Почему наш мир таков, каков он есть. Природа. Человек. Общество (сборник)

Либанов Максим

Попов Сергей Борисович

Кронгауз Максим Анисимович

Скулачев Максим Владимирович

Аузан Александр Александрович

Северинов Константин Викторович

Сурдин Владимир Георгиевич

Патрушев Лев

Прохорова Ирина Дмитриевна

Черниговская Татьяна Владимировна

Алексенко А.

Сергей Попов. Истории из жизни звездного неба

 

 

Сергей Попов – Астрофизик, доктор физико-математических наук, ведущий научный сотрудник Астрономического института им. П. К. Штернберга (ГАИШ) МГУ.

Одному довольно известному политическому деятелю приписывается высказывание: «Искусство должно быть понятно народу». Но история показала, что искусство никому ничего не должно: оно идет своим путем – кто-то идет с ним, а кто-то не идет. На мой взгляд, с наукой в ХХ веке получилось как с искусством. Каждый из них шел своим путем, а в результате как современное искусство, так и современная наука многим сегодня непонятны. В искусстве я ничего не понимаю, но науку могу сделать немножко понятнее.

Если взять науку и искусство какого-нибудь XVII века, мы оказываемся на очень комфортном нулевом уровне понимания. Вы подходите к картине Боттичелли и видите, что это просто красиво. Подойти к произведению современного актуального искусства и сказать, что это красиво, можно в очень редких случаях. С наукой произошло примерно то же самое. Нет ничего удивительней, чем посмотреть в телескоп на Сатурн. Если не смотрели, то посмотрите. Или рассмотреть в микроскоп каких-нибудь инфузорий – это потрясающе. Это такой же нулевой уровень понимания, такой же условный «ах!».

История открытия колец Сатурна сама по себе очень интересна. Вообще говоря, кольца Сатурна в первые телескопы видно было плохо. Галилей увидел, что Сатурн не круглый. Все думают, что Чебурашку придумал Успенский, но это был Галилей. Он посмотрел на Сатурн и увидел нечто похожее на Чебурашку – диск с ушами. Галилей был крайне рациональный человек: он никому не стал рассказывать об увиденном, но оставил зашифрованное сообщение, чтобы потом можно было отстоять приоритет. А когда через какое-то время с помощью более качественного телескопа снова посмотрел на Сатурн, чтобы получше разглядеть, – ничего не увидел и подумал, что померещилось. Еще через несколько десятилетий с помощью еще более мощных телескопов были открыты кольца Сатурна, но это сделал уже не Галилей. Дело в том, что на Сатурне, как и на Земле, есть времена года. В зависимости от угла мы видим кольца красивыми, как привыкли видеть на картинке, или с ребра – и тогда ничего не видно.

В современной научной статье очень редко можно увидеть изображения (если там вообще есть изображения), которые бы вызвали пресловутый «ах!». Скорее это будет нечто больше похожее на «ууу…»: это непонятно и не всегда красиво.

 

Откуда пошла Вселенная

Начнем издалека – с краткой истории вселенной. Вселенная имеет конечный возраст. Идея эта очень интересна, и рационально мыслящие люди в нее не всегда верили. Под вселенной в данном случае я понимаю «вселенную с маленькой буквы» – то, что мы видим вокруг, что мы видим в телескопы сейчас и сможем увидеть в сколько-нибудь обозримом будущем. Всего этого когда-то не было. Это очень жесткое, абсолютно не философское, но наблюдательное утверждение. Сейчас мы в этом убедимся.

Представим, что вселенная бесконечна и заполнена звездами (это рациональная вселенная XIX века). Нигде нет никакого центра, мы не живем в центре скопления звезд. Если бы мы жили в центре мира, это было бы очень подозрительно, но мы живем в самом заурядном месте. Значит, куда бы мы ни посмотрели – взгляд рано или поздно упрется в звезду. Это легко понять: если завязать глаза и побежать даже через самый редкий лес, вы непременно найдете лбом свое дерево. Если ночью смотреть в заполненную звездами бесконечную Вселенную, где-то взгляд должен упереться в «лампочку» и все небо должно сиять, как поверхность звезды. Никакой ночной черноты не было бы. Отчего же мы, тем не менее, видим небо таким, какое оно есть, – яркие огоньки на черном фоне? Звезды где-то заканчиваются?

Правильный ответ в том, что звезды кончаются не в пространстве, а во времени – когда-то этих звезд не было. Вселенная при этом может быть бесконечна – это ничему не противоречит, просто звезды возникли какое-то время назад, и свет от далеких звезд до нас не дошел. Теперь мы знаем, какое это время – примерно 13,7 миллиарда лет назад.

Когда-то произошло нечто, что мы называем Большим взрывом, в котором родилась наша Вселенная. После этого она начала расширяться и продолжает это делать по сей день. Мы это действительно знаем, это наблюдательный факт, а не результат интерполяций и экстраполяций. Сначала Вселенная была очень горячей и плотной – мы видим оставшееся от той эпохи излучение. Если включить телевизор и поймать пустой канал, на экране будет рябь. Заметный процент этой ряби и есть излучение далекой горячей Вселенной. Если бы вы это заметили до 1965 года и сделали правильный вывод, получили бы Нобелевскую премию.

В какой-то момент горячее вещество остыло и, как говорят физики, рекомбинировало. Это значит, что оно стало нейтральным: электроны прицепились к ядрам, которых было всего два – водород и гелий. Тогда наступили темные времена. Нейтральное вещество ничего не излучает, а звезд еще нет. Затем, после темных веков, наконец-то начали образовываться первые звезды. Во Вселенной были места, где плотность вещества была побольше, а в других местах плотность была поменьше. Туда, где плотность больше, притягивалось еще вещество и образовывались массивные комки. В этих комках было довольно много темного вещества. В астрономии оперируют своими единицами, в частности массой Солнца. Так вот, темного вещества в типичном комке было где-то на миллион масс Солнца, а обычного вещества – водорода и немножко гелия – было на сто тысяч масс Солнца. В таком облаке в современных моделях и возникает самая первая звезда. Звезды – первые объекты, которые загорелись во Вселенной.

Темное вещество – одна из ключевых космологических загадок. Сегодня считается, что это некий вид элементарных частиц. На роль этих непонятных частиц в теории есть несколько хороших кандидатов, но пока ни одного не поймали. Этих частиц по массе примерно раз в пять больше, чем обычного вещества.

Итак, в местах наибольшей плотности получаются облачка, где загораются первые звезды. Дальше процесс продолжается, и эти плотные облачка начинают сливаться друг с другом. Их слияние дает галактику. Не только наша, но и другие галактики состоят из сотен миллиардов звезд, из большого количества газа, пыли, темного вещества. Они образованы путем слияния более мелких галактик, а изначально даже не галактик, а облаков, где было буквально по одной звезде.

Все это мы пока не видим по двум причинам: во-первых, это далеко. У нас во Вселенной все просто: есть скорость света, поэтому от далеких объектов сигнал к нам приходит спустя какое-то время – расстояние поделить на скорость света. На самом деле есть хитрость, потому что Вселенная расширяется, и расстояние увеличивается. В результате события, которые происходили давно, трудно увидеть – даже если в тот момент, когда они происходили, они были ближе, то сейчас они далеко.

Во-вторых, это связано с явлением, которое называется «красное смещение». Вселенная растягивается, и вместе с ней расширяются все несвязанные объекты. Расширяется свет: вы испустили зеленый луч, а он летит далеко-далеко во Вселенную и превращается в красный – вытягивается. Дальше он может превратиться в инфракрасный, а инфракрасный с Земли уже не видно. Чтобы все это увидеть, придется запускать телескоп в космос. Нет никакого дешевого способа с Земли увидеть инфракрасное излучение или, наоборот, рентгеновское. Поэтому нужно строить новые инструменты, которые, как все надеются, покажут нам самые первые звезды и галактики.

 

Как видеть далеко

Сейчас самые большие запущенные на орбиту телескопы имеют диаметр под четыре метра. Телескопы большего размера не влезают в ракету. Если нужен телескоп больше, его надо делать раскладным, как зонтик.

Телескоп – очень хитрое, сложное, высокотехнологическое устройство. В космосе его надо защищать от солнца, чтобы он не нагревался, на него влияют заряженные частицы и много что еще. В результате он получается очень сложный и в изготовлении, и в эксплуатации. Астрономические приборы такого уровня очень дороги по двум основным причинам; третья добавляется, если прибор надо отправлять в космос. Первая причина в том, что они делаются в одном экземпляре – все, что вы делаете в одном экземпляре, дорого. Если болид «Формулы-1» делать миллионными партиями, он будет гораздо дешевле, чем сейчас. Вторая причина состоит в необходимости разработки новых технологий. Третья причина в том, что в космосе все дороже.

Есть проекты наземных телескопов, которые покажут нам первые звезды и галактики. Самый большой из них – система радиотелескопов SKA. Если проект будет реализован, он будет стоить несколько миллиардов долларов. Для наземной астрономии это фантастические деньги. Есть также миллиметровые телескопы на Земле, например, в пустыне Атакама. Телескопы нужно строить высоко в горах, где очень сухо, так как пары воды мешают наблюдениям в этом диапазоне спектра.

Как ни странно, про первые галактики нам могут рассказать и новые рентгеновские спутники. Эти спутники запускают в космос, потому что рентгеновское излучение, к счастью, не проходит сквозь земную атмосферу. Излучение это хорошо тем, что это почти что самые «жирные» кванты. Если вам нужно убежать и унести с собой пару миллионов долларов, все знают – надо брать крупными купюрами, потому что купюрами по доллару вы физически не унесете два миллиона. Природа мудра и поступает точно так же. Если в одном месте выделяется очень много энергии, надо уносить ее большими квантами – рентгеновскими. Когда идут какие-то бурные процессы, энергия испускается в рентгеновском диапазоне. Такие процессы происходят, например, когда вы кидаете предметы в черную дыру.

Идея очень простая. Все боятся, что на нас упадет астероид, потому что при этом происходит огромный взрыв. Это просто камень (не бомба!), но выделяется очень много энергии. Астероид падает с очень большой скоростью – если помните, есть такая формула: ½mv². Если из космоса кинуть предмет на Землю, он падает со скоростью несколько километров в секунду, влетает в атмосферу, дальше тормозится и выделяет энергию.

Другое дело, если предмет кинуть не на Землю, а в черную дыру. В черную дыру предмет падает со скоростью света, и если перед этим он с чем-то сталкивается, выделяется огромное количество энергии, на единицу массы гораздо больше, чем при ядерном взрыве. Самые первые черные дыры образовались из самых первых огромных звезд и начали поглощать вещество. Падая, вещество нагревалось и испускало рентгеновские лучи. Так с помощью рентгеновских спутников можно увидеть самые первые черные дыры.

 

Существуют ли черные дыры?

Самые естественные черные дыры возникают из звезд. Звезда живет, пока в ее недрах легкие элементы превращаются в тяжелые. Так она поддерживает устойчивость. Гравитация стремится схлопнуть звезду, а внутреннее давление этому противодействует. Чтобы было внутреннее давление, нужно, чтобы была энергия. Ее звезда берет из термоядерного синтеза. Когда эта энергия заканчивается, звезда начинает схлопываться. Если масса очень большая, то она схлопнется в черную дыру – это и есть самый естественный процесс образования черных дыр.

Я думаю, что черные дыры есть. Я бы не задумываясь поклялся правой рукой директора своего института в том, что черные дыры существуют. Считается, что в центрах галактик, в том числе и в нашей, есть очень массивные черные дыры. Пока не совсем понятно, откуда они взялись. Скорее всего, часть из них развилась из самых первых черных дыр, образованных из самых первых звезд. Они поглощали вещество и таким образом нарастили массу. Есть предсказание о первичных черных дырах, промежуточных черных дырах, но их пока никто не наблюдал.

Самые лучшие кандидаты в черные дыры появились в 1970-е годы в системах двойных звезд. Звезды, особенно массивные, по большей части рождаются парами. Идея тоже очень проста, все мы помним, как образовывалась Солнечная система: было облако газа и пыли, оно сжималось. Мы все смотрим фигурное катание и помним, что, когда объект сжимается, он начинает вращаться быстрее. Сжимаясь, это облако может начать вращаться настолько быстро, что разделится на две части: его разрывает вращением, и тогда образуются две звезды. Это общий случай, он часто встречается в природе.

В двойной звезде нет ничего необычного. Если на небе ясно, их можно наблюдать, и особенно красиво, когда они разного цвета. Как и глаза у людей, звезды тоже бывают разных цветов. Две звезды живут, и одна из них – та, которая быстрее эволюционирует, – может превратиться в черную дыру. Дальше, чтобы ее стало видно, вещество второй звезды должно начать перетекать на первую. Это происходит, если звезда раздулась и вещество с нее захватывается черной дырой. Образуется красивый диск, в котором у самой внутренней его границы вещество двигается с половиной скорости света. Вещество разогревается до миллионов градусов, и мы видим яркий рентгеновский источник.

Именно такие явления стали открывать в 1970-е годы, когда начали запускать спутники с рентгеновскими детекторами. Таких двойных звездных систем сейчас известно множество. Часто это большие системы с гигантскими звездами, которые в десятки раз тяжелее Солнца и намного ярче. В названиях звезд использовались названия спутников, их открывших, координаты звезды, созвездий; часто фигурирует буква Х (икс), потому что на всех языках, кроме русского и немецкого, рентгеновские лучи называются Х-лучами. Есть замечательная история о том, как в советские времена ученый отправил из-за границы телеграмму в свой институт, потому что было сообщение о вспышке в одной из таких двойных систем. Телеграмма не дошла, а в КГБ долго изучали сообщение: «Следите за Лебедем Х-3».

Сегодня считается, что в таких системах невидимым объектом является черная дыра. Для этого есть причины. В первую очередь это связано с отсутствием пульсаций. Если в рентгеновской системе находится не черная дыра, то это должна быть нейтронная звезда. В двойных с такими объектами часто наблюдают пульсации излучения. На самом деле они не пульсируют так, как пульсирует сердце, просто на поверхности нейтронной звезды есть яркое пятно, а звезда вращается. Периодически, как в маяке, сигнал попадает на Землю, и тогда мы видим объект, регулярно меняющий свою яркость – пульсар. Чтобы объект пульсировал, у него должна быть поверхность. Если рентгеновский объект не пульсирует, скорее всего, у него нет поверхности, а единственный объект, у которого нет поверхности, – это черная дыра.

Есть также некоторые особенности излучения, которые говорят нам о том, что объект, скорее всего, является черной дырой. Но главное – они очень тяжелые. Мы представляем себе примерно, до какой степени можем издеваться над веществом и пытаться его сжать. При некотором усилии вещество отказывается дальше сопротивляться и проваливается в никуда, в черную дыру. Нижняя граница массы черных дыр соответствует трем массам Солнца. Если мы видим темный объект с массой четыре массы Солнца, то это не может быть тяжелая нейтронная звезда. Вы можете сделать кресло, но если вы сделаете кресло с массой в три массы Солнца, оно схлопнется в черную дыру. Такого предмета существовать просто не может, и его нельзя придумать. Это главная причина, почему мы считаем эти объекты черными дырами. Никаких других хороших моделей, позволяющих объяснить тяжелый темный объект, у нас сегодня нет.

Интересно рассмотреть аргумент отсутствия поверхности. Если не черная дыра, то что? В данном случае альтернатива – это нейтронные звезды. У нейтронных звезд есть поверхность, они иногда могут не пульсировать. Итак, вещество с соседней звезды начинает перетекать на нейтронную звезду. Вещество в этом случае – водород. Водород накапливается, становится горячее и плотнее. Когда водород становится все горячее и плотнее, происходит термоядерный взрыв. И это наблюдается! Однако есть точно такие же системы, где нет никаких вспышек. Единственный здравый аргумент состоит в том, что в такой системе у компактного объекта, на который течет вещество, нет поверхности. По сути это не могут объяснить иначе, чем сказав, что там находится черная дыра.

Черная дыра для физиков – это самая консервативная гипотеза. Вообще говоря, вся экзотика современной науки – темное вещество, темная энергия, черные дыры, вообще все непривычное и таинственное, что есть в современной физике, – это в то же время и самое консервативное, то есть простейшее объяснение наблюдаемых феноменов.

Самая надежная на сегодняшний день черная дыра существует в центре нашей Галактики. Мы можем сейчас наблюдать, фотографировать, складывать фото и получать реальную картину того, что там происходит. Мы видим, что звезды двигаются в центре Галактики, мы можем видеть кривые вращения, прописать их орбиты, измерить, какая масса заставляет эти звезды крутиться. И мы видим, что в самом-самом центре нашей Галактики сидит объект размером намного меньше земной орбиты, но с массой четыре миллиона масс Солнца. Его называют Sgr A*. Все это мы четко видим по орбитам, так что объект там точно есть, это уже не обсуждается. Единственное здравое объяснение, которое пока придумали, – что тусклый объект с массой четыре миллиона масс Солнца – черная дыра.

А вдруг это не дыра? Расчеты показывают, что если вы разместите в области размером меньше радиуса земной орбиты практически что угодно, то это довольно быстро сколлапсирует в черную дыру. А недавно появился совсем, на мой взгляд, потрясающий аргумент в пользу того, что в центре нашей Галактики находится именно черная дыра. Космос, естественно, не пустой, в нем всегда что-то есть: какой-то мусор, газ. Если есть тяготеющий центр, то газ туда будет стремиться течь – гравитацию никто не отменял. Мы видим, как в центр течет газ, и если бы там была какая-то стенка, газ бы ударился о нее почти со скоростью света и выделил очень много энергии. Мы, напротив, видим, что более 99,6 % энергии выделяется в самом потоке: газ течет и, ни во что не врезаясь, куда-то исчезает. Единственное здравое объяснение опять – черная дыра.

Несмотря на все это никому Нобелевскую премию за черные дыры пока не дали. Существование горизонта черной дыры реально не доказано, сделать это технически сложно. Тем не менее есть надежда в ближайшие годы прямо увидеть этот горизонт. Связано это с совсем экзотическим процессом. Мы знаем, что есть двойные звезды. Одна звезда уже превратилась в черную дыру. Теперь, говорю я, вторая звезда тоже может превратиться в черную дыру. Первая превратилась, а если вторая достаточно массивна, то и ей ничего не мешает тоже превратиться в черную дыру. Итак, у нас получилось две черные дыры. Обе они крутятся в двойной системе, и эта система начинает испускать гравитационное излучение. Идея гравитационных волн на самом деле довольно простая. Известно, что общая теория относительности – это геометрическая теория гравитации. Соответственно, тяжелые тела искажают пространство. Если взять айпад и надавить на него пальцем, то есть массивным телом, поверхность исказится. Если же будет два пальца, которые, вращаясь, воздействуют на экран, будет видно, как по нему бегут волны. Примерно то же и с искривлением пространства. Теперь представьте вместо айпада пространство-время. Если взять пространство-время, то обычные волны превратятся в гравитационные. Они предсказаны теорией относительности, но до сих пор напрямую не открыты, хотя люди очень стараются и надеются. Двойные черные дыры – самый мощный источник гравитационных волн. Когда они совсем сливаются, волн становится очень много. Были построены специальные детекторы, которые заработают через несколько лет. Тогда мы прямо увидим, как искажается пространство и время в момент слияния черных дыр.

Идея детектора примерно такая. Берется труба длиной около километра. В трубе вакуум и висят зеркала массой где-то под тонну. Между ними бегает лазерный луч. Проходит гравитационная волна, и зеркала немножко сближаются-отдаляются. Они колеблются, и получается сигнал. Колебание подвешенных зеркал можно заметить. Таким образом, мы не просто увидим гравитационные волны, но увидим прямой сигнал от взаимодействия горизонтов в черных дырах. Тогда Нобелевская премия будет дана одновременно за открытие гравитационных волн и черных дыр.

«В искусстве я ничего не понимаю, но науку могу сделать немножко понятнее».
Сергей Попов

 

Самые интересные звезды

На самом деле черные дыры – совершенно неинтересные объекты. Самые интересные объекты во Вселенной – нейтронные звезды. Интересны они вот почему. С черными дырами Господь переусердствовал – всегда надо вовремя остановиться. Вы берете объект, вы его сжимаете. Он становится все интереснее: повышается плотность, на его поверхности больше гравитации, если было магнитное поле – оно становится сильнее. Масса та же, а радиус уменьшается. Но если переусердствовать, образуется черная дыра. В черной дыре есть один главный параметр – масса. Все. Все красивые магниты, высокая плотность – все исчезло. Но если вовремя остановиться, получится очень интересный объект. Со сверхплотным веществом, разными сверхтекучестями, сверхпроводимостью, сверхсильными магнитными полями, сверхсильной гравитацией. С нейтронными звездами Господь вовремя остановился.

Мы видим их по самым разным причинам. Это объект с массой Солнца, который может делать оборот за одну тысячную секунды. При этом у него гигантское магнитное поле – в сто тысяч миллионов, даже миллиардов раз больше, чем у Земли. Это очень красивые, очень интересные объекты. В частности, внутри у них огромная плотность вещества. Мы не можем получить в лабораториях ни такие сверхсильные магнитные поля, ни сверхсильную гравитацию, ни сверхплотное вещество.

Нейтронные звезды страшно интересно исследовать, и в некотором смысле это имеет народно-хозяйственное значение. Вы строите какую-нибудь физическую теорию, применяемую в быту: электродинамику или ядерную физику. Вы хотите, чтобы теория была полна. Но чтобы она была полна, ее нужно проверять в экстремальных режимах, и эти режимы где-то надо реализовывать. В лабораториях это сделать нельзя, а в нейтронных звездах эти режимы созданы природой. На нейтронных звездах можно проверять теории с большим народно-хозяйственным значением.

Многие считают, что главная загадка нейтронных звезд – что находится в самом центре, где плотность раз в десять больше, чем плотность атомного ядра. С веществом там могут происходить чудеса. В обычном веществе есть протоны, нейтроны, электроны – все вместе нейтрально. Электроны легкие, но почти никакого вклада в массу не вносят. Если начать вещество сжимать, возникают новые, очень интересные частицы.

Есть теории, которые позволяют сделать совсем удивительную вещь – кварковое вещество. На самом деле мы состоим не просто из протонов и нейтронов. Протоны и нейтроны еще состоят из кварков. Но кварк – очень хитро устроенная частица. Кварки очень хорошо взаимодействуют друг с другом. Нормальные частицы, если их удалять друг от друга, притягиваются все слабее – это естественно. Кварки же как будто связаны пружинкой. Чем больше удалять их друг от друга, тем они сильней притягиваются друг к другу. Если вы пытаетесь вырвать кварк из протона, вы затрачиваете столько энергии, что, вырывая, на кончике этой пружинки рождаете новый кварк. Кварки в обычных условиях никогда не бывают одиноки.

Если пойти обратным путем – очень сильно сжать вещество, то кварки вдруг объединятся все вместе. У Станислава Лема есть такой рассказ: два мастера – Трурль и Клапауций – научились объединять сознания. Полетели на планету, где были сплошные военные, которые постоянно друг с другом воевали. Первый мастер полетел в один лагерь, второй – в другой лагерь. Всем военным очень понравилась идея объединения сознания: вместо того, чтобы отдавать команду двадцати разгильдяям, объединяешь сознание и отдаешь команду как бы в единое целое. Наконец, они объединили армии, и на планете наступил мир, потому что сознание достигло определенного уровня, а существа с сознанием выше определенного уровня воевать не могут. В итоге война закончилась и все стали благоденствовать. Так вот, если очень сильно сжимать вещество, кварки вдруг объединяются и появляется удивительное единое кварковое вещество со свойствами, не похожими на свойства обычного вещества.

Мы действительно не знаем, как выглядит теория, описывающая внутреннее строение нейтронных звезд. Самый главный вопрос – когда нейтронная звезда превратится в черную дыру? Неизвестно, как долго можно давить на вещество до того, как оно схлопнется. Есть разные уравнения, описывающие образование черных дыр. Открытие новых массивных нейтронных звезд опровергает некоторые уравнения. В конце, как в старом фильме про Дункана Маклауда, останется только одно. Тогда наступит счастье – мы узнаем, какое уравнение описывает сверхплотное вещество. Для ядерной физики это очень важно.

С кварковой материей есть еще одна интересная штука: она может летать вокруг нас. Как и черные дыры, все, что есть в двойных системах, теоретически может слиться. Могут слиться и нейтронные звезды. Это приводит к колоссальному энерговыделению, потому что они сталкиваются почти что со скоростью света. Хоть и в не видимом глазом диапазоне, но на короткое время они становятся ярче целой Галактики. Вещество тогда разлетается вокруг. Если внутри было кварковое вещество, оно тоже разлетится.

Прелесть кваркового вещества в том, что оно может существовать в любом количестве. Мне очень нравится, как писали в детской энциклопедии: «Если вы возьмете спичечный коробок вещества нейтронной звезды…» Но нельзя взять спичечный коробок вещества нейтронной звезды! Это вещество устойчиво только потому, что его держит огромная гравитация. А вот кварковое вещество может летать вокруг нас. Чтобы поймать его частицы, нужно ставить специальную установку. Приборы, способные ловить и распознавать частицы странного вещества, сейчас работают на МКС.

 

Взрывы сверхновых

И нейтронные звезды, и черные дыры рождаются при взрывах сверхновых. Есть снимки звезд перед взрывом. На снимке видно звездочку, а спустя какое-то время после взрыва все рассеялось и ничего нет. Звезда вспыхивает, становится ярче целой галактики – и исчезает. В год мы видим сотни взрывов звезд, но пока не знаем, как взрываются сверхновые.

Ожидается, что в ближайшие годы будет очень большой прогресс в изучении сверхновых. Компьютеры будут становиться мощнее, и можно будет строить более детальные модели. Наблюдения позволят нам узнать гораздо больше, чем сейчас. Мы можем надеяться увидеть очень ранний этап вспышки. Для этого нужно одновременно осматривать все небо телескопами в разных диапазонах. Сделать это очень сложно, но сейчас мы подошли к тому, что почти все небо все время под контролем. Будут также наблюдать нейтрино – замечательные частицы, очень плохо взаимодействующие с веществом. Можно сколько угодно фантазировать про частицы кваркового вещества, а нейтрино тем временем идут через нас сплошным потоком постоянно. И они нас совершенно не трогают – очень хорошее свойство. С одной стороны, их трудно поймать: они ни с чем почти не взаимодействуют. С другой стороны, они могут вылезти из такого места, откуда вылезти очень трудно. Например, они могут быть в центре взрыва сверхновой в самый момент взрыва. Там их рождается очень много. И они несут информацию о физике взрыва.

Нейтрино пока удалось увидеть лишь однажды, во время очень близкой, каких-то 150 тысяч световых лет, вспышки в Большом Магеллановом Облаке. Вблизи нас нет звезд, которые должны взорваться в ближайшие годы. На физически опасном расстоянии нет ничего и близко похожего. Не знаю, хорошо это или плохо. На каком-то умеренно интересном расстоянии есть звезды, которые взорвутся через миллионы лет. Все наблюдаемые сверхновые находятся довольно далеко. Новые детекторы смогут видеть нейтрино на расстояниях в миллионы световых лет. Пока, к сожалению, ничего не взорвалось: не каждый день неподалеку взрывается сверхновая.

Совсем недавно произошло радостное событие – впервые сверхновая взорвалась в компьютере. Люди смогли построить модель, где не надо было ничего добавлять руками для того, чтобы звезда полноценно взорвалась. До этого был необходим дополнительный толчок, чтобы звезда разлеталась. Было известно, сколько должно выделяться энергии, но получалось, что выделяется меньше, так что ее добавляли руками.

Интересно, что взрыв сверхновой очень несимметричен. Представьте себе нейтронную звезду – десятикилометровый шарик с плотностью как у атомного ядра, массой Солнца и скоростью 1000 километров в секунду. А такие скорости наблюдаются! Эту звезду надо было очень несимметрично родить – в момент рождения дать ей пинка. То, что взрывы сверхновых несимметричны, очень нетривиально и очень хорошо. Это и есть тот самый пинок. Потихоньку мы действительно начинаем понимать, как взрываются сверхновые, поскольку даже из скоростей нейтронных звезд пытаемся выудить информацию о физике взрыва. Многое сделано, но многое еще предстоит.

«Нейтронные звезды страшно интересно исследовать, и в некотором смысле это имеет народно-хозяйственное значение».
Сергей Попов