было последним (предыдущая глава диссертации обрывалась) и оттого несколько грустным. Сами того не замечая, все привязались к незадачливому Магистру. Конечно, он и фантазёр, и рассеянный, а в чём-то и просто недоучка. Но человек всё-таки добрый и симпатичный… Неужели мы никогда не узнаем, нашёл ли он Единичку и догнали ли они наконец неуловимого папу Минуса?

Олег довольно сурово призвал нас к порядку, а заодно и к разбору первой задачи о бусинках, которая, по его мнению, так проста, что её может решить даже Нулик. Это «даже» задело Нулика за живое, и он справился с задачей очень быстро.

— Если принять число жёлтых бусинок за единицу, — рассуждал Нулик, — то синих было в четыре раза больше, белых — в двенадцать раз, а красных в двадцать четыре раза больше, чем жёлтых. 1+4+12+24=41. Значит, всего частей 41: жёлтых бусинок 1/41 часть, синих — 4/41, белых — 12/41 и, наконец, красных — 24/41.

— Умница! — Таня погладила Нулика по голове. — Что бы Магистру и тут посоветоваться с тобой! Тогда бы он не принял за единицу число красных шариков, и всё было бы в порядке.

Президенту не терпелось перейти к следующему вопросу, но оказалось, что мы ещё не покончили с этим.

— Можно предположить, сколько всего бусинок было на доске, — сказал Олег. — Ведь доска квадратная, и лунки на ней расположены правильными рядами.

— Значит, число бусинок должно быть кратно 41 в квадрате, — догадалась Таня. — Иначе говоря, бусинок на доске было не менее 1681.

— Вот именно не менее, — согласился Нулик, — зато могло быть и более… Умножим 1681 на 4, потом на 9 и так далее…

— Ну, насчёт «и так далее» сомневаюсь, — возразил Олег. — Такая огромная доска едва ли уместилась бы в салоне подводной лодки… Но оставим это. Попробуем лучше решить сходную задачу, но чуточку посложней. Представьте себе, что бусинки были не четырех, а двадцати или даже ста цветов. При этом нам заранее известно, во сколько раз число бусинок любого цвета меньше (или больше) числа ну хотя бы красных. Как теперь вычислить, во сколько раз число красных бусинок меньше всех бусинок, вместе взятых? Побеждает тот, кто решит эту задачу самым коротким путём. Даю пять минут. Начали!

— Зачем так много? Хватит и двух, — сказала Таня. — Нам нужно узнать, во сколько раз число красных бусинок меньше общего числа всех бусинок. Запишем искомое так:

к/(к + б + с + ж +…+ з +…).

При этом в числителе у нас будет число красных бусинок, обозначенное буквой к, а в знаменателе — сумма всех бусинок: красных, белых, синих, жёлтых и так далее. Теперь разделим числитель и знаменатель на одно и то же число к, то есть на число красных бусинок. Величина дроби от этого не изменится, а вид у неё станет такой:

1/(к/к + б/к + с/к + ж/к +…+ з/к +…).

Но ведь теперь у нас в знаменателе оказались известные уже нам числовые отношения бусинок разных цветов к красным бусинкам! Остаётся только подставить вместо буквенных отношений заданные числа, ну хотя бы те, которые были в задаче Магистра, — и ответ готов.

— Проверим! — сказал Нулик.

— Пожалуйста, — разрешил я. — Только дома…

Таню приветствовали дружными аплодисментами, после чего под предводительством Севы мы покинули салон подводной лодки и вышли на палубу.

— Уверен, — сказал Сева, — что капитан не требовал, чтобы площадь квадратного сечения табуретки была тютелька в тютельку равна площади прежнего, круглого. Я читал в одной книжке, что такую задачу с помощью циркуля и линейки (пусть даже в придачу даётся пила) решить невозможно.

— Раз так, — сказал я, — значит, ты должен знать и то, что задача эта называется квадратурой круга. А квадратура круга — одна из знаменитых загадок древности. Учёные заинтересовались ею свыше 4000 лет назад. Но довести задачу до конца никто так и не смог. Квадратура круга в древние времена была настолько популярна, что тех, кто ею занимался, даже высмеивали в комедиях. Древнегреческий поэт и драматург Аристофан вывел такого горе-учёного в комедии «Птицы». Однако полное и окончательное доказательство невозможности квадратуры круга было найдено сравнительно недавно, в конце XIX века, немецким математиком Фердинандом Линдеманом. И доказательство это заключается в том…Однако, — спохватился я, взглянув на озабоченную физиономию Нулика, — всякому овощу своё время. А нам пора перейти на корму…

Вырвавшись из квадратуры круга, президент облегчённо вздохнул, но тут же запутался в диагоналях десятиугольного ковра.

— Чем ты лучше Магистра? — пристыдила его Таня. — Он тоже утверждал, что в десятиугольнике 90 диагоналей. Но ведь из каждой вершины десятиугольника можно провести не 9, а только 7 диагоналей — на три меньше, чем вершин. Кстати, из этого следует, что в треугольнике диагоналей нет совсем. Ведь 3-3=0!

Президент почесал в затылке:

— Выходит, в десятиугольнике 70 диагоналей?

— Ну и торопыга ты! — укоризненно сказала Таня. — Ведь через две вершины можно провести только одну диагональ. Стало быть, диагоналей не 70, а 35…

Разговор о диагоналях закончился, и мы двинулись дальше — туда, где покачивался на волнах треугольный пробковый плот. И вдруг раздался звонок. Я пошёл открывать, обдумывая по дороге, как бы поделикатнее спровадить незваного гостя, но, открыв дверь, так и ахнул:

— Магистр! Вы? Какими судьбами?

Да, передо мной стоял Магистр Рассеянных Наук собственной персоной. Все в том же свитере и коротких штанишках, на ногах гольфы и бутсы. Синий берет лихо сдвинут набок, рыжая борода от уха до уха, зато усов — никаких. И в руках плетёная корзина, покрытая клеёнкой. Все, как год назад.

Я провёл дорогого гостя в комнату, — где он был тотчас же узнан и встречен бурным ликованием.

Магистр очень смутился.

— Простите, — сказал он, — я, кажется, не туда попал… Со мной это бывает. Впрочем, лицо ваше мне знакомо…

— Ещё бы! — воскликнул я. — Ведь вы у меня уже были. В то утро, когда отправились в путешествие.

— Помню, помню! — обрадовался Магистр и крепко пожал мою руку. — Простите, я, вероятно, не вовремя. Вы о чём-то беседуете…

— Мы обсуждаем последнюю главу вашей диссертации, — сказал я торжественно.

— Моей диссертации?! Но у меня нет никакой диссертации. Я ещё только собираюсь её писать. Об этом я уже сообщил в один научный институт. Но моё письмо почему-то вернулось ко мне обратно.

— Любопытно! — улыбнулся я. — Вы не писали никакой диссертации, между тем вот она, на столе. Видите?

Магистр изумлённо перелистал рукопись:

— Послушайте, как это к вам попало?

— ЭТО мне прислали из института на отзыв.

— Странно. — Магистр потёр лоб. — Я, помнится, отправил рукопись на свой домашний адрес. Как же она попала в институт? Наверное, на почте все перепутали! К тому же это вовсе не диссертация, а путевой дневник. И то лишь первая часть…

— Ура! — закричал Сева. — Значит, есть и вторая!

Магистр тяжело вздохнул:

— Если есть первая, то должна быть и вторая, но… она утонула вместе с моим рюкзаком, когда мы пересекали пустыню Гоби.

— Утонула в пустыне? — засмеялся Нулик. — Это ужасно!

— Ничего смешного, — строго сказал Магистр. — Рюкзак уронила в воду Единичка.

— Единичка?! — Ребята даже в ладоши захлопали от радости. — Значит, вы всё-таки её нашли?

— А она никуда не пропадала, — ответил Магистр. — Просто во время карнавала произошёл взрыв, и пыль попала мне в глаза. Вот я ничего и не видел. А Единичка была рядом…

— А нашли вы наконец её папу Минуса? — поинтересовалась Таня.

— Что за вопрос! Кто ищет, тот всегда найдёт. Оказывается, мы с этим папой всё время гонялись друг за другом, но двигались в прямо противоположные стороны: я на запад, а он на восток. Но, как известно, Земля круглая, и в один прекрасный день мы неожиданно стукнулись лбами. Потрогайте, какая у меня на лбу шишка… Нет-нет, не эта. Сюда меня ударил плот, а чуть повыше — папа Минус… Он очень благодарил меня за заботу о Единичке. Ведь если бы не я… Но не будем об этом. Скажите лучше, что заинтересовало вас и ваших друзей в моей рукописи?

— Прежде всего ваши обширные познания во всех областях, — сказал я, — особенно в математике. Магистр так и вспыхнул от удовольствия:

— Ах, не смущайте меня… Я это и сам знаю.

— И всё же, — продолжал я, — у нас есть к вам ряд серьёзных вопросов. Может быть, вы на них ответите?

— Разъяснять и уточнять — моя специальность! — поклонился Магистр. — Я вас слушаю.

— Вот вы написали, что Тур Хейердал — знаменитый датский путешественник, — запинаясь, сказала Таня.

— Я? Я так написал? Не может быть! Всем известно, что Хейердал — швед.

— А может быть, норвежец? — мягко поправил Олег.

— Вот именно. Вы меня поняли с полуслова.

— Но дальше… дальше вы написали, что знаменитый мореплаватель отправился на своём плоту в Полиномию. Не лучше ли было сказать — в Полинезию? — улыбнулся Сева.

— Ну, это уж мелочь! — поморщился Магистр. — Какая разница: …номия… незия… Главное — поли. Кстати, Полиномия мне больше по душе. Ведь полином в математике означает многочлен. Почти архипелаг.

— Ну что ж, — вежливо согласилась Таня, — называйте Полинезию Полиномией. В конце концов, о вкусах не спорят. Меня интересует другой вопрос: где же всё-таки находится центр тяжести треугольника? Вы утверждаете, что он в точке пересечения биссектрис, а мы-то думали, что центр тяжести треугольника в точке пересечения его медиан.

— Вы так думали? — переспросил Магистр. — Ну, тогда я не возражаю. И вообще дело не в названии, а в существе.

— Но от этого «существа» вы существенно пострадали, — хихикнул Нулик. — Треугольный плот ударил вас по голове.

— К счастью, тупым углом, — успокоил его Магистр. — Впрочем, когда ударяешься головой об угол, тут уж некогда вычислять, сколько в этом угле градусов.

— Конечно, конечно, — согласился Сева. — При этом и муссоны с саваннами не трудно спутать.

Магистр возмущённо замахал руками:

— Ну нет! Этого я ни при каких обстоятельствах не забуду! Муссоны — это лесостепи… в тропических странах…

— Лесостепи — это как раз саванны, — возразил Сева.

— А я что говорю? — удивился Магистр. — Саванны — это лесостепи, а муссоны — ветры, которые всё время меняют направление.

— Не всё время, а только два раза в год, — уточнил Олег. — Летом муссоны дуют с океана, зимою — с суши.

Магистр посмотрел на меня озадаченно:

— Не кажется ли вам, что это несколько неудобно? Школьники поправляют Магистра!

— Не только школьники, — сказал я, многозначительно улыбаясь, — но и школьницы. Я это к тому говорю, что вы, помнится, весьма недоверчиво относитесь к женщинам-математикам.

— Ах, не вспоминайте об этом, — смутился Магистр. — То было какое-то непонятное заблуждение.

— От имени женщин охотно прощаю вас, — сказала Таня. — Ведь вы так мило признаете свои ошибки!

— Ах так? Вы меня прощаете? В таком случае, я признаюсь вам ещё кое в чём. — Магистр понизил голос. — Только пусть это останется между нами. Видите ли, я так до сих пори не понял, кто были те женщины, с которыми я познакомился на карнавале.

Мы не оставили Магистра в неведении, и очень скоро, благодаря нашим объединённым усилиям, он узнал, что первой в истории женщиной-математиком была Ипатия, дочь весьма известного математика Теона. Жила Ипатия в Александрии в IV-V веках нашей эры. То была очень красивая, обаятельная и широко образованная женщина. В школе неоплатоников (последователей философа Платона) Ипатия преподавала математику, астрономию и философию. Она была прекраснымлектором и славилась красноречием. Кроме того, Ипатия была талантливой писательницей и к тому же деятельно участвовала в общественной жизни своего государства. В обществе учёных мужей она держалась как равная, с большим достоинством. Удивительная женщина! И кто бы мог подумать, что её ожидал такой ужасный конец! Дело в том, что Ипатия была язычницей, и это навлекло на неё гнев христиан. Однажды, когда она возвращалась домой, разъярённая толпа по наущению епископа Кирилла напала на неё. Ипатию вытащили из повозки и растерзали…

При этом известии Магистр ужасно расстроился. У него даже слезы выступили на глазах, и я поспешно перевёл разговор с Ипатии на Софи Жермен.

Софи жила на четырнадцать веков позже Ипатии, во Франции. Уже в юные годы она заинтересовалась математикой. Чтобы изучить труды великого Ньютона, написанные на латинском языке, Софи в совершенстве изучила этот древний язык.

— Ага! — воскликнул Магистр. — Так вот почему она приветствовала меня по-латыни!

Наставниками Софи Жермен в математике были многие известные учёные того времени и в первую очередь — великий французский математик Жозеф Луи Лагранж.

Софи Жермен интересовали самые разные вопросы, касающиеся и математики и механики. А прославилась она главным образом тем, что разработала теорию изгиба пластинок.

— Надеюсь, не патефонных? — озабоченно спросил Магистр.

Все расхохотались.

— Что вы, Магистр! — воскликнул я. — Ведь при Софи Жермен о патефонах и речи не было! Однако и патефонные пластинки можно рассчитывать на прочность по формулам Софи Жермен. И всякий, познакомившись с этими формулами, сразу поймёт, что садиться на пластинки очень рискованно… Кстати, за труд о пластинках Софи Жермен получила премию Французской Академии наук.

— Замечательная женщина! — умилился Магистр.

— Совершенно с вами согласен, — поклонился я. — Учтите, что она была не только талантливым учёным, но и превосходным, отзывчивым человеком. Когда друг её, знаменитый немецкий математик Карл Фридрих Гаусс, очутился в затруднительном материальном положении, Софи Жермен собрала нужную сумму денег и спасла его от разорения.

— А я даже не поблагодарил её за это! — огорчился Магистр. — Ведь великий Гаусс — мой коллега… Однако что же было дальше?

— Дальше? Дальше вы очутились в гостях у нашей прославленной соотечественницы Софьи Васильевны Ковалевской. Как известно, Софья Васильевна родилась в Москве, но детство провела в имении отца, генерала Корвина-Круковского, в селе Палибино, Витебской губернии.

— Несчастный генерал, — вздохнул Магистр. — Нуждался, вероятно, бедняга!

— Почему вы так думаете? — удивился я.

— Как «почему»? Ведь у него даже не было денег, чтобы оклеить детскую комнату обоями! Иначе, зачем бы он пустил вход учебник математики?

— Уверяю вас, бедность здесь ни при чём, — возразила Таня. — А математические обои сыграли огромную роль в жизни маленькой Софьи.

— Читая ежедневно свою «стенгазету», она изучила высшую математику, — добавил Олег. — Ведь это были лекции крупнейшего русского математика профессора Остроградского.

— Скажите какая одарённая девочка! Сама разобралась в лекциях Остроградского! — сказал Магистр, растроганно покачивая головой.

— И всё же, несмотря на всю свою одарённость, поступить в университет Ковалевская не смогла, — продолжал я. — Ведь в царской России женщины туда не допускались. И вот девятнадцатилетняя девушка покидает родину. Она едет учиться за границу, к замечательному математику Карлу Теодору Вильгельму Вейерштрассу.

Вейерштрасс принял её недоверчиво. (При этих словах Магистр смущённо заёрзал на стуле. «Что делать, — успокоил я его, — ведь и великим людям свойственно ошибаться!») Желая отделаться от Ковалевской, знаменитый учёный предложил ей решить несколько труднейших математических задач, которые и законченным-то математикам не всегда под силу.

— И она с ними справилась? — спросил с надеждой Магистр.

— Блестяще справилась! Тогда Вейерштрасс согласился стать её учителем, и ему не пришлось в этом раскаиваться. Софья Васильевна стала известным профессором математики. Правда, не в России, а на чужбине — в столице Швеции, Стокгольме.

— Ковалевская, как и Софи Жермен, тоже была удостоена премии Французской Академии наук, — напомнил мне Олег.

— Да, да, и, ввиду большой ценности представленной ею работы, премия даже была увеличена. А через год Ковалевская получила ещё одну премию, на этот раз Шведской Академии наук… А вы говорите, женщины и математика — две вещи несовместные…

— Конечно, это было безответственное утверждение! — признался Магистр. — Но согласитесь сами, разве нестранно, когда солидная женщина всё время вертит над головой какой-то шарик на ниточке?

— Но в этом шарике все дело! — воскликнул я. — Софья Васильевна как раз за то и получила обе премии, что исследовала вращение твёрдого тела вокруг неподвижной точки! Магистр задумался.

— Так, так, так… Допустим… Ну, а роман? Роман, который она мне подарила с такой трогательной надписью? Разве солидный математик станет писать романы?

— Но что же в этом плохого? — спросил Сева. — Ковалевская была разносторонним человеком. Помимо математических трактатов она писала повести, романы, пьесы…

— Хорошо, хорошо! — замахал руками Магистр. — Вы меня убедили: я познакомился с тремя замечательными женщинами-математиками. Но четвёртая… как её…Гортензия. Она-то уж наверняка никакого отношения к математике не имеет!

Вынужден вам возразить, — сказал я. — Гортензия Леппо была первоклассным вычислителем. Её имя навсегда связано с кометой Галлея.

Магистр расхохотался:

— А я-то думал, что в приветствие вкралась опечатка и что телеграмма не от Галлея, а от Галилея.

— Никакой опечатки! — заверил я. — Эдмунд Галлей, близкий друг Ньютона, вычислил орбиту кометы, которая появилась в 1682 году. И комета эта справедливо названа его именем. Оказалось, что это та самая комета, которую астрономы наблюдали ещё в 240 году до нашей эры. Вскоре после Галлея французскому астроному и математику Алексису Клоду Клеро удалось вычислить период обращения этой кометы. Оказалось, что она должна возвращаться к нам через каждые 76 лет…

— Все это очень интересно, но при чём здесь Гортензия? — упорствовал Магистр.

— Она-то и принимала самое горячее участие в этих вычислениях. И труды её не пропали даром. В 1759 году, как и было вычислено, комета Галлея снова появилась на небе, таща за собой огромный газовый хвост. А в 1910 году я видел комету Галлея сам. Теперь её следует ожидать в 1986 году.

Магистр всплеснул руками:

— Так вот что означали огненные цифры 1986! Благодарю, тысячу девятьсот восемьдесят шесть раз благодарю вас! Теперь мне всё ясно.

— Простите, Магистр, — вмешалась Таня, — но ясно вам ещё не все. Вы решили, что Гортензии дали имя цветка, а было наоборот. Через некоторое время после того как на небе появилась комета Галлея, из Японии в Париж привезли невиданной красоты безымянный цветок. И учёные Парижа решили назвать его гортензией в честь вычислительницы.

— Вот теперь действительно все, — закончил я.

— Спасибо, спасибо вам, дорогой коллега, за исчерпывающие разъяснения.

Магистр низко поклонился. Я протестующе поднял руку и указал на ребят:

— В первую очередь поблагодарите ваших юных оппонентов.

— Само собой разумеется! — поспешно согласился Магистр. — Дорогие друзья, приношу вам мою самую глубокую признательность. Я знаю, как дорога школьникам каждая минута, а вы всё же нашли время для изучения моей рукописи… — Тут он взглянул на часы и заторопился: — Боже мой! Мои часы снова остановились. И я, вероятно, опаздываю.

— Куда, если не секрет? — спросила Таня (как всякая девочка, она любопытна).

— От друзей у меня секретов нет. Видите ли, мы отправляемся в новое необыкновенное путешествие. Не буду сейчас уточнять маршрут, но обещаю присылать с дороги самые подробные письма.

— Постойте, постойте! — закричал Нулик. — Вы сказали «мы отправляемся». Значит, вы едете не один?

— Ну конечно же, с Единичкой! Мы так привязались друг к другу! И папа Минус тоже очень рад, что его дочь будет под моим присмотром. Да! Чуть не забыл. Надеюсь, на этот раз вы не откажетесь взять на себя временные заботы о моём котёнке? Чудный котёнок! Подумайте, он уже говорит «мяу». Вот, прошу вас, Мяу в этой корзине.

Нулик приподнял клеёнку, покрывавшую корзину, и засмеялся:

— Но это же щенок!

— Не может быть! Тогда я мигом сбегаю за котёнком. Впрочем, какая вам разница? Возьмите щенка! Берете?

— Берём, берём! — закричали ребята хором и тотчас же завладели корзиной и её содержимым.

Магистр просиял:

— Ну и отлично! А сейчас я должен спешить. Счастливого пути! То есть, я хочу сказать, счастливо оставаться! Ждите моих писем. Даю вам слово Магистра, что теперь я буду чрезвычайно внимателен. С добрым утром, друзья! То есть спокойной ночи!

Мы проводили Магистра до двери, помахали ему на прощание платками. А потом возвратились в комнату и долго молчали…

— Ничего не поделаешь, — сказал наконец президент. — Последнее заседание КРМ объявляю закрытым.

— Не последнее, а очередное, — поправил Олег. А он редко ошибается…

Москва,

1967