19 сентября 1957 г. в 10 часов по тихоокеанскому времени на атомном полигоне около Лас-Вегаса (штат Невада) на глубине 270 метров под вершиной вулканической столовой горы Рейнир был произведен глубокий подземный взрыв «крохотной» атомной бомбы, взрывная сила которой была эквивалентна всего 1700 тоннам тротила. Этот взрыв ознаменовал начало нового периода в истории атомного века и имел огромное значение как для мирного, так и для военного использования атомной энергии.
Испытание явилось первым определенным доказательством того, что атомную бомбу, большую или маленькою, можно успешно испытывать под землей. Одновременно оно показало, что радиоактивность, выделяемая в результате ядерного взрыва, остается под землей, не выходя наружу и, следовательно, не увеличивая естествен-, ной радиоактивности атмосферы и почвы. Этим раз и навсегда был решен тревожный вопрос о радиоактивных осадках, который беспокоил человечество.
Открытие того, что ядерное оружие всех типов может испытываться, не образуя каких-либо осадков, давало возможность Соединенным Штатам и другим странам навсегда отказаться от испытаний ядерного оружия в атмосфере. Такой отказ означал бы громадную психологическую победу Соединенных Штатов в великой битве за умы людей.
Это испытание также показало огромные возможности использования мирных атомных взрывов в промышленных целях. Такими взрывами можно быстро удалить огромное количество породы: так, рейнирский «Малыш» при взрыве разрушил 400 000 топи скальной породы. Тепло, выделившееся при взрыве, можно задержать в горе и затем использовать для производства пара. При помощи таких взрывов можно создавать глубокие гавани, заставить снова фонтанировать старые нефтяные скважины. Скальные породы, ставшие радиоактивными под облучением атомного взрыва, можно использовать в качестве источника изотопов для разнообразных нужд промышленности, биологии, медицины и сельского хозяйства.
О всех этих и других возможностях использования подземных взрывов доложил доктор Уиллард Ф. Либби, бывший в то время научным членом Комиссии по атомной энергии, выступая в начале 1958 г. перед Сенатской подкомиссией по иностранным делам. Среди других возможных способов использования подземных взрывов были названы: облучение различных материалов с целью их изменения в результате ядерных реакций; использование огромного давления, создаваемого взрывом, для превращения угля и окиси алюминия в алмазы, сапфиры, рубины и другие драгоценные камни; дальнейшие исследования строения земной коры с помощью сейсмического анализа колебаний поверхности, вызванных глубокими подземными взрывами.
Основываясь на результатах подземного испытания в Неваде, Комиссия по атомной энергии (КАЭ) начала изучать возможности использования энергии атомных и водородных бомб, взорванных под землей. Это исследование, получившее название «Проекта Плаушер» *, проводится учеными-атомниками в Ливерморской лаборатории КАЭ (штат Калифорния).
В июне 1958 г. КАЭ объявила о начале практических исследований группой ученых целесообразности создания гавани в северо-западной части Аляски между мысами Сеппингс и Томпсон, севернее Полярного круга. Указывалось, что отсутствие гавани сдерживает освоение огромных запасов полезных ископаемых и ловлю рыбы в этом районе.
В то время ученые Ливерморской лаборатории полагали, что четыре тщательно направленных взрыва водородных бомб создадут гавань глубиной 90 метров и канал, который откроет доступ в закрытую льдами Северную Аляску. Доктор Джеральд Джонсон, заместитель
* «Плаушер» по-английски — плуг, орало,— Прим, перев.
директора лаборатории, заявил, что земляные работы «обойдутся в десять раз дешевле обычных методов».
В 1958 г. в задачи «Проекта Плаушер» входило следующее.
1.Освоение нефтяных месторождений. Подземный водородный взрыв, произведенный в районе нефтеносных песков, выделит такое огромное количество тепла, что заставит фонтанировать содержащуюся в них густую нефть. Одно такое месторождение тяжелых фракций нефти в районе озера Атабаска с толщиной нефтеносного слоя 30,5^ метра оценивается в сорок миллионов долларов на каждый квадратный километр.
Другим богатым источником нефти являются сланцевые формации. До настоящего времени использование этих месторождений считалось нерентабельным из-за высокой стоимости разработки сланца, нагревания его для извлечения нефти и последующего удаления пустой породы.
Подземный взрыв водородной бомбы в районе расположения нефтеносных сланцев разогреет породу, выделит нефть для перекачки и позволит избавиться от необходимости решать сложную проблему устранения пустой породы.
2.Создание водных запасов. Ученые, работающие над осуществлением «Проекта Плаушер», считают, что в бесплодных районах, где осадки не проникают в почву из-за наличия водонепроницаемых скальных пород, подземный водородный взрыв может разрушить эти породы и позволит воде проникнуть в землю, где она будет скапливаться в огромных подземных резервуарах. Доктор Гарольд Браун, другой заместитель директора Ливермор- ской лаборатории, заявил, что взрыв мощностью в одну мегатонну (эквивалентен 1 миллиону тонн тротила) может сокрушить достаточное количество скальных пород, чтобы создать резервуар для 300 миллиардов литров воды.
3.Создание резервуаров тепла. Ученые отмечают, что при подземном взрыве водородной бомбы выделяется огромное количество тепла. Это тепло можно сохранять в больших подземных пещерах, предварительно заполненных водой. Тепло будут извлекать из пара. Можно также извлекать тепло из скальных пород, разрушенных взрывом, продувая через эти породы газ.Используя тепло, выделяемое при взрыве водородной бомбы, можно также решить проблему опреснения большого количества морской воды.
4.Использование бедных пород. Существует возможность экономичного использования бедных пород при помощи так называемого процесса выщелачивания. Произведя подземный водородный взрыв, можно добраться до недоступных залежей руды, например медной, и вывести на поверхность породы выщелачивающую жидкость с растворимыми соединениями ценных минералов.
5.Производство радиоактивных изотопов. С помощью подземных ядерных взрывов можно получать огромное количество радиоактивных изотопов, если применять подходящие материалы для «окутывания». В настоящее время в ядерных реакторах производятся такие изотопы в небольших количествах, достаточных для удовлетворения насущных потребностей медицины, биологии, сельского хозяйства и промышленности. Подземные взрывы позволят создавать их в таком количестве, что они станут дополнительным источником энергии.
Хотя большинство идей «Проекта Плаушер» выглядит привлекательно с теоретической точки зрения, существует необходимость найти им экспериментальное подтверждение, заявил доктор Браун. Однако, добавил он, даже если одна из этих идей окажется реальной, она даст прибыль во много миллиардов долларов. Запасы тяжелого водорода, применяемого в водородных бомбах, практически неистощимы, так как он содержится во всех водах и сравнительно дешев.
Прежде чем воплотить эти идеи в жизнь, надо разрешить целый ряд сложных проблем. Как сказал доктор Эдвард Теллер, «Проектом Плаушер» пытаются установить, что является просто теорией, а что можно претворить в жизнь». Хотя осуществление «Проекта Плаушер» не является основной задачей лаборатории, ученые считают, что у него большое будущее.
На Второй международной конференции по мирному использованию атомной энергии, состоявшейся в Женеве в сентябре 1958 г., ведущие ученые в области термоядерных процессов из Соединенных Штатов, Англии и Советского Союза сообщили о значительном прогрессе, достигнутом в исследованиях по применению реакции ядер- ного синтеза (которая используется при взрыве водородных бомб) в контролируемом процессе. Эта реакция сможет обеспечить человечество практически неограниченным источником энергии более чем на миллиард лет*. В докладах, которые были самыми обстоятельными из всех представленных до настоящего времени этими тремя странами, сообщалось, что обуздание водородной, бомбы является лишь вопросом времени.
В простейшей форме реакция водородного синтеза, известная на техническом языке как термоядерная реакция,— это слияние четырех ядер обычного водорода, самого легкого элемента в природе, в одно ядро гелия, атомный вес которого немногим меньше атомного веса четырех атомов водорода. Именно этот процесс лежит в основе непрерывного выделения Солнцем огромного количества энергии в виде тепла и света, что делает возможным жизнь на нашей планете.
Когда четыре ядра атомов водорода сливаются и образуют одно ядро гелия, небольшое количество массы ядра водорода (0,7%) превращается в энергию. Этот процесс в грандиозных масштабах происходит на Солнце, где ежесекундно 600 миллионов тонн водорода синтезируются в 596 миллионов тонн гелия.
Процесс синтеза легкого водорода на Солнце происходит в течение цикла, продолжающегося миллионы лет, поэтому использовать легкую разновидность водорода в земных условиях, при которых реакция должна происходить в течение секунд, невозможно. На нашей планете можно использовать водород, состоящий из тяжелых изотопов этого элемента — дейтерия и трития. Огромное количество дейтерия содержится в океанах планеты. Тритий в природе не существует, но его можно получить искусственно из легкого элемента — лития.
Однако на пути синтезирования ядер дейтерия или смеси дейтерия и трития стоят два препятствия, которые мешают производству электричества в промышленных масштабах. Первое — огромная температура, необходимая для осуществления реакции синтеза, и второе — проблема создания сосуда, который мог бы содержать газообразный водород после того, как он доведен до требуемой температуры.
Более того, горение водородного огня, выделяющего больше энергии, чем требуется для его поддержания, должно происходить самопроизвольно, так же как обычный уголь или дрова продолжают гореть сами по себе, после того как их подожгут.
Чтобы зажечь дейтериевый огонь, требуется температура 370 млн.°С, т. е. в 12—18 раз больше температуры в недрах Солнца. Чтобы разжечь костер из смеси дейтерия и трития, который горел бы сам по себе, необходима более низкая температура — около 50 млн.°С. Однако тритий является дорогостоящим элементом, так как в свободном виде в природе он не существует и его количество зависит от запасов лития в земной коре, которые весьма ограниченны.
Непреодолимой трудностью на пути создания миниатюрного солнца на Земле является обязательное условие получения необыкновенно высоких температур. Высокая температура в водородной бомбе сохраняется в течение миллионной доли секунды; этого достаточно, чтобы придать термоядерной реакции скорость взрыва, однако совершенно недостаточно, чтобы осуществить регулируемую реакцию при постоянной скорости. Даже если такая температура и будет достигнута, на Земле не существует такого материала, который бы немедленно не испарился при температуре, превышающей 6000°С.
Так как из земных материалов невозможно создать какой-либо подходящий контейнер для хранения газообразного водорода при температуре синтеза, ученые изобрели сосуд, называемый магнитной бутылкой*. В нем силовые магнитные линии, действующие на расстоянии, буквально сжимают газообразный дейтерий (его температура достигает нескольких миллионов градусов) в очень узкий луч, после того как через газ был пропущен электрический ток.
Действие магнитной бутылки основано на трех хорошо известных фактах: 1) газ, например водород, может быть разделен на отрицательные электроны и положительные протоны с помощью электрического разряда. Такой ионизованный газ называется плазмой; 2) электрический ток, пропущенный через ионизованный газ, поднимает его температуру; чем больше ток, тем выше температура. Это дает возможность достичь температуры во много миллионов градусов; 3) наконец, такой ионизованный газ можно превратить в очень узкий луч
* Точнее — магнитной ловушкой.— Прим. ред.
при помощи действующих на расстоянии магнитных силовых линий, которые частицы газа не могут пересечь. Вместо этого частицам приходится двигаться по спиралям внутри мощного магнитного поля, не прикасаясь к стенкам сосуда. Таким образом, можно создать сосуд, в котором узкий луч газа нагрет до температуры во много миллионов градусов, в то время как стенки сосуда остаются холодными, так как ни одна частица плазмы не может покинуть магнитную тюрьму и уйти на стенку.
Существует несколько видов магнитных бутылок. Но у всех них один большой недостаток: они «протекают».
При термоядерном сгорании одного килограмма дейтерия может выделиться энергия, равная 100 миллионам киловатт-часов электроэнергии. Хотя в воде на 6400 ядер обычного водорода приходится одно ядро дейтерия, общее количество дейтерия, содержащегося в океанах и озерах мира, огромно.
Как отметил профессор Лаймен Спитцер младший из Принстона, «если бы энергия, заключенная в этих ядрах дейтерия, была высвобождена в ходе контролируемой реакции и использована для получения электроэнергии, то человечество получило бы фактически неистощимый источник энергии. По самой осторожной оценке энергии дейтерия, содержащегося в водах океанов, хватит более чем на миллиард лет, даже если потребление энергии возрастет во много раз».
Кроме того, что запасы дейтерия на Земле почти неисчерпаемы, производство энергии с помощью термоядерных реакций имеет еще три больших преимущества: 1) это топливо имеется повсюду на Земле, так что любая страна сможет обеспечить себя энергией; 2) при этом процессе не возникают продукты деления, обладающие огромной радиоактивностью, как это имеет место при делении урана.и плутония; 3) в центре реактора гамма-излучение незначительно, что требует меньшего экранирования и что, следовательно, уменьшает вес реактора. Кроме того, процесс синтеза открывает возможность непосредственного производства электроэнергии.
Как сообщила Комиссия по атомной энергии в своем полугодовом отчете конгрессу летом 1957 г., применение радиоактивных изотопов дало американской промышленности 400 миллионов долларов дохода. Профессор Либби предсказал, что к 1960 г. доходы промышленности и сельского хозяйства благодаря мирному использованию радиоактивных изотопов «достигнут 5 миллиардов долларов в год, при этом расходы правительства на получение изотопов не превысят 20 миллионов долларов».
Комиссия в своем докладе также сообщила, что к середине 1957 г. число больных, для лечения которых применялись радиоактивные изотопы, составляло примерно миллион человек.
Особенно широкое применение радиоактивные изотопы находят в диагностике: для исследования функции щитовидной железы, определения объема крови, местонахождения опухолей и исследования деятельности печени. Изотопы применяются при лечении базедовой болезни, рака щитовидной железы, болезней крови — по- лицитемии (избыток красных кровяных шариков) и лейкемии (избыток белых кровяных шариков), сердечных заболеваний, легочного к перитонального скопления жидкости, рака кожи, а также для внешнего облучения тела и в случае повреждений глаза. В настоящее время в Соединенных Штатах работает более сотни терапевтических (радиационных) установок.
Радиоактивные материалы являются важным орудием во многих сельскохозяйственных исследованиях. Применение изотопов способствует лучшему использованию удобрений: созданию новых совершенных регуляторов роста, гербицидов и т. д.; усовершенствованию методов борьбы против болезней растений; получению данных о потребностях животных в питании; усовершенствованию методов борьбы против болезней животных; борьбе против вредных насекомых с помощью стерилизации; использованию инсектицидов; получению точной информации о миграции и зимовке, а также выведению новых, улучшенных пород животных и видов растений.
Измерение, регистрация и наблюдение за толщиной изделий из различных веществ и материалов, таких, как пластмасса, резина, алюминий и табак, сообщил профессор Либби, уже принесли американским промышленникам 120 миллионов долларов дохода и «по-видимому, эта цифра через два-три года возрастет до 1 миллиарда долларов в год».
Новой областью применения радиоактивных изотопов является стимуляция работы нефтяных скважин. Уже сейчас доходы от применения изотопов составляют, как стало известно, 180 миллионов долларов в год. Эта новая сфера применения радиоактивных разведчиков, заявил профессор Либби, «является огромным потенциальным источником доходов для нашей нефтяной промышленности, так как позволяет из одного и того же участка извлечь гораздо больше нефти и с меньшими затратами. Мне кажется, что применение изотопов скоро будет приносить до одного миллиарда долларов дохода ежегодно».
Исключительно огромные возможности для применения изотопов открываются в области использования радиоактивных препаратов и продуктов органической химии. На опытной станции при Аргоннской национальной лаборатории КАЭ, недалеко от Чикаго, выращиваются различные лекарственные растения в атмосфере радиоактивного углекислого газа на почве, содержащей некоторые радиоактивные минералы. В результате «у нас теперь имеется настоящее национальное богатство в виде целого «склада», заполненного радиоактивными растениями многих видов, готовых для химической переработки, которая необходима при производстве нужных лекарственных и химических средств»,— заявил доктор Либби.
Эти радиоактивные сельскохозяйственные продукты представляют большую ценность для биохимических и медицинских исследований. Кроме того, сказал профессор Либби, они могут быть «особенно полезны в обычной медицинской практике, и врачи, возможно, скоро станут применять радиоактивные пилюли для диагностики».
«После приема больным пилюли радиоактивного сахара,— заявил он,— можно легко и просто проверить наличие у него диабета. Можно попросить больного надуть шар, а затем проверить содержание радиоактивного углекислого газа в выдыхаемом им воздухе. Можно также проверить наличие радиоактивного сахара в крови и моче в разное время».
Атомные реакторы, главным образом в Англии и Соединенных Штатах, уже произвели сотни миллионов киловатт-часов электроэнергии. Предсказывают, что к 1970 г. общая мощность атомных электростанций составит по' крайней мере 15 миллионов киловатт — примерно в пятьдесят раз больше, чем производится в настоящее время. Полагают, что стоимость атомной электроэнергии к концу 60-х годов в Соединенном Королевстве станет ниже стоимости электроэнергии, вырабатываемой обычными способами, и в период с 1963 по 1973 гг. сравняется в других странах, включая и ряд районов США.
Малогабаритным атомным установкам, которые могут быть использованы в качестве двигателей для ракет, кораблей, самолетов, был посвящен доклад представителей научной лаборатории Лос-Аламоса и Ливерморской лаборатории Калифорнийского университета США. В этих установках будет использоваться высокообогащенный уран,* а замедлителем служить графит. Опыты показывают, что подобный реактор может быть «очень небольшим и легким»: он представляет собой куб с ребром в 1,2 метра, в который загружено 60—80 килограммов урана-235.
В ядерной ракете водород может служить и как рабочее тело, и как охладитель: газ, проходя через реактор, нагревается, а выходя из него, создает тягу.
Атомные реакторы работали надежно, аварии случались редко и никакой опасности для обслуживающего персонала не возникало.
Доктор Чемберлен из Пенсильванского университета сообщил на конференции, что радиоактивные изотопы стали «точными инструментами». Например, сейчас можно снимать «замедленные фильмы» о протекании жизненных процессов, вводя в организм подопытных животных радиоактивные изотопы и затем замораживая их в жидком азоте (через определенные интервалы времени); таким образом получаются фотографические отпечатки каждой стадии процесса.
В докладе представителей Калифорнийского университета рассказывалось о применении «меченых» атомов для исследования жизненных процессов превращения в организме коров, свиней и кур пищи в молоко и яйца. Исследованы все стадии этих процессов внутри организма животного.
На конференции было заявлено, что существует необходимость в новых международных соглашениях для решения проблем, связанных с появлением транспортных реакторов, сбросом радиоактивных отходов в океан и возможным ущербом, который государство может причинить какой-либо другой стране за пределами своих национальных границ из-за аварий на реакторе.
Участники конференции пришли к выводу, что удаление отходов мирного использования атомной энергии в настоящее время не представляет опасности. Однако трудности возрастут, когда атомные реакторы распространятся по всему миру. Председатель заседания, посвященного этому вопросу, доктор Александр Гольдберг из Израиля, заметил, что «могильники» радиоактивных отходов становятся столь же сложными и дорогими, как саркофаги мумий египетских фараонов.
Была выражена уверенность, что разрабатываемые сейчас методы удаления опасных побочных продуктов атомного распада в твердых контейнерах из стекла или бетона будут надежными и эффективными. В канадском докладе было показано, что удаление радиоактивных отходов в таких контейнерах значительно повысит стоимость электричества, используемого в промышленных целях.
Представители СССР и США выражали беспокойство в связи с возможным сбросом отходов атомной промышленности в моря, но общее мнение было таково, что до сих пор сбрасывание отходов в океан осуществлялось в пределах норм безопасности *.
В октябре 1957 г. в Арден-хауз (Гарриман, штат Нью-Йорк) состоялось заседание Американской Ассамблеи— организации, связанной с Колумбийским университетом,— для обсуждения политики США в вопросах атомной энергетики. Участники конференции — шестьдесят пять ученых-атомников, промышленников, правительственных чиновников, редакторов газет и издателей, деятелей образования и представителей профсоюзов — рассмотрели политику Соединенных Штатов в отношении строительства атомных реакторов и высказали целый ряд соображений и рекомендаций, которые могут определить будущий курс страны в этой важной области.
В Соединенных Штатах в настоящее время имеются большие запасы естественного топливного сырья, которых хватит на многие годы. Поэтому участники конференции указали, что с точки зрения национальных интересов, настоящих и будущих, широкая программа строительства больших атомных станций нежелательна ввиду того, что атомные реакторы не смогут экономически конкурировать с обычными электростанциями.
* Представители СССР всегда, на всех конференциях и совещаниях, где обсуждался вопрос об удалении радиоактивных отходов, возражали против их сброса в моря.
А вот США не только не «выражали беспокойство», но, наоборот, установили практику сброса радиоактивных отходов атомной промышленности в Тихий океан и Мексиканский залив, что вызывает возмущение общественности как в самих Соединенных Штатах, так и в других странах мира.— Прим, научн. ред.
Однако участники Ассамблеи подчеркнули, что решения о типах, размерах и сроках создания ядерных реакторов не могут приниматься с учетом лишь энергетических нужд Соединенных Штатов. Большую роль в этом должны сыграть и соображения международного плана.
Конференция отметила, что в целом ряде стран энергично выдвигаются требования быстрого развития атомной энергии. В Англии потребности в энергии намного опережают возможности угольной промышленности. В Западной Европе аналогичные потребности вылились в создание Евратома — объединения шести стран — в интересах максимально быстрого строительства атомных станций. Программа строительства реакторов активно осуществляется в Советском Союзе. Исследования в области атомной энергетики проводятся и в менее индустриализованных и слаборазвитых странах Латинской Америки, Азии и Среднего Востока.
В заключительном докладе Ассамблеи говорилось:
«Большое международное признание речи президента Эйзенхауэра, посвященной мирному использованию атомной энергии, дало моральное психологическое преимущество Соединенным Штатам. Это открыло новые перспективы международного сотрудничества. Соединенные Штаты... должны энергично использовать это преимущество в тех странах, которые проводят или собираются проводить строительство атомных энергетических станций. Учитывая возможность конкуренции со стороны иностранных государств в связи с ростом потребности в энергии в этих странах, Соединенные Штаты не должны самоуспокаиваться».
Энергичные усилия американской промышленности и правительства США, говорилось далее в докладе, придадут программе строительства атомных станций жизненность и целенаправленность и ускорят развитие атомной энергетики в нашей стране. Это поможет решению внешнеполитических задач США по укреплению экономической мощи Западноевропейского сообщества, созданию интегрированной Западной Европы, даст нам опыт управления большими реакторами, что очень важно для нашей программы строительства.
Существует «настоятельная необходимость,— говорится в докладе,— внимательной переоценки всей программы развития атомной - энергетики Соединенных Штатов Америки. Такой пересмотр ясно определит задачи программы как с точки зрения перспективных национальных интересов Соединенных Штатов, так и с точки зрения современных внешнеполитических задач страны».
Нынешний курс был принят исходя из обстоятельств, существовавших в прошлом. Факторы, диктовавшие проведение этого курса, изменились, следовательно, программа и политика также должны быть изменены с учетом происшедших перемен.
Принимая во внимание факты, которые стали известны после утверждения закона об атомной энергии в 1954 г. относительно технической сложности, высокой стоимости и необходимости международного сотрудничества в работах по использованию атомной энергии, стало очевидным, говорилось в заявлении Ассамблеи, «что в настоящее время существует еще большая необходимость в государственной помощи и государственном руководстве». Быстрое развитие прогресса «требует, чтобы Комиссия по атомной энергии проявляла больше инициативы в руководстве работами». Участники конференции пришли к выводу, что Комиссия должна быстро разработать и распространить тщательно скоординированную программу деятельности государственных и частных учреждений и обеспечить для них необходимую финансовую поддержку.
Ассамблея пришла к выводу, что в интересах страны нельзя, чтобы осуществление программы атомной энергии сдерживалось разногласиями по вопросу о соотношении между государственным и частным секторами в атомной энергетике. В настоящее время, указывалось в докладе, «и государство, и частное предпринимательство имеют общие, а не противоположные интересы в развитии программы». Эти обстоятельства могут обеспечить их мирное сотрудничество, поэтому «необходимая государственная помощь должна оказываться и государственному, и частному сектору без дискриминации».