С теоретической точки зрения создание водородной бомбы не явилось секретом. Принципы ее устройства были известны задолго до создания атомной бомбы. В течение многих лет теоретическая физика предсказывала, что при определенных условиях легкие элементы, такие, как водород, могут синтезироваться с освобождением колоссального количества энергии.

Еще за месяц до открытия деления урана профессор Ганс Бете из Корнельского университета создал первую логичную теорию происхождения солнечной энергии. Согласно этой теории солнечная энергия в виде света и тепла выделяется в результате превращения четырех атомов водорода в один атом гелия со скоростью расхода 500 миллионов тонн водорода в секунду. При этом получается 496 миллионов тонн гелия. Энергия, высвобождаемая в течение каждой секунды в ходе реакции, эквивалентна энергии, содержащейся в 12 квадриллионах тонн угля, что в миллион раз превышает все угольные запасы Соединенных Штатов.

Хотя все это было хорошо известно, ученые были уверены, что при тогдашнем уровне знаний эта огромная сокровищница космической энергии останется навсегда за пределами досягаемости человека. Для ядерного синтеза водорода требуется температура в 20 млн.°С, в то время как самая высокая температура, которую можно было получить на Земле, равнялась примерно 6000° С. У нас был громадный запас космического топлива — водорода, но, к сожалению, не было спички, чтобы зажечь его: ни одна спичка не могла бы дать пламя по крайней мере в 20 млн.° С.

Когда ученые Лос-Аламоса, одним из руководителей которых был Бете, работали над созданием атомной бомбы из урана-235 или плутония, они знали, что успех в создании атомной бомбы даст им ключ к космической сокровищнице энергии синтеза, до сих пор являющейся монополией Солнца и звезд. Эксперименты и расчеты показывали, что при взрыве атомной бомбы из урана-235 или плутония развивается температура в 55 млн.°С, что в три раза выше температуры в центре Солнца. Наконец- то удалось найти «спичку», способную зажечь космический огонь ядерного синтеза!

Это означало также, что усовершенствованная атомная бомба может служить детонатором для взрыва гораздо более мощной водородной бомбы, взрывная мощность которой практически неограниченна.

Однако между Солнцем и атомной бомбой была существенная разница, которая казалась непреодолимым препятствием на пути осуществления ядерного синтеза на Земле. Внутри Солнца температура в 20 миллионов градусов поддерживается постоянно, поэтому процесс синтеза гелия идет с постоянной скоростью. Хотя температура внутри атомной бомбы в три раза выше, чем в центре Солнца, она удерживается в течение времени, совершенно недостаточного для превращения обычного водорода в гелий. Это все равно, что зажигать сигарету на ветру, когда у вас всего одна спичка: если ветер достигает ураганной скорости, то совершенно ясно, что вы не успеете зажечь сигарету. Этот неумолимый фактор времени с самого начала заставил ученых прийти к выводу, что на Земле нельзя осуществить процесс синтеза, происходящий на Солнце с обычным водородом, атомный вес которого равен единице.

В январе 1950 г. своим приказом «продолжать работу» президент Трумэн фактически предписывал Комиссии по атомной энергии выяснить возможность создания водородной бомбы.

Исследования в Лос-Аламосе в 1944 и 1945 гг. показали, что можно осуществить ядерную реакцию синтеза лишь соединением двух тяжелых изотопов водорода — дейтерия (водород с атомным весом 2) и трития (водород с атомным весом 3).

Это сразу же создало большие трудности, так как тритий не существует в природе и для его создания необходимы затраты больших средств и дорогих стратегических материалов. Так, для производства одного килограмма трития требуется восемьдесят килограммов плутония — расщепляющегося элемента, искусственно созданного для атомной бомбы.

Дело осложнялось еще и тем, что тритий — это радиоактивный элемент с периодом полураспада 12 лет. Другими словами, один килограмм трития в 1958 г. превратится в полкилограмма в 1970 г. Другое серьезное препятствие заключалось в том, что как дейтерий, так и тритий не может быть синтезирован в обычном для него газообразном состоянии, а должен быть сначала превращен в жидкое вещество. Жидкий же водород кипит (т. е. превращается в газообразное состояние) при температуре минус 253° С и давлении одна атмосфера. Для превращения в жидкость его следует охладить в жидком воздухе при температуре минус 192° С и давлении 180 атмосфер.

Транспортировать газообразный водород можно только в герметическом баллоне, находящемся внутри сосуда с жидким воздухом. Эти требования создавали большие трудности при его производстве, транспортировке и хранении.

Создавалось парадоксальное положение. Перед синтезом двух разновидностей водорода, который происходит при температуре выше 50 млн.°С, эти вещества следует охладить до температуры, близкой к абсолютному нулю! Естественно, возникал вопрос: удастся ли сохранить вещество в жидком состоянии даже в течение одной миллионной доли секунды при температуре 50 млн.°С, необходимой для синтеза?

К июню 1951 г. наша программа создания водородной бомбы переживала тяжелый кризис. Именно тогда покойный Гордон Дин, бывший в то время председателем Комиссии по атомной энергии, решил провести совещание руководителей работ. На это совещание, состоявшееся в Институте прогрессивных исследований в Принстоне (штат Нью-Джерси), «прибыли доктора фон Нейманн, Ферми, Бете, Теллер, Уиллер, Норрис Брэдбери, Лотар Норхайм, и каждый из них мог внести большой вклад в это дело». За столом сидели руководители всех лабораторий во главе с доктором Оппенгеймером.

В гнетущей обстановке поднялся доктор Теллер и спокойно подошел к доске. «Он принес на совещание свой собственный оригинальный подход к термоядерному оружию,— вспоминал потом Дин.— Тогда это были лишь теоретические предпосылки. На доске чертились схемы. Делались расчеты». У участников совещания появилась надежда. К концу второго дня у «всех присутствующих появилось ощущение, что впервые мы что-то имеем хотя бы в области идей». Уныние сменилось энтузиазмом, и у всех создалось впечатление, что, наконец, «мы можем на что-то надеяться в будущем».

С этого дня работы по созданию водородной бомбы пошли полным ходом. «Работа закрутилась и закрутилась очень быстро». Через четыре дня Комиссия по атомной энергии приняла обязательство построить новый завод, хотя в то время у нее, как заявил Дин, не было на это средств.

Через год, в июне, мы были в состоянии, говоря словами Дина, «завершить работу над этим устройством». Устройство перевели на атолл Эниветок и взорвали 1 ноября 1952 г. Мощность взрыва составляла пять мегатонн (пять миллионов тонн) тротила. Затем в марте и в апреле 1954 г. были произведены еще три взрыва большей мощности. С тех пор было испытано много других конструкций бомб.

Хотя открытие, которое совершило переворот в науке и сделало возможным создание водородной бомбы, все еще является секретом, легко отгадать основные принципы ее устройства. Казалось совершенно нелепым, что до осуществления реакции между веществами при температуре 50 млн.°С их следует хранить при температуре, близкой к абсолютному нулю. Единственным путем устранить такое невозможное требование был отказ от превращения водорода в жидкое состояние.

Надо было соединить газообразный водород с каким- то веществом так, чтобы водород стал частью твердого соединения, способного сохраняться при обычной комнатной температуре.

Существуют различные твердые соединения, содержащие водород. Одно из них кажется наиболее подходящим и фактически единственным соединением, которое может служить основной составной частью водородной бомбы.

Это специально созданное новое вещество, известное под названием дейтерид лития-6, представляет собой соединение редкого легкого изотопа металлического лития, состоящего из трех протонов и трех нейтронов, с дейтерием, или тяжелым водородом, ядро которого состоит из одного протона и одного нейтрона.

Соединение лития и дейтерия при комнатной температуре является твердым веществом. Один атом лития-6 в этом соединении связан с одним атомом дейтерия (водород-2), поэтому общий молекулярный вес соединения равен 8. Другими словами, в восьми килограммах соединения содержится шесть килограммов легкого лития-6 . и два килограмма тяжелого водорода-2.

Литий-6 не встречается в природе в чистом виде. Как и расщепляющийся элемент уран-235, литий существует в смеси двух своих разновидностей: одного — с атомным весом 6 и другого — с атомным весом 7. Тяжелый литий-7 составляет 92,5% природного лития, и лишь 7,5%—это его легкий изотоп.

Так как различные виды одного и того же элемента невозможно разделить химическим путем, необходимо было построить специальный завод по разделению изотопов для получения чистого лития-6. Этот завод и являлся тем «новым заводом», контракт на строительство которого, как сообщил Дин, был подписан через четыре дня после заседания Комиссии в июне 1951 г. в Принстоне, хотя в ее бюджете не было для этого средств.

Дейтерид лития-6 очень важен по двум причинам. Он не только обеспечивает возможность хранения дейтерия при комнатной температуре и, таким образом, исключает необходимость превращения его в жидкое состояние при температуре, близкой к абсолютному нулю. Он также делает возможным получение трития — второго элемента, необходимого для создания водородной бомбы в конечной стадии — в самый момент ее взрыва. Дело в том, что в дейтериде лития содержится в виде твердого вещества не только водород-2, но потенциально имеется и водород-3.

Это чудо совершают нейтроны, выделяемые детонатором — атомным «снарядом». Нейтрон, попадающий в ядро атома лития-6, образует составной элемент из трех протонов и четырех нейтронов. При попадании нейтрона большой энергии составное ядро становится крайне неустойчивым и немедленно распадается на две части: водород-3 (тритий) с ядром из одного протона и двух нейтронов и гелий с ядром из двух протонов и двух нейтронов.

Меньше чем за миллионную долю секунды взрыв атомной бомбы освобождает дейтерий и тритий и в тоже время создает температуру более чем в 50 млн.°С, при которой дейтерий и тритий синтезируются за миллиардные доли секунды.

Возможна и другая, хотя и менее вероятная, реакция синтеза. Две ядерные частицы дейтерия (один протон и один нейтрон) могут при высокой температуре ядер- ного деления соединиться с ядром лития (три протона и три нейтрона), образовав ядро из четырех протонов и четырех нейтронов. Это ядро очень неустойчивой разновидности бериллия, которое немедленно распадется на два ядра гелия, содержащих по два протона и два нейтрона. При синтезе одного килограмма исходных продуктов освободится огромная энергия, эквивалентная 60 000 тонн тротила, что в три раза больше взрывной силы атомной бомбы.

Получение нового химического соединения, позволившего создать водородную бомбу, показывает, что может быть в принципе создано еще более страшное оружие — кобальтовая бомба.

Кобальтовая бомба — это в сущности та же водородная бомба, но в качестве материала для корпуса, внутри которого находятся активные вещества, вместо стали, превращающейся при взрыве в слабо радиоактивное облако пара, используется кобальт. Превратившись при взрыве в пар, кобальт образует радиоактивное облако в 320 раз смертоноснее радия.

Об этом виде водородной бомбы Альберт Эйнштейн сказал: «Если удастся ее создать, то радиоактивное отравление атмосферы, а следовательно, уничтожение всякой жизни на Земле станет в пределах технических возможностей».

В то время как в реакции деления используется лишь один процент (по весу) расщепляющихся элементов — урана-235 или плутония, при синтезе ядер дейтерия и трития (реакция D—Т) используется до 20% общего веса двух изотопов водорода. При синтезе ядер 600 граммов трития с ядрами 400 граммов дейтерия, т. е. одного килограмма, выделится 200 граммов свободных нейтронов. Это небольшое количество нейтронов вызовет образование 12 килограммов смертоносного кобальта (атомный вес его 60), радиоактивность которого эквивалентна громадному количеству (3832 килограмма!) радия.

Кобальтовую бомбу можно взорвать на пустой барже в середине океана; вес ее может быть любым. Если к обычным компонентам добавить около тонны дейтерия в виде твердого соединения, то такое чудовище, синтезируясь в гелий, выделит до ИЗ килограммов свободных нейтронов. Они сделают радиоактивными 7,5 тонны радиоактивного кобальта, что эквивалентно почти 2,3 миллиона килограммов радия.

По мнению профессора Гаррисона Брауна, радиохимика из Калифорнийского технологического института, если кобальтовую бомбу с одной тонной дейтерия взорвать в Тихом океане в тысяче километров к западу от Калифорнии, то через день после взрыва радиоактивная пыль достигнет Калифорнии, а через четыре-пять дней — Нью-Йорка и уничтожит жизнь на всем своем пути.

Он добавляет: «Аналогичным образом, если западные державы взорвут водородно-кобальтовые бомбы на долготе Праги, то они уничтожат всю жизнь на площади в 2300 километров ширины (от Ленинграда до Одессы) и в 3000—4800 километров длины (от Праги до Уральских гор). Это привело бы к созданию невиданной в истории «выжженной земли».

Профессор Сциллард подсчитал, что 400 однотонных кобальтовых бомб выделят такое количество радиоактивного излучения, которого будет достаточно, чтобы уничтожить все живое на Земле.