Невидимый современник

Лучник Николай Викторович

Глава VI

Мрак рассеивается

 

 

 

О женских ножках

— И за что я могла зацепить этот проклятый чулок, ума не приложу! — сетует огорченная жена. — Ты не трогал их? — спрашивает она, в тщетной надежде найти виновного.

Модные женские чулки обладают удивительным свойством быстро выходить из строя, и притом в самое неподходящее время. Как раз нужно собираться в гости, и выясняется, что нет ни одной целой пары. Надежда только на то, что галантерейные магазины по дороге еще не все закрыты.

Обыкновеннейшая история, которая, однако, достойна постоянного удивления. Ведь капрон — одно из прочнейших искусственных волокон. Рыбакам стало жить гораздо легче, когда появились капроновые сети, ведь они почти вечные. Беда, что на дамские чулки идет гораздо более тонкое волокно, которое ничего не стоит порвать.

Чулки бесповоротно испорчены потому, что их владелица за что-то слегка зацепилась. Она и сама этого не почувствовала. Если была бы без чулок, не заметила бы и ничтожной царапины на ноге. А если бы царапина была побольше — такая, от которой больно и из которой идет кровь? Даже самая завзятая модница не сокрушается, что испортила ноги. Она знает: через неделю от этой царапины не останется и следа. Вот это и есть самое удивительное, на что я хочу обратить ваше внимание. А вспомните детство. На что были похожи ваши коленки! Не только у мальчишек, у девочек тоже. Но прошло время, и от ссадин, царапин, начисто отодранных кусков кожи не осталось даже воспоминания. И если это ножки возлюбленной (бывшая сорвиголова!), можно писать стихи об их стройности и белизне!

С одной стороны капрон — один из прочнейших полимеров, изобретенных химиками, с другой — нежная женская ножка. Первый боится чуть ли не вздоха, а второй — ничего не страшно. Все дело в том, что любое, самое маленькое повреждение в прочнейшем полимере таким и остается, оно может только усилиться, а на нашем теле залечивается.

Но у человека по сравнению с другими живыми организмами способность к регенерации (восстановлению утраченных частей) развита очень слабо. Возьмите, например, пятилучевую морскую звезду и отрежьте один из лучей. Он отрастет заново (пятая часть тела!). А что будет с отрезанным лучом? От него отрастут четыре новых. Можно разрезать звезду на пять частей, и из каждой через некоторое время может вырасти по целому животному…

Но способны ли живые организмы восстанавливаться от нарушений, вызванных ионизирующими лучами? А почему бы и нет? Чем особенным отличаются эти повреждения от любых других?

Посмотрите на делянки с горохом, выросшим из семян, облученных разными дозами. Чем выше доза, тем меньше растений, хотя на каждую делянку высажено совершенно одинаковое число семян. Но что это? На делянке всего три растения, но каких! У каждого из них не по одному, а от трех до пяти стеблей, и они втроем покрывают своими побегами всю площадь, на которой могли бы расти полсотни нормальных необлученных растений. Еще больше мы удивимся, узнав, что семена, из которых выросли эти растения, были облучены очень высокой дозой.

Если разобраться, ничего удивительного нет. Доза была очень высокой: в большинстве семян зародыши погибли. Немногие оставшиеся живыми имели вначале жалкий вид, у них была полностью разрушена точка роста (она особенно чувствительна к радиации). Но из-за той замечательной способности живых существ восстанавливаться, о которой идет разговор, организм образовал новые точки роста, причем не одну, несколько, и каждая из них дала стебель. А так как большинство окружающих растений погибли, оставшиеся в живых оказались в лучших условиях и на просторе бурно разрослись.

Это восстановление организмов. Часть клеток гибнет, но оставшиеся в живых начинают усиленно делиться и восполняют потерю, иногда даже с избытком. А могут ли восстанавливаться сами клетки?

Да, могут. Большинство внутриклеточных повреждений, вызываемых радиацией, восстановимы. Одной из радиочувствительных систем клетки является так называемая система окислительного фосфорилирования. Она окисляет («сжигает») питательные вещества, попавшие в клетку, и превращает выделившуюся энергию в форму, удобную для дальнейшего использования. Эта система повреждается довольно низкими дозами, причем изменение наступает почти сразу после облучения. Но проходит совсем немного времени, и клетка снова начинает работать нормально. Впрочем, мы уже знаем, что биохимические повреждения довольно легко восстановимы.

Самое важное из повреждений живой клетки — изменение ее наследственных свойств. Восстановимы ли генетические повреждения? Как нарочно, этот вопрос оказался наиболее трудным. Исходя из того, что известно о механизме действия лучей на хромосомы, не было, казалось, никаких оснований ожидать, что их повреждения обратимы. О том же говорили и многочисленные опыты.

Но в 1949 году было сделано важное открытие, правда касавшееся не ионизирующих лучей. Как это нередко бывает, независимо друг от друга несколько ученых — Ковалев в Советском Союзе, Дюльбекко и Кельнер в Соединенных Штатах — установили, что если клетки, облученные ультрафиолетовыми лучами, осветить видимым светом, то большая часть их восстанавливается. Это явление назвали фотореактивацией. Генетические повреждения тоже реактивируются. Но при облучении ионизирующей радиацией никакой фотореактивации не было. Стали считать, что генетические повреждения, вызванные ионизирующими лучами, необратимы. И так было в течение целого десятилетия.

Восстановление?

Мы с Володей крупно разругались. И было из-за чего! Впрочем, судите сами. Что, я хуже него физику знаю или Эйнштейна не читал?

Володя оправдывался, как мог. Впрочем, нет, он не оправдывался. Он нападал на меня за неясные выражения, за то, что формула в статье дана без подробного вывода и ее можно с полным правом истолковать так, как это сделал Юра. Словом, валил все на меня.

В то время Володя опубликовал вместе с Юрой статью, где приписал мне то, чего я никогда не утверждал и не думал. Мало того, приписанное мне прямо противоречило тому, до чего мы вместе договорились еще в 1958 году. Правда, мы быстро пришли к общему знаменателю и помирились. Я вспомнил об этом случае только потому, что он показывает, насколько предмет нашего спора был непростой. Ведь спорили не противники, а единомышленники.

С Володей я познакомился очень давно, сначала заочно, а потом и очно. Однажды в наш институт приехал из Москвы известный биофизик Борис Николаевич Тарусов, профессор университета. Моей работой по пикам смертности он заинтересовался.

— А ведь знаете, — говорил он мне, — такая же картина наблюдается не только у млекопитающих. Один из моих аспирантов, Володя Корогодин, занимается облучением дрожжей, и у него получается, что дрожжи погибают тоже через вполне определенные сроки: либо вообще без деления, либо разделившись только один-два раза, либо дав колонии в несколько десятков клеток. А у Гены Поликарпова сходные результаты в опытах с гидрами.

Мне было очень интересно. Вот бы познакомиться с этими ребятами! С тех пор прошло очень много времени. И Владимир Иванович Корогодин и Геннадий Григорьевич Поликарпов теперь уже давно знакомые мне доктора наук, а Поликарпова даже избрали в члены-корреспонденты Украинской Академии наук.

С обоими я познакомился летом 1958 года на нашей биостанции. Геннадий к тому времени занялся уже другими, более далекими от моих интересов вопросами, а Володя продолжал облучать дрожжи. О многом нам нужно было поговорить. Это мы и делали, часами бродя по лесной дороге, ведущей на перевал, или лежа на берегу озера.

Я рассказывал о странных результатах, которые получались в опытах с семенами гороха. У меня (как и у некоторых других радиобиологов) уже давно начало закрадываться подозрение, что облученные клетки могут иногда восстанавливаться от повреждений, вызванных радиацией. В пользу этого свидетельствовали некоторые косвенные данные, полученные разными авторами в разных странах. Но, должен признаться, подозрение не очень-то крепкое, и я не спешил его проверять. Но… не было бы счастья, так несчастье помогло.

В 1955 году наша лаборатория переехала в другой город. Все пришлось организовывать заново. Вначале даже облучать нечем было. Но не сидеть же без дела. Случайно с нами оказался мешочек с облученными семенами гороха. Когда-то хотели ставить опыт, что-то помешало, а семена так и не выбросили. Пока идет организация лаборатории, можно попробовать проверить старую идею. Надежды на успех мало, тем более что семена облучены два года назад, но почему бы не поставить опыт, когда есть для этого время?

Старые семена разделили на три партии. Одну из них намочили в воде, а две другие — в растворах цистеина разной концентрации. Через сутки, как и полагается в опытах с горохом, семена переложили на влажный песок, а еще через двое суток стали изучать облученные клетки под микроскопом. Посмотрели в микроскоп и удивились: предположение, в которое сами не очень-то верили, подтверждалось. В семенах, намоченных в цистеине, процент делящихся клеток был значительно выше.

С этого началось. Когда установили излучатель, то первым делом мы решили посмотреть, что будет, если поставить такой же опыт, но выдерживать семена после облучения не два года, а более короткое время. Избрали срок двое суток. В этом опыте результат оказался еще более разительным. Не только восстанавливался нормальный темп клеточного деления, подавленный облучением, но и уменьшалось число хромосомных мутаций, причем очень значительно, примерно вдвое.

Это было настолько интересно и неожиданно, что прежние планы были отставлены и мы со Львом Царапкиным взялись за изучение нового явления. Об этих опытах я и рассказывал Володе Корогодину.

— Такие результаты, — говорил я, — можно объяснить, только если верить в способность хромосом к восстановлению повреждений, вызванных облучением. В покоящихся семенах, где все процессы, в том числе и развитие поражения, идут медленно, мы можем повлиять на судьбу первичных повреждений. Правда, хотя других объяснений я не вижу, как-то трудно в это поверить. Ведь во всех книгах написано, что мутации происходят непосредственно во время облучения и сразу в окончательной форме. А если восстановление существует, то всю радиобиологию придется переписывать заново.

— А ты знаешь, — отвечает Володя, — я сам не могу спать спокойно из-за тех же сомнений. Мы тоже получаем результаты, которые можно объяснить только пострадиационным восстановлением, хотя в него никто не верит.

Да, восстановление!

И Володя (он же Владимир Иванович Корогодин) рассказал следующее.

Он по-прежнему работал на дрожжевых клетках. Обычно клетки сразу после облучения сеют на твердую питательную среду и через некоторое время смотрят, сколько образовалось колоний. А Корогодин попробовал высевать облученные клетки не сразу, а через сутки. Чтобы клетки в течение этого времени не делились, их держали в воде. И во всех опытах получалось одно и то же: выдержанные клетки давали больше колоний, чем посеянные сразу. Напрашивалась мысль, что за время между облучением и посевом клетки успевают восстановиться от повреждений. Но это противоречило общепринятым взглядам. Потерю дрожжевыми клетками способности образовывать колонии связывают с возникновением мутаций. Следовательно, и опыты Корогодина свидетельствовали о том же самом: первичные генетические изменения обратимы.

С тех пор прошло десять лет. Изучение пострадиационного восстановления уже имеет историю. В течение всего этого времени оно стояло в центре наших интересов, теперь исследованием восстановления занимаются во множестве лабораторий.

Для меня и Володи наша встреча сыграла важную роль. Она прибавила каждому уверенности, и мы окончательно решили: пострадиационное восстановление существует. Нашли на озерном пляже большой гладкий камень и тут же написали статью, которая через некоторое время была напечатана в журнале «Биофизика».

Ученые коллеги отнеслись к новой идее по-разному. Через некоторое время мы узнали, что примерно тогда же такие или очень похожие мысли пришли в голову разным ученым, работавшим в разных странах и на разных объектах. Люнинг в Швеции, Кимбалл и Свенсон в США, Ауэрбах, Альпер и Тодей в Англии напечатали в конце 50-х годов (кто немного раньше, кто несколько позже) статьи, где объясняли полученные результаты пострадиационным восстановлением клеток от первичных генетических изменений. Так бывает часто. Сам ход развития науки обусловливает неизбежность открытия, и его делают, часто одновременно и независимо друг от друга, несколько человек.

А еще выяснилось, что многие авторы и гораздо раньше наблюдали пострадиационное восстановление, но давали ему иное объяснение. Все, кому приходилось облучать живые клетки и исследовать их через разное время, обращали внимание на то, что число клеток с хромосомными мутациями постепенно уменьшается. Если времени прошло столько, что клетки могли успеть разделиться несколько раз, ничего удивительного нет: поврежденные клетки погибают во время деления. Но как быть, если то же самое наблюдается и среди клеток, делящихся первый раз? Такую картину объясняли тем, что на разных стадиях жизненного цикла клетки имеют разную чувствительность. Теперь следовало считать, что уменьшение эффекта связано с восстановлением: чем дольше клетка не делится, тем у нее больше времени для залечивания повреждений.

Представление о существовании пострадиационного восстановления было настолько неожиданным и казалось настолько противоречившим общепринятым взглядам, что многие встретили его в штыки. Мы огорчались. Но скептическое отношение к нашим утверждениям имело и свою положительную сторону. Нужно было получить действительно безупречные доказательства эффекта восстановления.

И такие доказательства были найдены и мной, и Корогодиным, и другими авторами. Я не буду приводить своего доказательства, так как оно довольно сложно и требует математики. Расскажу о доказательстве, предложенном Корогодиным, оно наиболее наглядно, и ему нельзя отказать в простоте и изяществе.

Опыты с дрожжами вызвали два основных возражения. Ведь дело, может быть, вовсе не в восстановлении, а либо в том, что неповрежденные клетки за время их выдерживания делятся и к моменту посева здоровых клеток становится больше, либо в том, что поврежденные клетки лизируются, то есть, попросту говоря, умирают и растворяются и таким образом выпадают из учета. Чтобы доказать реальность эффекта восстановления, нужно было поставить опыты, которые исключали бы возможность таких объяснений.

Для опытов избрали очень высокую дозу гамма-лучей: 120 тысяч рентген. Если клетки, облученные такой дозой, сразу высевать на питательную среду, то лишь 0,2 процента их сохраняют способность образовывать колонии. Если же после облучения их в течение двух суток выдержать в воде, то колонии дают около 40 процентов клеток. Предстояло выяснить, связана ли разница с тем, что клетки при их выдерживании действительно восстанавливают способность к образованию колоний, или эффект объясняется тем, что во время выдерживания поврежденные клетки успевают погибнуть, а неповрежденные — размножиться. Как это проверить?

Дрожжевые клетки облучают в довольно густой суспензии, содержащей в одном кубическом сантиметре около миллиона клеток. Затем взвесь разбавляют водой в десять тысяч раз и на поверхность среды в каждой чашке наносят один кубический сантиметр смеси. Таким образом, в каждую чашку попадает около 100 клеток. Если эту процедуру провести сразу после облучения, то лишь в двух чашках из десяти появится после инкубации по одной колонии. Если через двое суток, то в каждой чашке будет примерно по 40 колоний. Однако, как уже сказано, этот эффект можно объяснять не только восстановлением, но и тем, что за время выдерживания размножились клетки, способные давать колонии.

Опыт, о котором идет речь, был поставлен несколько иначе. Взвесь клеток в воде сразу после облучения и разбавления разлили по отдельным пробиркам — по одному кубическому сантиметру в каждую, а через двое суток содержимое каждой пробирки перенесли в чашки с питательной средой. После инкубации во всех чашках выросло большое число колоний — в среднем по сорок на чашку, как и в обычных опытах. Если бы эффект выдерживания сводился только к размножению неповрежденных клеток, следовало бы ожидать совершенно иного результата: в большинстве чашек не должно было бы быть вообще колоний, а примерно в двух из десяти их должно было бы вырасти очень много.

Вряд ли полученные результаты можно объяснить иначе, чем восстановлением клеток от повреждений.

Вмешательство в природу

Повлиять на судьбу первичных лучевых поражений… Эта заманчивая задача оказалась вовсе не такой сложной. Ведь эффект пострадиационного восстановления был открыт в опытах, где под влиянием тех или иных условий наблюдаемое повреждение уменьшалось.

В первых экспериментах применялось намачивание после облучения в растворах цистеина. При этом уменьшался процент клеток с хромосомными мутациями, вызванными облучением. Казалось, что нам очень повезло: первое же вещество, которое мы испытали, дало желаемый эффект! Хотелось найти еще какое-нибудь вещество, обладающее сходным действием. Поставили опыт, где облученные семена намачивали в растворах разных аминокислот — веществ, родственных цистеину. Ничего подобного мы не ожидали. Все, абсолютно все аминокислоты дали такой же эффект, как и цистеин.

Разные аминокислоты уже испытывали раньше в качестве защитных веществ, то есть непосредственно перед облучением. Большинство не вызывало никакого эффекта, а остальные по степени защиты заметно уступали цистеину. А здесь все аминокислоты оказались равноценными. Как будто бы следовал вывод о том, что способность оказывать защиту свойственна лишь цистеину, а влияние на скорость пострадиационного восстановления — общее свойство аминокислот.

Для проверки этого вывода ставится новая серия опытов, где используются растворы представителей самых разнообразных классов химических веществ. И здесь результат оказывается неожиданным: снова все вещества дали примерно одинаковый эффект. Ускоряли восстановление такие непохожие друг на друга и простые вещества, как спирт и поваренная соль.

Это уже переставало быть интересным — искать вещества, ускоряющие восстановление. Слишком уж их много и вряд ли их сравнение поможет что-нибудь сказать о механизме восстановления. Теперь более заманчивым казалось найти вещества, которые бы замедляли восстановление либо ускоряли, но значительно больше, чем цистеин и его многочисленные собратья.

Поисками занялся Лев Сергеевич Царапкин, с которым мы ставили первые опыты по восстановлению. Он испытал десятки различных веществ и нашел все, о чем только можно мечтать. Есть средства, не влияющие на процесс восстановления, усиливающие его, подобно цистеину (таких больше всего), тормозящие восстановление, оказывающие значительно больший эффект, чем цистеин. Тут уже было над чем подумать.

Набор наиболее интересных веществ, и тормозивших восстановление и дававших «сверхзащиту», оказался не случайным. Обе группы связывала одна общая черта: все они имели то или иное отношение к клеточной энергетике. Отсюда следовал вывод: для восстановления нужна энергия, значит, восстановление — результат активной деятельности клетки. О том же самом говорили и данные совершенно других исследований — статистических. Такие несхожие науки, как биохимия и математика, дополняли друг друга.

В опытах по восстановлению хромосом обычно сравнивают либо процент клеток, имеющих мутации, либо среднее число мутаций на одну клетку. Оба эти показателя приводят, как правило, к совпадающим выводам. Мы попробовали, кроме того, использовать еще и третий показатель: среднее число повреждений на клетку. Результаты получились довольно неожиданные. Почти всегда, когда дополнительное воздействие изменяло число клеток с мутациями (и, конечно, общее число мутаций), степень повреждения отдельных клеток оставалась постоянной. Выходило, что при пострадиационном восстановлении уменьшается только число поврежденных клеток.

Этот тип восстановления назвали поклеточным. Он говорил о том же, что и сравнительный анализ влияния разных веществ: процесс восстановления связан с жизнедеятельностью всей клетки в целом.

Но как же конкретно происходит восстановление? К чему сводится его механизм? Вопрос очень непростой. Ведь даже предположить что-то о механизме восстановления можно, сначала узнав, что представляют собой первичные наследственные повреждения.

Химия гена

Первое слово о химической природе гена сказано очень давно, когда и самого слова «ген» не существовало. Мендель уже успел открыть свои законы, но они еще не были никому известны, так как дело происходило еще до их переоткрытия, зимой 1893/94 года в Москве.

Строение клетки к тому времени изучили уже довольно хорошо. Были известны хромосомы, их поведение при делении клеток, при оплодотворении. Даже не зная ничего о законах Менделя, можно было думать о том, что хромосомы играют важную роль в явлениях наследственности. И кое-кто из ученых именно так и думал.

Той же точки зрения придерживался и профессор зоологии Московского университета Михаил Александрович Мензбир. И этому он посвятил свой доклад на IX Всероссийском съезде естествоиспытателей и врачей. Он говорил о последних достижениях в исследовании живой клетки, о существующих в связи с этим гипотезах, о своих собственных взглядах…

По счастливой случайности на докладе присутствовали два человека, которых там могло бы и не оказаться. Один из них хотя и был ученым, но не имел никакого отношения к биологии. Он был профессором химии. Второй же, хотя и имел отношение к биологии, был в то время всего-навсего студентом.

Профессора химии звали Александр Андреевич Колли. Он сопоставил новейшие успехи биологии, о которых рассказывал Мензбир, с последними достижениями химии и пришел к парадоксальному выводу, которым тут же в прениях по докладу и поделился со слушателями. Размеры головки спермия (в котором, естественно, должны быть упакованы все наследственные задатки, достающиеся зародышу от отца) Колли сравнил с вычисленными им размерами белковых молекул. Получалось, что за все наследственные признаки ответственно относительно небольшое число молекул.

Это было настолько фантастично, настолько опережало свое время, что большинство биологов просто пропустили слова химика мимо ушей. Может, эта мысль оказалась бы и вообще забытой, погребенной в стенограммах заседаний съезда, если бы не один из студентов, присутствовавших на заседании. Он запомнил ее на всю жизнь, и она в значительной мере определила его собственное будущее.

Фамилия студента была Кольцов. Позже он стал крупнейшим ученым, академиком Николаем Константиновичем Кольцовым. Основным направлением его работ было изучение физико-химических основ строения и жизнедеятельности клетки. В 1927 году на III Всесоюзном съезде зоологов, анатомов и гистологов он выступил со своим знаменитым докладом: «Физико-химические основы морфологии». В нем он подводил итоги многолетних исследований и высказывал некоторые новые мысли.

Самым замечательным было то место доклада, где Кольцов высказал гипотезу о «размножающихся молекулах». Основа жизни — белковые вещества. Как они построены, в то время было известно очень плохо, знали только, что они очень сложны. Кольцов пришел к выводу, что молекулы такой степени разнообразия и сложности не могут образовываться иначе, чем путем самовоспроизведения.

В дополнение к известным принципам: «Все живое от живого», «Каждая клетка от клетки» и «Каждое ядро от ядра», он выдвинул новый: «Каждая молекула от молекулы» (имелась в виду белковая молекула). Нетрудно догадаться, что при этом речь шла одновременно и о химической природе генов и об их возникновении. Кольцов нарисовал довольно детальную картину того, как устроены гены, как они работают и как размножаются. Развитие науки показало, что он во многом оказался прав.

Ошибся Кольцов только в одном — в том, что ген имеет чисто белковую природу. Впрочем, иначе в те времена и думать было нельзя, так как других веществ, достаточно сложных, чтобы они могли играть роль генов, не знали.

Но теперь, наверно, уже никому не нужно объяснять смысла сокращений ДНК и РНК, казавшихся еще недавно такими таинственными. Все знают, что так обозначают две разновидности нуклеиновых кислот — веществ, играющих важнейшую роль в явлениях наследственности.

Еще недавно считали, что нуклеиновые кислоты устроены очень просто, и думали, что они играют в жизни клетки какую-то весьма второстепенную роль. Но к началу 50-х годов стало накапливаться все больше данных, говоривших о том, что именно нуклеиновым кислотам принадлежит в явлениях наследственности живых организмов ведущая роль.

Так, довольно давно было известно, что вытяжка из убитых бактерий одного штамма вызывает направленные наследственные изменения в потомках другого штамма, если ее добавлять к среде, на которой разводят бактерий. Теперь установили, что активным началом этих экстрактов является нуклеиновая кислота.

Примерно тогда же был изучен механизм заражения бактерий фагами (бактериальными вирусами). Фаг устроен очень просто: он состоит из белка и нуклеиновой кислоты. Оказалось, что при заражении внутрь бактериальной клетки проникает только нуклеиновая кислота. Белок остается снаружи. И тем не менее через некоторое время внутри бактерии появляются новые фаги, в состав которых входит и специфический фаговый белок.

Еще более ясные результаты получились с чистой нуклеиновой кислотой, выделенной из вируса мозаичной болезни табака. Втерли это вещество в листья здоровых растений, и они заболели. Внутри их клеток появились болезнетворные вирусы…

Примеров достаточно, чтобы задуматься. Но как же быть с тем, что нуклеиновые кислоты так просто устроены? Однако и на химию нуклеиновых кислот к тому времени стали смотреть несколько иначе, чем раньше. Раньше считали, что существует лишь две разновидности нуклеиновой кислоты: дезоксирибонуклеиновая кислота (ДНК), находящаяся в хромосомах, и рибонуклеиновая кислота (РНК), находящаяся преимущественно в рибосомах — мельчайших цитоплазматических гранулах, в которых идет синтез белка. Но это мнение пришлось изменить. Московский биохимик, ныне академик, Андрей Николаевич Белозерский доказал, что нуклеиновые кислоты обладают видовой специфичностью: у всех живых существ нуклеиновые кислоты различны. К тому же выводу пришел и американец Эрвин Чаргаф.

Кроме того, стало известно, что неповрежденные нуклеиновые кислоты достигают огромных размеров и строение их таково, что они могут обеспечить не меньшее разнообразие, чем белки.

Словом, к началу 50-х годов и биологические и химические данные о нуклеиновых кислотах были таковы, что оставалось ждать решающего открытия.

Магическая спираль

Решающее открытие произошло в 1953 году. Сделали его двое ученых — англичанин Френсис Крик и американец Джемс Уотсон, работавшие тогда вместе. Открытие касалось строения молекул дезоксирибонуклеиновой кислоты (ДНК), той самой, что является составной частью хромосом.

Анализируя данные рентгеноструктурного анализа, Крик и Уотсон пришли к выводу, что молекула ДНК состоит из двух параллельных нитей, завитых в спираль. Самым замечательным было то, что порядок нуклеотидов («кирпичиков», из которых сложены гигантские молекулы нуклеиновых кислот) в одной нити полностью определяет их порядок в другой. Поэтому, если нити разойдутся, то к каждой из них могут пристроиться только такие же нуклеотиды, какие составляли отошедшую нить. Получатся две одинаковые молекулы, в точности подобные исходной.

Да ведь это размножающиеся молекулы, которые, согласно Кольцову, должны лежать в основе жизненных явлений! Правда, оказалось, что этим свойством обладают не белки, как можно было думать в середине 20-х годов. Но как же с белками? Ведь они лежат в основе жизненных явлений.

Через несколько месяцев в том же самом английском журнале «Природа», где была напечатана статья Крика и Уотсона, появилась заметка русского физика, живущего в США, Георгия Антоновича Гамова. Анализируя модель ДНК, предложенную Криком и Уотсоном, он делал вывод, что эта молекула может не только размножаться, но и определять строение белков.

Итак, появились две работы, как будто намечавшие путь, на котором можно найти решение величайшей загадки жизни. Хотя обе статьи были очень небольшими (каждая из них занимала меньше страницы), они сразу стали в центре внимания ученых.

И способность молекул ДНК к размножению и способность их определять строение белков были в 1953 году всего лишь гипотезами. Основанием для такого предположения послужили данные о довольно своеобразном строении молекулы ДНК и общие соображения о ее генетической роли. Поэтому первая задача состояла в том, чтобы проверить смелые гипотезы Крика и Гамова. Но вскоре обе гипотезы подтвердили экспериментально.

Тогда возникли вопросы: а как именно нуклеиновые кислоты определяют специфичность белков? Какую роль в белковом синтезе играют нуклеиновые кислоты? Ждать пришлось недолго. Сейчас на оба эти вопроса есть достаточно ясные и подробные ответы.

Настоящий штурм гена начался в 1961 году. В Москве собрался V Международный биохимический конгресс. На одном из заседаний молодой и тогда мало кому известный американский биохимик Маршалл Ниренберг сообщил, что ему удалось осуществить синтез белка в пробирке, вне живой клетки.

Чтобы получить белок, Ниренбергу пришлось взять смесь аминокислот — строительных «кирпичей», из которых состоят белки, кое-какие биологически активные вещества и… нуклеиновую кислоту.

Нуклеиновая кислота была трех сортов: рибосомная, та РНК, что содержится в частицах, где происходит сборка белковой молекулы; транспортная РНК, молекулы которой присоединяются к «кирпичам» и тащат их туда, куда нужно; и, наконец, информационная РНК, определяющая порядок, в каком нужно складывать «кирпичи». Все три типа РНК образуются в хромосомах под влиянием находящейся там ДНК. Собственно говоря, они представляют собой слегка измененные копии отдельных участков хромосомной ДНК.

Самое замечательное в опытах Ниренберга было то, что белок синтезировался и тогда, когда брали искусственную информационную РНК, такую РНК, которая не похожа ни на одну из ее природных разновидностей. Конечно, и белок при этом получался непохожий ни на один белок, знакомый биохимикам.

Эти опыты положили начало расшифровке генетического кода — алфавита наследственности. Белки содержат до 20 разных аминокислот. В постройке же нуклеиновых кислот участвует всего четыре нуклеотида. Это не должно нас удивлять. Ведь с помощью азбуки Морзе можно зашифровать любые буквы любого языка, и в придачу к ним цифры и знаки препинания. А ведь азбука Морзе состоит всего лишь из двух знаков — точки и тире. Но, конечно, из-за этого приходится, как правило, на каждую букву брать по нескольку знаков телеграфной азбуки.

Расшифровать генетический код — значит узнать, какие группы нуклеотидов соответствуют каждой из 20 аминокислот. Первая такая группа была найдена Ниренбергом в работе, о которой он докладывал в Москве.

Теперь генетический код уже расшифрован. А одной из наиболее быстро развивающихся наук стала молекулярная генетика, изучающая физико-химические основы наследственности.

Одним словом

Если бы нужно было выбрать одно слово, наиболее характерное для современной биологии, то этим словом оказалось бы прилагательное «молекулярный». Зайдите в книжный магазин, и вам бросятся в глаза с переплетов и корешков новых книг заглавия: молекулярная биология, молекулярная генетика, молекулярная биофизика, молекулярная биохимия, молекулярная эволюция, молекулярная патология… Молекулярная, молекулярная, молекулярная… Конечно, отчасти это дань моде, так как некоторые из этих книг по своему содержанию ничем существенным не отличаются от выходивших десять и двадцать лет назад, под совсем другими, скромными названиями. Но дело, конечно, не только в моде, или лучше сказать, что мода эта не случайная. Биология теперь, впервые за несколько веков своего существования, подошла к изучению молекулярных основ жизненных процессов. Поэтому вполне понятно стремление биологов связать изучаемые ими явления с тем, что происходит на молекулярном уровне.

Особенно естественно такое стремление для радиобиологии. Ведь в основе всех биологических эффектов радиации лежит взаимодействие ионизирующих частиц с молекулами живого вещества, даже не с молекулами, а с отдельными составляющими их атомами.

Наше путешествие по радиобиологии подходит к концу. Мы не только узнали, какие изменения производит ионизирующая радиация в живых организмах, но даже почему они происходят. Пора бы, казалось, поговорить и о молекулярных нарушениях, которые лежат в основе радиобиологических эффектов.

Но, увы, хотя это кажется вполне уместным, многого мы сказать не можем. Исследование молекулярных основ радиобиологии только начинается.

Как ни странно, но до сих пор наша наука еще не имеет прямых указаний на то, какие именно молекулярные повреждения наиболее существенны для биологических эффектов. Догадываться можно о многом, но прямых доказательств пока нет. Действительно, если ведущая роль в лучевом поражении принадлежит изменениям наследственного аппарата клеток, а «веществом наследственности» является нуклеиновая кислота, то очевидно, что наиболее важными должны быть нарушения, производимые облучением в молекулах ДНК.

Но хотя роль поражений молекул ДНК кажется довольно очевидной, прямых доказательств почти нет. И это несмотря на то, что нуклеиновая кислота находится под сильным подозрением уже по крайней мере лет двадцать.

До самого недавнего времени все попытки вызвать в молекулах ДНК какие-нибудь изменения с помощью ионизирующих лучей приводили к одному и тому же результату: чтобы вызвать сколько-нибудь установимые изменения, нужны очень высокие дозы радиации — сотни тысяч, миллионы, редко десятки тысяч рентген, то есть во много раз превосходящие «биологические» дозы.

Но живой организм гораздо более чувствительная система, чем любые лабораторные приборы. А методы изучения молекул были недостаточно чувствительны, чтобы обнаружить происходящие в них изменения. В последние годы положение существенно изменилось, и ученые могут определять в молекулах нуклеиновых кислот и нуклеопротеидов (комплексов нуклеиновых кислот с белками) изменения при облучении их дозами порядка тысяч, а иногда даже сотен или десятков рентген. Такие возможности открылись совсем недавно, и, хотя исследования ведутся широким фронтом, точки над «и» еще не поставлены. Но нужно надеяться, что произойдет это довольно скоро.

Я расскажу в качестве примера лишь об одном направлении работ. Выбор мой определяется тем, что наиболее хорошо знакомо, так как большая часть работ, о которых пойдет речь, проведена в нашей лаборатории.

Самое первое, что ученые обнаружили при облучении растворов ДНК, было изменение их вязкости. ДНК представляет собой длинные нитевидные молекулы, и потому растворы ее отличаются очень высокой вязкостью. Чем длиннее нити, тем выше вязкость раствора. После облучения вязкость уменьшается, причем тем больше, чем выше примененная доза. Совершенно ясно, что в основе падения вязкости лежит фрагментация молекул.

Как хорошо, можете подумать вы, фрагментация молекул, фрагментация хромосом… А хромосомы как раз состоят из этих молекул. Все ясно! Подождите радоваться. Все было бы действительно хорошо, если бы дозы, вызывающие первое заметное падение вязкости, были в тысячу или хотя бы в сто раз меньше. А так получается слишком большая неувязка.

Но молекулы ДНК построены довольно своеобразно. Каждая молекула представляет собой двойную нить, закрученную в спираль. Стало быть, чтобы разорвать молекулу, нужно порвать две нити, и падение вязкости связано с двойными разрывами. Возможно, одиночные разрывы возникают при значительно меньших дозах? Может быть… Но как это проверить? Ведь одиночный разрыв никак не сказывается на свойствах молекулы. Вот если бы раскрутить двойные спирали, поместить в раствор отдельные ниточки и померить его вязкость! Тогда все стало бы ясно.

Идея далеко не такая фантастическая, как может показаться на первый взгляд. Если раствор нагреть, молекулы ДНК сами по себе разделяются на отдельные нити. Правда, при остывании они снова соединяются. Однако, если раствор охладить очень быстро, то нити так и остаются разъединенными. Эта методика была использована в радиобиологических опытах московским биофизиком Павлом Иосифовичем Цейтлиным и молодым сотрудником нашей лаборатории Николаем Рябченко.

В этих опытах получалась совершенно иная картина, чем в прежних. Вязкость растворов падала при значительно меньших дозах. Не буду приводить многочисленных цифр, скажу только, что в пересчете на одно клеточное ядро облучение дозой всего в один рентген должно создавать около десяти одиночных разрывов. Здорово? Пока еще нет, потому что два важных вопроса остаются открытыми. Во-первых, опыты ставились на водных растворах ДНК, и что происходит при ее облучении в составе живой клетки — неизвестно. А во-вторых, неясно, какую биологическую роль могут играть одиночные разрывы, если они не сказываются ни на химических, ни на физико-химических свойствах молекул.

На первый из этих вопросов уже получен достаточно четкий ответ. В то время, когда я пишу эти строки, Борис Иванник собирается защищать кандидатскую диссертацию, посвященную сравнительному анализу действия радиации на нуклеиновые кислоты в водном растворе и при облучении целостного организма. Главное внимание в этой работе уделено одиночным разрывам. Много получено ответов на важные вопросы, но нас сейчас волнует ответ лишь на один из них: между первичным действием лучей на ДНК в растворе и в составе живых клеток нет никаких существенных различий.

Что же касается второго вопроса, то прямых опытов для ответа на него поставить еще не удалось. Но ответ напрашивается занятный. Напомню, как в клетке появляются новые молекулы ДНК. Возле каждой из нитей двойной спирали строится новая; в результате получаются две молекулы, в состав каждой из них входит одна старая и одна новая нить. Представим себе, что получится, если молекула с одиночным разрывом начнет размножаться. Очевидно, что возле нити с разрывом построится также нить, имеющая разрыв, и из двух новых молекул одна будет вполне нормальной, а другая — с полным двойным разрывом. Следовательно, изменения, довольно несущественные сами по себе, могут привести к плачевным последствиям при самоудвоении молекул.

Нужно заметить, что возможны и другие предположения о природе молекулярных изменений, лежащих в основе радиобиологических эффектов. Есть основания ставить под подозрение и молекулярные сшивки, то есть соединение нитей друг с другом, и связи между нуклеиновой кислотой и белком, и еще кое-что. Все эти изменения вызываются ионизирующими лучами и могут быть увязаны с биологическими эффектами.

Эти исследования — передний край науки, и, как всегда на переднем крае, работа здесь идет быстро. Не исключено, что к тому времени, когда книжка появится на прилавках магазинов, ответ на вопрос о природе первичных молекулярных изменений будет уже найден.

Исправление ошибок

Открытие пострадиационного восстановления показало, что возникновение мутации не одномоментное событие, а результат сложной цепи событий, протекающих во времени. Иного, конечно, и быть не могло. Это во времена Ньютона считали возможным мгновенное действие. В XX веке мы знаем, что все процессы имеют длительность — это одно из следствий теории относительности. Правда, практически очень быстрые процессы (пусть даже идущие и гораздо более медленно, чем со скоростью света) мы, биологи, можем рассматривать как мгновенные. Но результаты опытов по восстановлению ясно указывали на то, что восстановление мутаций — процесс, с течением которого во времени нельзя не считаться.

Но что представляет собой восстановление? Изучая хромосомные мутации, ученые пришли к выводу, что первичный эффект облучения состоит в разрыве хромосом. А если так, то восстановление должно заключаться в срастании образовавшихся обломков. Такое предположение многие и делали. Ведь действительно, если результат облучения — образование разломов, то восстановление иначе и нельзя себе представить. Но кое-кому такой процесс представлялся совершенно невероятным, потому что он невозможен с физико-химической точки зрения. А раз так, то приходилось пересмотреть старый вопрос о природе первичных повреждений при образовании хромосомных мутаций.

Ученые начали ломать головы, и, как обычно бывает в подобных случаях, сразу появилось несколько гипотез. А потом, как тоже часто бывает, выяснилось, что сходные мысли высказывались уже давно.

Самым естественным было предположить, что во время облучения возникают не разломы, а лишь места, способные к разлому, — потенциальные разломы. Поскольку хромосома состоит из пучка молекул нуклеопротеида, потенциальный разлом можно себе представить как разрыв части молекул, составляющих этот пучок. В дальнейшем в зависимости от обстоятельств произойдет одно из двух: либо порвутся и остальные нити, либо порванные срастутся. В первом случае возникнет разлом, во втором произойдет восстановление. Такое предположение приходило в голову многим генетикам.

Английский ученый Ривелл выступил с другой гипотезой. Он обратил внимание на некоторые закономерности образования хромосомных обменов, которые можно было объяснить тем, что первичным событием является не разрыв, а обмен.

Но ни одна, ни другая гипотеза не могли объяснить тот удивительный факт, что при облучении хромосом в делящихся клетках никаких изменений, которые можно было бы сразу же заметить, не возникает. Можно направить на отдельную хромосому микропучок ионизирующих лучей (микропучок необходим для того, чтобы не убить клетку) и дать очень большую дозу. Но даже совершенно фантастическая доза в миллион рентген хромосому не ломает. А в самых обычных опытах при облучении клеток незадолго до деления эффективность воздействия сильно падает. Анализ кривых зависимости эффекта от стадии, на которой происходит облучение, показывал, что переход первичных изменений в окончательную форму приурочен к определенному периоду в жизни клетки. Он соответствовал окончанию удвоения содержания ДНК в ядре, то есть совпадал со временем образования новых хромосом.

Эти факты приводили к мысли о том, что раз переход первичных повреждений в наблюдаемую форму происходит при образовании новых хромосом, значит именно дочерние структуры и являются носителями наблюдаемых изменений. Так родилась матричная гипотеза хромосомных мутаций. Первичное повреждение состоит, согласно этой гипотезе, в подавлении или изменении аутокаталитических (матричных) свойств облученной хромосомы. В результате дочерние хромосомы строятся ненормально, с ошибками. Если же ко времени образования новых структур повреждение восстановится, то синтез произойдет нормально и никаких изменений мы не заметим.

Перечисленные гипотезы родились в конце 50-х — начале 60-х годов. Однако, как выяснилось через некоторое время, весьма похожие взгляды высказывались и гораздо раньше. Еще в конце 30-х годов немецкий цитолог Бауер подробно обсуждал гипотезы, совершенно подобные тем, которые теперь имеют хождение под названиями гипотезы потенциальных разломов и обменной гипотезы, а выдающийся русский биолог, академик Николай Константинович Кольцов тогда же высказывал соображения, очень близкие к нынешней матричной гипотезе. В том, что об этих работах забыли почти на тридцать лет, нет ничего удивительного: в них просто не было надобности. А когда появились факты, противоречившие фрагментационной гипотезе, их пришлось выдвинуть заново, а потом вспомнить и о старых работах. Итак, три гипотезы… Какая же верна? На этот вопрос я не смогу ответить, потому что как раз теперь в радиобиологии на повестке дня стоит решение этого вопроса. Можно только сказать, что гипотеза потенциальных разломов меньше соответствует фактам, чем две другие. Что же касается обменной и матричной гипотез, то они друг другу не противоречат. Скорее они — две стороны одной и той же медали. Обменная гипотеза говорит о связи между фрагментами и обменами, но совершенно не затрагивает вопроса о природе первичных изменений, который стоит в центре внимания матричной.

Вряд ли может быть случайным сходство выводов, к которым пришли ученые, исследуя молекулярные изменения ДНК и хромосомные мутации. Одиночные разрывы могут проявиться только во время удвоения молекул ДНК, которое предшествует делению клетки и приходится как раз на то самое время, когда, согласно матричной гипотезе, скрытые первичные изменения переходят в мутации.

Молекулярные механизмы образования мутаций и восстановления клеток от скрытых повреждений только сейчас проясняются, но уже можно смело делать два утверждения: образование мутаций не мгновенный акт, а процесс, идущий во времени; переход первичных повреждений в наблюдаемые изменения — результат нормальных процессов клеточного цикла, проходящих с участием поврежденных хромосом. Отсюда ясно, что облучение создает лишь предпосылку для возникновения мутации. Значит, можно рассчитывать на уменьшение лучевого поражения с помощью воздействий, применяемых после облучения, иными словами — «исправлять ошибки», в то время, пока они еще не реализовались в необратимые нарушения.

Биологический усилитель

Вот теперь-то мы можем, наконец, ответить на оба основных вопроса радиобиологии:

Почему ионизирующие лучи при дозах, оставляющих в облучаемых объектах совершенно ничтожную энергию, приводят к столь большим последствиям?

Почему разные клетки, разные органы, разные виды живых организмов так сильно отличаются по чувствительности к ионизирующей радиации?

Мы уже знаем, что при облучении живых организмов особенно важную роль играет повреждение генетического аппарата клетки. Ну и что? Ген — большая молекула. С точки зрения химика она ничем не хуже любой другой большой молекулы. И у нас нет никаких оснований думать, что радиация будет действовать на генные молекулы как-нибудь иначе, чем на любые другие молекулы таких же размеров. И о том же самом говорят результаты опытов. А раз так, значит, чтобы с более или менее реальной вероятностью попасть в какой-нибудь определенный ген, нужна доза порядка миллиона рентген. И действительно, попытка вызвать с помощью облучения какое-нибудь вполне определенное наследственное изменение — задача совершенно нереальная, если не использовать методов постановки опытов, при которых можно анализировать сотни тысяч или миллионы особей. На дрозофиле и то ставить такие опыты тяжело.

Но все дело в совершенно особом месте, которое занимают гены в клетках и в организмах. В нормальных клетках содержится по два экземпляра генов каждого сорта, а в зародышевых — по одному. В хромосомном наборе тысячи генов, но все они разные: один отвечает за одни свойства организма, другой — за другие. Если разрушить одну молекулу какого-нибудь фермента, совершенно необходимого для жизни клетки, она этого и не почувствует, потому что сохранились сотни или тысячи точно таких же молекул. А повредить один ген из двух — это уже существенно. Если оторвать одну ножку у сороконожки, она будет бегать с той же скоростью, что и раньше, но если прострелить одно крыло орлу, он рухнет наземь.

И самое главное: чтобы клетка перестала нормально работать, вовсе не обязательно попадать в какой-то вполне определенный ген. Для этого достаточно повредить любой ген. Вероятность изменить какой-нибудь вполне определенный ген, облучая клетку дозой в несколько сотен рентген, исчезающе мала. Но клетка содержит очень много разных генов, и поэтому вероятность изменить любой ген оказывается не такой уж маленькой величиной. Да, впрочем, мы уже знаем об этом: сравнительно невысокие дозы вызывают мутации во вполне заметном проценте клеток.

Благодаря тому, что каждый ген играет важную роль, а каждая клетка содержит очень большое число их и, самое главное, каждый ген присутствует в клетке, как правило, лишь в двух экземплярах, очень малые (с физической или химической точки зрения) дозы способны вызывать в клетке наследственные изменения. Если мутация произошла в одной из клеток тела, на свойствах организма она скорее всего не скажется. Но если она возникла в зародышевой клетке, из которой суждено развиться новому организму, то одно и то же изменение окажется во всех его клетках и весь организм будет работать ненормально, а может быть, и вообще окажется нежизнеспособным.

Но и мутации в остальных клетках не всегда безразличны для организма. Ведь некоторые из них приводят к тому, что клетка приобретает злокачественные свойства и дает начало раковой опухоли. А накопление в отдельных клетках разных мутаций, как думают, может служить причиной преждевременного старения. Во всех этих случаях из-за той роли, которую играют гены в живых организмах, мутации, то есть ничтожные изменения, молекул, усиливаются до изменения целого огромного организма. Именно поэтому энергия, которая нагреет стакан воды лишь на один градус, приводит к столь драматическим биологическим эффектам.

Живые клетки размножаются путем деления, а каждому делению предшествует удвоение числа хромосом. В дочерние клетки попадают совершенно одинаковые наборы хромосом. Процесс этот очень важный, и для его осуществления в клетке имеется тончайший прецизионный механизм. Во время деления клетки в ней образуется так называемое веретено деления. Это структура из сократимых нитей, действительно имеющая форму веретена. На определенной стадии все хромосомы, похожие в этот период на довольно короткие палочки (в результате сильной спирализации), располагаются в одной плоскости, перпендикулярной оси веретена. Каждая хромосома расщепляется вдоль. Генетический материал для обеих дочерних клеток готов. Но как правильно распределить его?

Для этого и существует веретено. В каждой хромосоме есть одна особая точка, так называемая центромера. Здесь и присоединяются тянущие нити веретена. Они сокращаются, растягивая хромосомы к двум полюсам клетки. В результате в каждую из дочерних клеток попадает нормальное число хромосом, что является необходимым условием ее существования. Отсюда ясно большое значение того факта, что у каждой хромосомы по одной и только одной центромере.

А теперь вспомним о хромосомных аберрациях. Простейший тип аберраций — фрагменты. Хромосома разваливается на два куска, и один из фрагментов (его называют ацентрическим) будет лишен центромеры. Следовательно, во время деления клетки к нему не сможет присоединиться нить веретена, и он не войдет ни в одно из формирующих ядер. Этот фрагмент обречен: довольно быстро он растворится в цитоплазме под действием ферментов. А клетка потеряет часть генетического материала, причем не один какой-нибудь ген, а большое число генов, которые были в ацентрическом фрагменте.

Фрагмент, сохранивший центромеру (центрический), благополучно попадает в ядро одной из дочерних клеток. Через некоторое время ей приходит время делиться. Расщепляются хромосомы, в том числе и этот фрагмент. Получается два центрических фрагмента. Но концы их не вполне нормальны и могут соединиться друг с другом. Получается хромосома с двумя центромерами. В этом тоже нет ничего хорошего. К одной и той же хромосоме присоединяются две нити и начинают растягивать ее к двум разным полюсам клетки. Получается мостик между двумя ядрами, препятствующий нормальному делению клетки. Чаще всего он рвется, и в каждое из дочерних ядер попадает по центрическому фрагменту. А в новом делении снова начинается тот же цикл. Разрывы моста происходят случайным образом, и с каждым делением все больше и больше нарушается генный баланс.

И фрагменты и мосты, как правило, гибельны для клетки. В обоих случаях меняется генный баланс: вместо того чтобы содержать по два экземпляра каждого гена, клетка имеет часть генов в одинарном или в тройном количестве. И то и другое, как правило, неблагоприятно сказывается на жизнеспособности клеток.

Но фрагментация — только один из многих типов хромосомных мутаций. Часть фрагментов вновь соединяется в иной последовательности, и получаются разнообразные обмены. Их можно разделить на три группы. Прежде всего в результате обмена могут получиться хромосомы, имеющие две центромеры или лишенные центромеры. Судьба их близка к той, что была только что описана. Могут в результате обмена получиться новые хромосомы, у которых с точки зрения микромеханики все в порядке: каждая имеет по одной центромере. Такие обмены могут быть двух типов: либо изменяется распределение генов внутри одной хромосомы, либо происходит перераспределение генов между хромосомами. В обоих случаях клетка сохраняет полную жизнеспособность, но такие мутации могут сказываться на потомстве. В первом случае при скрещивании с нормальными формами подавляется кроссинговер (что не так уж существенно), а во втором значительная часть потомства оказывается нежизнеспособной. Это происходит потому, что в зародыше часть генов оказывается в ненормальном числе. Таким образом, организмы с подобными хромосомными мутациями оказываются частично стерильными.

Правила получают объяснение

Итак, с биологической эффективностью радиации вопрос прояснился. Разгадка парадокса связана с уникальностью генетических структур клетки. Единственное, что к этому нужно добавить: генетические поражения, конечно, не единственная причина биологического действия радиации, хотя наиболее изученная и важная. Эту истину не мешает повторить несколько раз, ибо ничто так не вредно в науке, как чрезмерные крайности. Преувеличение значения генетики не менее опасно, чем ее отрицание.

Остается ответить на второй из главных вопросов радиобиологии: с чем связаны различия в радиочувствительности клеток и организмов? Строго говоря, это даже не один вопрос, так как причины различий по радиочувствительности между человеком и амебой, между твердой и мягкой пшеницей, между одинаковыми клетками на разных стадиях их жизненного цикла скорее всего не одни и те же.

Различия между живыми организмами, находящимися в очень далеком родстве, и между их клетками многообразны. Очень уж по-разному организованы неклеточные, одноклеточные и многоклеточные формы жизни, животные и растения. О причинах их различий по чувствительности высказывали разные соображения. И, вероятно, каждый был в какой-то степени прав, но никто не был прав до конца. Мы займемся более простыми вопросами: различиями в радиочувствительности у близких организмов и ее изменением под влиянием сопутствующих факторов и условий. В биологическом действии радиации очень большую роль играет поражение хромосом — наследственного аппарата клетки. Поэтому естественно искать причины различий радиочувствительности у близких организмов в различиях их хромосомного набора.

Природа сама дает объект для таких исследований. Этот объект — полиплоидия. Чаще всего клетки содержат по две хромосомы каждого сорта (то есть двойной, или диплоидный, набор), но среди растений встречаются виды, клетки которых содержат по четыре набора (тетраплоиды), по шесть наборов (гексаплоиды) и т. д. Полиплоидия широко распространена в растительном мире. Некоторые группы растений даже образуют так называемые полиплоидные ряды. Например, в роде пшениц встречаются виды с 14, 28 и 42 хромосомами. К диплоидам (с 14 хромосомами) относится ряд диких видов, а также культивируемая кое-где на Кавказе и в Испании пшеница-однозернянка. К тетраплоидам относятся твердые пшеницы, к гексаплоидам — мягкие. Полиплоидные ряды — замечательный объект для изучения влияние числа хромосом на радиочувствительность. И не удивительно, что многие экспериментаторы использовали это в своих опытах.

Опыты на полиплоидах давали результаты, на первый взгляд противоречивые. При вызывании генных мутаций более чувствительными оказывались виды с меньшим числом хромосом, при вызывании хромосомных — с большим. Но этого и следовало ожидать. Генная мутация — изменение свойств одного из генов. Даже у диплоидов далеко не все генные мутации обнаруживают свое действие: им противодействует оставшийся неповрежденным другой такой же ген. А у полиплоидов — три, пять или даже больше нормальных разновидностей того же гена, которые еще надежнее маскируют возникшую мутацию.

Другое дело — хромосомные мутации. Их можно наблюдать под микроскопом. И если возник фрагмент или обмен, он будет заметен независимо от того, сколько в клетке нормальных хромосом. То же касается и действия хромосомных мутаций. Они оказывают свое влияние на судьбу клеток вследствие механических трудностей, которые создают некоторые обмены для деления клеток, и нарушения генного равновесия при потере фрагментированных хромосом. Ни тому, ни другому присутствие нормальных хромосом не препятствует.

А в какой клетке легче вызвать изменение хромосом — с 14 или с 28 хромосомами? Конечно, в клетке с большим числом хромосом: чем крупнее мишень, тем легче в нее попасть. И здесь та же доза облучения вызывает большее число хромосомных мутаций. Поэтому и при наблюдении общих эффектов, таких, как выживание, скорость роста, полиплоиды обычно оказываются более чувствительными.

Это, кстати, один из доводов в пользу того, что хромосомные мутации играют важную роль в биологическом действии радиации вообще.

Несколько лет назад американский ботаник Сперроу провел большую работу по сравнению радиочувствительности разных видов растений. Влияние радиации на рост и выживание растений сопоставляли с особенностями их хромосомного набора. Сравнение с числом хромосом мало что дает, так как разные виды отличаются не только числом, но и величиной хромосом. Ученые взяли наиболее существенный показатель — содержание ДНК на клетку, то есть количество хромосомного материала. И что же: чем больший объем в клетке занимают хромосомы, тем чувствительнее, как правило, оказываются растения. Совершенно строгой зависимости не было, и если, например, у двух каких-то растений содержание ДНК различалось в два раза, то радиочувствительность вовсе не отличалась ровно вдвое. Значит, «объем мишени» не единственный фактор, определяющий радиочувствительность, но роль его настолько велика, что связь между чувствительностью и массой хромосом не могут затушевать все другие факторы.

А причины вариаций радиочувствительности у одного и того же вида помогло выяснить открытие эффекта восстановления. Разработан метод для количественного определения числа первично поврежденных клеток. Совершенно ясно, что, применяя этот метод, можно подразделить разницу в общем эффекте на различия в первичной поражаемости и в степени пострадиационного восстановления.

Эти исследования показали, что различия в степени восстановления — самая важная причина, определяющая различия в радиочувствительности у организмов одного вида в разных условиях. И здесь эта причина не единственная, но она, по-видимому, играет ведущую роль. При этом обнаружилось, что многие случаи вариаций радиочувствительности, которые раньше объясняли другими причинами, оказались связанными с восстановлением.

Ряд работ был посвящен анализу влияния химических веществ и других дополнительных воздействий на радиочувствительность. Когда соответствующий фактор применялся после облучения, как правило, оказывалось, что он изменяет эффект, влияя на степень пострадиационного восстановления. Если же фактор применялся перед облучением, то он изменял и степень первичного поражения и степень восстановления. Результат, конечно, разумный — именно этого и следовало ожидать.

Можно было бы приводить много примеров анализа причин разных случаев изменения радиочувствительности, но я ограничусь только одним: самым известным и до недавнего времени самым непонятным. Речь пойдет об уже знакомом нам кислородном эффекте. По этому поводу напечатаны сотни работ, но ясности о механизме кислородного эффекта до недавнего времени не было. Как вы, конечно, помните, кислородный эффект был переоткрыт в пору увлечения гипотезой непрямого действия. И в те времена кислородный эффект связывали с его влиянием на выход активированной воды. Поэтому считали, что разница в биологическом действии связана с разным числом первичных повреждений, возникающих в кислородных и бескислородных условиях. А когда маятник качнулся в противоположную сторону, появилась другая гипотеза — о том, что кислород влияет только на судьбу первичных повреждений.

За выяснение механизма кислородного эффекта взялся недавно молодой радиобиолог Константин Яковенко. В отличие от предыдущих исследователей он был вооружен методом для определения числа первично поврежденных клеток, и первая же его работа стала существенным вкладом в проблему, которая казалась уже исхоженной вдоль и поперек. Прежде всего он занялся так называемым кислородным последействием. Этим не совсем удачным термином называют уменьшение эффекта, если применить бескислородные условия после конца облучения. По поводу кислородного последействия в литературе были противоречия. Одни авторы утверждали, что лишение клеток кислорода на некоторое время после облучения уменьшает их повреждение, другие не обнаруживали никакого эффекта. Косте удалось найти причину этих разногласий и указать условия, которые нужно соблюдать для получения «последействия».

А затем началось исследование механизма. Как и следовало ожидать, он для действия кислорода во время и после облучения оказался неодинаковым. Влияние кислорода после облучения объясняется только изменением степени пострадиационного восстановления. При классическом кислородном эффекте картина оказалась более сложной. Кислород влияет как на выход первичных повреждений, так и на условия их восстановления.