ГЛАВА 4
Установление порядка между простыми числами
Любое число можно разложить на простые числа, которые и составляют фундамент арифметики. Однако непросто узнать, является ли большое число простым: нет формул, которые описывали бы все простые числа, и мы даже не знаем, как они распределяются в числовом ряду. Когда Гаусс подошел к этой проблеме, ему хватило ясности ума, чтобы открыть новые пути и установить порядок там, где до этого был только хаос.
Гаусс обращал свой интерес на очень разные математические области: алгебру, арифметику, астрономию, построения с помощью линейки и циркуля и некоторые другие. Но если о какой-то теме и можно сказать, что она сопровождала его всю научную жизнь, то это изучение простых чисел и их свойств. Вполне можно заметить, что если Гаусс сделал из теории чисел «царицу математики», то лучшими драгоценностями, которые украшали ее корону, были открытия из области простых чисел — чисел, которые зачаровывали (и ужасали) целые поколения математиков.
Самое древнее доказательство интереса человечества к простым числам — это кость, датированная 6500 годом до н.э. Кость Ишанго была найдена в 1960 году в экваториальной Африке. На ней вырезано несколько столбиков с насечками. Интересно, что в одном из них содержится 11, 13, 17 и 19 отметок, то есть все простые числа от 10 до 20. Изучением простых чисел была увлечена и древняя китайская цивилизация. Для китайцев они символизировали мужественность, поскольку не позволяли представить себя в виде произведения меньших чисел. Однако именно древние греки открыли их первое важное свойство: любое натуральное число можно единственным образом представить как произведение простых чисел. Другими словами, они доказали, что простые числа — это элементы, из которых состоит вся арифметика, точно так же, как химические элементы из таблицы периодической системы составляют основу Вселенной.
Насколько известно, Эратосфен (276-194 до н. э.), библиотекарь из Александрии, был первым, кто в III веке до н. э построил таблицы простых чисел. Он придумал рационально легкий способ узнать, какие числа являются простыми на промежутке между двумя величинами, например 1 и 1000. Отставив в сторону число 1, которое не все математики считают простым, он искал первое простое число: число 2. Далее он вычеркивал все числа, кратные 2 (четные), которые, следовательно, уже не могли быть простыми. В списке незачеркнутых чисел он искал первое незачеркнутое число, которое автоматически было простым, в этом случае 3, и действовал тем же образом, зачеркивая все числа, кратные 3. Эратосфен продолжал эту процедуру, зная, что первое в его списке незачеркнутых чисел вновь будет простым (далее 5, 7,11...) и что именно оно определяет следующие числа, которые нужно удалить из списка (все кратные ему). С помощью этой процедуры он построил таблицы простых чисел. Этот метод получил название решето Эратосфена, поскольку таким образом строилась сеть, не включавшая числа, которые не могут быть простыми, точно так же, как сито золотоискателей помогает им находить самородки. Естественно, на каждом этапе ячейка решета Эратосферна меняется в размерах, поскольку процесс ускоряется.
Евклид также занимался простыми числами. В частности, его интересовал вопрос, бесконечно ли множество простых чисел. Мы можем находить простые числа в течение неопределенного времени или все же существует момент, когда они перестают появляться? Евклид нашел ответ на этот вопрос: множество простых чисел бесконечно. Древнегреческий математик выразил это, сказав, что количество простых чисел больше, чем любое число, которое можно задумать. Доказательство довольно элементарно и показывает мощь математического рассуждения, которое способно ответить на этот вопрос без необходимости искать каждый раз все большие простые числа.
МНОЖЕСТВО ПРОСТЫХ ЧИСЕЛ БЕСКОНЕЧНО
Это утверждение доказывается от противного. Для начала предположим, что множество простых чисел конечно, то есть Р = {2, 3 p j ..., p n } — это множество всех существующих простых чисел, и p n — наибольшее из них. Возьмем произведение всех их плюс один, то есть вычислим q = 2 · 3 · ... · р j , ... · p n + 1. Это число явно больше 1 + p n , и оно не может быть простым, поскольку тогда мы получили бы простое число, большее максимального p n . Тогда нужно предположить, что q — составное число. Так как любое составное число можно разложить на произведение простых, это означает, что все простые множители q находятся во множестве простых чисел Р. Следовательно, существует по крайней мере один элемент множества Р (обозначим его р), который является делителем q. Однако по построению p j также является делителем произведения 2 · 3 · ... · р j · ... · p n , поскольку р j — один из множителей этого произведения. Это означает, что р, является делителем g и g - 1, следовательно, оно должно быть делителем их разности, то есть 1, но ни одно простое число, большее 1, не является делителем 1. Мы пришли к противоречию. Вывод в том, что выбранное множество Р не является исчерпывающим, поскольку существуют простые числа, не принадлежащие ему, следовательно, множество простых чисел бесконечно.
С аргументацией Евклида исчезала возможность построить таблицу, в которой содержались бы все простые числа, и, следовательно, пропала возможность найти способ, который позволил бы описать их. Гораздо сильнее заключений Евклида результат, доказанный в 1737 году Эйлером, который гласит: сумма чисел, обратных простым, расходится. В виде математической формулы это выглядит следующим образом:
где р — простое число.
Очевидно, что из этого результата можно сделать вывод, что количество простых чисел бесконечно, поскольку для бесконечной суммы необходимо бесконечное количество слагаемых (и к этому выводу можно прийти с помощью одних только логических рассуждений).
Еще в юности Гаусс получил в подарок книгу, в которой содержался список нескольких миллиардов простых чисел, возможно полученных с помощью инструмента, напоминающего решето Эратосфена. Гаусс заметил, что числа появляются без всякой системы. Казалось почти невозможным определить порядок их распределения, или формулу, которая позволила бы находить их в бесконечном множестве натуральных чисел. Ученый, который смог определить орбиту небесных тел на основе немногих наблюдений, решил принять вызов. Мысль о том, что математики не могли найти правила распределения простых чисел, подхлестывала разум Гаусса. Он должен был найти порядок и регулярность там, где, казалось, есть только хаос.
Любой глупец может задавать вопросы о простых числах, на которые не сможет ответить и самый умный человек.
Годфри Харолд Харди (1877-1947) о простых числах
Люди пытались понять простые числа в течение поколений, и за это время были сделаны интересные наблюдения. Например, существует гипотеза, согласно которой можно найти бесконечное число простых чисел-близнецов (разделенных двумя единицами), то есть если р — простое число, таким же является р + 2. Пары простых чисел-близнецов находили среди очень больших чисел, таких как пара 1000 037 и 1000 039. Евклид более двух тысяч лет назад доказал, что существует бесконечное количество простых чисел, но никто не знает, есть ли число, после которого больше нет пар соседних простых чисел. В математике одно дело — гипотезы, и совсем другое — теоремы, отделенные от гипотез пропастью доказательства. Именно поэтому математическое доказательство — фундаментальная основа прогресса этой науки.
Одним из первых вопросов, которым занялись математики, было нахождение формул, дававших бы бесконечный ряд простых чисел. Ферма думал, что нашел одну из таких формул: его идея состояла в том, чтобы прибавлять 1 к особому типу степеней числа 2. Согласно Ферма, числа вида 2²n +1 (где n — натуральное число), которые мы обозначим Fn и будем называть простыми числами Ферма или просто числами Ферма, всегда простые. Для малых степеней она работает: при n = 1 получаем 5, при n = 2 получаем 17. Ферма был убежден, что его формула всегда даст простое число, но у него не было возможностей проверить свою догадку экспериментально, поскольку числа быстро росли, и вычисления становились невозможными. Однако в этот раз интуиция его подвела. Пятое простое число Ферма, состоящее из десяти цифр, которое он не смог вычислить, уже не простое, поскольку делится на 641, как доказал Эйлер. После вычисления этого контрпримера интуитивное предположение Ферма перестало быть гипотезой и оказалось просто ложным предположением. Именно поэтому некоторые авторы избегают называть такие числа простыми числами Ферма и говорят о них просто как о числах Ферма.
Гаусс с большим уважением относился к числам Ферма, но нашел им другое применение. В «Арифметических исследованиях» он доказал, что если число Ферма простое, можно построить правильный многоугольник с этим числом сторон с помощью линейки и циркуля. Число сторон многоугольника, построение которого сделало молодого Гаусса известным, — 17, и 17 же — второе число Ферма. Четвертое число Ферма, 65537, простое, и это означает, что можно построить идеальный правильный многоугольник с таким числом сторон. Очевидно, для достижения этого результата необходимы большая точность и терпение, так, мы уже знаем, что мастер, которому заказали выгравировать 17-угольник на могильной плите Гаусса, отказался делать это.
Итак, хотя Гаусс и нашел применение для формулы простых чисел Ферма, сама эта формула оказалась неэффективной для своей изначальной цели. Это еще один пример того, что математические теории, которые считаются неперспективными, могут найти свое применение в будущем. Именно поэтому математики практически не говорят о малой применимости своих открытий, в какой бы теоретической области они ни работали.
Ферма попытался определить некоторые из свойств таких простых чисел, как 5, 13, 17 или 29, которые при делении на 4 дают в остатке 1. Такие числа могут быть записаны в виде суммы квадратов (13 = З² + 2², 29 = 2² + 5² и так далее). Ферма предположил, что сумма квадратов дает простые числа, и даже утверждал, что у него есть доказательство. На самом деле Ферма слишком часто строил гипотезы и переоценивал свою способность доказать их. Собственно, многие математики той эпохи не представляли доказательств свойств, которые они, по их словам, открыли.
В Рождество 1640 года Ферма рассказал об этом своем открытии в письме, которое послал монаху и музыканту Марену Мерсенну (1588-1648). Этот человек был обычным собеседником многих ученых своего времени, он переписывался почти со всеми французскими математиками и даже с некоторыми иностранными, такими как Галилео Галилей (1564-1642). Группа математиков, которые объединились через переписку с Мерсенном, стала ядром Парижской академии наук.
Мерсенн также заинтересовался созданием простых чисел и придумал формулу, которая оказалась более полезной, чем формула Ферма. Он исходил из степеней числа 2, но вместо того чтобы добавить 1 к результату, как это делал Ферма со своими простыми числами, он решил вычесть его. Например, 2³-1 = 7, а это простое число. Мерсенн сразу же заметил, что его формула не всегда дает простое число, поскольку 24-1 = 15, а оно не является простым. Исследователь понял, что ему нужно какое-то дополнительное условие, и решил, что степень числа 2 должна быть простым числом. Так, он утверждал, что для значений n, не превышающих 257, числа вида 2n — 1 являются простыми тогда и только тогда, если n — простое число. Это математическая характеристика, поскольку она содержит необходимое и достаточное условие. У его теоремы было единственное исключение: 211-1 = 2047, а 2047 = 23 х 89, так что оно не простое. В математике исключение не подтверждает правило. Следовательно, теорема была ложной. Остается загадкой, как Мерсенн мог утверждать, что 2257-1 было простым, поскольку это число из 77 цифр находилось абсолютно за рамками его вычислительных возможностей. Частично идеи Мерсенна изучаются до сих пор, но неизвестно, продолжит ли формула давать простые числа до бесконечности. Пока еще только ожидается доказательство того, что ряд простых чисел вида 2n - 1, где n — простое число, никогда не прервется.
ПАРИЖСКАЯ АКАДЕМИЯ НАУК
Академия наук была основана в Париже в 1666 году Кольбером, министром финансов Людовика XIV. В ее создании большую роль сыграла группа математиков, которые переписывались с Мареном Мерсенном (справа). Среди первых членов Академии были Рене Декарт, Пьер де Ферма и Блез Паскаль (1623-1662). Со времени создания в нее входили не только французы, но и, например, голландец Христиан Гюйгенс (1629-1695), который всю свою жизнь получал от Академии финансовую помощь. В 1699 году Академия была реорганизована под покровительством короля Людовика XIV, и ее центр разместился во дворце Лувра. Она была разделена на две основные части — математические науки (геометрия, механика и астрономия) и физические дисциплины (химия, ботаника и анатомия). Геометрия понималась в значении, принятом в классической Греции, и включала все отрасли математики. В течение XVIII века Академия способствовала научному прогрессу посредством публикаций, а также предоставляла научные консультации власти. После упразднения Академий, которое последовало за Революцией, в 1816 году она восстановила свою автономию и присоединилась к Институту Франции. Этот статус академия сохраняет по сей день.
Поощрение премиями
В 1721 году Академия установила престижную систему премий, которые вручались за большой вклад в развитие математики и других наук, и благодаря им появились работы огромной важности в других научных дисциплинах. Существовал комитет экспертов по присуждению каждой большой премии, и в архивах Академии до сих пор хранятся стенограммы прений, касавшихся присуждения. В какие-то годы Академия решала, на какую тему должны быть написаны работы, претендующие на премию, например так было в 1816 и 1857 годах, когда работы должны были быть посвящены решению последней теоремы Ферма. Конечно же, в те годы конкурс никто не выиграл. Гаусс никогда не претендовал на премию Академии, поскольку держался особняком от французских научных институтов из-за военных действий, которые Франция вела в его стране.
ПЕТЕРБУРГСКАЯ АКАДЕМИЯ НАУК
Академия наук была основана Петром I в Санкт-Петербурге в январе 1724 года и сохраняла это название с 1724 до 1917 год. Первыми учеными, приглашенными работать в ней, стали признанные европейские математики Леонард Эйлер, Кристиан Гольдбах, Николай и Даниил Бернулли, эмбриолог Каспар Фридрих Вольф (1734-1794), астроном и географ Жозеф Никола Делиль (1688-1768), физик Георг Вольфганг Крафт (ок. 1700-1754) и историк Герхард Фридрих Мюллер (1705-1783). Гаусса также звали в Петербург, поскольку, вычислив орбиту Цереры, он приобрел широкую известность в научном мире, но ученый отказался от этого приглашения. Академия достигла большого успеха в развитии науки, практически не имевшего аналогов ни на европейском, ни на мировом уровне. Она продолжала работать даже в периоды исторических потрясений, а в 1934 году ее центр был перемещен в Москву вместе с большинством исследовательских институтов Советского Союза.
Эйлер также посвятил себя изучению простых чисел. Для него, как и для Гаусса, легче указать области математики, в которых он не сделал никаких открытий, чем наоборот. Страсть Эйлера к простым числам была усилена перепиской с Кристианом Гольдбахом, секретарем Петербургской академии наук.
Гольдбах, как и Мерсенн, не был профессиональным математиком, но его завораживала игра с числами и постановка числовых экспериментов. Именно Эйлеру он впервые рассказал о своей знаменитой гипотезе. Эйлер использовал помощь Гольдбаха для проверки доказательств своих гипотез о простых числах, поскольку в аргументации встречались не вполне обоснованные моменты. Также он очень интересовался гипотезами Ферма об этих числах. У Эйлера работа с простыми числами шла чрезвычайно хорошо, поскольку он обладал исключительными вычислительными способностями, виртуозно манипулировал формулами и обнаруживал скрытые связи. Его коллега, математик и один из реформаторов Парижской академии наук, Франсуа Араго (1786-1853) сказал: «Эйлер считает без видимых усилий, как люди дышат, а орлы летают».
Эйлер просто наслаждался вычислением простых чисел. Он составил их таблицы, включая числа до 100000 и даже больше. Как мы уже упоминали, ему удалось доказать, что пятое число Ферма не является простым — для этого ученый пошел теоретическим путем, поскольку для вычисления этого числа не хватало даже его способностей. А одним из самых любопытных открытий Эйлера стала формула, которая, казалось, генерирует огромное количество простых чисел. В 1772 году он вычислил все результаты, которые получаются, если присвоить х значения от 0 до 39 в уравнении х² + х + 41, и получил следующий список:
41,43, 47, 53,61,71,83,97,113, 131, 151,173, 197, 223, 251,281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231,1301, 1373,1447, 1523,1601.
Все эти числа простые. Начало казалось многообещающим, но при x = 40 и х=41 формула давала составные числа. И снова формула непрерывного и бесконечного порождения простых чисел ускользнула. Также Эйлер открыл, что если изменить независимый член уравнения и вместо 41 подставить 2, 3, 5, 11, 17, также получаются простые числа, но этот ряд всегда в конце концов прерывается. В 1751 году Эйлер пишет: «Есть некоторые загадки, в которые человеческий разум никогда не проникнет. Чтобы убедиться в этом, достаточно бросить взгляд на таблицы простых чисел. Мы заметим, что в них нет ни порядка, ни закона». Если даже великий Эйлер сдался, то проблема действительно серьезна. Так обстояли дела, когда вопросом заинтересовался Гаусс. Наш герой искренне восхищался Эйлером и даже сказал о нем, имея в виду теорию чисел:
«Особая красота этой сферы привлекала всех, кто активно занимался ее развитием; но никто не выражал этого так ярко, как Эйлер, который почти во всех своих многочисленных работах, посвященных теории чисел, постоянно говорит о том удовольствии, которое он получает от этих исследований и от приятных изменений, происходящих в работах, наиболее прямо связанных с практическим применением».
ГИПОТЕЗЫ ГАУССА О ПРОСТЫХ ЧИСЛАХ
Как вы уже поняли, в течение многих веков математики безуспешно пытались найти формулу, которая бесконечно генерировала бы простые числа. Но Гаусс решил пойти другим путем и использовать новую стратегию. Собственно, этим он славился с юных лет: гениальность Гаусса в том и состояла, что он всегда шел к решению собственными путями, избегая очевидного и многажды опробованного. Ученый оставил поиск универсальных формул (путь, который всегда заводил в тупик), он попытался найти закономерность в распределении простых чисел и, если это возможно, математические выражения, определявшие эту закономерность. Так наметился перелом в подходе к проблеме, а последующие поколения математиков получили обширный материал для изучения, на основе которого были сделаны перспективные открытия. Идея Гаусса состояла в том, чтобы связать распределение простых чисел с логарифмами по основанию е. Казалось, что эта идея буквально вспыхнула в его живом математическом уме, однако на самом деле она вынашивалась годами, а полученные результаты надолго пережили ученого.
В 14 лет Гаусс получил в подарок книгу о логарифмах — необходимом инструменте для любого, кто интересуется арифметикой. С появлением математических калькуляторов логарифмы утратили часть своего значения, и сейчас их изучают не так интенсивно, как это было десятки лет назад. Причина в том, что логарифмы позволяли очень упростить математические операции.
ПРИМЕНЕНИЕ ЛОГАРИФМОВ
Если даны два действительных числа b и х, можно сказать, что z — это логарифм х по основанию b, если b, возведенное в степень z, дает х. Выражаясь математически:
log b x=z↔b z =x.
У логарифмов есть два свойства, которые делают их очень удобными для арифметических операций. С одной стороны, логарифм произведения — это сумма логарифмов, а его частное превращается в разность. Так,
log b (x · y) = log b x+log b y, и, кроме того, log b (x/y) = log b x-log b y,
что позволяет осуществлять умножение и деление как сложение и вычитание с помощью таблиц логарифмов, которые совсем недавно были знакомы каждому школьнику. Благодаря замене умножения сложением, которую делают возможной логарифмы, ускорилось развитие навигации и торговли; таблицы логарифмов и обратных им величин стали очень популярны. Первую таблицу логарифмов составил в 1614 году шотландец Джон Непер (1550-1617). Математики поняли, что основание логарифма может меняться, благодаря чему стал очень популярным логарифм по основанию е. Это иррациональное число, принимающее значение 2,718182..., было впервые определено Эйлером и присутствует во многих математических выражениях. Число е можно получить как сумму
где n! — факториал натурального числа п.
Логарифмы по основанию е называют натуральными и обозначают In.
В книге логарифмов содержалась также таблица простых чисел, так что острый ум Гаусса начал проверять, нет ли какой-то связи между этими двумя таблицами, и здесь лежат истоки его огромного вклада в теорию простых чисел. Вместо того чтобы прогнозировать точное место простого числа относительно предыдущего, Гаусс попытался понять, можно ли проверить, сколько существует простых чисел, меньших 100, или 1000, или любого другого числа. Есть ли какой-то способ узнать, сколько таких чисел между 1 и N для заданного натурального числа N? Для этого он определил функцию:
π(Ν) = мощность множества {ρ<=Ν, где р — простое число}.
Запись не слишком удачная, поскольку складывается впечатление, что функция каким-то образом связана с числом π, а это не так. Сделав некоторые элементарные вычисления, можно прийти к выводу о том, что простые числа не распределяются равномерно. Например, существует 25 простых чисел, меньших 100; то есть при выборе числа от 1 до 100 у нас есть вероятность 1/4 столкнуться с простым числом. Эта вероятность уменьшается, если мы увеличиваем число Ν. Но следуют ли эти вариации какой-нибудь модели, которую можно выразить математически? Гаусс воспользовался своими таблицами простых чисел, чтобы найти ответ на этот вопрос. Когда он понаблюдал за долей простых чисел, взятых во все больших промежутках, ему показалось, что они следуют некой регулярной структуре. Если мы посмотрим на результат этих наблюдений для различных степеней числа 10, эта регулярность начнет вырисовываться.
Степени числа 10 |
Количество простых чисел (π(Ν)) |
Среднее расстояние между простыми числами |
10 |
4 |
2,50 |
100 |
25 |
4,00 |
1000 |
168 |
5,95 |
10000 |
1229 |
8,14 |
100000 |
9592 |
10,43 |
1000000 |
78498 |
12,74 |
10000000 |
664579 |
15,05 |
В этой таблице намного больше информации, чем было в распоряжении Гаусса, у которого не было таблиц простых чисел, доходивших до 10000000. Но обычно ему требовалось меньше данных, чем другим людям, чтобы прийти к выводам, так что будет справедливо, если мы воспользуемся этим преимуществом. Если мы посмотрим на таблицу, становится очевидным, что среднее расстояние между последовательными простыми числами увеличивается, и для значений выше 10000 увеличение стабилизируется на 2,3. То есть когда мы умножаем на 10 число N, расстояние между простыми числами увеличивается на 2,3. Именно благодаря этой связи между умножением и сложением Гаусс подумал, что логарифмы могут играть важную роль. Поскольку среднее расстояние увеличивается на 2,3 вместо 1 каждый раз, когда мы умножаем на 10, возникает мысль, что это связано с логарифмом не по основанию 10. Гаусс выяснил, что наиболее подходящим для его вычислений основанием было число е, и, следовательно, он решил воспользоваться натуральными логарифмами. А ln(10) = 2,3034, следовательно, ln( 100) = ln(10 · 10) = ln(\0) + ln( 10), и аналогично при умножении еще на 10.
Это дало Гауссу основание сформулировать следующую гипотезу: для чисел в промежутке от 1 до N средняя удаленность между простыми числами равна ln(N). Следовательно, мы можем определить значение функции π как:
π(Ν) = Ν/ln(N)
Гаусс никогда не думал, что это точная формула. Он считал, что она может использоваться для оценки, для установления какого-то порядка в распределении простых чисел. Гаусс записал это приближение в книге логарифмов, но никому не объяснил своей идеи, поскольку у него не было доказательств правильности этого наблюдения и он не знал, сохранится ли модель по мере увеличения Ν. Такое поведение вполне соответствовало представлениям Гаусса о том, как нужно вести научные исследования. Без доказательства связь между простыми числами и логарифмами для ученого не имела ценности. Однако его идея стала зачатком нового способа решения проблемы и дала в будущем чудесные результаты.
С Гауссом в исследованиях вновь пересекся Лежандр. Французского математика также интересовала теория чисел, и в 1798 году, на шесть лет позже, чем Гаусс, он объявил об обнаружении экспериментальной связи между простыми числами и логарифмами. Результат, который предложил Лежандр, был лучше, поскольку выяснилось, что результат Гаусса удаляется от реальных значений по мере роста N.
На рисунке показано, что хотя Гаусс, безусловно, открыл нечто интересное, открытие можно было улучшить. Лежандр получил результат, определяемый формулой
π(Ν) = N/(ln(N)-1,08366)
сделав небольшое исправление, которое приближало формулу к реальному графику распределения простых чисел. На самом деле при существующих на то время таблицах простых чисел было почти невозможно различить графики π(Ν) и результат Лежандра. Он приспособил функцию к графику, что было относительно простой задачей при использовании метода наименьших квадратов, и поэтому в формуле появился такой член, как 1,08366, не имеющий в математике самостоятельного значения. Лежандр в своих изысканиях больше заботился о том, чтобы находить практические объяснения, а не искать доказательства. Так, в 1808 году он опубликовал свою гипотезу о простых числах в книге, озаглавленной Theorie des nombres («Теория чисел»), не раскрывая метода, который привел его к этому заключению. Спор о том, кто первым открыл связь между логарифмами и простыми числами, вызвал новую полемику между Гауссом и Лежандром. Свое разрешение она нашла только после смерти Гаусса, когда были изучены его заметки и переписка и было установлено, что он вновь обошел Лежандра. В любом случае уравнение Лежандра с добавленным членом имело довольно неестественный вид, кроме того, не было уверенности, что результат будет хорошим после расширения таблиц простых чисел.
Неудивительно, что Гаусс посвятил свои последние годы улучшению этого результата в поисках более точной и лучше обоснованной с точки зрения математики формулы. Так возникла проблема вычисления вероятностей. Было очевидно, что по мере увеличения N вероятность найти простое число уменьшается. Идея состояла в том, чтобы воспользоваться вероятностями, основанными на выражении
1/ln(N)
Результат Гаусса получил новое выражение:
На самом деле эта формула была небольшой модификацией предыдущей; ученый обозначил ее Li(N) и назвал интегральным логарифмом N; выражение было более точным, поскольку в нем ряд сумм заменялся интегралом, то есть бесконечной суммой. Итак, выражение, заданное Гауссом, имело вид:
Гаусс предположил: π(Ν) = Li(N), что известно как гипотеза Гаусса о простых числах, которая, как мы увидим, превратилась в теорему Гаусса о простых числах. Так немецкий математик снова превзошел Лежандра, хотя для того чтобы доказать его открытие, потребовался огромный технический прогресс в вычислении простых чисел. Чтобы проверить свою гипотезу, Гаусс много времени посвятил построению таблиц простых чисел. В возрасте более 70 лет он написал астроному Иоганну Энке (1791-1865): «Очень часто я пользовался четвертью часа отсутствия дел, чтобы находить простые числа с промежутками размером в тысячу». Что и говорить, весьма оригинальный способ отдыхать! Но благодаря ему Гауссу удалось определить количество простых чисел, меньших 3000000, и он выяснил, что разница по сравнению с результатом его интегральной функции едва равна 0,0007 %. Когда появились более обширные таблицы простых чисел, обнаружилось, что формула Лежандра была гораздо менее точной и давала заметную погрешность для чисел больше 10000000.
С помощью современных методов вычислений было выяснено, что результат Гаусса для простых чисел меньше 1016 отличается от верного значения едва на одну десятимиллионную от 1 %, в то время как результат Лежандра дает отклонение в несколько тысяч миллионов раз больше. Мы можем утверждать, что Гаусс, основываясь на рассуждениях математического характера, превзошел Лежандра, который просто подобрал формулу для доступных ему данных.
Кроме этой первой гипотезы о том, что функция π(Ν) может быть точно оценена функцией Li(N) для бесконечных значений N, Гаусс вывел и вторую гипотезу, поскольку считал, что функция Li(N) в конце концов будет переоценивать реальное количество простых чисел (всегда на бесконечно малый процент) и что эта тенденция будет сохраняться. Это второе утверждение получило название второй гипотезы Гаусса. Доказать ее или опровергнуть было непростой задачей, поскольку в то время еще не было современных компьютеров, которые могли совершить необходимые вычисления. Подтвердить или опровергнуть гипотезы Гаусса можно с помощью строгого математического доказательства: нельзя ограничиться экспериментальным подтверждением, поскольку какой бы длинной ни была составленная таблица простых чисел, всегда будут сомнения в том, сохранится ли эта тенденция по мере продвижения ко все большим числам. Для математики возможности экспериментальной проверки на невообразимо больших числах недостаточно, и в этом ее отличие от других наук.
В проверке гипотез Гаусса заметную роль играл Бернхард Риман, которого можно назвать его лучшим учеником.
ГИПОТЕЗА РИМАНА
В 1809 году Вильгельм фон Гумбольдт (1767-1835) стал министром образования Пруссии и совершил революцию в образовательной системе. Изучение математики впервые получило большое значение в новых гимназиях и университетах, студентов воодушевляли изучать математику как таковую, а не только в качестве вспомогательной дисциплины на службе у других наук. Но эта тенденция весьма отличалась от французского подхода, в котором превалировало утилитарное знание. Одним из тех, кому удалось воспользоваться этим изменением, был Риман, на тот момент один из самых способных студентов-математиков в Германии. После окончания учебы в Люнебурге (государство Ганновер), следуя желанию своего отца-священнослужителя, он в 1846 году поступил в Гёттингенский университет, который славился преподаванием теологии. Так судьба свела Римана с уже пожилым Гауссом. Через некоторое время молодой студент убедил своего отца разрешить ему заменить изучение теологии на математику. Риман в течение двух лет учился в Берлинском университете, поскольку в Гёттингене, по его мнению, было мало интеллектуальных стимулов, помимо Гаусса. В Берлине он завязал общение с Дирихле, который предложил студенту первые задачи с простыми числами. Во время пребывания в Берлине Бернхарду удалось изучить записи Гаусса с гипотезами о простых числах.
Риман вернулся в Гёттинген в 1849 году, чтобы закончить докторскую диссертацию и отдать работу на оценку своему учителю, Гауссу. Он сделал это в 1854 году, за год до смерти наставника.
Когда Риман начал заниматься простыми числами, нужно было доказать еще две гипотезы Гаусса. Во-первых, что функция π(Ν) может быть точно выражена Li(N) для любого N, то есть что разница между ними является бесконечно малой, таким образом, ее предел стремится к нулю. И во-вторых, что Li(N) > π(Ν) для любого значения Ν. Чтобы взяться за проблему, Риман ввел знаменитую дзета-функцию, которая определяется следующим образом:
где z — комплексное число, отличное от 1. У этой функции есть значения, в которых она равна нулю, такие как z = -2, z = -4 и другие, известные под названием тривиальных нулей. Нетривиальные нули — это те, для которых действительная часть строго больше нуля, но строго меньше 1. Вспомним, что комплексное число всегда имеет вид а + bi где а и b — действительные числа. Итак, для нетривиальных нулей справедливо 0 < а < 1.
Риман своим определением всего лишь обобщил функцию, изученную Эйлером, который обозначил ее так же:
Разница между дзета-функцией Римана и функцией Эйлера состоит в области определения. Для Эйлера х имеет действительное значение, в то время как у Римана z — комплексное число. Следовательно, функция Эйлера принимает действительные значения, в то время как функция Римана принимает комплексные значения.
Интерес математиков к этой бесконечной сумме, известной как ряд, происходит из мира музыки, и этот ряд появился раньше исследований Эйлера, хотя именно он изучил его наиболее глубоко и нашел связь с простыми числами. Пифагор заметил, что звук, издаваемый сосудом с водой, зависит от количества содержащейся в нем жидкости. Оказалось, что звуки гармоничны, если количество воды является частью от целого, дробью с числителем 1, то есть 1, 1/2, 1/3, 1/4, ... Пифагор назвал этот ряд гармоническим. Сумма гармонического ряда равноценна тому, что в дзета-функции Эйлера х взяли равным 1. Можно доказать, что сумма этого ряда бесконечна. На первый взгляд это очевидный результат, поскольку если мы сложим бесконечное количество положительных чисел, сумма будет расти и в конце концов примет бесконечное значение. Но дело в том, что это не так: для х = 2 ряд расходится. Действительно, Эйлер доказал, что значение
В истории математики не всегда было ясно, будет ли сумма бесконечного числа положительных членов обязательно равна бесконечности, и даже появились философские теории, посвященные этому.
Первый большой результат, связывающий дзета-функцию с простыми числами, был получен Эйлером в 1737 году. Он утверждает, что
где х — действительное число, а Р — множество простых чисел. В формуле сумма заменяется произведением дробей, образованных простыми числами. Чтобы дойти до этого результата,
Эйлер разложил каждый член ряда на произведение простых чисел. Например,
1/90 = 1/2 1/З² 1/5
Риман глубоко изучил функцию, введенную Эйлером, а также расширил сферу применения функции от действительных к комплексным числам.
Когда область определения расширяется до комплексных чисел, с функцией становится намного сложнее работать. Для начала, ее невозможно представить графически.
ЭЙЛЕР И ЧЕРЕПАХА
Зенон Элейский (ок. 490 — ок. 430 до н.э.) — древнегреческий философ, который создал ряд парадоксов, или апорий, чтобы поддержать учение своего учителя Парменида, утверждавшего, что ощущения, которые мы получаем о мире, иллюзорны. В частности, с помощью логических рассуждений Зенон пытался доказать, что физического движения не существует. Действующими лицами самого известного его парадокса являются легконогий Ахиллес и черепаха, соревнующиеся друг с другом. Поскольку воин бегал намного быстрее, он дал черепахе большую фору. После старта Ахиллес пробежал расстояние, которое разделяло соперников изначально, но по прибытии туда обнаружил, что черепахи там уже нет, она уже продвинулась вперед на небольшой кусок. Не падая духом, герой продолжил бег, но когда он пришел на то место, где была черепаха, та снова продвинулась. И так происходило до бесконечности. Таким образом, Ахиллес так и не догнал черепаху. Вывод очевиден: поскольку наши ощущения говорят нам, что Ахиллес догонит черепаху, значит, наши ощущения обманывают нас, и Парменид был прав. Однако рассуждение Зенона легко опровергается. Промежутки времени, за которое Ахиллес пробегает расстояние, отделяющее его отточки, в которой только что находилась черепаха, каждый раз все меньше, и их сумма дает конечный результат, так что человек догонит черепаху. Предположим, что Ахиллес дает черепахе изначальное преимущество в D и что воин бежит со скоростью, которая только вдвое больше скорости черепахи. Когда Ахиллес прибежит в то место, где была черепаха, животное преодолеет (1/2)D пути. Повторим рассуждение: когда Ахиллес проходит D + (1/2)D, черепаха продвигается еще на (1/4)D. Если представить это в математическом виде, то расстояние, которое должен пройти Ахиллес, чтобы догнать черепаху, задано суммой
D+D/2+D/4+D/8+...
Так что в худшем случае получается, что Ахиллес должен пробежать
но по результату Эйлера мы знаем, что сумма ряда конечна и на самом деле она равна π²/6, поэтому расстояние, которое должен пробежать Ахиллес, также конечно. Более того, расстояние, которое он пробегает до того, как догнать черепаху, — обозначим его через d — равно
d<=(1/2+π²/6) · D
Если мы выполним вычисления, получится, что d < 2,144 · D. Действительно, можно вычислить, что расстояние, которое пробегает Ахиллес, чтобы догнать черепаху, при его двойной скорости равно d = 2D.
Дзета-функция, которой пользовался Эйлер, — это действительная функция с действительным значением, то есть для действительного значения мы получаем результат, который также является действительным значением. Например, мы знаем, что
Благодаря этому можно изобразить функцию в виде графика на плоскости, которую математики обозначают R². Когда мы меняем область определения функции, то есть множество, в котором она принимает значения, на множество комплексных чисел, результат функции также становится комплексным числом. Если мы сочтем, как это сделал Эйлер, что комплексное число a + bi может быть представлено как пара (a, b) е R², и то же самое справедливо для ζ(α + bi), которое также является комплексным числом, то получается, что его графическое представление должно осуществляться в R4, то есть в пространстве из четырех измерений. Построение графиков в пространствах из четырех измерений нам недоступно, однако Риман смог вообразить эту функцию в четырех измерениях и понял, что существует связь между простыми числами и нетривиальными нулями функции, то есть теми, действительная часть которых лежит строго между 0 и 1.
ЗАДАЧИ ТЫСЯЧЕЛЕТИЯ
Отмечая наступление нового тысячелетия, Институт Клэя выбрал семь математических задач, которые устояли перед всеми попытками их решения. Это было сделано в подражание Давиду Гильберту, который за 100 лет до этого определил перечень из 23 задач, ставших ориентиром для всех математиков XX века. Единственная задача, которая включена в оба списка, — это гипотеза Римана. Задачи тысячелетия охватывают самые важные области математики. Их перечень выглядит так.
1. Р относительно ΝΡ. Сформулирована Стивеном Куком в 1971 году. Возможно, это центральная проблема наук о вычислении. В основном математические проблемы сегодня классифицируются по классам Р и ΝΡ. Класс Р содержит все проблемы, которые могут быть решены с помощью алгоритма за полиномиальное время. Это означает, что число итераций ограничено многочленом, в котором переменная — «размер» проблемы. Эти проблемы решаемы с помощью компьютеров. Класс ΝΡ сформирован теми проблемами, для которых не существует алгоритмов в полиномиальном времени, но если у нас есть возможное решение проблемы из этого класса, то мы можем определить, хорошее оно или нет, за полиномиальное время. Из предыдущего определения следует, что любая проблема Р также является проблемой ΝΡ, тο есть любая проблема, решаемая в полиномиальном времени с помощью правильно подобранного алгоритма (Р), — это также проблема, которая допускает быструю проверку возможного решения (ΝΡ). Задача заключается в том, чтобы доказать (или опровергнуть), что любая проблема ΝΡ также является проблемой Р.
2. Гипотеза Ходжа. Связана с исследованием форм сложных объектов с помощью приближения на основе сочетания самых простых геометрических блоков возрастающей размерности.
3. Гипотеза Пуанкаре. Предложена в 1904 году знаменитым французским математиком Жюлем Анри Пуанкаре (1854-1912). В ее самом простом выражении говорится, что есть только одна компактная односвязная разновидность размерности 3 — трехмерная сфера. Это единственная решенная проблема в списке — корректное доказательство в 2003 году представил российский ученый Григорий Перельман (р. 1966). За это открытие ему было решено вручить Филдсовскую премию, однако ученый от награды отказался.
4. Гипотеза Римана. В ней утверждается, что действительная часть нетривиальных нулей дзета-функции Римана равна 1/2.
5. Задача Янга — Миллса. Поставлена как математическая задача и относится к изучению уравнений Янга — Миллса, крайне важных для объединения квантовой электродинамики с теорией электрослабого взаимодействия.
6. Задача Навье — Стокса. Изучение существования решения для основных уравнений движения вязких жидкостей.
7. Гипотеза Бёрча — Свиннертон-Дайера. Состоит в изучении того, бесконечным или конечным является множество рациональных решений для эллиптической кривой.
При этом он начал с вычисления нетривиальных нулей функции и на основе этих вычислений и глубокого понимания сути дзета-функции предположил, что действительная часть любого нетривиального нуля функции равна 1/2. Это утверждение известно как гипотеза Римана.
Риман сразу же понял, что его гипотеза может объяснить причину, по которой результат Гаусса с функцией Li(N) оказался таким точным. Позже было доказано, что гипотеза Римана эквивалентна первой гипотезе о простых числах Гаусса.
Перфекционизм, которым страдал Риман в период своего обучения, чуть не помешал ему записать свои открытия. Без сомнения, так сказывалось влияние Гаусса, который настаивал на том, что публиковать следует только идеальные доказательства, абсолютно лишенные пробелов. В ноябре 1859 года Риман опубликовал в ежемесячных заметках Берлинской академии эссе о своих открытиях. Этим десяти страницам плотных математических рассуждений было суждено быть единственными, которые Риман опубликовал по вопросу простых чисел, и несмотря на это они оказали значительное влияние на восприятие данных чисел в будущем. И все же, несмотря на блестящую интуицию Римана, эссе не было оценено. Вслед за своим учителем, Гауссом, Риман уничтожил все «леса». Главный тезис эссе состоял в том, что функция L.(N) Гаусса будет предоставлять каждый раз все лучшее приближение к функции π(Ν) по мере нашего продвижения в расчетах. Хотя Риман предложил инструмент доказательства гипотезы Гаусса, решение осталось вне досягаемости. Впрочем, Риман ввел форму, с помощью которой в будущем оказалось возможным подступиться к проблеме. Доказательство гипотезы Римана сразу же захватило математиков.
Если бы я проснулся, проспав тысячу лет, моим первым вопросом было бы: доказали ли уже гипотезу Римана?
Давид Гильберт, математик, предложивший в 1900 году знаменитый список ИЗ 23 НЕРЕШЕННЫХ ПРОБЛЕМ
В 1890 году по предложению Шарля Эрмита (1822-1901), одного из главных французских знатоков теории чисел, Парижская академия учредила премию — Grand Prix des Sciences Mathematiques — за доказательство первой гипотезы Гаусса о простых числах. Работу по этой теме представил ученик Эрмита, Жак-Саломон Адамар (1865-1963). Хотя он не предложил полного доказательства, его идей было достаточно для того, чтобы стать лауреатом премии. В 1896 году Адамару удалось заполнить лакуны своего первого доказательства, и ему не нужно было опираться на гипотезу Римана о том, что у нетривиальных нулей действительная часть равна одной второй. Адамару достаточно было доказать, что ни у одного нетривиального нуля нет действительной части, большей единицы, и он смог это сделать.
Спустя век после того, как Гаусс открыл связь между простыми числами и логарифмической функцией, наконец появилось доказательство гипотезы Гаусса о простых числах. Поскольку речь шла уже не о гипотезе, с этого момента она стала называться теоремой Гаусса о простых числах. Безусловно, Адамар не смог бы достичь успеха в своей работе без вклада Римана. Адамару пришлось разделить славу с бельгийским математиком Шарлем ла Валле Пуссеном (1866-1962), который в том же году нашел другое доказательство того же результата.
Следовательно, теперь оставалось только доказать или опровергнуть вторую гипотезу Гаусса о простых числах. Но если доказательство гипотезы Гаусса было подвигом, то попытка оспорить его догадку требовала уже поистине нечеловеческих усилий. Однако Джон Идензор Литлвуд (1885-1977), английский математик первой половины XX века, взялся за работу. Литлвуд был выдающимся учеником Годфри Харолда Харди (1877-1947), он получил известность благодаря работам по теории чисел, неравенств и теории функций. В 1912 году Литлвуд открыл, что гипотеза Гаусса — это мираж, что существуют области, где истинное количество простых чисел недооценено. Он осуществил доказательство с помощью математических рассуждений, поскольку нет способа наглядно аргументировать, что Гаусс ошибся. И на самом деле до сегодняшнего дня никому не удалось дойти до области чисел, в которой гипотеза Гаусса оказалась бы ложной. Несколькими годами позже, в 1933 году, студент Литлвуда по имени Стенли Скьюз (1899-1988) установил, что только когда обнаружатся простые числа порядка 10101034, мы столкнемся с недооценкой количества простых чисел со стороны интегрального логарифма Гаусса. Но речь идет о настолько огромном числе, что мы должны проявить снисхождение к неточности, допущенной великим мастером.