Гаусс с самого юного возраста проявлял выдающиеся способности, привлекавшие внимание тех людей, которые помогли ему их развить. С самого начала своей научной карьеры он интересовался почти всеми областями математики. Однако его вклад в науку связан не только с великими открытиями, но и с самим понятием научной дисциплины, основанной на строгости доказательств.

Нам мало известно о детстве и юности Гаусса. Главный источник информации об этом периоде — сам ученый, рассказывавший истории о своем детстве студентам и друзьям.

Иоганн Фридрих Карл Гаусс родился в Брауншвейге, главном городе герцогства Брауншвейг-Вольфенбюттель, 30 апреля 1777 года. Он был единственным сыном Гебхарда Дитриха Гаусса, родившегося в 1744 году, и Доротеи Бенце. У его отца уже был сын от предыдущего брака. Гаусс никогда не использовал своего первого имени Иоганн и поменял местами следующие два: свои работы он подписывал как Карл Фридрих Гаусс и под этим именем и стал известен позже.

Дом Гауссов стоял на маленькой улице под названием Верденграбен. Позже его семья переехала в дом номер 30 по Вильгельмштрассе — улице, находившейся рядом с городским каналом, с которым связана одна из самых известных историй из детства математика. Когда ему было три или четыре года, мальчик упал в воду канала, но, к счастью, был сразу же спасен проходившим мимо крестьянином. Математическая наука в неоценимом долгу перед этим неизвестным человеком.

Родственники со стороны отца Гаусса были мелкими фермерами и переехали в Брауншвейг около 1740 года. Для семьи это означало надежду на процветание и лучшее будущее в то время, когда старый немецкий феодализм сменялся новым абсолютистским правительством. Однако процветание давалось нелегко: гильдии, которые с эпохи Средневековья контролировали деятельность ремесленников, сохранили свою власть и не допускали чужаков к активному предпринимательству Отец Гаусса поначалу был вынужден зарабатывать на жизнь как садовник, уличный мясник и бухгалтер в похоронном бюро. Семья поставила себе задачу приобрести собственный дом в черте города, что дало бы им доступ ко всем гражданским правам. Своей цели Гауссы достигли, однако через некоторое время после этого их мир перевернулся с ног на голову, и обычный уклад вновь был нарушен: Брауншвейг был завоеван войсками Наполеона.

Известно, что отец Гаусса был человеком резким, чрезвычайно порядочным, его строгость по отношению к сыну часто граничила с грубостью. Порядочность и упорство позволили Гауссу-старшему добиться некоторого бытового комфорта, но жизнь семьи не была легкой. Родитель не поддерживал стремление сына заниматься наукой и даже не понимал, как важно для него было получить образование, соответствующее способностям мальчика. Если бы мнение отца возобладало, талантливый юноша занялся бы одной из семейных профессий, и только ряд счастливых совпадений спас будущего математика от участи простого садовника или каменщика. В детстве Карл Фридрих был очень послушным. Он никогда не критиковал своего отца, но вполне ожидаемо, что и настоящей привязанности к нему не чувствовал. Гебхард Гаусс умер в 1806 году.

Семья матери ученого происходила из Фельпке, маленького города в Нижней Саксонии, рядом с Брауншвейгом. Доротея Бенце отличалась живым, веселым и сильным характером. Она умерла в очень почтенном возрасте — 97 лет, и последние 20 лет своей жизни прожила вместе с заботливым сыном в Гёттингене. Доротея всегда поддерживала сына в учебе и очень гордилась его научными достижениями. Рассказывают, что когда Вольфганг Бойяи (1775-1856), один из лучших друзей ученого, уверил ее, что Карл Фридрих войдет в историю как один из самых великих математиков, женщина расплакалась от радости.

Ни один из родителей ученого не получил более или менее приличного образования: отец едва умел читать и писать и немного знал элементарную арифметику. В старости Гаусс хвалился тем, что считать научился раньше, чем писать, а чтение освоил самостоятельно, разбирая по буквам письма от родственников и друзей семьи. Он сам рассказывал историю, которая говорит о его ранних математических способностях.

В три года, наблюдая за тем, как отец рассчитывает зарплату наемным работникам, мальчик заметил ошибку и сказал, каким должен быть результат. Гебхард пересчитал цифры и обнаружил, что сын прав. Это тем более удивительно, учитывая, что малыша никто не учил числам и тем более сложению. Мать Гаусса с трудом читала, а писать не умела вовсе, но при этом ученый никогда не чувствовал особой близости к отцу и всю жизнь утверждал, что унаследовал свои способности от матери.

Не знание, а процесс обучения, и не обладание, а ощущение того, что ты пришел к чему-то, доставляют наибольшее наслаждение.

Карл Фридрих Гаусс

Наиболее достоверная информация о немецком математике начинается с 1784 года, когда юный Карл поступил в начальную школу. В те времена это не было обычным занятием для детей, но в городе встречалось все же чаще, чем в селах, так что в этом смысле Гауссу очень повезло. Повезло ему и в другом: мальчик встретил необычайно талантливого учителя, который опекал его в первые годы обучения. Заслуга Бюттнера в том, что он вовремя заметил огромный талант Гаусса и выделял его среди более чем 50 одноклассников. В 1786 году учитель за свой счет даже запросил из Гамбурга специальные арифметические тексты для выдающегося воспитанника. Ассистентом Бюттнера в те годы работал Мартин Бартельс (1769-1836), который был всего на восемь лет старше Карла Фридриха. Позже Бартельс стал преподавателем математики в Казанском университете. Он также быстро заметил гениальность Гаусса и уделял мальчику пристальное внимание. Можно сказать, что они учились вместе, помогая друг другу расшифровывать учебники по алгебре и элементарному анализу. В те годы и начали зарождаться некоторые идеи и способы видения математики, ставшие позже характерными для Гаусса. Из учебников Бартельса юноша узнал о биноме Ньютона для нецелых показателей и бесконечных рядах, в эти же годы он сделал первые шаги в математическом анализе. Любопытно, что в Казанском университете Бартельс преподавал Николаю Лобачевскому (1792-1856), который впоследствии занялся разработкой неевклидовой геометрии — области, основоположником которой был именно Гаусс.

УЛУЧШАЯ РЕЗУЛЬТАТЫ НЬЮТОНА

В сотрудничестве со своим учителем Мартином Бартельсом молодой Гаусс получил новое доказательство бинома Ньютона с натуральными коэффициентами, то есть формулу, которая позволяет вычислить степень двучлена:

где

Это число сочетаний n по k, а n! = Π n i-1 i называется факториалом числа, и он равен произведению этого числа на все натуральные числа меньше него.

АРИФМЕТИКА С САМЫХ РАННИХ ЛЕТ

Известна история, из которой видно, насколько легко давались Гауссу арифметические вычисления. Когда мальчику было девять лет, учитель Бюттнер предложил своим ученикам сложить сто первых натуральных чисел, будучи уверенным в том, что это займет класс достаточно долго, а он в это время сможет отдохнуть. Обычно ученики, решив задачу, вставали и клали доску с решением перед учителем. И вот в то время как остальные ученики едва приступили к заданию, Гаусс уже положил свою доску на стол учителя, воскликнув: Ligget se! («Вот оно!»). Бюттнер подумал, что Гаусс просто дерзит ему, но когда он посмотрел на доску, то обнаружил, что на ней записан правильный ответ — 5050, причем не было приведено ни одного этапа вычислений. Учитель подумал, что каким-то образом проговорился об ответе, но тут юный Карл объяснил ход своих рассуждений. Гаусс не стал решать проблему в лоб, просто складывая слагаемые (к тому же при этом легко было допустить ошибку), а предпочел нестандартный подход. Он быстро понял, что первое число (1) и последнее (100) в сумме дают то же самое значение (101), что второе число и предпоследнее, и это рассуждение можно продолжить, то есть 1 + 100 = 2 + 99 = 3 + 98 = ... = 50 + 51 = 101. Образовались 50 пар чисел, которые в сумме давали 101 и произведение которых было равно 5050.

Гаусс, сам того не понимая, применил формулу суммы членов арифметической прогрессии. Арифметическая прогрессия — это ряд таких чисел, в котором разность между двумя любыми последовательными членами является постоянной, и эта величина называется разностью прогрессии, просто разностью или шагом. В проблеме, предложенной Гауссу, разность была равна 1. Выражение суммы арифметической прогрессии довольное простое: если члены нашей последовательности — это a1 а2,..., аn, то сумма Sn равна:

Для суммы n первых натуральных чисел T n равно:

Если мы подставим в предыдущую формулу n= 100, то получим 5050, чего и следовало ожидать.

Доказательство формулы можно получить разными методами, одни из них интуитивны, например использование пар чисел с одинаковой суммой, как это сделал Гаусс, но в более формальном доказательстве обычно используется принцип индукции. Этот метод заключается в том, чтобы доказать, что натуральное число п обладает определенными свойствами, а затем обосновать, что если ими обладает любое натуральное число, то же происходит и со следующим.

Сила математического доказательства в том, что мы можем утверждать: эта формула верна для суммы любого ряда натуральных чисел. Если бы мы использовали для вычислений самые быстрые современные компьютеры и увидели бы, что формула выполняется, это не дало бы нам абсолютной уверенности: всегда можно было бы подумать, что остались числа, для которых наше утверждение не проверено, и с ними оно может не выполняться. В этом и заключается один из главных вкладов Гаусса в науку: утверждения должны иметь строгое доказательство. До его работ в математике было много созерцательного, утверждения основывались на конкретных примерах, существовали понятийные белые пятна и неполные доказательства. Однако Гаусс не публиковал свои работы, пока не получал как можно более строгого доказательства, при этом в своих записях он обычно не приводил полный ход рассуждений и этим затруднял их понимание для современников. Представление ученого о математических трудах требовало доведения их до совершенства, при этом он считал, что приведение подробных доказательств делает его работу не такой безупречной, ведь ее можно сравнить с демонстрацией готового здания, рядом с которым все еще стоят строительные леса, необходимые только на этапе строительства.

ПРИНЦИП ИНДУКЦИИ

Принцип индукции, примененный к доказательству формулы суммы л натуральных чисел, имеет три следующие базовые предпосылки:

a) проверяем справедливость нашей гипотезы для n = 1;

b) предполагаем, что она верна для n - 1;

c) основываясь на «а» и «b», доказываем это для n.

Если нам удастся доказать «с», пользуясь «а» и «b», то утверждение верно для всех натуральных чисел. Идея состоит в том, что если утверждение справедливо для любого выбранного числа, то оно справедливо и для следующего, большего на единицу. Применим принцип индукции к формуле суммы первых n натуральных чисел:

Tn = n(n=1)/2.

a) Для n = 1 получается:

T1 = 1(1=1)/2 = 1

Утверждение верно.

b) Предположим, что для n - 1 сумма равна:

Tn-1 = (n-1)/2.

c) Сумма Тn = Т n-1 + n, так что, применяя «b», получаем:

T n = (n-1)n/2 + n = (n-1)n/2 + 2n/2 = ((n-1)n + 2n)/2 = (n²-n+2n)/2 = (n²+n)/2 = n(n+1)/2.

что завершает доказательство.

ТРЕУГОЛЬНЫЕ ЧИСЛА

История о сумме 100 первых натуральных чисел и общая формула, которую мы доказали, необходимы для введения в тему, которой Гаусс посвятил много времени в молодости. Итак, поговорим о треугольных числах. Британский математик Маркус дю Сотой включил в свою книгу «Музыка простых чисел» (2003) новое доказательство способа, которым Гаусс получил результат 5050, используя треугольные числа.

Треугольное число — это число, количество единиц которого может быть представлено в форме равностороннего треугольника (по умолчанию было решено, что первое треугольное число — 1). Понятие треугольного числа было введено Пифагором, который изучил некоторые их свойства (пифагорейцев очень интересовали эстетические свойства чисел). На рисунке показаны шесть первых треугольных чисел.

Если внимательно посмотреть на первые треугольные числа, можно увидеть, что они совпадают со значением ряда Tn суммы п первых натуральных чисел. Очевидно, что это не случайность, поскольку при построении треугольного числа в каждом ряду на один элемент больше, чем в предыдущем, и первый ряд начинается с 1. Следовательно, узнать, является ли какое-либо число треугольным, равносильно тому, чтобы проверить, совпадает ли это число со значением Tn для некоторого n. Итак, каждое треугольное число Tn определяется следующей формулой:

Tn = n(n+1)/2.

Треугольное число — это число,которое можно представить в виде треугольника. Здесь указаны шесть первых таких чисел. Гаусс открыл, что любое целое положительное число может быть представлено в виде суммы, самое большее, трех треугольных чисел.

Проблема суммы, предложенная Гауссу, была равносильной тому, чтобы вычислить треугольное число, ряд основания которого был бы равен 100. Лучший способ сделать это, не вдаваясь в математические дебри, это взять другой равный треугольник, перевернуть его и поместить рядом с первым. В этом случае у нас получится прямоугольник в 100 единиц длиной и 101 шириной. Чтобы трансформация была понятной, предварительно нужно заменить равносторонние треугольники прямоугольными, просто передвинув ряды. Когда мы получили прямоугольник, вычислить общее число единиц очень просто, поскольку речь идет о произведении его сторон: 100 х 101 = 10100. Следовательно, один треугольник содержит половину единиц, то есть 5050. Следующий рисунок помогает понять построение прямоугольника на основе двух равных треугольных чисел. Ради компактности будем работать с Т3 вместо Т100, поскольку это не влияет на ход рассуждений. Обозначим через X единицы первого треугольного числа и через Z — единицы второго.

Как мы видим, получается прямоугольник 4x3, что и следовало ожидать. В целом сумма двух треугольных чисел Tn порождает прямоугольник n · (n + 1), так что для того, чтобы узнать число элементов Tn, достаточно разделить его на 2 — то есть снова получить, уже в результате других рассуждений, формулу построения треугольных чисел:

Tn = n(n+1)/2.

Сложно сказать точно, какое из этих двух рассуждений применил юный Гаусс. Мальчик с раннего возраста проявлял интерес к треугольным числам и их свойствам, поэтому, возможно, он понял, что требуется вычислить треугольное число с основанием в 100 единиц. Так, в его математическом дневнике есть запись от 18 июля 1796 года: «Эврика! num = Δ + Δ + Δ», что в переводе с зашифрованного языка Гаусса означает одну из его самых известных теорем, в которой утверждается, что любое целое положительное число может быть представлено в виде суммы самое большее трех треугольных чисел. Следует обратить внимание: эта теорема не предполагает, что треугольные числа должны быть разными и что их обязательно должно быть три (например, 20 = 10 + 10). Три — это лишь максимальное число треугольных чисел, но может быть достаточно и двух, а если искомое число само треугольное, то для его представления достаточно одного числа — его самого. Радость от открытия была более чем оправданной. Молодой Гаусс ответил на один из вызовов старого Ферма (1601-1665). И это был не просто вызов... Даже великий Леонард Эйлер (1707-1783) не смог справиться с этой задачей. Далее мы поговорим о Ферма и Эйлере более подробно, потому что в их работах снова появятся связи с трудами Гаусса — первого человека в истории, который ответил на одну из знаменитых гипотез Ферма. В математике гипотеза — это просто результат, который, похоже, является верным, но который не удалось доказать в строгом аналитическом виде, и при этом для него не был найден и опровергающий контрпример.

Этот результат был опубликован Гауссом только в 1801 году в книге «Арифметические исследования». Ученый не публиковал свои открытия сразу после их совершения, а ждал несколько лет, пока у него не накопится достаточно материала для издания целой книги. Эта его манера стала источником споров о первенстве Гаусса относительно некоторых математических открытий. Действительно, существуют результаты, которые он нашел первым, но сохранил в тайне, и опубликованы они были другими математиками. Конечно, это не означает, что открытия Гаусса были украдены, просто другие ученые приходили к похожим или таким же выводам независимо от героя нашей книги и ничего не зная о его успехах. Многие из этих споров оставались нерешенными долгие годы, пока не появилась возможность изучить всю переписку и научные записи Гаусса.

Теорема о треугольных числах напоминает знаменитую гипотезу Гольдбаха, сформулированную Кристианом Гольдбахом (1690-1764). В ней утверждается, что любое четное натуральное число, большее 2, может быть выражено в качестве суммы двух простых чисел. А это означает, что любое нечетное число, большее 5, может быть выражено в качестве суммы трех или меньше простых, поскольку если оно само по себе не простое, достаточно сложить простое число 3 и четное число, меньшее этого числа на три единицы. Однако Гауссу удалось доказать свой результат, в то время как гипотеза Гольдбаха все еще не доказана в строгом виде. Этот пример объясняет, почему в математике придается такое значение доказательству. Гипотеза Гольдбаха была проверена для всех чисел, меньших 1014 (числа невообразимой величины), но она не принята в качестве математического результата и так и не стала теоремой, оставаясь простой гипотезой.

АКАДЕМИЧЕСКОЕ ОБРАЗОВАНИЕ ГАУССА

В 1788 году, в возрасте 11 лет, Гаусс с помощью своего наставника Бюттнера, несмотря на все сопротивление отца, поступил в гимназию св. Катарины. Благодаря усилиям матери и дяди со стороны отца удалось убедить Гебхарда отказаться от помощи сына и позволить ему получить дальнейшее образование. Программа обучения в новой школе была более упорядоченной, а число учеников в классе — небольшим. Карл изучал латынь и греческий, что было необходимым требованием для получения высшего образования и академической карьеры. Латынь в то время была международным языком науки. Через два года Гаусс достиг высшей ступени среднего образования.

В эти же годы слава о юноше распространилась в образованных кругах Брауншвейга-Вольфенбюттеля и наконец достигла ушей герцога Карла Вильгельма Фердинанда (1735-1806), которому Гаусс и был представлен в 1791 году. Титул герцога Брауншвейгского начиная с 1235 года получали представители династии Вельфов, управлявшие небольшими территориями на северо-западе Германии. Титул переходил по мужской линии, поскольку в это время действовал салический закон, запрещающий женщинам наследовать власть. Молодой Гаусс произвел на герцога столь сильное впечатление, что тот назначил юноше годовую стипендию для продолжения обучения. Подобное меценатство не было обычным для того времени и в таком маленьком государстве, как Брауншвейг, и оно позволило Гауссу преодолеть социальные барьеры, стоявшие перед ним из-за его происхождения. Следует отметить, что этот великий математик никогда не достиг бы таких успехов без помощи людей, заинтересованных в развитии его огромного таланта. Важную помощь он получил также от Циммермана (1743-1815), преподавателя закрытой школы «Коллегия Карла» (Collegium Carolinum) и советника герцога, который и настоял на помощи мецената молодому и талантливому юноше. Гаусс пользовался поддержкой герцога до 1806 года, пока его благодетель не погиб от ран, полученных в битве при Йене, где французские войска разгромили Пруссию и ее союзников, в числе которых было и государство Брауншвейг. Через год после смерти герцога Гаусс был назначен директором Гёттингенской обсерватории и благодаря этому смог получить средства для существования. Итак, с помощью Циммермана Гаусс стал студентом Коллегии Карла, где учился с 1792 по 1795 год. Дружба между Гауссом и Циммерманом длилась до смерти последнего в июле 1815 года.

Такие учебные заведения, как Коллегия Карла, не были редкостью в Германии, стране, которая на тот момент была образована несколькими независимыми государствами. Они представляли собой промежуточный этап между гимназиями, в которых дети получали элементарное образование, и университетами. В таких школах получали базовое образование будущие военные, архитекторы, инженеры, механики и коммерсанты. На этом же этапе происходила и специализация учеников в разных областях. Здесь изучали древние и современные языки, христианскую мораль и догматику, философию, историю и литературу, статистику, законы, математику, физику и естественную историю. Также в программе присутствовали занятия по рисованию и другим дисциплинам, развивающим творческие способности учащихся. Привилегированные закрытые школы стали примером новаторского подхода к образованию: здесь преподаватели старались сформировать личность, а не только давать знания. Это были элитные учебные заведения, в которых получили образование многие известные писатели и ученые конца XVIII — начала XIX века. Публичное образование в Брауншвейге было одной из сфер, в которой прогресс был наиболее очевидным, и судьба Гаусса — пример того, как человек простого происхождения мог получить в то время высшее образование.

Портрет Гаусса, написанный около 1803 года, когда великому немецкому гению было 26 лет. Это был самый плодотворный этап деятельности великого математика. За два года до этого он опубликовал свою первую великую работу, «Арифметические исследования».

Особого упоминания заслуживает библиотека Коллегии Карла с прекрасной подборкой классической математической литературы. Гаусс учился в Коллегии до 1795 года. Он изучал классические языки, литературу, философию и, естественно, высшую математику, демонстрируя блестящие успехи во всех областях. Среди математических книг, которые он штудировал в то время, были «Математические начала» Ньютона (1642— 1727), «Искусство предположений» Якоба Бернулли (1654— 1705), работы Лагранжа (1736-1813) и некоторые мемуары Эйлера. Особенно привлекали будущего ученого работы Ньютона, которого он считал математическим гением и примером для подражания.

В Коллегии Карла Гаусс начал некоторые математические исследования, связанные с распределением простых чисел и основами геометрии. Прогресс ученого, должно быть, удовлетворял герцога, который из года в год увеличивал финансовую поддержку.

Осенью 1795 года, в возрасте 18 лет, Гаусс оставил родной Брауншвейг и переехал в Гёттинген, маленький ганноверский город, известный благодаря своему университету.

Юноша отправился в путешествие вопреки желанию герцога Брауншвейгского, который хотел, чтобы его подопечный продолжал обучение в местном университете в Хельмштедте. Но несмотря на это меценат продолжил оказывать Гауссу финансовую поддержку. Гёттингенский университет носил имя Георга Августа — в честь короля Англии Георга II, который также был курфюрстом Ганновера. Храм наук был задуман по модели Оксфорда и Кембриджа, что означало большую независимость от церковного влияния и лучшее качество образования. Гаусс получил свободу в своих академических обязанностях и мог самостоятельно выбирать предметы и наставников, что было очень благоприятно для его образования.

ГЁТТИНГЕН

Гёттинген (нем. Gottingen) впервые упомянут как Gutingi в документе императора Священной Римской империи Оттона I. К началу XIII века Гёттинген уже обладал правами города. С 1584 года он принадлежал княжеству Брауншвейг-Вольфенбюттель, а в 1692 году перешел в подчинение княжеству Ганновер. Поскольку королева Великобритании Анна умерла, не оставив наследников, в 1714 году представитель ганноверской династии стал королем Великобритании под именем Георга I. С этого времени и до 1837 года интересы Ганновера и Великобритании совпадали, за исключением периода наполеоновских войн. В 1806 году княжество некоторое время находилось под контролем Пруссии, а в 1807-м вошло в состав королевства Вестфалия, созданного Наполеоном. Эти территориальные изменения были отменены после разгрома Наполеона, и в 1813 году Гёттинген вернулся под контроль Ганновера, ставшего в 1814 году королевством. Не считая этого периода, город, в котором поселился Гаусс, жил спокойной жизнью за средневековыми стенами. В эти годы в программе обучения университета преобладала теология, но к моменту назначения Гаусса преподавателем астрономии и директором городской обсерватории в 1807 году главными дисциплинами уже стали научные. Не стоит и говорить, что благодаря Гауссу этот университет получил широкую известность и привлекал студентов и ученых.

Слушатели Гёттингенского университета, где Гаусс учился, а затем был преподавателем. Гравюра по дереву на основе рисунка Роберта Гайсслера (1865).

Главным преподавателем математики в университете был 76-летний Готхельф Абрахам Кестнер (1719-1800), но так как он не посвящал себя математическим исследованиям, то так и не стал для Гаусса примером для подражания. В университете юноша завел знакомство со многими преподавателями, среди которых следует упомянуть физика Георга Лихтенберга (1742— 1799), астронома Карла Сейфера (1762-1822) и лингвиста Христиана Готлиба Гейне (1729-1812). Друзей среди студентов у Гаусса было немного, и одним из них стал Вольфганг фон Бойяи, дворянин из Трансильвании — провинции со значительной долей немецкого населения. Самый важный результат этой дружбы — переписка Гаусса и Бойяи, которая длилась больше 50 лет. Началась она в 1799 году, когда Гаусс покинул Гёттинген, и завершилась в 1853 году, за два года до смерти ученого.

Гаусс говорил о Бойяи: «Он был самым сложным по духу из тех, кого я когда-либо знал». Бойяи рассказывал об этой дружбе более подробно: «Нас объединяли страсть к математике и наши мысли, и мы гуляли долгие часы в тишине, каждый занятый собственными размышлениями».

Бойяи был единственным, кто смог понять мои метафизические критерии математики.

Карл Фридрих Гаусс о своем друге Вольфганге Бойяи

В течение трех лет в Гёттингене Гаусс совершенно самостоятельно формировал свою образовательную программу. В конце 1798 года он по неясным причинам покинул университет, но к этому времени уже успел разработать наиболее важные математические идеи, которые будут публиковаться в течение следующих 25 лет. Гаусс оставил Гёттинген, не получив диплома. Из его переписки с Бойяи мы знаем, что по просьбе герцога Брауншвейгского ученый в 1799 году послал свою докторскую диссертацию в Хельмштедтский университет. Степень была предоставлена ему заочно, без обычного устного экзамена.

ФАРКАШ БОЙЯИ

Этот венгерский математик известен в Германии как Вольфганг Бойяи (1775-1856), и ему принадлежат в основном работы в области геометрии.

Главный труд Бойяи озаглавлен Tentamen iuventutem studiosam en elementa matheosos introducendi, и в нем прослеживается попытка ученого придать строгую и систематическую базу геометрии, арифметике, алгебре и анализу. В своей работе он изложил повторяющиеся процессы для решения уравнений. Проблема повторяющихся процессов в решении математических задач состоит в следующем: не всегда можно гарантировать, что число повторений будет конечным; когда метод может гарантировать это, говорят, что он сходящийся. Процедуры, описанные Бойяи, были именно такими. Другое важное значение его работы состоит в том, что она включала определение равенства двух плоских фигур, если обе они могут быть поделены на конечное число эквивалентных частей, что отражено в теореме Бойяи — Гервина. Сыном Вольфганга был Янош Бойяи, также математик, сфера интересов которого лежала в области неевклидовой геометрии. Гаусс признавал, что многими своими идеями в области геометрии он обязан именно Бойяи, с которым мог обсудить их и улучшить.

ПОСТРОЕНИЕ ПРАВИЛЬНОГО МНОГОУГОЛЬНИКА С 17 СТОРОНАМИ С ПОМОЩЬЮ ЛИНЕЙКИ И ЦИРКУЛЯ

Со времени прибытия в Гёттинген молодой Гаусс продолжил свои исследования о числах, начатые в Коллегии. Без сомнения, именно в ходе этих исследований, а не благодаря занятиям у Кестнера в Брауншвейге он сделал открытие, ставшее ключевым не только для карьеры математика, но и для будущего науки. Речь о методе построения правильного многоугольника с 17 сторонами с помощью линейки и циркуля.

НАУЧНЫЙ ДНЕВНИК ГАУССА И ЕГО ТОЛКОВАНИЕ

Благодаря построению 17-угольника в 1796 году Гаусс понял, что может извлечь больше пользы из своего таланта, занимаясь математикой, а не философией. Осознавая важность своего открытия, которое решало одну из проблем построения с помощью линейки и циркуля — проблему, очень долго волновавшую математиков, — он написал об этом в своем небольшом дневнике. Эта запись стала первой в одном из самых интересных математических документов в истории науки. Последняя запись сделана 9 июля 1814 года. Дневник Гаусса — это всего 19 страниц, на которых содержится 146 коротких записей с открытиями или результатами вычислений. Содержание записей ученого стало известно только в 1898 году, через 43 года после смерти Гаусса, когда Королевское сообщество Гёттингена попросило внука математика предоставить дневник для изучения. Так стали известны большинство результатов, полученных Гауссом, и были разрешены многие споры об авторстве математических открытий. Дневник позволял ученому быстро записывать идеи, которые у него появлялись. Гаусс записывал конечный результат, без его строгого доказательства, причем даже сама формулировка требовала определенной расшифровки. Ученый вел дневник для себя, поэтому прибегал в записи к аббревиатурам, значение которых знал только он, и не всегда использовал математические обозначения. Большинство записей удалось расшифровать, поскольку результаты, к которым они относятся, Гаусс позже опубликовал в более формальном виде (например, записи, относящиеся к треугольным числам, к методу наименьших квадратов или дифференциальной геометрии). Теорема, относящаяся к треугольным числам, имеет в дневнике следующий вид:

ΕΥΡΗΚΑ! num = Δ + Δ + Δ.

Этот результат Гаусс опубликовал позже в книге «Арифметические исследования» в 1801 году в такой формулировке: любое число может быть записано в качестве суммы, самое большее, трех треугольных чисел. Но есть настолько зашифрованные записи, что их так и не удалось понять. Гаусс записал 11 октября 1796 года: Vicimus GEGAN («Мы победили дракона»). До сих пор неясно, что за дракона он имел в виду. Ученый пишет 8 апреля 1799: REV. GALEN в прямоугольнике, и эту запись не удается связать ни с одним из известных результатов Гаусса.

Важность этого открытия для математики заключается в том, что именно благодаря ему Гаусс решил посвятить себя этой науке. На следующий день, 30 марта, ровно за месяц до 19-летия, юноша сделал свою первую запись в самом важном научном дневнике за всю историю математики. В этот дневник попадет большинство математических открытий XIX века, но некоторые результаты Гаусса за наиболее плодотворный период между 1796 и 1814 годами в него не вошли. Благодаря многим записям удалось установить первенство математика в ряде областей, хотя некоторые его современники отказывались верить в то, что он их опередил. Запись от 19 марта 1797 года доказывает, что Гаусс открыл двойную периодичность некоторых эллиптических функций. Эллиптические функции, то есть обобщение таких тригонометрических функций, как синус и косинус, были интересны в связи с вычислением размера дуги эллипса (отсюда их название), что, в свою очередь, оказалось очень важным для астрономических расчетов. Гауссу в это время было 20 лет. Другая запись доказывает, что немецкий математик обнаружил двойную периодичность в общем случае — только одно это открытие, если бы оно было опубликовано, тут же принесло бы ему мировую известность.

Многие другие записи, которые на несколько десятилетий оказались сокрытыми в этом дневнике от всех, будучи опубликованными, возвысили бы полдюжины математиков. Некоторые открытия Гаусса не были опубликованы в течение его жизни, но он не претендовал на первенство, обнаружив, что его открытия заново сделаны другими авторами, поскольку был слишком гордым, чтобы вступать в споры такого рода. Говоря о себе, Гаусс замечал, что вел научные исследования только в ответ на собственные природные устремления, а публикация результатов и приобщение к ним других людей для него всегда имели второстепенное значение.

Гаусс случайно сообщил одному из своих друзей идею, которая может объяснить как существование его дневника, так и медлительность в публикации новых результатов. Ученый утверждал, что когда ему было 20 лет, то количество новых идей, приходивших ему в голову, было таким, что он едва успевал записывать их в полном виде, и у него для таких записей было очень мало времени, поэтому в дневнике содержится только краткое изложение результатов сложных исследований, которые порой продолжались по нескольку недель. В молодости Гаусс восхищался рядом синтетических доказательств, объединявших идеи Архимеда и Ньютона, и он решил следовать великому примеру этих гигантов и оставлять только совершенные и законченные работы, к которым нельзя ничего добавить и от которых нельзя ничего отнять, не изменив их. Работа сама по себе должна быть законченной, простой и убедительной, такой, чтобы нельзя было найти какого-либо знака, указывавшего на труды, которых она стоила. Собор, говорил математик, не собор, пока не разобраны последние леса. Стремясь к этому идеалу, Гаусс предпочитал долго отполировывать свой шедевр, вместо того чтобы публиковать полный ход своих рассуждений, что он очень легко мог бы сделать. На личной печати ученого изображено дерево с небольшим количеством фруктов и девиз Pauca sed matura («Мало, но спелые»). И эти слова в точности отражали мнение Гаусса относительно научных публикаций. Как мы позже увидим, дневник помог разрешить некоторые споры, в частности возникшие с Лежандром.

Построение с помощью линейки и циркуля, до этого много раз описанное в математических работах, состоит в том, чтобы строить точки, отрезки и углы, пользуясь исключительно идеальными линейкой и циркулем. Предполагается, что линейка имеет бесконечную длину и лишена делений, позволяющих измерять и переносить расстояния, а циркуль закрывается каждый раз, поднявшись над листом бумаги, так что его также невозможно использовать для переноса расстояний, поскольку он «забывает» о расстоянии между точками, как только перестает чертить окружность. Это правило построений было введено еще древнегреческими геометрами, и с тех пор оно осталось неизменным. Ограничение для циркуля кажется очень неудобным для современных циркулей, но на самом деле не предполагает серьезных неудобств, потому что перенос расстояний можно осуществить непрямым способом, хотя и с помощью большего количества шагов. Благодаря этому правилу построение шестиугольника с помощью линейки и циркуля кажется тривиальным (поскольку каждая окружность содержит вписанный шестиугольник со стороной, равной радиусу окружности), но требует больше работы, чем могло бы показаться.

Построение шестиугольника с помощью линейки и циркуля по описанным ранее правилам показано на рисунке.

Проведем две параллельные вертикальные прямые и третью, перпендикулярную им. Проведем окружности радиусом АВ с центрами в точках А и В. Возьмем одну из точек пересечения, например О. Это центр шестиугольника. Теперь проведем окружность с центром в точке О и радиусом ОА. Получаем точки Р и Q в местах пересечения с предыдущими окружностями и точки R и S в местах пересечения вертикальных прямых с окружностью, которую мы только что провели. Соединив вершины, получаем искомый правильный шестиугольник.

Построение шестиугольника с помощью идеальных линейки и циркуля, по традиции древних греков. Гаусса привлекло построение этих фигур, и в 19 лет он доказал, что таким образом можно нарисовать правильный многоугольник с 17 сторонами.

После того как мы определили правила, сформулированные древними греками, возникает вопрос: можно ли построить с помощью линейки и циркуля любой правильный многоугольник? Это зависит от того, о каком многоугольнике мы говорим. На основе построения шестиугольника тривиальным является построение равностороннего треугольника, поскольку для этого нужно лишь соединить чередующиеся вершины. Другая классическая проблема построений с помощью линейки и циркуля заключается в том, чтобы провести биссектрису угла. Сочетая эти два процесса, мы можем утверждать, что можно построить, по крайней мере в теории, все правильные многоугольники с числом сторон 3 х 2n, где n — натуральное число. Так, для n = 2 мы получаем 12-угольник, или многоугольник с 12 сторонами, а для n = 3 — многоугольник с 24 сторонами, и так мы можем продолжать, просто увеличивая п. Это решение очень далеко от общего ответа на вопрос. И мы увидим, что это частный случай предложенного Гауссом решения.

Греки нашли решение для пятиугольника, но общую проблему это не устранило, поскольку не был найден метод построения многоугольника с семью сторонами (а также других многоугольников с количеством сторон меньше 20). Более того, даже не было известно, существуют ли такие методы. Гаусс заинтересовался проблемой и нашел метод построения 17-угольника. Много лет спустя он будет вспоминать этот момент в письме Герлингу от 6 января 1819 года:

«Это произошло 29 марта 1796 года, во время каникул в Брауншвейге, и это абсолютно не было случайным, поскольку это был плод усиленных размышлений; утром этого дня, еще не встав с кровати, я увидел очень четко всю эту связь, так что я тут же применил к 17-угольнику соответствующее числовое утверждение».

Именно это открытие окончательно убедило юношу в том, что он должен посвятить себя математике. Кроме того, Гаусс включил этот результат в раздел VII «Арифметических исследований», о которых мы поговорим далее. Возможно, именно из-за того большого значения, которое открытие сыграло в жизни математика, он попросил выгравировать 17-угольник на своей могиле. К сожалению, каменщик, которому это поручили, не справился с работой и в итоге выгравировал 17-конечную звезду. На нынешней могиле Гаусса 17-угольника также нет.

Гаусс не только нашел способ построения 17-угольника, но и попытался ответить на основной вопрос: возможно ли построение любого правильного многоугольника с помощью линейки и циркуля. Эта задача тесно связана с проблемой деления окружности, которая также занимала Гаусса и рассматривая которую он получил некоторые результаты. В 1801 году ученый доказал, что правильный многоугольник с п сторонами можно построить с помощью линейки и циркуля, пользуясь так называемыми простыми числами Ферма (или числами Ферма).

ПЬЕР ДЕ ФЕРМА

Ферма (1601-1665) — французский юрист и математик, которого Белл назвал королем математиков-любителей. Этим прозвищем Ферма обязан тому, что никогда не посвящал себя исключительно данной науке, которую считал скорее хобби, однако именно Ферма, наряду с Рене Декартом (1596-1650), был одним из основных математиков первой половины XVII века. Он внес значительный вклад в теорию чисел, которой начал интересоваться после прочтения «Арифметики» Диофанта. На полях одной из страниц именно этого произведения он записал знаменитую теорему, ставшую известной как «последняя теорема Ферма», что не совсем правильно, поскольку речь идет только о гипотезе. В этой гипотезе утверждалось, что не существует таких целых чисел х, у, z, что можно было бы составить уравнение х n + у n = z n при n >= 3. Очевидно, что для n = 2 это действительно возможно, достаточно взять З² + 4² = 5². Гаусс никогда не занимался последней теоремой Ферма, и на это были свои причины. В 1816 году Парижская академия предложила премию за доказательство (или опровержение) гипотезы Ферма. Ольберс, немецкий астроном, друг Гаусса, уговаривал математика поучаствовать в конкурсе («Мне кажется справедливым, дорогой Гаусс, чтобы Вы занялись этим»), но ученый устоял перед искушением. Ответ математик дал лишь два месяца спустя, и в нем он изложил свое мнение о последней теореме Ферма. «Я очень благодарен Вам за новости относительно Парижской премии, но признаю, что теорема Ферма в изолированном виде представляет очень небольшой интерес для меня, поскольку я легко могу найти множество подобных утверждений, которые невозможно ни доказать, ни опровергнуть». Знаменитое высказывание Ферма было полностью доказано только в 1995 году британским ученым Эндрю Уайлсом.

Числа Ферма, названные так в честь Пьера де Ферма — первого, кто их изучал, — имеют следующий вид:

Fn = 2²n+1,

где n — натуральное число.

Ферма определил такие простые числа с намерением, очень далеким от того, чтобы решать задачи построения многоугольников с помощью линейки и циркуля (а на самом деле удалось доказать, что не все числа такого вида простые).

Гаусс показал, что для построения правильного многоугольника с n сторонами с помощью линейки и циркуля необходимо, чтобы нечетные простые множители n были различными простыми числами Ферма. То есть правильный многоугольник можно построить, если число его сторон — это степень числа 2, простое число Ферма или произведение некоторой степени числа 2 (включая единицу) и различных простых чисел Ферма. Это то, что в математике известно как достаточное условие. Итак, если многоугольник имеет форму, определенную Гауссом, его можно построить. Естественным образом возникает вопрос, является ли это также необходимым условием. То есть нужно проверить, только ли такие многоугольники можно построить с помощью линейки и циркуля.

Пьер Ванцель, французский математик, в 1837 году доказал, что условие Гаусса является необходимым, и это превратило теорему в полное описание правильных многоугольников, которые можно построить с помощью линейки и циркуля. Математики называют такие условия тогда и только тогда. То есть у нас полностью определены правильные многоугольники, которые мы можем построить с помощью линейки и циркуля. Так, треугольник (3 = 2²0 +1), квадрат (4 = 2²1 ), пятиугольник (5 = 2²1 +1) и шестиугольник (6 = 2-(2²0 +1)) можно построить с помощью линейки и циркуля, а правильный семиугольник (7 =/= 2²n + 1 Vn) нельзя. Далее, правильный восьмиугольник (8 = 2³) можно построить, а правильный девятиугольник (9 = 3² =/= 2²n +1 Vn) — нет· Очевидно, что многоугольник с 17 сторонами, построенный Гауссом, — это пример многоугольников, в которых число сторон точно совпадает с одним из чисел Ферма, так как F2 = 2²2 +1 = 17.

Но это не означает, что нет людей, которые посвящали бы свое время и энергию безуспешному нахождению способов построения семиугольников или других фигур, что, как доказано математиками, невозможно осуществить с помощью линейки и циркуля. Это касается квадратуры круга, трисекции угла или удвоения куба. Первой задачей со страстью, которая сохранилась всю жизнь, занимался не кто иной, как Наполеон. Однако эту битву, в отличие от битв с прусской армией, Наполеон не смог, да и не мог бы выиграть.