометрической стезе. "Если бы только удалось преодолеть то недоверие, с которым весьма многие под влиянием случайных школьных впечатлений сторонятся всего, что связано с математикой, то людей, склонных "импровизировать" в области несложных произведений математического искусства, оказалось бы не меньше, чем активных любителей музыки", — пишут Ганс Радемахер и Отто Теплиц в своей книге "Числа и фигуры".

Попытка преодолеть это недоверие и есть основной мотив предлагаемой вашему вниманию геометрической рапсодии.

Предисловие можно назвать громоотводом.
Георг Кристоф Лихтенберг

 

I. Поцелуй по расчету

"Мамочка, почему я все время хожу по кругу?" — "отстань, глупышка, а то я приколю к полу и вторую твою ногу!" — так звучит старая детская шутка. Ее, наверное, придумал древний математик, когда был мальчишкой. Повзрослев, он сформулировал ее по-другому: "Окружность — это совокупность точек на плоскости, одинаково удаленных от какой-то одной точки на этой же плоскости". (Взгляните, например, на фрагмент гравюры М. К. Эсхера "Завиток" — вы найдете ее, как и другие работы этого художника, с помощью указателя, помещенного в конце книги. Созданное воображением художника существо использует основное свойство окружности для передвижения.) Подумав немного, древний математик написал еще одну фразу, покороче: "Сфера — это совокупность всех точек, равно удаленных от одной какой-то точки". (Прекрасная иллюстрация на тему "сфера" — еще две гравюры того же автора: "Спирали на сфере" и "Буковый шар".)

С той поры прошло много лет, а новых хороших геометрических шуток не появилось. Создавшееся положение, конечно, беспокоило серьезных ученых, например Исаака Ньютона. Мы бы, вероятно, никогда не узнали об этом, но, по счастью, друг великого математика оксфордский астроном Дэвид Грегори вел дневник. В один из дней 1694 года он подробнейшим образом записал, как они с Ньютоном крупно поспорили: Грегори по обыкновению размышлял вслух на свои небесные темы — в этот раз о том, как звезды различной величины размещаются на небе. И тут вдруг Ньютон перебил его: "Спорим, что тринадцать одинаковых шаров, как их ни расположи, не могут касаться еще одного шара!" Грегори немного подумал и принял спор. Но сколько друзья ни изводили бумаги и слов, ни один из них не убедил другого. И лишь через 180 лет Рейнгольд Хоппе сумел доказать, что великий математик и в этом научном споре оказался прав. Но доказательство Хоппе было таким громоздким, а проблема настолько увлекала ученых, что до самого последнего времени они без устали решали "задачу четырнадцати шаров". Самое простое доказательство придумал англичанин Джон Лич в 1956 году. А в 1962 году в "Трудах Нью-Йоркской Академии наук" появилась большая статья, посвященная все той же задаче.

Но если считать — хотя это было бы большой ошибкой — все эти работы чисто геометрическим юмором, то двум последним шуткам предшествовало несколько более плоских острот. Плоских — в прямом смысле этого слова.

В июне 1936 года читатели журнала "Нейчур" были приятно удивлены. Известнейший английский химик Фредерик Содди, который получил Нобелевскую премию за то, что открыл изотопы, на этот раз порадовал ученый мир поэмой, состоящей из трех стансов. Она называлась (в вольном переводе) "Поцелуй по расчету", и первый ее станс звучал приблизительно так:

Когда к устам прильнут уста, Быть может голова пуста. Но если вдруг четыре круга Решат поцеловать друг друга, То лишь геометра расчет Их к поцелую приведет. Вариантов два, любой не плох: Все три в одном, один средь трех (1) [2] . Коль три в одном, то изнутри К гиганту тянутся они. (2). Но и средь трех он рад вполне: Три поцелуя — все извне.

В следующем стансе Содди в том же поэтическом ключе сообщает придуманную им формулу: удвоенная сумма квадратов обратных радиусов равна квадрату их суммы.

В этой несложной формуле Содди предусмотрел и тот случай, когда больший круг охватывает три меньших: тогда надо просто брать величину радиуса со знаком "минус". Всякому ясно, что теперь ничего не стоит вычислить радиус четвертого круга, чтобы он смог "поцеловаться" с тремя другими.

Впоследствии выяснилось, что формулу эту знал еще Рене Декарт. Но Содди открыл ее вполне самостоятельно. И кроме того, он не удовлетворился целующимися кругами. В третьей и последней части своего "Поцелуя по расчету" Содди перешел с плоскости в пространство от кругов к сферам. И тут прежде всего обнаружилось, что в целовальном обряде принимают участие не четыре, а пять сфер, а чтобы они могли коснуться друг друга, им надо, говоря презренной прозой, подчиниться требованиям формулы: утроенная сумма квадратов обратных радиусов равна квадрату их суммы.

Любители математических головоломок приуныли: все загадки о соприкасающихся кругах и сферах стали решаться с удручающей легкостью. Ну вот, к примеру, одна из них, просто так, чтобы лишний раз помянуть добром Содди. На столе лежат три арбуза, каждый диаметром в тридцать сантиметров, а под ними — апельсин. Конечно же, все фрукты, выращенные в садах геометрии, имеют идеальную сферическую форму. А потому легкий вопрос: каков диаметр апельсина?

Но Нобелевский комитет не дал Фредерику Содди еще одну премию, быть может, потому, что его формулы никак не помогали решать другие геометрические задачи, которые отняли у мыслящего человечества не одну тысячу человеко-часов. А именно — "упаковочные" головоломки. Формулируя задачу на теперь уже привычном нам языке геометрической эротики, мы поставим вопрос так: каково максимальное число кругов (или сфер), которые могут одновременно поцеловать один (одну) такой (такую) же, целуясь при этом со своими соседями?

На плоскости задача элементарно проста: шесть кругов касаются седьмого, центрального (3). (В качестве таких кругов приятно взять четыре гравюры М. К. Эсхера, которые называются "Пределы на круге".) Но со сферами дело обстоит куда сложнее — недаром Ньютон так и не смог убедить своего друга Грегори, что их может быть не больше тринадцати, включая сюда и "целуемую".

В те годы пинг-понг еще не был в моде, а то бы спорщики могли поставить любопытный эксперимент. Отбросив предрассудок, им надо было взять "чертову дюжину" шариков и сдавить их прозрачной резиновой пленкой. Они могли бы убедиться, что "обычная" дюжина охватывает "чертов" шарик таким образом, что все двенадцать шариков располагаются в вершинах воображаемого икосаэдра (правильного двадцатигранника) и между ними остается небольшой зазор (4). Но достаточен ли этот зазор, чтобы втиснуть еще и четырнадцатый шарик? Вот в чем вопрос. Можно пробовать располагать шары в самых различных комбинациях, но место для еще одного не освобождается. Это, однако, вовсе не доказывает, что такую удачную комбинацию найти невозможно.

Но все-таки — да или нет? Как доказать строго? Хоппе придумал — думайте, если это доставляет удовольствие, и вы.

Быть может, подобные головоломки вам, как и Исааку Ньютону, покажутся трудными, но попытайтесь все-таки совершить над собой некое интеллектуальное насилие. Все это не просто стандартные "вопросы на повторение пройденного". Впереди космическое развитие темы Круга и Сферы, и к нему надо подготовиться.

1

...По счастью, журнал "Нейчур", заложивший основы изучения геометрических поцелуев, известен своей серьезностью. Серьезностью даже в шутках. Напечатав стансы Содди о целующихся кругах и сферах, редакция посчитала, что вопрос освещен недостаточно фундаментально. И спустя полгода, в январском номере 1937 года, опубликовала еще один заключительный станс, принадлежащий перу Форольда Госсета, обитавшего отнюдь не на Парнасе, но в Кембриджском университете. Это было одно из многих стихотворных произведений, присланных в редакцию с единственной целью: обобщить формулу Содди на случай n-мерного пространства, в котором целуются, естественно, n-мерные сферы — гиперсферы.

Чтобы вполне насладиться этим поэтическим шедевром, нам надо справиться с совсем простым делом: представить в себе n-мерную сферу.

2

"Когда нематематик слышит о четырехмерных вещах, его охватывает священный трепет..." — так говорил Альберт Эйнштейн. А Герман фон Гельмгольц считал, что представить себе четвертое измерение — все равно что слепому от рождения вообразить краски. Заметьте, речь идет всего лишь о четвертом измерении. Что же тогда сказать о пятом, шестом, а то и вообще об n-м?

И все-таки рискнем!

Впервые слова "n-мерное пространство" прозвучали в 1854 году в речи Бернгарда Римана при вступлении его на должность преподавателя Геттингенского университета. Она называлась "О гипотезах, образующих основания геометрии" и в самом деле провозглашала совсем новую, неожиданную и уж во всяком случае неевклидовую геометрию, названную впоследствии "римановой". Впрочем, и Евклид, создавая свою геометрию, возможно, размышлял о "мере мира". "Точка — это то, что не имеет частей", — говорил он. Современный математик посчитал бы эти слова пусть примитивным, но довольно точным определением "объекта нулевого измерения". Точка, оставленная карандашом на бумаге, острие булавки или башенного шпиля — вот эти "объекты" в реальной жизни. Сфера нулевого измерения — это и есть точка.

3

Нить, проволока и любая иная линия — это уже одномерные предметы: у них есть длина. Сфера в пространстве одного измерения — это две точки на прямой: центр этой одномерной сферы лежит посередине между ними.

Представители двумерного мира имеют и длину и ширину — это ленты, куски ткани, листы бумаги" Окружность, граница двумерного круга — вот что такое сфера в пространстве двух измерений.

И наконец, кубы, пирамиды, дома, корабли и самолеты так же, как и мы с вами, входят в неисчислимую армию "трехмерцев", обладающих вдобавок к длине и ширине еще и высотой. У них есть объем. Сфера в трехмерном пространстве — это шар, "обычная" сфера.

Но вот что любопытно. Проволоку можно сломать, лист бумаги разрезать, а куб распилить. И при этом получается, что одномерная поверхность, линия, разделяется поверхностью нулевого измерения — точкой. Двумерная плоскость делится надвое одномерной линией, а трехмерный куб — двумерной плоскостью. Иными словами, границей "разлома" тела служит какое-то другое тело, измерение которого на единицу ниже.

Что же тогда служит границей четырехмерной сферры? Поистине прав Эйнштейн: оторопь берет, когда пытаешься все это вообразить!

4

Но не будем отчаиваться и зайдем с другого конца.

Если точку "протащить" по бумаге, то получится линия. Линия, в свою очередь, "заметает" плоскость — получается квадрат. Вытянем квадрат из плоскости — сделаем куб. Это уже третье измерение. Но что же такое надо сделать с кубом, чтобы обратить его в четырехмерное тело? И как его себе представить?

А что мы делаем, чтобы изобразить на плоском листе бумаги трехмерный куб? Мы проецируем его на плоскость. Получаются два квадрата один в другом, соединенные вершинами (5). Так спроецируем же и четырехмерный куб! Мы получим по аналогии два куба, один в другом, и снова вершины попарно соединены. Вот он, посланец четвертого измерения, вернее, не сам он, а его проекция на плоскость (6).

И точно так же, рассуждая по аналогии, мы можем отдаленно представить себе четырехмерную сферу. Если спроецировать глобус на плоскость, то проекции двух его половин наложатся одна на другую, и Нью-Йорк окажется где-то в центре нашей Сибири. Проецируя глобус, мы пропускаем одну его полусферу сквозь другую и соединяем их проекции, круги, только по границе — окружности (как квадраты по вершинам). Проекция гиперсферы — два шара, прошедшие один через другой и соединенные только по внешним поверхностям. Конечно, вообразить все это нелегко, но ничего мистического тут нет.

Еще один гость из иных миров носит имя "четырехмерный симплекс". Симплекс — это простейшая из всех возможных фигур. Добавляя каждый раз всего по одной точке, мы пробегаем по ступеням лестницы размерностей. Одна точка — это нульмерный симплекс. Он живет, как уже говорилось, в нулевом измерении. Две точки определяют отрезок — одномерный симплекс. Измерение — первое" Третья точка превращает линию в треугольник — двумерный симплекс. Еще точка — и вот перед нами пирамида. Это уже простейшее из всех трехмерных тел — трехмерный симплекс. Но вот добавлена пятая точка. Эта необычная конструкция состоит из пяти пирамид. Все вместе они отделяют четырехмерный симплекс от остального четырехмерного пространства точно так же, как шесть граней куба отделяют его от остального трехмерного пространства, а три стороны треугольника ограничивают его на плоскости.

Но что дает нам уверенность, что гиперкуб или "старший" из симплексов не принадлежит к нашему трехмерному миру? Существует один простой тест, основанный на формуле, выведенной еще Леонардом Эйлером. Это удивительная формула. Она — истинно топологическая, потому что имеет дело не с размерами, углами или площадями, а лишь с числом вершин, ребер и сторон, или граней, любой геометрической фигуры. Вот она:

Г+В = Р+2.

То есть число граней (Г) плюс число вершин (В) равно числу ребер (Р) плюс 2. Проверьте правильность этой формулы на какой угодно фигуре — кубе, пирамиде, тетраэдре, икосаэдре, произвольном многограннике, теле самой замысловатой формы. При любых деформациях любой из них формула Эйлера верна.

Но возьмите гиперкуб (6): 24 стороны, 16 вершин, 32 ребра и сверх того 8 трехмерных граней — вот то геометрическое богатство, которым он обладает. Простейшие арифметические действия убедят вас, что гиперкуб пришел к нам в гости из сложнейшего четырехмерного мира, для него несправедлива формула Эйлера.

Итак, знакомство состоялось. Так и хочется задать "четырехмерцам" традиционный вопрос: "Ну как там?" Но гиперкуб молчит всеми своими восьмьюдесятью элементами, симплекс тоже безмолвствует, и нам остается лишь еще раз прибегнуть к испытанному приему — разбежаться перед прыжком: раз надо исследовать свойства четвертого измерения — отступим пока во второе.

"Гораздо легче найти ошибку, нежели истину", — писал великий Гёте. В 1884 году Эдвин Эбботт издал книгу, где справедливость этих слов доказывалась с наглядностью геометрического построения.

Книга его называлась "Флатланд — "Плосколяндия", и хотя она была чисто математической по содержанию, но вызвала много шума в разных кругах общества — автора упрекали даже в женоненавистничестве. И в самом деле, в воображаемой Плосколяндии, стране двух измерений, женщины были простейшей из фигур — прямой линией. Все остальные обитатели представляли собой различные многоугольники: рабочие и солдаты — треугольники, ремесленники — квадраты, джентльмены — пятиугольники, а священники были настолько многоугольными многоугольниками, что больше всего походили на круг. И вот в этот плоский, плоский, плоский мир является существо из третьего измерения — сфера. Квадрат (от его лица ведется рассказ) увидел перед собой священника, который вел себя самым противоестественным образом: он то раздувался, то сжимался. Сколько ни пыталась Сфера объяснить Квадрату, что все эти видимые им круги разного диаметра — это все она одна, когда проходит сквозь Плосколяндию вверх и вниз, он так и не смог вообразить себе трехмерную сферу, пронизывающую его двумерный мир.

Как можно убедить разумное существо, что ты посланец иных миров? Только продемонстрировав ему чудо. Здесь у нас с вами, как и у любого "трехмерца", самые широкие возможности. Ну что нам стоит вынуть плоскатика из его дома (а это просто замкнутая кривая), не разрушая стен? Извлечь содержимое плоского яйца, не протыкая его скорлупы? Произвести трансплантацию сердца любому гражданину Плосколяндии, не вскрывая его грудной клетки? Да просто, наконец, приподнять любой предмет в этой стране над плоскостью и тем самым "выключить" его из жизни и даже из поля зрения? И пусть плоскатики сочиняют свои басни о своих "летающих тарелочках".

Если две Плосколяндии удалены друг от друга на тысячи световых лет, но плоская лента их мира извивается в пространстве так, что одни ее участки оказываются поблизости один от другого, как по гравюре "Оболочка" голландского художника Маурица Корнелиса Эсхера, то мы легко можем перенести плоскатика из одной галактики в другую со скоростью, в тысячи раз превышающей "его" скорость света: ведь мы пронесем его через третье измерение.

Такие сказочные возможности несет в себе увеличение размерности мира всего на единицу. Это значит, что "четырехмерцы" так же всемогущи по отношению к нам, как мы — по отношению к "двумерцам". Скажем, нам не под силу надеть левую перчатку на правую руку или правый ботинок — на левую ногу. Но "четырехмерец" без труда мог бы унести на мгновение и перчатку, и ботинок в свое "лишнее" измерение и вернуть их оттуда симметрично отображенными. Первым до этого додумался в 1827 году Франц Фердинанд Мёбиус, человек, чье имя встретится нам еще не раз. В чем тут фокус — вопрос особый, и мы к нему еще вернемся, а пока подумайте: как бы вы могли помочь "двумерцам" обуться, если бы вдруг все их сапожники стали делать туфли только на одну — левую или правую — ногу?

5

Новое измерение таит в себе такие невероятные возможности, что в сознании людей, не обретших твердого философского материалистического фундамента, не могло не вызвать потусторонних мыслей. В 1879 году вышла книга астронома и физика Иоганна Карла Фридриха Цёльнера "Трансцендентная физика". Он развил стройную "теорию" о том, что все покойники должны встречаться в четвертом измерении, которое Цёльнер представлял себе как некую комбинацию Элизиума и Валгаллы — рая и ада.

Этого немецкого ученого можно заподозрить в чем угодно, только не в желании прослыть остряком — он все писал и делал всерьез, что ярко проявилось в истории с Генри Слейдом. В то время Европа упивалась спиритизмом. Слейд как раз и был одним из кумиров околонаучных гостиных. Сей загадочный американец утверждал, что постоянно держит связь с четвертым измерением и охотно демонстрировал свой любимый фокус: завязывал узел на соединенной в кольцо веревке или ленте.

(Как это может сделать существо "высшего порядка", видимо, вообразить себе не так уж сложно, а технология, примененная Слейдом, подробно рассмотрена в книге Гарри Гаудини "Фокусник среди спиритов" и даже в "Трудах Американского общества психиатров". Вместе с этими двумя разоблачительными работами появилась и одна защитительная, написанная "отцом" Шерлока Холмса Артуром Конан Дойлем. Она называлась "История спиритизма", и Слейд в ней выглядит не шарлатаном, а чудотворцем. Если добавить к этому, что и "Труды", и обе книги появились уже в двадцатых годах нашего века, станет понятным, насколько глубокое и длительное впечатление производили заигрывания Слейда с четвертым измерением.)

Цёльнер решил организовать эксперимент по всем правилам науки. Он предложил Слейду превратить морскую раковину, закрученную левой спиралью, в точно такую же, но только зеркально отображенную с правой спиралью. Кроме того, Цёльнер принес на спиритический сеанс немного виннокаменной кислоты с "правым" пространственным расположением молекул и попросил преобразовать ее в кислоту с "левым" расположением тех же молекул. Разумеется, для человека, который запанибрата с четвертым измерением, сделать все это не сложнее, чем завязать узел на соединенной в кольцо ленте. Но, с точки зрения фокусника, тут есть свои трудности — надо суметь синтезировать новую кислоту или же, что еще сложнее, найти симметричную данной морскую ракушку.

Конечно, ничего у Слейда не получилось. Но Иоганн Карл Фридрих Цёльнер был слишком серьезным ученым (и слишком легковесным философом), чтобы отказаться от своей "теории" потусторонней физики или заподозрить всемирно известного спирита в элементарной подтасовке. Раз узел появлялся, рассуждал, он, значит, есть и контакт с четвертым измерением. А раз есть четвертое измерение, то, значит, там обитают души умерших...

Вообще сама идея четвертого измерения не раз привлекала к себе внимание крайних мистиков, служила пищей для самого дикого суеверия. Любопытно, что происхождение ее связано с Платоном, самым крупным древнегреческим философом-идеалистом, с именем которого нам много раз предстоит встречаться на страницах этой книги, поскольку оно было присвоено целой группе геометрических тел — вполне материальных, не несущих в себе даже тени идеалистического мировоззрения. Так вот именно Платон в своей "Республике" повествует о прикованных у входа в пещеру пленниках, которые могут видеть лишь противоположную стену ее и на ней свои тени и тени предметов, случайно оказывающихся у них за спиной. Эта невыносимая жизнь длится столь долго, что несчастные в конце концов начинают считать тенями самих себя, да и весь мир кажется им миром теней некоего иного внеземного и более совершенного мира — мира идей.

Неоплатоники, черпавшие свои мистические воззрения не только у своего учителя, но и из различных восточных религиозных учений, развили представление о реальном мире как о тени, отбрасываемой миром потусторонним. Есть мнение, что само выражение "четвертое измерение" (quarta dimensio) появилось впервые в сочинении английского мистика, кембриджского неоплатоника Мора в его книге "Энхиридион Метафизикум", изданной в 1671 году.

Представители различного рода религиозных культов усердно заселяли четвертое измерение (вообще говоря, с точки зрения строгой геометрии правильнее было бы такое выражение: пространство, имеющее четыре измерения) душами усопших. Верующим сообщались и многочисленные доказательства того, что дело обстоит именно таким образом. При этом мистики иудаизма приводили цитаты из каббалистических книг "Зохар" и "Сефер Ецира", где повествуется о явлении душ умерших в наш мир и о творимых ими чудесах; мусульманские проповедники ссылались на некоторые суры Корана и хадисов — священных преданий; идеологи христианства находили неотразимые, по их мнению, свидетельства в Евангелии и апокрифах — библейских книгах, не признаваемых священными официальной церковью. К примеру, во "Втором Послании апостола Павла к Коринфянам" речь идет о человеке, который был "взят до третьего небосвода", что толковалось как безусловное и очевидное перемещение его в четвертое измерение. В его же "Послании к Эфесянам" говорится о "ширине, длине, глубине и высоте", другими словами, о всех четырех измерениях "мира духов". А в "Откровении Иоанна" — "Апокалипсисе" — сказано, что лично сам Иоанн был "вознесен в духе" и при этом увидел "город четырех-квадратный". Ясное дело, что перед его очами предстал гиперкуб, притом именно четырехмерный!

Нет, не математики или физики виновны в том, что идея четырехмерного пространства дала пищу для всякого рода чертовщины. Забавно: Клейну пришлось публично объяснять, что сделанное им математическое открытие (смысл которого сводится к тому, что узлы замкнутой кривой в пространстве трех измерений могут быть развязаны в пространстве четырех измерений) никакого отношения к "миру духов" не имеет, хотя Цёльнер и ссылался именно на эти работы Клейна. Позже даже Эйнштейну пришлось отмежевываться от разного рода мистических спекуляций на понятиях о четырехмерном пространстве Минковского, кривизне пространства-времени и других рожденных теорией относительности представлениях.

Громя в "Материализме и эмпириокритицизме" махизм за отрицание объективной реальности, В. И. Ленин тоже не обошел вниманием этот вопрос. По его мнению, австрийский физик Мах, пользуясь методами "...молчаливых заимствований у материализма...", совершенно справедливо защищает в своей "Механике" "тех математиков, которые исследуют вопрос о мыслимых пространствах с n измерениями, защищает от обвинений в том, будто они повинны в "чудовищных" выводах из их исследований". И далее В. И. Ленин, цитируя и ссылаясь на Маха, пишет: "Новейшая математика... поставила очень важный и полезный вопрос о пространстве с п измерениями, как о мыслимом пространстве, но "действительным случаем" (ein wirklicher Fall) остается только пространство с 3-мя измерениями... Поэтому напрасно "многие теологи, испытывающие затруднения насчет того, куда им поместить ад", а также спириты пожелали извлечь для себя пользу из четвертого измерения..."

В. И. Ленин назвал "прекрасным аргументом" следующее утверждение Маха: "Акушера такого еще не было... который бы помог родам при помощи четвертого измерения". Но этот аргумент, говорит В. И. Ленин, прекрасен только "...для тех, кто видит в критерии практики подтверждение объективной истины, объективной реальности нашего чувственного мира. Если наши ощущения дают нам объективно верный образ внешнего мира, существующего независимо от нас, тогда этот довод с ссылкой на акушера, с ссылкой на всю человеческую практику, годится. Но тогда весь махизм, как философское направление, никуда не годится".

Геометрическая идея n-мерности, как видим, имеет длительную и бурную философскую предысторию.

С помощью этой идеи и многие другие науки пытались разрешить свои трудности и неясности. Например, протекание электрического тока до открытия электрона некоторые физики объясняли некими четырехмерными вихрями. Существовали одно время представления и о четырехмерной химии. Английский химик Хинтон утверждал, что в молекуле алкоголя С5Н12О все пять атомов углерода находятся на одинаковом расстоянии друг от друга, что, разумеется, невозможно в нашем трехмерном мире, но зато легко осуществимо в пространстве четырех измерений. На самом же деле, как теперь известно, структурно молекула алкоголя выглядит так:

Но те, кто верил в "четырехмерную химию", упорно считали, что оптическая изомерия, то есть существование соединений одинакового химического состава, но только имеющих кристаллы, зеркально расположенные в пространстве относительно друг друга, свидетельствует о существовании и четвертого измерения тоже. Любопытно и поучительно, что решительный шаг в научном объяснении оптической изомерии был сделан крупным русским химиком А. М. Бутлеровым, который был ревностным сторонником спиритизма. Однако, создавая свою теорию строения химических соединений, он ясно видел, что для того, чтобы двум оптическим изомерам "поменяться местами", то есть превратиться в зеркально отраженные, нет никакой необходимости в четвертом или каком либо ином измерении.

"Тем, кто хорошо знаком с пятым измерением, ничего не стоит раздвинуть помещение до желательных пределов. скажу вам больше, уважаемая госпожа, до черт знает каких пределов!" — самодовольно говорит Коровьев в "Мастере и Маргарите". Неуемная фантазия Булгакова не удовлетворилась даже четвертым измерением — ему понадобилось пятое.

Фантасты тоже не обошли "мир иной" своим вниманием. Первым среди них был, видимо, Герберт Уэллс. Школьный учитель Готфрид Платтнер, герой рассказа Уэллса "История Платтнера", изобрел желтый порошок, который, взорвавшись, забросил изобретателя в четвертое измерение. Через девять дней жизни там Платтнер споткнулся, у него в кармане разбилась бутылка с тем же порошком, и он очутился дома, без потерь и происшествий, если не считать того, что сердце у него переместилось в правую часть грудной клетки, а сам он стал писать левой рукой, да вдобавок зеркально. "Люди как боги" — другое произведение Уэллса, в котором "действует" четвертое измерение. Уэллс лишь открывает список фантастов, которых увлекла эта тема. В этом списке стоят имена многих других знаменитостей этого увлекательного жанра литературы.

Но попробуем остаться на почве реальных фактов Наша мысль рвется в четвертое измерение, а освоили ли мы свое собственное, третье? В полной ли мере познали мы его геометрические свойства и все ли три пространственные координаты — длина, ширина и высота — нам одинаково близки и понятны?

"Геометрия — это интуиция", — определение Гельмгольца не претендует на строгость, но зато оно глубоко по мысли. "Вообразить геометрические отношения интуитивно, — считал он, — это значит выразить те следствия, которые встретятся в мире, где эти отношения имеют силу". Но вот что пишет немецкий философ Ганс Рейхенбах: "Пользуясь нашей геометрической интуицией, мы ограничены своим личным опытом: точками, линиями, площадями, объемом и т. п. Более сложный опыт — это положение точки на прямой или в объеме, пересечение линий в точке, расположение сферы в объеме. Наша интуиция имеет вообразительную функцию, связанную с нашим прошлым чувственным опытом, — например, треугольник, нарисованный на стене, дорожный знак или часть орнамента в виде треугольника. Но вместе с тем у нее есть и нормативная функция, которая не позволяет нам взглянуть на одну и ту же идею с разных сторон".

Вот простейший пример. Дана замкнутая кривая — круг или квадрат. Требуется чисто умозрительно, без карандаша и бумаги, решить: можно ли соединить две точки — одну внутри кривой, другую вне ее, но так, чтобы не пересечь замкнутой кривой.

Представив себе этот элементарный чертежик и немного поразмыслив, мы уверенно утверждаем, что задача невыполнима. Это сработала нормативная функция воображения. Дело в том, что наш "внутренний взор" несет в себе евклидову плоскость — лист бумаги. Конечно же, на листе не соединишь две точки, не перечеркнув кривую, охватывающую одну из них. Но кто говорил нам о типе поверхности, на которой предстоит решать задачу? А если это не плоскость, а, скажем, бублик или автомобильная шина — все получается легко и просто.

Человек слишком привык к двумерному миру. Наша "вообразительная" интуиция тут никогда нас не подводит. Но как только дело доходит до пространственных представлений, она начинает хромать. Высоту дома оценить куда труднее, чем его длину или ширину. А сказать, как далеко находится самолет или облако, неподготовленный человек не может даже приблизительно. Третьей координатой — не то что четвертой! — нам еще овладевать и овладевать.

Причина тут не психологическая, а чисто физиологическая. Все дело в устройстве наших глаз. Когда мы смотрим на удаленный предмет, особые мускулы изгибают хрусталик глаза — естественную линзу, чтобы изменить ее фокусное расстояние и дать нам увидеть предмет отчетливо. Если же мускулы устали, то приходится заводить очки и менять фокусное расстояние искусственно. Наводка на резкость фотокамеры — полная аналогия этому процессу, который в физиологии называется аккомодацией.

И еще в каждом глазе есть группа из шести мускулов, которые поворачивают его таким образом, чтобы направления взгляда правого и левого глаза пересекались в одной точке. Это называется конвергенцией. Так создается бинокулярный эффект — мы видим мир объемным. Стереоскоп, в котором рассматривают "выпуклые" картинки, построен по этому же принципу.

"Третье измерение мы обнаруживаем с помощью аккомодации и конвергенции. восприятие третьего измерения сводится к ощущению усилия, которое мы испытываем при аккомодации каждого глаза, и ощущению усилия, которое возникает в обоих глазах, когда они настраиваются на нужный угол сходимости — то есть при их конвергенции. оба эти ощущения мускульные, они совершенно непохожи на зрительные ощущения, которые позволяют нам воспринимать первое и второе измерения", — это пишет не физиолог, а математик, притом известнейший — Анри Пуанкаре. Впрочем, любой из нас сам мог бы прийти к подобным выводам на основе собственного опыта. Мы видим плоскую картину, улавливаем игру света и тени, краски, взаимное расположение фигур и цветовых пятен на ней — и все это зрительные ощущения. Панорама же требует от наших глаз включить мускульный аппарат аккомодации и конвергенции, и мы мгновенно ощущаем его работу. Но интуиции на мускульные усилия, как и на пространственное расположение фигур, у человека еще не выработалось.

Внимательно всмотритесь в гравюры Маурйца Эсхера "Куб и волшебные ленты", "Выпуклое и вогнутое", "Поднимаясь и опускаясь", "Бельведер" и "Водопад". Вы увидите, какие шутки способны сыграть с нами наше восприятие пространства и объема.

Ленты поистине магические — "протуберанцы" на них вы можете по своему произволу считать знаком и выпуклости, и вогнутости. Стоит изменить точку зрения, и лента на рисунке вдруг на глазах перекрутится. Подобные же шутки позволяют себе и целые архитектурные детали.

6

Улыбающийся юноша на приставной лестнице, стоя у ее подножия, был "внутри" "Бельведера", удивительной конструкции. Теперь, когда он поднялся почти до самого верха, он опять "снаружи" и должен преодолеть еще несколько ступенек, чтобы вновь оказаться "внутри" "Бельведера". Как это могло случиться?

Если вам не удастся разгадать эту геометрическую шараду самому, обратитесь за помощью к человеку, изображенному внизу гравюры сидящим на скамье. Перед ним чертеж — проекция куба на плоскость. Кружочками отмечены точки, где пересекаются проекции граней. Но какая из них впереди, а какая сзади? Если отказаться от единственно возможного на первый взгляд ответа на этот вопрос, то получится кубоид — геометрическая модель "Бельведера", которую Человек-на-скамейке держит в руках.

Еще ярче демонстрирует ущербность нашего восприятия трехмерного пространства бесконечная лестница, по которой одни люди идут вверх, а другие — вниз по одним и тем ступеням! Или же непрерывно бегущая вверх вода в "Водопаде".

Английский ученый профессор Е. Р. Лайтвейт из Королевского колледжа науки и техники пытался научить своих подопечных изобретательству. Он считал, что главное — это развить воображение и прежде всего — пространственное. Надо уметь "видеть" невозможные вещи. Студентам демонстрировали, например, пространственный треугольник, который не может существовать в нашем мире (7). А уже знакомый нам кубоид выдавался за коробку, в которую можно складывать эти геометрические призраки (8). Или же будущим эдисонам показывали совсем уж чудовищный рисунок на него даже смотреть несколько секунд подряд невыносимо для здоровой психики! (9)

7

"Утверждение о том, что человек обладает способностью зрительно воспринимать пространство, на первый взгляд кажется совершенно очевидным, однако более серьезный анализ этого вопроса, не обремененный стереотипными представлениями обыденного сознания, убеждает нас в том, что изучению психических механизмов, лежащих в основе нашей способности зрительно воспринимать пространство, должно предшествовать доказательство наличия такой способности", — пишет в своей книге "Зрительное восприятие пространства" советский исследователь А. Д. Логвиненко. Иными словами, не такой уж это простой вопрос о том, как мы видим пространство. И в самом деле, мы живем в трехмерном мире, а мысль наша между тем издавна привержена к двум измерениям. Когда Зевс решил найти середину мира, он поступил просто: послал двух орлов, летящих с одинаковой скоростью, к дальним концам мира и стал ждать, когда они встретятся на обратном пути. Точка встречи — это и есть середина мира. Плоского двумерного мира, каким он виделся Громовержцу.

Человечество пошло не по пути овладения третьим измерением, а по пути его "приручения": люди старались втиснуть объем в плоскость, изобразить окружающий мир на скале, песке или папирусе.

"В нашем трехмерном мире нет по-настоящему ни двумерных, ни четырехмерных вещей, ничто не абсолютно плоско, даже самое тщательно отполированное зеркало. но будем по привычке называть стену или лист бумаги плоскими. с ранних лет человек рисует на таких "плоскостях", чтобы дать впечатление о пространстве, глубине и объеме — так, словно это самая .простая вещь на свете, но разве это не абсурдно — нарисовать на бумаге несколько линий и сказать: "Это дом"?" — эти слова принадлежат Mayрицу Эсхеру. Взгляните на его гравюру "Балкон" — эту удивительную попытку вырваться в третье измерение. Вот что говорит о ней сам автор: "Будем помнить, что пространственное изображение квартала домов и солнца, сияющего над ним, — это чистая фикция: ведь бумага — не что иное, как плоскость, даже если она покрыта освещенными и затемненными участками. Но в порыве самонасмешки, словно издеваясь над собственной беспомощностью, художник сделал попытку разорвать единство плоской поверхности в центре рисунка. Он нанес по задней стороне его удар такой силы, что явно проступило вздутие. Впрочем, результат все равно равен нулю, потому что бумага так и осталась плоской..."

8

Попытки "разорвать единство плоской поверхности" сделаны и в других гравюрах Эсхера: "Рептилии", "Дорические колонны", "Три сферы. I" и "Дракон". Третье измерение здесь буквально вырастает из второго — взаимосвязь видна со всей графической отчетливостью.

Вся беда в том, что мы сами живем в третьем измерении и поэтому смотрим на него "изнутри", наш объемный мир мы видим как бы плоским. Звучит парадоксально, но поместите лист бумаги с нарисованной на нем Плосколяндией и всеми ее обитателями точно на уровне глаз — и вы на секунду испытаете трагедию плоскатиков, обреченных жить в двух измерениях, но ощущать лишь одно. Ведь чтобы увидеть фигуру — квадрат ли, круг, им надо хоть немного "выскочить" из своей плоскости. Но это невозможно, и именно поэтому весь мир они воспринимают как одну сплошную "женщину" — прямую линию. Остается лишь обойти фигуру со всех сторон и ощупать ее, но только представители "низших классов" в Плосколяндии могут позволить себе, да и то изредка, столь вульгарное поведение. "Лучше плохо видеть, чем хорошо щупать!" — одна из первых заповедей воспитанного человека в этой стране.

В предисловии ко второму изданию своей книги Эдвин Эбботт отверг обвинения в женоненавистничестве, хотя и согласился с критиками, что он обрек плоскатиков на ужасную жизнь. Однако, заявил он, плосколяндцы обладают третьим измерением, но только оно вне их восприятия — ведь их мир одной толщины.

9

Так не обладаем ли и мы в зачаточной форме четвертым измерением, несмотря на то что даже третье, не освоено еще нами полностью?

Вместо ответа на этот вопрос — несколько совсем уж поразительных фактов, связанных с пространствами более чем четырех измерений.

Помните спор Ньютона и Грегори о тринадцати шарах, касающихся четырнадцатого? Сколько таких целующихся гипершаров может быть в четырехмерном пространстве? Оказывается, 24. А в пространствах пяти, шести, семи, восьми измерений соответственно 40, 72, 126 и 240. Последнее число было найдено в конце прошлого века русскими математиками А. Н. Коркиным и Е. И. Золотаревым и уже известным нам англичанином Форольдом Госсетом.

Но это не самое удивительное в парадоксах многомерности. Вот еще один и последний. Куб вместит в себя по диагонали квадрат, площадь которого больше площади одной его грани. В четырехмерный куб впишется обычный куб, объем которого больше объема одной гиперповерхности гиперкуба. А в n-мерный куб с ребром в один миллиметр войдет океанский корабль и весь наш трехмерный мир, если только п достигнет нужной величины.

Попытайтесь представить себе эти непредставимые вещи — и вы услышите музыку сфер, о которой, собственно, и шла речь в этой главе.

Математика — это большой город, чьи предместья не перестают разрастаться, в то время как центр периодически перестраивается, следуя каждый раз все более ясному плану и стремясь к все более и более величественному расположению, в то время как... старые кварталы с их лабиринтом переулков сносятся для того, чтобы проложить к окраине улицы все более прямые, все более широкие и удобные...
Никола Бурбаки

 

II. Мебиусиана

"Униформа, по местам! Маэстро, туш!" — на арене фокусник. Его инструментарий прост до крайности — горизонтальная перекладина на двух стойках, в которую вбито несколько гвоздей, и на каждом из них висит по длинной яркой ленте. Все самое простое и настоящее — любой желающий волен убедиться в этом собственноручно. Маг закуривает сигарету и горящим концом дотрагивается до первой ленты. Пламя бежит вдоль нарисованной посередине ленты дорожки, вызывая восхищение малышей. Но вот огненное кольцо замкнулось — и тут уж крик удивления вырывается у взрослых: вместо ожидавшихся двух тонких лент появляется одна длинная. Прикосновение сигареты к другой ленте — снова взрыв детского восторга и за ним озадаченное молчание взрослых: теперь перед ними две ленты, продетые одна в другую. Еще одна огненная дорожка — и лента делает еще один неожиданный вольт: теперь она завязывается узлом.

Детская радость понятна — им неведомо, что на свете бывают химики и что они придумали калиевую селитру. Но и недоумение родителей тоже идет от незнания — топологии вообще и одной из ее излюбленных игрушек, "листа Мёбиуса", в частности.

А игрушка эта полюбилась математикам, и не им одним. У входа в Музей истории и техники в Вашингтоне медленно вращается на пьедестале стальная лента, закрученная на полвитка. В 1967 году, когда в Бразилии состоялся международный математический конгресс, его устроители выпустили памятную марку достоинством в пять сентаво. На ней была изображена все та же лента. И монумент высотой более чем в два метра, и крохотная марка — своеобразные памятники немецкому математику и астроному Августу Фердинанду Мёбиусу, профессору Лейпцигского университета.

В своей работе "Об объеме многогранников" он описал геометрическую поверхность, обладающую совершенно невероятным свойством: она имеет только одну сторону! Самое же при этом удивительное, пожалуй, то, что сделать ее своими руками не представляет решительно никакого труда: надо лишь взять полоску бумаги и склеить ее концы, предварительно повернув один из них на 180 градусов. И тогда в ваших руках окажется лист, или лента, Мёбиуса. Чтобы наглядно убедиться, что у вашей самоделки действительно всего одна сторона, попробуйте закрасить перекрученную ленту в два цвета — одним с внешней, а другим — с внутренней стороны. Что бы вы ни придумывали, вам это не удастся. Но зато муравью, ползущему по листу Мёбиуса, не надо переползать через его край, чтобы попасть на противоположную сторону, как это видно на гравюре Маурица Эсхера "Лента Мёбиуса. II".

Итак, односторонность. В геометрическом, разумеется, понимании этого слова, потому что в нашем общечеловеческом смысле трудно представить себе более разностороннюю геометрическую фигуру. Теперь, когда вы познакомились с ней, наверное, уже никакая сила не Удержит вас от того, чтобы не клеить все новые и новые ленты, закручивая их то на один, то на два, а то и на три полуоборота, и потом беспощадно разрезать вдоль. И вы будете вознаграждены за свою любознательность — полоска бумаги повторит все фокусы, показанные в Цирке.

Да что цирк! Патентные службы вынуждены были познакомиться с поразительными свойствами листа Мёбиуса — в разное время и в разных странах зарегистрировано немало изобретений, в основе которых лежит все та же односторонняя поверхность. В 1923 году знаменитый американский изобретатель Ли де Форест, который придумал трехэлектродную лампу — триод, предложил записывать звук на киноленте без перемены катушек, сразу "с двух сторон". Ему выдали патент № 1442632. Изобрели магнитофон — и сразу же нашлись сообразительные люди, которые придумали особые кассеты, где магнитная лента соединяется в кольцо и перекручивается. Ясно, что тогда можно записывать и считывать подряд с двух дорожек, не снимая кассеты с магнитофона и не меняя их местами, а значит, время непрерывного звучания увеличивается ровно вдвое. (Речь идет, разумеется, о так называемой "непрерывной ленте", то есть замкнутой в кольцо, вроде автоматических телефонных часов или милицейских лозунгов о безопасности движения, передаваемых через репродукторы, патрульных машин.) В 1969 года советский изобретатель А. Губайдуллин получил авторское свидетельство № 236278 на бесконечную шлифовальную ленту, работающую обеими своими сторонами. Он предложил натянуть сделанную из специального материала ленту Мёбиуса на два вращающихся ролика и покрыть ее крупинками твердого абразива. Понятно, что такая лента служит вдвое больше обычной. Ту же идею использовали сотрудники НИИ автоматизации черной металлургии Г. Буйный и В. Изотов в своем устройстве для магнитной дефектоскопии (им выдано авторское свидетельство № 259449).

Идея использовать ленту Мёбиуса не оставляла изобретателей и в последующие годы. В 1971 году П. Н. Чесноков из Уральского политехнического института имени С. М. Кирова получил авторское свидетельство на фильтр непрерывного действия для жидкости, "отличающийся тем, что, с целью интенсификации процесса фильтрования и увеличения срока службы фильтрующего материала, лента выполнена в виде Мёбиуса листа". Год спустя И. В. Киселев стал официально автором устройства, про которое в авторском свидетельстве сказано: "Бесконечный шлифовальный ремень, выполненный на гибкой основе с нанесенным на нее абразивным покрытием и склеенный в кольцо с повернутой ветвью, отличающийся тем, что, с целью увеличения стойкости, он имеет в сечении форму многогранника с равными гранями, покрытыми абразивным слоем, а ветвь его повернута на одну грань". Институт электродинамики Академии наук Украинской ССР представил изобретение своих сотрудников Ю. И. Драбовича и И. А. Криштафовича. Оно сформулировано так: "Магнитный сердечник, изготовленный из ферромагнитной ленты с изоляционным покрытием, отличающийся тем, что, с целью улучшения магнитных свойств сердечника путем создания равномерного магнитного поля по его сечению, сердечник намотан в форме ленты Мёбиуса".

Наконец, не были забыты и дети, для которых И. Е. Бурлак изобрел и получил на то в 1979 году соответствующее свидетельство, в котором в тех же строгих правилах заявки описана "игрушечная электрифицированная железная дорога, содержащая полотно железной дороги, модели локомотива и вагонов с поворотными осями колес, отличающаяся тем, что, с целью повышения занимательности, полотно железной дороги представляет собой ленту Мёбиуса, рельсы выполнены из ферромагнитного материала, а модели локомотива и вагонов снабжены магнитными башмаками, закрепленными на поворотных осях колес".

В 1963 году патентное ведомство США зарегистрировало два "практически геометрических" изобретения. Некто Джакобс поставил свои знания топологии на службу химчистке — он придумал самоочищающийся фильтр, который представляет собой все ту же ленту Мёбиуса и беспрерывно освобождается от впитанной грязи, работая при этом обеими своими сторонами. А Ричард Дэвис, физик из американской корпорации "Сандиа" в Альбукерке, изобрел электрическое сопротивление, обладающее нулевой реактивностью. О нем, пожалуй, стоит поговорить поподробнее и потому, что такое сопротивление — давнишняя мечта радиотехников и физиков, и потому еще, что тут нам предоставляется возможность увидеть нашу одностороннюю ленту Мёбиуса с несколько иной стороны.

Но сначала склейте еще один лист Мёбиуса и разрежьте его ножницами вдоль не на две, а на три части, то есть не посередине, а отступив от любого из краев на треть ширины ленты. Нечто похожее изобразил Мауриц Эсхер на гравюре "Лента Мёбиуса. I". Вас снова ждет сюрприз: теперь получается еще один лист Мёбиуса — поменьше, да и толщиной всего в треть от первоначального! а в него продета длинная и тонкая лента, дважды перекрученная вдоль своей оси. А теперь сделайте себе из всего этого геометрического изобилия прекрасную игрушку на вечер — другой. Это, как и все предыдущее, просто. Покрасьте "маленького Мёбиуса" в какой-нибудь цвет. И попытайтесь уложить с обеих сторон от него ленту так, чтобы получился лист Мёбиуса тройной толщины.

Рано или поздно вы справитесь с задачей, и наградой вам будет удивительная фигура. Две ее крайние незакрашенные части, хотя они и сделаны из одной длинной ленты, тем не менее нигде не смыкаются друг с другом, а просто лежат вдоль сторон третьей, закрашенной. Но каких сторон? Ведь центральная часть — это односторонняя поверхность! Да и крайние, раз они повторяют ее форму, тоже не что иное, как два листа Мёбиуса, которые обрели самостоятельность, обвившись вокруг своего цветного собрата.

Вот это и есть сопротивление с нулевой реактивностью. Но только изготовляют его — для простоты технологии — немного по-другому: к резиновой ленте с двух сторон приклеивают две тонкие алюминиевые полоски, а к ним припаивают выводы, через которые можно подать электрический ток. Затем всю конструкцию перекручивают на один оборот и соединяют в мёбиусов лист — он, естественно, будет трехслойным. И вот теперь ток, проходя по полоскам, встретит на своем пути лишь так называемое "активное" сопротивление, то есть сопротивление самого материала — алюминия. "Реактивность" проводника с током, имеющего форму листа Мёбиуса, равна нулю.

"То, что я понял, прекрасно, из этого я заключаю, что остальное, чего я не понял, тоже прекрасно", — высказался в свое время Сократ по поводу неясностей у Гераклита. Быть может, эти слова послужат неким утешением для того, кто не сумеет одолеть суть радиотехнического дебюта листа Мёбиуса. Хотя понять ее не так уж невозможно. Есть простой, но в данном случае неприятный для радиотехников факт: каждое тело имеет форму и как-то располагается в пространстве. А потому оно ведет себя либо как маленький конденсатор — обладает собственной электрической емкостью и, значит, оказывает переменному току емкостное сопротивление, либо поступает подобно крохотному дросселю — тогда его сопротивление индуктивное. Оба эти сопротивления, оказываемые телом электрическому току, называют реактивными. И избавиться от них, как и от того, что у него есть какая-то форма, ни одно тело как будто не может.

А теперь вспомним факт, в котором нам только что пришлось убедиться: "трижды толстый мёбиус" можно сделать по-разному — и из трех отдельных частей, и всего из двух: короткой центральной и особым образом уложенной длинной заготовки, которая одна образует обе боковые стороны. Значит, ток в безреактивном сопротивлении дважды проходит по одному и тому же месту в пространстве, но оба раза в противоположных направлениях, пробегая по длинной ленте — алюминиевым полоскам, уложенным "восьмеркой" с двух сторон короткой резиновой полосы, служащей изолятором. Таким образом, реактивность реактивностью же и уничтожается. И потому такое закрученное сопротивление остается чисто активным, даже если изгибать его как угодно или помещать в любое внешнее поле.

Конечно, радиотехники должны быть особенно благодарны Августу Фердинанду Мёбиусу — ведь им приходится иметь дело с миллионами герц, а чем выше частота, тем больше "реактивность" каждого элемента схемы и тем больше помех вносят в ее работу нынешние "нечисто активные" сопротивления. Но, пожалуй, с еще большим энтузиазмом встретят новое изобретение физики, которые занимаются сверхпроводимостью. Как известно, при очень низких температурах, близких к абсолютному нулю, сопротивление электрическому току вдруг пропадает и он может течь неограниченно долго, не требуя никакого притока энергии извне. Да, но речь идет об активном сопротивлении. Реактивное же сопротивление сверхнизкой температурой и всей невероятно сложной техникой, созданной для ее получения, не уничтожается. Зато простейшее геометрическое преобразование обещает физикам скорую и неожиданную помощь. Быть может, мечта о вечном электрическом двигателе, не требующем никакой энергии для своей работы, теперь уже близка к своему осуществлению...

Но до сих пор речь шла всего об одном свойстве листа Мёбиуса — о его односторонности. А ведь у него есть еще и другие подобные свойства. Но какие подобные? Математик назвал бы их топологическими.

Сама топология, можно сказать, началась именно с листа Мёбиуса. Слово это придумал Иоганн Бенедикт Листинг, профессор Геттингенского университета, который — и это далеко не всем известно — почти в то же время, что и его лейпцигский коллега, предложил в качестве первого примера односторонней поверхности уже знакомую нам единожды перекрученную ленту. Наука та молодая и потому озорная. Иначе не скажешь о тех правилах игры, которые в ней приняты. Любую фигуру тополог имеет право сгибать, скручивать, сжимать и растягивать — делать с ней что угодно, только не разрывать и не склеивать. И при этом он будет считать, что ничего не произошло — все ее свойства остались неизменными. Для него не имеют никакого значения ни расстояния, ни углы, ни площади. А что же его интересует? Самые общие свойства фигур, которые не изменяются и при каких преобразованиях, если только не случается катастрофы — "взрыва" фигуры. Потому иногда топологию называют "геометрией непрерывности". Она известна и под именем "резиновая геометрия", потому то топологу ничего не стоит поместить все свои фигуры на поверхность детского надувного шарика и без конца менять его форму, следя лишь за тем, чтобы шарик ie лопнул. А то, что при этом прямые линии, например стороны треугольника, превратятся в кривые, для тополога глубоко безразлично.

"Сотри случайные черты, и ты увидишь — мир прекрасен", — писал Александр Блок. Тополог всегда готов внять подобному призыву — во всех окружающих его предметах он ищет некие важные только ему одному качества. Например, непрерывность. Это еще одно топологическое свойство. Если вы сравните схему самолетных маршрутов и географическую карту, о убедитесь, что масштаб Аэрофлотом далеко не выдержан — скажем, Свердловск может оказаться на полпути от Москвы до Владивостока. И все-таки что-то общее между географической картой и топологической схемой (а транспортники — бессознательные топологи) есть. Москва действительно связана со Свердловском, а Свердловск — с Владивостоком. И потому тополог может как угодно деформировать карту, лишь бы точки, ранее бывшие соседями, оставались одна подле другой и дальше. А значит, с топологической точки зрения круг неотличим от квадрата или треугольника, потому что их легко преобразовать один в другой, не нарушая непрерывности. Взгляните с этой точки зрения на нашего старого знакомца и увидите: на листе Мёбиуса любая точка может быть соединена с любой другой точкой. И при этом муравью на гравюре Эсхера ни разу не придется переползать через край "ленты". Разрывов нет — непрерывность полная.

Но куда интереснее другое свойство — связность. Если квадрат полоснуть бритвой от стороны к стороне, то он, естественно, распадается на два отдельных куска. Точно так же любой удар ножом разделит яблоко на две части. Но вот чтобы располовинить кольцо, нужно уже два разреза. И два раза придется резать бублик, если вы хотите угостить им двух друзей. А телефонный диск можно десять раз рассечь ножом от одной замкнутой кривой до другой, а он все останется единым целым. Поэтому любой тополог скажет вам, что квадрат и ромашка — односвязны, кольцо и оправа от очков — двусвязны, а всяческие решетки, диски с отверстиями и подобные сложные фигуры — многосвязны. Ну а наш лист Мёбиуса? Конечно, двусвязен, ведь фокус в том и состоял, что, будучи разрезан вдоль, он превращался не в два отдельных кольца, а в одну целую ленту. Впрочем (и на этом тоже были построены фокусы), если перекрутить ленту на два оборота, то лист становится односвязным. Три оборота — помните ленту, завязавшую саму себя в узел? — связность снова равна двум. А четыре оборота? Да вы, верно, уже догадались, как дальше станут развиваться события.

Связность принято оценивать числом Бетти, названным так в честь известного итальянского математика и физика. Иногда пользуются другой величиной — эйлеровой характеристикой — с той же целью: определить число сквозных, от края и до края, разрезов, которое выдерживает фигура, не распадаясь при этом на части,

"От края и до края..." — эти слова из песни, любимой нами с детства, можно рассматривать не просто как поэтический образ. В них, как мы видим, заложен еще и глубокий топологический смысл. Лист бумаги — модель двусторонней односвязной (число Бетти равно единице) поверхности с одним краем. Его можно смять и бросить в урну, но все равно число краев (и сторон) останется прежним. Но у сферы краев нет. Нет их и у тора, говоря попросту, бублика. Зато нарисованное на бумаге кольцо имеет целых два края. Один край и у мёбиусова листа, как одна у него сторона. И снова — сделайте его из какой угодно эластичной резины и растяните до любых размеров — топологические свойства, этот незыблемый фундамент самого естества геометрической фигуры, останутся неизменными.

10

Не много ли неожиданных и странных свойств? Тогда еще только два, быть может, самых любопытных.

Первое — ориентированность. Конечно, можно было бы подробно рассказать, что это такое. Но лучше дать определение "от противного": это то, чего нет у листа Мёбиуса! Вообразите, что в нем заключен целый плоский мир, где есть только два измерения, а его обитатели — несимметричные рожицы, не имеющие, как и сам лист, никакой толщины. Если эти несчастные создания пропутешествуют по всем изгибам листа Мёбиуса и вернутся в родные пенаты, то с изумлением обнаружат, что превратились в свое собственное зеркальное отображение. Конечно, все это случится только, если они живут в листе, а не на нем.

Впрочем, это удивительное явление можно наблюдать и на действующей модели плоского мира Мёбиуса — для этого надо сделать ленту из любого прозрачного материала.

11

И наконец, то, что носит название "хроматический номер". Он равен максимальному числу областей, которые можно нарисовать на поверхности так, чтобы каждая из них имела общую границу со всеми другими. Если каждую такую область выкрасить по-разному, то любой цвет должен соседствовать с любым другим. Так вот, на листке бумаги, даже если его склеить в кольцо, еще никому не удалось расположить пять цветных пятен любой формы, которые имели бы всеобщую границу. И на сфере, и на цилиндре их может быть не более четырех. Это и значит, что хроматический номер этих поверхностей — четыре. А на бублике число соседствующих цветов равняется семи. Каков же хроматический номер листа Мёбиуса? Он, как это ни поразительно, равен шести.

Конечно же, такое не укладывается в голове. Ну в самом деле, не довольно ли этих мёбиусовских мистификаций? Видите ли, на ленте, склеенной, как положено, размещается всего четыре цвета, а стоит соединить ее концы шиворот-навыворот — и непонятно, как находится место еще для двух цветов! Но клин выбивают клином, одну головоломку — другой. Есть древняя неразрешимая задача. Надо соединить три дома с тремя колодцами, но так, чтобы жители каждого из домов могли ходить по воду в любой колодец и при этом пути их нигде не пересекались. Сделать этого не умудрился никто, но лишь сравнительно недавно математики строго доказали, что задача неразрешима (неразрешима на плоскости, а на торе, то есть бублике, например, все получается просто). А теперь взгляните на рисунок (10). Если склеить эту полоску бумаги так, чтобы совпали одинаковые буквы на ее краях, то проблема водоснабжения решается. Разумеется, вы снова получите все тот же лист Мёбиуса. А теперь раскрасьте карту путей водовозов — и вот вам шесть цветов, живущих в дружном соседстве. Но, конечно, как и раньше, надо предполагать, что все события происходят не на листе, а внутри него. Иными словами, краски должны проникать сквозь бумагу, как чернила сквозь промокашку.

И напоследок возьмите еще раз в руки лист Мёбиуса — одностороннюю неориентированную поверхность с одним краем, числом Бетти, равным двум, и хроматическим номером, равным шести. Этот листок бумаги открыл математикам мир новых возможностей, а вам доставил несколько приятных минут. Но не спешите с благодарностью прощаться с ним. Он нам еще встретится — в космических далях Вселенной.

...У Фридриха Дюрренматта, в его нашумевшей в свое время пьесе "Физики", трое абсолютно здоровых ученых сознательно изображают из себя сумасшедших. Весь персонал дома умалишенных обращается к ним не иначе как "господин Ньютон", "господин Эйнштейн" и "господин Мёбиус". Разумеется, фантазия драматурга могла поместить в столь экзотические обстоятельства и других каких-либо прославленных ученых — тем более, что Мёбиус не такой уж физик, каким он, видимо, казался Дюрренматту. И все-таки выбор его не выглядит случайным. Вселенная Эйнштейна сменила вселенную Ньютона благодаря тому, что удалось постичь некую глубокую внутреннюю закономерность, свойственную природе. Вселенная Мёбиуса... Нет, конечно, ее не было, нет и, наверное, не будет. Но мёбиусианские идеи касаются настолько интимных свойств нашего мира, что они просто не имеют права как-то не проявить себя в грядущих фундаментальных исследованиях.

Математика есть способ называть разные вещи одним именем.
Анри Пуанкаре

 

III. Справа, где сердце

"Слово — не воробей" — хотя такое определение и называется отрицательным, но с ним не поспоришь. Пришла поpa сдержать данные обещания. Итак, чем же мы сможем помочь несчастным плоскатикам, если их сапожники в целях экономии станут делать обувь только на одну ногу? А мы просто изымем ровно половину этой сверхрентабельной продукции и подвергнем ее еще одной технологической операции: перевернем и вновь положим на землю Плосколяндии. Теперь зеркальный глянец будет уже на зеркально отраженных туфлях, и останется лишь составить пары. Обратите внимание, что "двумерец" точно так же может зеркально преобразовать любую одномерную вещь — вынуть ее для этого из Линеляндии в свою плоскую страну и, перекрутив, вернуть обратно. Идучи по накатанной дорожке аналогий, следует и за жителями четвертого измерения признать неоспоримое право превращать любой предмет нашего мира в его зеркальный двойник.

Идея зеркального преобразования мира давно увлекала ученых и мыслителей. Так, Готфрид Вильгельм Лейбниц много думал о том, что бы случилось, если бы вся наша Вселенная вдруг отразилась в некоем сверхзеркале. В конце концов он пришел к выводу, что ничего в ней не изменилось бы. До недавнего времени — до работ американских физиков Ли и Янга — современным ученым нечего было возразить великому немецкому математику и куда менее великому философу. Иммануил Кант, великий немецкий философ, сыгравший выдающуюся роль в развитии диалектики (чья философия, по определению К. Маркса, при всей ее противоречивости и субъективно-идеалистической направленности была немецкой теорией французской буржуазной революции), и куда менее великий физик (хотя он и преподавал эту науку), тоже очень интересовался зеркальными отражениями. В своем знаменитом труде "Пролегомоны будущей метафизики" он писал: "Что может быть больше похоже на мою руку или мое ухо, чем собственное отражение в зеркале! И все же руку, которую я вижу в зеркале, нельзя поставить на место настоящей руки..." Разумеется, сказал бы на это современный нам ученый, который отвык удивляться подобным пустякам, — ведь они энантиморфны. Если вам встретится это ученое слово, знайте: автор хотел сказать "зеркально симметричные". Любые два энантиморфа различают, называя один "левым", а другой "правым". Ботинки, перчатки, левый и правый винт, даже целые автомобили — обычный "Москвич" и "Москвич" с надписью "Связь", у которого руль сделан справа, чтобы почтальону удобнее было выходить на тротуар за письмами, — все это энантиморфы.

И энантиморфны два листа Мёбиуса, закрученные в разные стороны — ведь, склеивая полоску, вы вольны сделать оборот и по и против часовой стрелки. Но здесь позвольте прервать едва лишь наметившийся разговор о левом и правом в этом мире (пусть пока поработает ваше воображение, разбуженное зеркальными разговорами), чтобы сдержать еще одно обещание.

Лист Мёбиуса, выдумка кабинетных ученых, забавная безделушка, вдохновляющая факиров и изобретателей, увлек и космологов. Одна из моделей нашей Вселенной — это трехмерный лист Мёбиуса. Астронавт, проделавший головокружительный путь вдоль такого космоса, вернется домой зеркально отраженным — с сердцем справа — так же, как Готфрид Платтнер из уэллсовского фантастического рассказа. (И в нашей реальной земной жизни встречаются, хотя и крайне редко, люди, у которых сердце справа. Уж не пришельцы ли, точнее, не ушельцы ли это?) Но способно ли наше бедное воображение справиться с трехмерным мёбиусом?

Оказывается, да. Возьмите трубу, вытяните у нее один край и просуньте этот тонкий конец в специально сделанную для него дырку в толстом конце. Теперь склейте концы (11). А теперь примите поздравления. Вы создали (правда, лишь мысленно) так называемую "бутылку Клейна" (это имя нам уже встречалось — Феликс Клейн, немецкий математик, почти наш современник: он умер в 1925 году). Отчетливо видно, что в эту одностороннюю посуду тем не менее можно налить вино. Вот только вопрос: отчего больше кружится голова — от самой бутылки или от ее содержимого? А если голова у вас еще не кружится, то вот еще один математический факт: в четырехмерном пространстве можно построить такую бутылку Клейна, что она не будет пересекать сама себя (лист Мёбиуса, если делать его ленту все шире и шире, рано или поздно неизбежно "самопересечется", но он, как мы видели, может жить и без этого; бутылка же Клейна в нашем пространстве без самопересечения никак не получается — попробуйте, убедитесь).

Мауриц Эсхер, к сожалению, не нарисовал гравюры, подобной своей "Ленте Мёбиуса. II", посвященной этой удивительной замкнутой односторонней поверхности. Но мы и без его помощи можем пустить муравья ползать по бутылке Клейна и увидим, что, не переползая ни разу через край (края-то ведь и нет!), путешественник побывает и вовне и внутри своего топологического муравейника. Американские небоскребы породили новую профессию — высотные мойщики стекол. Эти бесстрашные люди счищают грязь только с одной стороны — снаружи, а их менее квалифицированные собратья по цеху — только внутри. Представьте себе ужас "комнатного" мойщика, если, двигаясь вдоль стекла, он вдруг окажется над Нью-Йорком на высоте тридцатого этажа! Хорошо, что человеческие муравейники пока еще не используют фантазию топологов. (Впрочем, фантасты и тут проложили дорогу. А. Дейч написал юмореску "Лента Мёбиуса". Ее идея в двух словах: в некоем городе метрополитен развился до такой степени, что топологическая сложность всех его пересекающихся линий перешла некую допустимую границу — и в результате один за другим целые поезда вдруг исчезали из трехмерного пространства, возвращаясь назад лишь через месяц-другой.)

"Природа подобна женщине, которая ... показывая из-под своих нарядов то одну часть своего тела, то другую, подает своим настойчивым поклонникам некоторую надежду узнать ее когда-нибудь всю" — эта смелая аналогия принадлежит Дени Дидро. Ее можно было бы рискнуть продолжить. Пылкий влюбленный, увидев лишь кончик стройной ножки, строит в своем воображении прелестную незнакомку. Ученый по немногим известным ему фактам создает модель изучаемого явления.

Итак, наш знакомец лист Мёбиуса — космическая модель. Какие противоречия существующих теорий разрешает пространственный Мёбиус — замкнутый, безграничный, бесконечный (как вселенная Эйнштейна), но вдобавок односторонний, — это слишком длинный разговор, а обещана лишь краткая встреча в далях Вселенной. Утешением разочарованному читателю-космологу послужит наше намерение разочаровать и читателя-биолога.

Дело в том, что мёбиусианские идеи проникли в микрокосмос и тоже не нашли себе законченного выражения. Еще в 1938 году советский цитолог (то есть ученый, изучающий жизнь клетки) М. С. Навашин задумал с помощью парадокса топологии расправиться с одним из парадоксов генетики. Наследственная информация, как известно, передается с помощью генов. Гены — это участки длинных нитей, хромосом (точнее, не самих хромосом, а хроматид — еще более тонких нитей, которые, соединяясь попарно, и образуют хромосому). Разные виды животных и растений имеют разное число хромосом — у человека их 46, а у ржи, например, всего 14. Но и число и, главное (для тополога!), форма хромосом остаются строго постоянными от поколения к поколению. Но вот у бактерий и у некоторых растений встречаются так называемые кольцевые хромосомы. Мало того, что они, как следует из названия, замкнуты в кольцо в отличие от всех других, которые представляют собой либо просто палочки, либо перекрещенные палочки с общей точкой — центромерой. Мало этого, при размножении кольцевая хромосома изменяет свою форму и превращается либо в кольцо, вдвое более длинное, чем первоначальное, либо в два обычных по величине кольца, но продетых одно в другое. Но это значит...

Вы догадались! Навашин именно это и предположил. И не беда, что потом нашлись другие объяснения нестабильности кольцевых хромосом, — все равно мысль о том, что они свернуты в клетке в виде листа Мёбиуса, в свое время оказалась плодотворной и до сего времени выглядит изящной. И — кто знает? — быть может, она с последующими уточнениями все-таки сумеет еще поработать в генетике. Ведь главное (если не единственное) возражение против гипотезы Навашина состоит в том, что уже после второго деления (а многие клетки делятся беспрерывно, всю жизнь) "тощий мёбиус", как мы прекрасно знаем, не превратится в еще более тощего и длинного. Но что, если хромосома, прежде чем располовиниваться вдоль, разрывается в какой-то точке, перекручивается вдоль на один или два оборота оси, а затем соединяется вновь? С нею все может статься: передавая наследственность, она ведь может и сама унаследовать патологию хромосомы-родительницы. Впрочем, это уже даже не гипотеза, а просто досужий вымысел.

А нам пора вернуться к безусловно доказанным фактам. Здравствуйте еще раз, Левый и Правый Мёбиусы!

А чем, собственно, они отличны друг от друга? Что дает нам право с уверенностью называть один энантиморф "левым", а другой — "правым"? Именно этот вопрос взволновал Иммануила Канта. Ему виделась страшная картина. В совершенно пустом космосе появляется рука. Правая или левая? Сказать невозможно, ибо нет ничего, с чем бы ее можно было сопоставить. Но вот рядом с нею материализуется человек, руки которого обрублены по запястье. Рука, разумеется, подойдет лишь к одному запястью — правому, например. Значит, она и есть правая. Но тогда получается, что рука была правой все время, еще до того, как рядом с ней материализовался воображаемый инвалид? В чем же тогда инвалидность рассуждений Канта?

Бедные, затрепанные нами "двумерцы" помогут и тут. Вырезанную из бумаги фигурку человека мы можем положить на стол рядом с вырезанной из бумаги же рукой и так и по-другому — перевернув "наизнанку". (Как дубовый лист мог бы по-разному упасть на поверхность воды в гравюре Эсхера "Три мира.) И тогда рука подойдет в первый раз к его правому, а во второй — к левому запястью. Значит, она не была ни правой, ни левой — просто человек может явиться в свою двумерную Плосколяндию из нашего трехмерного мира в двух энантиморфных модификациях — либо сам собой, либо в зеркальном отражении. И точно так же любой предмет может быть "вывернут" в пространстве высшей размерности. Это первым понял через восемьдесят лет, после того как Кант высказал свои недоумения, Август Фердинанд Мёбиус! (Однако свой знаменитый уже заранее перекрученный лист, который позволяет, как мы теперь знаем, вывернуть лежащие в нем предметы и без повышения порядка пространства, он описал еще спустя лишь двадцать лет.)

Известный американский популяризатор науки Мартин Гарднер (его работам очень многим обязана эта "Рапсодия") написал книгу, которую наше издательство "Мир" выпустило под заглавием "Этот левый, правый мир". Там есть эпизод, заимствованный из комикса. Пещерный человек радуется своему новому изобретению — барабану. Он ударяет по нему палкой и говорит: "Это левая дробь", а затем берет палку в другую руку и говорит: "Это правая дробь". И на вопрос: "Откуда ты знаешь?" — отвечает, что у него на одной из ладоней есть родинка. Таким образом получается, что все дело только в названии — хочу, назову так, хочу — наоборот. И ничто не изменится. Прав Лейбниц: отрази мир в зеркале — никто и не заметит.

Вроде бы так.

Так? Да вот не так! Иначе Ли и Янгу не быть бы нобелевскими лауреатами, а нам бы не разувериться в симметричности Вселенной.

В 1956 году в Национальное бюро стандартов США обратилась профессор Колумбийского университета Bу Цзяньсюн. Она просила дать ей возможность воспользоваться криогенной установкой, чтобы охладить радиоактивный изотоп кобальта, кобальт-60, до очень низкой температуры, почти до абсолютного нуля. Это было необходимо ей, чтобы свести к минимуму тепловое движение его молекул, а затем, наложив мощное электромагнитное поле, суметь выстроить ядра так, чтобы они были направлены одноименными полюсами в одинаковую сторону. (Ядро вращается вокруг своей оси: если смотреть с одного конца ее, то по часовой стрелке, а с другого — против часовой стрелки. Значит, у него есть верх и низ, северный и южный полюс, или, что то же самое, право и лево.) А дальше профессор Bу всего лишь хотела посмотреть, одинаковое ли число электронов будет вылетать из северного и южного полюсов при распаде.

"Я не верю, что бог окажется левшой, и готов побиться об заклад на весьма большую сумму, что эксперимент даст симметричный результат!" — писал крупнейший физик-теоретик Вольфганг Паули, с нетерпением ожидая, что же получится у By. Паули проиграл свою весьма большую сумму. Но несравненно больше проиграли представления физиков о природе: закон четности нарушился, опыт дал несимметричный результат из южного конца ядра кобальта-60 вылетает намного больше электронов, чем из северного!

Это значит, что мир наш все-таки несимметричен. За такое открытие не грех было присудить Нобелевскую премию. И ее получили в 1957 году Ли Чжэндао и Янг Жэньпин — молодые американские ученые. Они, а не их соотечественница Bу Цзяньсюн, потому что идея эксперимента была предложена именно ими из чисто теоретических и даже скорее математических, нежели физических соображений. Они первые придумали, как заставить природу ответить на вопрос: равноправно ли в ней левое и правое, верх и низ? До них никто не советовал физикам-экспериментаторам тратить время и силы на подобные опыты — все были уверены, что закон сохранения четности незыблем. Иными словами, любое направление в природе равноправно, и если в формуле, включающей в себя все три координаты точки, поменять все знаки координат на обратные, то она останется справедливой. И вот опыт Bу показал, что эта самоочевидность была всего лишь самоубеждением.

И тогда, задним числом, стали вспоминать, что задолго до Ли и Янга ученые покушались на закон сохранения четности.

Знаменитый немецкий математик Герман Вейль — знаменитый своими глубокими и неожиданными идеями — в 1929 году высказал гипотезу о том, что вращающаяся частица может быть в одной из двух зеркально сопряженных форм — обладать левой или правой спиральностью. То есть откуда бы ни смотрел на нее наблюдатель — "с носа" или "со спины", он видит ее вращающейся вдоль линии своего движения либо по правому, либо по левому винту. Вейль отнюдь не был физиком (и тем более физиком-ядерщиком), и у него не было никаких опытных данных для такой необычной гипотезы. Он просто построил изящную математическую теорию. Но в то время никто не отнесся к ней всерьез, потому что она не согласовывалась с законом сохранения четности и требовала от природы асимметричности. Вейль не дожил всего два года до того дня, как закон этот был опровергнут и его теория получила титул пророческой. В самом деле, из нее следовало, что у вращающейся частицы должен быть зеркальный двойник — и его нашли!

В 1957 году почти одновременно физики в разных странах (у нас это был академик Лев Давидович Ландау) предложили так называемую "двухкомпонентную теорию нейтрино", согласно которой должно существовать антинейтрино — частица, во всем ему подобная, но только закрученная вдоль своей траектории в противоположную сторону. Потом оказалось, что существуют разные типы пар нейтрино-антинейтрино, выяснилось немало любопытнейших подробностей, но не об этом сейчас речь. "Связь между математикой, естественными науками и философией нигде так не сильна, как в проблеме пространства", — говорил Герман Вейль. И в самом деле — слова пророка! Всего лишь геометрическое, чисто пространственное отличие превращает частицу микромира в своего антипода. А если уж и микромир так сильно зависит от пространственной конфигурации, то и вся Вселенная в целом — объект изучения геометрии.

Да, но почему и микромир? А потому, что о связи с геометрией макромира — от молекул до галактик и Вселенной — было известно и раньше. Помните ловкого спирита Слейда и незадачливого ученого Цёльнера? Кстати, Энгельс в "Диалектике природы" посвятил ему несколько строк: "...если только верить громогласным заявлениям господ спиритов, — и Германия выставила теперь своего духовидца в лице г-на профессора Цёльнера из Лейпцига.

Как известно, г-н Цёльнер уже много лет интенсивно работает в области "четвертого измерения" пространства, причем он открыл, что многие вещи, невозможные в пространстве трех измерений, оказываются само собою разумеющимися в пространстве четырех измерений. Так, например, в этом последнем пространстве можно вывернуть, как перчатку, замкнутый металлический шар, не проделав в нем дыры; точно так же можно завязать узел на не имеющей с обеих сторон концов или закрепленной на обоих концах нитке; можно также вдеть друг в друга два отдельных замкнутых кольца, не разрывая ни одного из них, и проделать целый ряд других подобных фокусов. Теперь, согласно новейшим торжествующим сообщениям из мира духов, г-н профессор Цёльнер обратился к одному или нескольким медиумам, чтобы с их помощью установить дальнейшие подробности относительно местонахождения четвертого измерения. Успех при этом был поразительный. Спинка стула, на которую он опирался верхней частью руки, в то время как кисть руки ни разу не покидала стола, оказалась после сеанса переплетенной с рукой; на припечатанной с обоих концов к столу нитке появились четыре узла и т. д. ... если предположить, что эти сообщения верно передают результаты опытов г-на Цёльнера, то они безусловно знаменуют начало новой эры как в науке о духах, так и в математике. Духи доказывают существование четвертого измерения, как и четвертое измерение свидетельствует о существовании духов".

Так вот, совсем недаром решительный эксперимент, задуманный Цёльнером, состоял в том, чтобы превратить правую винную кислоту в левую. Кислота эта явилась причиной первого крупного успеха великого французского ученого Луи Пастера: "Я только что сделал гигантское открытие! Я так счастлив, что меня бросает в дрожь, я больше не могу спокойно смотреть на поляриметр!" — с такими словами выскочил он из своей лаборатории, когда убедился, что кристаллы винной кислоты могут быть в двух энантиморфных видах. И если под микроскопом отделить левые кристаллы от правых и составить потом два раствора, то один из них будет вращать плоскость поляризации света влево, а другой — вправо. И при этом даже самый тонкий химический анализ не поможет отличить один раствор от другого.

Такие кристаллы, по-разному поляризующие проходящий через них свет, называют оптическими изомерами. Голландский химик Вант-Гофф в 1874 году объяснил это явление тем, что молекулы оптических изомеров — зеркальные отражения друг друга, как, например, у молочной кислоты, формула которой СН3СН(ОН)СООН и кристаллы которой тоже относятся к этому не столь уж редкому типу. Однако несмотря на простоту объяснения, оптические изомеры дали новый повод для спекуляций и домыслов о существовании четвертого измерения, поскольку они объявлялись просто-напросто двумя разными проекциями одного и того же вещества, "живущего" в не видимом нами мире, размерность которого на единицу больше нашего, трехмерного.

"Сынок, я так глубоко люблю науку, что сердце мое замирает!" — сказал молодому Пастеру его прославленный учитель Жан Батист Био, повторив опыт с право-левыми кристаллами. Не удивительно, что ассиметричные молекулы на долгие годы увлекли Пастера. Через десять лет он придумал новый способ разделить кристаллы: оказалось, что плесень разрушает молекулы винной кислоты лишь одного из двух возможных типов и оставляет зеркальных двойников нетронутыми. "Асимметричный живой организм, — писал он, — выбирает для питания именно ту форму винной кислоты, которая отвечает его требованиям и, несомненно, соответствует какой-то собственной внутренней асимметрии". Пастер был убежден (и тут он не ошибся), что лишь в живых организмах можно обнаружить вещества, состоящие из асимметричных молекул только одного вида. Эта и была, по его мысли, "...единственная четко установленная демаркационная линия, которую можно в настоящее время провести между химией живой материи и химией неживого". Он верил, что стоит узнать способ, которым природа ввела асимметрию в органические соединения, — и до разгадки тайны жизни останется один шаг.

Так это или нет, но ведь факт, что аминокислоты всех природных белков всегда левые, а могли бы с тем же успехом быть и правыми! В каждой живой клетке на нашей планете правые спирали нуклеиновой кислоты. И снова — выбор из двух возможных зеркальных форм. Нуклеиновые кислоты — носители жизни — тоже родились благодаря право-левой асимметрии: все они "левые", а их спирали всегда "правые". Так ли уж не прав Пастер, утверждая, что тут, в геометрических глубинах строения материи, и запрятан ключ к тайнам жизни?

Не только в спирали всем известной ДНК — на каждом шагу геометрия молекул напоминает нам о себе. Лишь правизна отличает искусственно созданное в лаборатории вещество декстраникотин ("декстра" и значит по-латыни "правый") от левоникотина, который входит в состав любого табака. Но про первый медики не говорят худого слова, а второй чуть ли не враг номер один современного человека (во всяком случае, по раковым болезням курильщики уверенно лидируют). Мы жить не можем без витамина С — сразу же наступает цинга. Но точно такое же вещество — с одной лишь разницей: молекулы его зеркально отражены — не оказывает на человеческий организм вообще никакого влияния. А ведь химически они неразличимы.

Форма, геометрические свойства играют в нашем мире удивительную роль. В нем царит таинственная асимметрия, а вовсе не прозрачная симметрия, и потому идея Вселенной в виде трехмерного листа Мёбиуса имеет кое-какие шансы оказаться жизненной. И не так уж она несовместима с привычным нам образом мироздания. В доказательство последней мысли проделайте простой, но прелюбопытный опыт. Погрузите окружность из мягкой проволоки в мыльный раствор. На нее сразу же натянется круг из пленки. (Это будет, кстати, так называемая минимальная поверхность, то есть поверхность минимальной площади, которая может быть "надета" на данный каркас. Такие поверхности используют в технике, потому что они обладают наибольшей возможной жесткостью.) Начните постепенно его деформировать (для этого заранее припаяйте к проволочной окружности две ручки). И что же? Можно, оказывается, перевести двустороннюю мембрану в односторонний лист Мёбиуса. Поразительное явление! А теперь на секунду перенеситесь мыслью в пространство трех, а то и четырех измерений: что за превращения возможны там? Подумайте. Быть может, вы сумеете почерпнуть для этого вдохновение, рассматривая гравюру Эсхера "Рыбы и чешуйки", полную геометрических "завихрений".