Химия завтра

Ляпунов Борис Валерианович

ЧАСТЬ II

В ШКОЛЕ ВЕЛИКОГО ХИМИКА

 

 

Заглядывая вперед, химик-технолог не сможет пройти мимо опыта живой природы — этого поистине Великого Химика, искуснейшего из искусных.

Что дало бы нам овладение секретами живой химии?

Если мы сможем, подобно ей, обойтись без высоких давлений и температур, значит, не понадобятся дорогие материалы, Стекло, вероятно, заняло бы на химических заводах место стали.

Высочайшая надежность? Пока она недостижима, говорят ученые. Надо еще разобраться во всех тонкостях природной кибернетики. Они не сомневаются, что со временем это удастся сделать. У нас часто пользуются выражением «умные машины», Но только природа поможет сделать их по-настоящему умными.

Наши катализаторы в сотни и тысячи раз менее активны, чем ферменты животного и растительного мира — катализаторы природные. Они еще не обладают столь высокой избирательностью — способностью ускорять только одну реакцию из многих сотен.

А ведь те же самые реакции, в которых участвуют ферменты, мы встретим и на наших химических заводах.

Мы не будем, конечно, слепо копировать природу. В сложных молекулах ферментов лишь частичка, лишь активный центр служит всему причиной. Выходит, можно создать упрощенную постройку. Биохимики выделяют ферменты из живых тканей. Химикам же придется из большого ассортимента молекул неживой материи создать искусственно подобие живого фермента. Думают даже, что в искусственных ферментах обойдутся… без белка.

Спрашивается: сравняется ли по силе действия биокатализатор искусственный с природным? Да и будет ли годиться для наших целей ферментный осколок, только одна его активная часть? И, наконец, выполнят ли свою роль так, как нужно, катализаторы, устроенные проще, чем белки?

Опыты дали утвердительный ответ. Правда, не всегда удается догнать природу, получить столь же энергичный фермент. Но ведь это сейчас, а в будущем, может быть, будет иначе! Есть к тому же случаи, когда создавали даже более активные биологические вещества, чем природные.

Сегодняшняя практика подтверждает, что соревноваться в создании ферментов с природой вполне возможно. В то же время эти успехи таят в себе загадку для теории.

Если работоспособны более простые вещества, то зачем природе понадобились такие сложности? И только ли в одной активности дело? Не выполняют ли ферменты еще какую-то роль? Не могла же искусница-природа допустить столь неоправданные излишества или какие-то просчеты!

Большинство ферментов в клетке, оказывается, сосредоточено в митохондриях — особых тельцах, разделенных перегородками. Такая конструкция непроизвольна: недаром же, если митохондрии постепенно разрушаются, они вновь восстанавливаются, и опять с теми же перегородками. По-видимому, все эти сложные сооружения составляют часть химического завода клетки.

Чтобы создать химический завод, столь же совершенный, как клеточный, биохимикам предстоит немало поработать.

Ферменты возникли в первом же живом комочке белка. С тех пор несметное число тысячелетий природа совершенствовала это свое создание, как и другие детали белковых молекул. А если создать модель химической системы, которая станет само-развиваться подобно живому белку?

Разумеется, такую эволюцию надо сжать во времени. Ее можно направить и необязательно по проторенному пути, а выбрать другой вариант, не только более короткий, но и чем-то более интересный. У природы, как мастера эволюции, тоже бывали в запасе разные варианты.

Клетка устроена одинаково у людей и животных. Но люди и животные суши не могут пить морскую воду, а обитатели моря и одна-единственная птица — альбатрос — могут. У альбатроса имеется солевая железа, клетки которой работают несколько иначе. Сложная система клеточных «насосов» опресняет воду и выбрасывает соли.

Если уж природа придумала такое хитроумное приспособление, то почему бы и человеку, создав саморазвивающуюся химическую систему, не попробовать вести искусственную эволюцию по-своему?

Сине-зеленые водоросли работают, строят белок не только на свету, но и в темноте, если к питательному раствору добавлять глюкозу. Химическое производство в них легко переналаживается. И это тоже показатель высокого совершенства. Перевести же химзавод с одного вида топлива на другой — для нас целая реконструкция.

Учителями химиков должны стать и бактерии. Как много дала бы химии будущего разгадка секретов их химического «производства»! С помощью своих ферментных систем они могут делать удивительные вещи.

Есть бактерии, которые синтезируют белки, питаясь окисью углерода, а она смертельна для человека даже в самой малой дозе. Есть бактерии, окисляющие железо, превращающие серу в серную кислоту, использующие гремучий газ, который не взрывается при этом.

Невидимки легко и просто связывают атмосферный азот в разные соединения: тот самый азот, который химики долго не могли заставить вступать в реакции и успеха добились лишь с помощью высоких давлений и температур. То, что происходит в клубеньковых бактериях, живущих на корнях бобовых растений и связывающих азот, будет воспроизведено искусственно. Тогда покажутся анахронизмом дорогие, громоздкие, огромные машины и аппараты современной химической индустрии.

Катализаторы бактериальных клеток весьма совершенны. Мы не умеем иногда получать нужный нам продукт в чистом виде, без «спутников». А бактерии способны на это.

Мы еще не умеем получать кое-какие вещества, которые легко вырабатываются бактериями. Уже тысячи химических реакций, самых разнообразных, проводят для нас микроорганизмы. В будущем мы научимся управлять, руководить их работой.

Мы наладим в широких масштабах синтез всевозможных соединений — антибиотиков и витаминов, углеводов, белков и жиров, стимуляторов роста, добычу полезного нам всюду, где оно есть. И, что очень важно, мы выведем новые виды бактерий, заставим их синтезировать именно то, что нужно нам. Новые поколения, выведенные искусственным путем, могут оказаться намного производительнее своих предков: отличий здесь не меньше, чем у домашних животных и культурных растений от диких.

Совершенно необычное применение в биохимии уже нашла вычислительная техника. Электронные машины рассчитывают рацион питания для бактерий: первый опыт, который поможет воспользоваться электроникой для управления микробиологическим синтезом. Большие биохимические заводы, производящие корма и пищу, будут управляться кибернетически.

Вполне серьезно геологи говорят уже теперь о возможности создавать месторождения руд — не за миллионы лет, как в природе, а гораздо быстрее. Бактерии в этом помогут, ибо они работники и в подземных кладовых.

Пример неожиданной проблемы, которую химия выдвигает и которую она же должна решить. Тару изготовляют из негорючей пластмассы. Поэтому уничтожить ее невозможно. Но если ввести в нее уже при изготовлении бактерии, то они потом съедят пластик.

Какой откроется простор, когда разгадают многие загадки живого!

Вот один из первых примеров удачной учебы химиков у природы.

Из крови осьминога извлекли вещество, способное собирать медь, растворенную в морской воде. Затем создали подобное вещество искусственно. Оно задерживало не только медь, но и уран, и притом полностью.

Тогда пошли еще дальше: появился еще один химический «аккумулятор» — для золота. Собрали его вроде бы очень мало — меньше полуторамиллионной доли грамма из ста литров. Но Океан велик, а технология чрезвычайно проста. Если пропускать морскую воду через небольшие плотины, поставив на ее пути химический аккумулятор, то можно добыть немало драгоценного металла.

Химики могут поучиться у природы секретам растительных конструкций. Они узнали, что растения состоят в основном из углеводов или похожих на них веществ. Эти вещества особенно подходят для создания прочных и своеобразных архитектурных сооружений. Природа умело распределила материал, применила армировку, — волокна, составляющие остов, выдерживают наибольшую нагрузку, они не менее прочны, чем сталь.

Измельчая и затем уплотняя вещества, готовя из них материал — строительный, конструкционный, — мы, по существу, берем урок у природы.

Кости и мышцы животных, стволы, стебли растений состоят из множества волокон, зерен, пленок. Поэтому материал надо, подражая природе, строить из мельчайших частичек. Сначала надо его раздробить, а потом сблизить между собой частицы, избегая опасных крупных пор и пустот.

Химическое формование тоже заимствовано у природы. Кожа, мышцы, сосуды, все живые ткани образуются не из заготовок, а получаются из первичного сырья сразу как готовое изделие. Этот способ станет одним из важнейших в химической технологии будущего.

Паутина, оказывается, изготовляется пауком точно по заказу. Для разных своих надобностей наук делает и разную нить: эластичную — для ловчей сети, прочную — для подвески, объемную, похожую на шерсть — для кокона, хранилища яиц.

Мы стремимся подражать пауку, создавая искусственные волокна, но нам это удается пока что хуже. И в поисках путей к синтетическим волокнам с заранее заданными свойствами нам стоит внимательнее присмотреться к работе паука. Он, как и шелкопряд, проделывает совсем просто то, что нам дается с большим трудом.

Возможно, химикам в будущем удастся создать искусственный белок, в котором искусственные же молекулы с заложенной в них наследственной информацией будут управлять синтезом, выращивать волокнообразные полимеры с заранее заданными свойствами. Искусственно воссоздадут происходящее в живых тканях, где молекулы, обладая наследственной памятью, руководят «строительством» белков.

Присмотревшись к шелкопряду, химики-технологи поняли, что совершали ошибку. Он не продавливает жидкую заготовку сквозь отверстие, как делают наши машины, — он приклеивает капельку к чему-либо и вытягивает нить.

Мы портим материал, ломаем молекулы, наше волокно непрочно. А шелкопряд предоставляет молекулам самим укладываться наилучшим образом — вдоль волокна, и оно становится очень прочным. Верх совершенства в таком живом химическом производстве!

Материал у него одновременно и машина. Он сам придает себе нужную структуру. И ключ ко всему этому скрыт в молекулярном механизме. Разгадав его, мы перенесем технологические принципы природы в технику. Не появятся ли тогда химические фабрики волокон без машин?

Но выяснить, что происходит в органическом мире, если смотреть на него с химической точки зрения, — далеко не все. У природы химия будет учиться создавать заменители, не уступающие оригиналам, а может быть, и превосходящие их. Паук и шелкопряд — не единственный пример. Мы уже делаем искусственную кожу и будем делать ее еще лучше.

Не удивительно ли это? Человек проникает в тайны далеких звезд и галактик, исследует глубочайшие земные недра, изучает атом. А живая природа для него до сих пор полна загадок. Птиц, насекомых и других животных и растений наберется, вероятно, миллионы видов. Работы хватит, по-видимому, не на одно поколение ученых и инженеров.

Но нас здесь интересуют лишь химики и химики-технологи. Какие уроки им может преподать мир живого?

Бабочка тутового шелкопряда может улавливать запахи, если пахучего вещества в кубометре воздуха хотя бы одна молекула! Ученые заинтересовались этой замечательной способностью и синтезировали то самое вещество, которое привлекает бабочек.

Вещество, однако, оказалось в четырех лицах, и лишь один из изомеров[1]Изомеры — вещества, имеющие одинаковый элементарный состав, то есть одну н ту же химическую формулу, но отличающиеся по своим физическим и химическим свойствам вследствие различного расположения атомов в молекуле.
в точности соответствовал природному. Бабочка безошибочно его отличала, люди же сделать этого не могли. Вот насколько бывает развито обоняние у живых существ!

Химики не преминули воспользоваться своим открытием. Искусственно созданное ими вещество уже пробуют применять для приманивания и уничтожения вредителей лесов. Задача чрезвычайно важная: ведь те ядохимикаты, которые до сих пор создавала химия, становятся бессильными, ибо насекомым удается к ним приспособиться, и новые их поколения уже не так-то просто истребить. Кроме того, ядохимикаты порой уничтожают не только вредных, но и полезных насекомых. Яды попадают в овощи, фрукты, даже в молоко и мясо.

Положение очень серьезно. Химия ищет выход и, несомненно, найдет его. Она уже пробует создавать препараты, которые помешали бы вредным насекомым размножаться, делая их бесплодными.

Что еще мы могли бы позаимствовать у «живой химии»?

Сотни запахов различает лягушка, собака — уже до миллиона, кролик — несколько миллионов. Кролика и лягушку, правда, не заставишь работать, зато собачий нюх верой и правдой служит человеку. Если бы собака попала в цех, она по запаху смогла бы определить, не начался ли износ инструмента, найти место, где протекает трубопровод.

И пытаются даже приспособить мух в качестве индикаторов — они покажут, где протекает жидкость в какой-либо гидросистеме. Говорят, что «мушиным» способом американцы испытывают надежность топливного оборудования ракет. Каковы их успехи — об этом, правда, ничего не известно…

Но важно другое. Несомненно, природа подскажет, как устроить тончайший, распознающий запахи прибор.

Любопытно, что разных запахов — десятки миллионов, Надо иметь опытный «нюх» парфюмера, чтобы различать хотя бы сотни. Распознать сложные пахучие вещества химик теперь может далеко не сразу. А что было бы, если обострить обоняние химика, дать ему в помощь искусственный нос?

Он станет контролером на парфюмерном заводе. Криминалистам заменит ищейку. На пищевом комбинате определит, свежие ли продукты. Такой «нос» следил бы за чистотой воздуха в городах и на производстве.

Запах — своего рода химический сигнал, на расстоянии рассказывающий о веществе. И попади искусственный нос в атмосферу другой планеты, он быстро определит ее состав. Этот экспресс-анализ по запаху можно передать в зашифрованном виде по радио.

Да и вообще обостренное обоняние раскрыло бы перед нами целый мир и вне Земли, и на Земле.

Разве не помог бы совершенный прибор по самым незначительным изменениям «спектра» запахов просигналить, что человек заболел? Разве не предупредили бы такие приборы о приближении опасного износа деталей, особенно там, где работают автоматы? Разве не пригодился бы опыт природы, чтобы вообще предупреждать об опасности где бы то ни было — в шахте, на химическом заводе, в кабине космического или подводного корабля?

Рыбы тоже чувствительны к запахам; они замечают в кубометре воды даже миллионную долю грамма примеси. Только поэтому лососевые за тысячи километров находят путь к местам нереста. Как они улавливают запах, мы пока не знаем. Когда же узнаем, сможем, вероятно, построить прибор для своего рода химической связи под водой.

Пусть современный электронный «нос» способен отличить всего несколько химических соединений. Его «потомки» постепенно догонят природу.

Воспользовавшись опытом природы, мы построим приборы, которые по чувствительности во много раз превзойдут современные. Тогда измерению и наблюдению станут доступны такие расстояния, колебания, количества вещества, света и тепла, которые сейчас ускользают от нас.

Подобно тому, как сверхскоростная киносъемка — лупа времени — позволила понять, сколь велико мгновение, сколь богато оно событиями, проникновение за пределы сегодняшней чувствительности приборов, видимо, приоткроет дверь в сверхмалое.

А из малого вырастает большое. Ведь только тогда, когда научились обращаться с невообразимо малыми количествами вещества, смогли открыть и изучить свойства новых элементов, получить вещество сверхвысокой чистоты, применять «меченые» атомы, разделять изотопы.

Когда научились принимать и усиливать слабые сигналы, слабые токи и свет, тем самым распахнули окно во Вселенную. Увеличилась познанная ее часть, более того: она предстала иной — Радиовселенной, Вселенной ультрафиолетового и инфракрасного излучений. И были открыты тогда темные, невидимые радиозвезды и радиогалактики, звезды, которые в обычный телескоп не обнаружить.

Так почему же не предположить, что мир живого не поможет нам приоткрыть завесу скрытого сейчас?

Химик, например, сможет точно определить, какие элементы растворены в морской воде и сколько их там. Сейчас обнаружено сорок четыре. И, несомненно, должны быть остальные. Ведь обнаруживаются же в телах морских животных те из них, какие еще не найдены в воде. Просто нет еще столь сверхтонких методов анализа, просто мы не умеем замечать и обращаться со столь слабоконцентрированными растворами.

Если вспомнить про гигантский объем Мирового океана, малое опять обернется большим. Узнав все о воде, мы сумеем тогда полностью использовать эту «жидкую руду». Она будет поставлять все элементы менделеевской таблицы.

Очень интересным органом обладают киты. Чувствительности этого живого прибора может позавидовать техника. Усатый кит питается планктоном и находит его скопления в толще вод, всегда двигаясь к нему по кратчайшему пути. Но китовая пища скапливается не всюду, а лишь в определенных местах, с определенной соленостью. Кит, очевидно, определяет с высокой точностью (до сотых долей процента!), насколько насыщена солями морская вода, а потому и находит быстро дороге к своему «пастбищу». Может быть, н «опыт» китов пригодится тем, кто изучает океанские богатства?

Поговорим теперь о другом — о хлебе насущном, о пище. В этом разговоре химия будет принимать самое активное участие. Но начнем с вещей известных и даже таких, где химия явно не выступает или выступает в своей старой роли.

Сейчас голодает либо испытывает недостаток в пище особенно белковой — более половины населения Земли.

Если бы всюду, а не только о отдельных местах разумно, по всем правилам науки, вести сельское хозяйство, то урожаи повысились бы в четыре-пять раз. В масштабе всего земного шара — резерв гигантский.

Если бы использовать под земледелие всю площадь, какую только можно занять, то продуктов питания хватило бы на 65 миллиардов человек!

А теперь, если объединить и то и другое, если на всех этих землях еще и снимать наивысшие урожаи, то Земля прокормит самое меньшее 260 и самое большее 325 миллиардов человек!

Искусственный фотосинтез — дальняя перспектива, а более близкая — управление фотосинтезом природным. Если бы мы смогли заставить растения еще лучше использовать солнечный свет, урожаи увеличились бы в несколько раз! Один процент — таков примерно к. п. д. фотосинтеза. Ученые считают, что его можно было бы увеличить, по крайней мере, впятеро!

Несколько десятков химических элементов нужны растению, чтобы оно нормально росло и развивалось. Не думайте, однако, что «несколько» — всего два или три. Точное число — больше 70, почти вся природная часть менделеевской таблицы.

Химия издавна служит поставщиком пищи растениям. Она поставляет удобрения миллионами тонн. Но все равно этого мало. Если бы, например, азотных удобрений она давала вдвое больше, то и пищи дополнительно получилось бы столько, сколько нужно на год четверти миллиарда человек!

Бактерии делают то, что пока людям недоступно — приготовляют кормовой белок, причем очень быстро и просто. Одна клеточка перерабатывает в десятки раз больше пищи, чем весит сама! Разгадав, как она усваивает атмосферный азот, мы сможем в огромных масштабах готовить удобрения из воздуха. Связывать азот воздуха помогут и ферменты, выделенные из растений.

Электрический разряд дробит молекулы, и из осколков создаются новые соединения. Причем осколки эти очень активны, легко вступают в реакцию. Так из воды и воздуха — иначе говоря, из молекул водорода, кислорода и азота — с помощью электричества можно будет получать азотные удобрения. Вода, которая идет для полива, одновременно станет и удобрять почву. Может быть, окисью азота, возникающей в воздухе при разряде искусственной молнии, можно будет насыщать поля. И, наконец, радиационная химия поможет добывать удобрения из воздуха и воды.

Возможности химии в борьбе за урожай не ограничиваются одними удобрениями.

На нас надвигается грозная опасность, и угрозу чувствует все сильнее уже современное поколение людей. Вредители и сорняки, многие бесполезные пока растения и животные мешают жить полезным. Мешают им болезнетворные бактерии и грибки. Вред, который приносят всевозможные паразиты, хищники и прочая «нечисть», созданная природой, просто неисчислим!

Только потому, что мы еще не умеем с ними бороться, мир теряет ежегодно миллиард пудов зерна.

Мы можем еще кое-как прикинуть убытки в земледелии и животноводстве. Колоссальный вред наносится не только полям, огородам и садам, но и всему растительному миру Земли. Помимо всего прочего, это ведь еще один наш пищевой резерв.

Сколько ныне диких растений станут культурными! Сколько пищи и всевозможного сырья смогут они дать!

Сейчас только единицы приручены нами: из семи тысяч злаковых растений используются только рожь и пшеница, овес и ячмень, рис и кукуруза, ну и разве что еще несколько, включая кормовые травы. И надо беречь всю флору, люди и так нанесли ей существенный урон. Грядущим поколениям придется поправить дело.

Казалось бы, борьба с вредителями идет, и успешно. В чем же причина беспокойства, в чем же опасность? В том, что яд скоро перестает быть ядом. Вредные насекомые приспосабливаются к нему, у них вырабатывается защита. И, в конце концов, как мы уже говорили, появляется потомство, которое совсем не боится нашего химического оружия. Все время должны создаваться новые и новые яды. Вот над чем придется подумать — и этим занимаются сейчас, не говоря уже о будущем.

Начав считать убытки, быстро не остановишься. Продукты портятся, и мы только еще учимся их сохранять. Сливочное масло, чтобы оно не желтело от времени, не пахло, не горчило, мы уже знаем, как защитить. Научила нас этому химия, дав вещества, предохраняющие от окисления, — антиоксиданты. Научит она защищать и другие продукты.

Преждевременное прорастание и перезревание плодов и овощей тоже наносит огромный ущерб. И здесь есть скрытый резерв, воспользоваться которым поможет химия.

Химия помогает сохранять лук и картофель так, чтобы они не прорастали. Получаются своеобразные овощные консервы. Консервировать можно будет и мясо: остановить в нем процессы разложения, и тогда оно будет свежим сколь угодно долго.

Будем искать еще резервы. Стимуляторы роста растений, вещества, помогающие снимать высокие урожаи. Безусловно, от них можно ждать многого. Количественной оценки тут пока не сделаешь. Но то, что прибавка окажется существенной, известно уже и сегодня.

Человек еще не перешел на химическую пищу, а растения пользуются ею уже давно.

Между тем, хотя испытаны многие тысячи препаратов, удобрений пока применяется несколько десятков, а ядохимикатов — несколько сот.

Химикам предстоит усовершенствовать пищу для растений. Удобрения будущего должны быть комплексными, концентрированными и, разумеется, безвредными для человека. Они одновременно и подкормят растения, и ускорят его рост, и защитят от сорняков, и предохранят от болезней.

Кроме того, будут созданы вещества, приносящие пользу иным путем. Они изменят структуру почвы, и земля станет лучше удерживать влагу и те же самые удобрения. Для растения такая помощь не менее важна, чем от самой химической пищи!

Стимуляторы роста животных, добавки, улучшающие корм, дадут дополнительно много мяса, молока, яиц.

Выведут новые микроорганизмы и кормовые растения, создадут такие, белковые препараты, которые резко повысят стойкость к заболеваниям.

Вирусы станут изготовлять по заказу для борьбы с микробами. Эти борцы с болезнями, конечно, будут безвредны для человека. А против тех вирусов, которые, наоборот, вызывают болезни, найдут необходимые лекарства — куда более сильные, чем до сих пор.

Сумеют убыстрить чередование реакций, связанных с обменом веществ, чтобы ускорить рост. Думают, что животное будет вырастать в два-три раза быстрее, а растение — в десятки раз.

Но это будущее все же далекое, а мы продолжим пока поиски в химии и биологии современной.

Вот как ученые представляют себе биохимическую фабрику кормов.

Сырье: кукурузные кочерыжки и другие растительные остатки, карбамид (азотистый продукт с химической фабрики), немного мясных отходов в качестве своего рода дрожжей (поставщиков микробов — работников этой биохимической фабрики), углекислый газ. Автоматика поддерживает нужную температуру, кислотность, перемешивает массу. И микробы принимаются за работу. Они питаются углеводами и азотом, приготовляя белковый корм. Его остается разлить в формы, высушить и, если нужно, размолоть.

Иметь корм, даже самый лучший, — еще не все. Надо, чтобы животные хорошо его усваивали, и здесь скрыт еще один химический резерв.

Оказывается, поверхностно-активные вещества помогают переваривать пищу — она лучше смачивается желудочным соком и, в свою очередь, лучше смачиваются стенки желудка и кишок. Кажется, это пустяк, но разве пустяк — прирост живого веса у кур чуть ли не на треть! Это куда больше, чем дают сейчас добавки антибиотиков.

Что, казалось бы, мог дать синтетический, искусственный запах? Только ли аромат духов? Сейчас — да, а в будущем — эффективный способ борьбы с вредными насекомыми: химическая приманка привлечет насекомых, чтобы химии же могла их уничтожить.

Здесь мы Америку не открываем, здесь, в общем, все уже известно. Дело только за тем, чтобы идти по уже проторенным путям. По самым осторожным подсчетам, опираясь только на современный уровень знаний, на современную химию и современное сельское хозяйство, можно сказать: от 60 до 85 миллиардов человек способна прокормить наша планета.

Пусть не сотни, а всего десятки миллиардов, но это не фантазия, это вполне реально. Это не потребует никаких революций. Просто за счет того, чем мы уже располагаем, удалось бы накормить население почти тридцати таких планет, как наша сегодняшняя Земля!

Надо иметь в виду и далеко идущие связи. Они не бросаются в глаза, тем более что все это необычно и химия держится здесь словно за кулисами.

Мы пользуемся уже сейчас химическими удобрениями, вводим в почву микроэлементы, даем растениям ускорители роста, в теплицах и оранжереях подкармливаем их углекислотой. Путь прямой и многообещающий, потому что удастся искуснее и шире применять его.

Но есть путь, па котором мы до сих пор не ожидали помощи от химии, — воздействие на погоду. Разве не поможет оно получать еще большие урожаи? Ведь зачастую труд людей гибнет от капризов погоды. Справиться с ними — значит обеспечить наверняка урожай.

Человечество сделает, бесспорно, из своей Земли зеленую планету. Оно освоит всю сушу, какую только можно освоить, оно по единому великому плану реконструирует Землю. Без химии, без сельскохозяйственной химии, и тут не обойтись.

Только ли удобрений, только ли микроэлементов ждет земледелие от нее? Нет, на нее возлагают большие надежды и в другом.

Химия — это земледелие без почвы, гидро- или аэропоника, как сейчас говорят. К корням растений подводят питательные вещества. Вот и все, что нужно для необычной плантации.

И можно снимать очень высокий урожай, притом не только в теплицах. Можно растения размещать в несколько ярусов, чего не сделаешь на простом огороде. Удобрения используются тогда полностью, и не приходится бояться ни сорняков, ни вредных почвенных бактерий. А уж механизации и автоматике здесь открывается широкий простор.

Всюду, где мало хорошей земли, где позволяют климат и погода (а ведь в будущем и они окажутся в наших руках), возникнут «беспочвенные» сады и огороды. Возникнет подземное земледелие, что сейчас звучит совсем уж, казалось бы, нелепо.

В пещерах — естественных и устроенных человеком — создадут подходящий искусственный климат. Температуру, влажность, даже состав воздуха — все это можно будет регулировать по заказу. Солнце заменят лампы дневного света.

Такой маленький мирок независим от того, что творится на поверхности. Где бы его ни оборудовать — нам обеспечены два-три урожая в год! И в развитии подземного сельского хозяйства химия сыграет решающую роль. Там-то и пригодятся гидро- и аэропоника. Они пригодятся и в городах под крышей, которые возникнут в полярных районах, а быть может, и в иных, малопригодных для жилья краях Земли.

Вероятно, в дополнение к солнечному станут все шире использовать для целей живой фотохимии искусственный свет. Спектральный состав его, условия освещения подберут по заказу — тогда фотосинтезом легче будет управлять — и получат наивысшие урожаи. Бесспорно, в оранжереях, на плантациях водорослей, в садах и парниках под синтетической крышей освещение будет искусственное, а энергию для этого дадут, например, атомные батареи.

Химия сделала возможным земледелие без земли, Но земледелие без воды — даже химия здесь бессильна. Между тем водоснабжение в природе далеко от совершенства.

Облака возникают часто не там, где надо, и не тогда, когда надо, Снег тает слишком быстро, и земля не получает нужной влаги. Вода испаряется с поверхности водоемов и просачивается сквозь стенки каналов, теряясь бесполезно. А близ морей воды, хотя и много, но толку от нее мало — она соленая.

С помощью химии можно будет поправить природу.

Дождь по заказу, облака, несущие воду от побережий в глубь материков, — это сделает химия. Она даст вещества, частички которых способны притягивать влагу из воздуха, иначе говоря, образовывать дождевые облака.

Она даст пленки, способные задержать таяние снега и испарение воды. Она же создаст надежные покрытия для стенок каналов и водохранилищ.

Она даст «сита», освобождающие морскую воду от солей.

Пленки понадобятся не только для того, чтобы удерживать влагу. Ими уже закрывают теплицы. Они неизмеримо удобнее обычного стекла: лучше сохраняется под ними тепло, лучше проникают сквозь них солнечные лучи.

Установлено даже, что полимерные покрытия помогают растениям развиваться, причем разные растения предпочитают и разные пленки. И, вероятно, химические укрытия позволят создавать — вместе с приборами-автоматами, конечно, — наилучший микроклимат для каждого вида растений.

Вторгаясь в биологию, химия поможет ей. Биологи переделывают растения, чтобы они были выносливее, давали больший урожай. Химики же будут подгонять природу к требованиям растений, вернее, помогут создавать для них искусственно свой маленький мирок, как можно лучше приспособленный. Одно не мешает другому, и союз химии и биологии даст новые пути, ведущие к одной цели — невиданно высоким урожаям.

Пленки пригодятся для того, чтобы разумно наладить подкормку растений. Частички, гранулы удобрений будут упаковывать в пластмассовую оболочку. Тогда вода не сможет их так быстро размывать, и растения получат свою химическую пищу не сразу, а постепенно. Так химия поможет рационально распределить ею же предоставленный растениям паек.

И, наконец, химия поможет улучшить и самую землю. Про зыбучие пески, болота и топи нечего и говорить — сколько труда тратится на то, чтобы их переделать! Обычная почва портится после того, как по ней проходят машины и орудия, да по многу раз. Ветер и вода начинают хозяйничать на ней, и к добру это не приводит.

Что же может сделать химия? Она даст вещества, способные осушать болота, укреплять пески, бороться с плавунами, возвращать почве утраченную структуру.

Зеленый цвет станет преобладать на нашей планете, и зелень можно будет встретить даже там, где раньше о растительности нельзя было и думать. Конечно, вмешиваться в дела природы люди будут разумно, чтобы не наделать бед, чтобы за близкой выгодой не последовал непоправимый вред. Реконструировать Землю можно лишь после всесторонней оценки любого проекта.

В тропиках и тайге тоже будет хозяйничать человек. В обиход войдут такие плоды дикого леса, о каких сейчас мы и не подозреваем, — и подаренные самой природой, и улучшенные селекцией.

Только в будущем, вооруженный техникой (и химией), человек поведет настоящее наступление на тропическую целину. Техникой, потому что без вездеходного транспорта, без машин, прокладывающих дороги в непроходимых джунглях, далеко не уйдешь. Химией, потому что придется бороться с вредителями и всеми другими помехами. А быть может, и с дикой растительностью, которая не отступит без боя.

Но химия сыграет еще и другую роль в сельском хозяйстве уже этого века.

Далеко не все, что можно засеять, используется сейчас. И вдобавок одна десятая той же земли занята под технические культуры. Химия высвободит эти земли, заменив природное сырье искусственным. Лишь от одной такой замены наши пищевые ресурсы возрастут, по крайней мере, процентов на двадцать. В масштабах всей планеты не так уж мало!

Мы называем нашу планету Землей. Но, по существу, эго неверно: суша занимает всего лишь четверть поверхности земного шара, а три четверти — вода. Мировой океан — еще одна пищевая целина, да и какая! Ее лучше было бы назвать планетой Океан.

Когда говорят о сотнях миллионов тонн живого вещества, обитающего в водах морей и океанов, то не ставят знак равенства между ним и пищей. Вряд ли кто-нибудь отважится, кроме разве потерпевшего кораблекрушение, питаться планктоном!

Эти мельчайшие обитатели моря — превосходный корм для китов, рыб и морских животных. Но мы-то не киты, и без химии планктон, как и другие дары моря, не станет пищей для людей! Слишком непривычен вкус морских животных и растений для тех, кто живет вдалеке от моря.

Есть, конечно, любители и трепангов, и морской капусты, и каракатиц, и множества иных экзотических блюд. Но надо, чтобы экзотика перестала быть экзотикой. Океан должен стать второй житницей человечества, и он станет ею.

Химики придумают способы сделать морскую пищу вкуснее, избавят ее от неприятного запаха, от привкуса, который так не нравится нам. Они помогут пустить в дело тот самый животный белок, которого не хватает людям и которого так много в Мировом океане.

Думают даже, что атомные подводные лодки будут превращены со временем в искусственных китов, в фабрики, перерабатывающие планктон, Так же как и настоящие киты, которые питаются мельчайшими обитателями моря, они станут заглатывать внутрь своего металлического чрева всевозможную живую «мелочь», чтобы готовить из нее корм для животных, а может быть, и пищу для людей.

Добыча «сырья» будет вестись все время, пока лодка плывет в богатых планктоном районах моря. Непрерывно будет приготовляться и пища. Из каждого рейса металлический кит сможет привозить ее десятками и сотнями тонн. Планктона хватит всем — и коренным жителям моря, и обитателям суши.

«Морской белок» — звучит непривычно. Однако люди уже питаются — без помощи химии — устрицами и крабами, омарами и креветками, осьминогами и трепангами. По качеству они не уступают самой лучшей пище. Вкус же — дело поправимое.

Кстати сказать, как ни странно звучит, но любая пища безвкусна. А откуда же все разнообразие ощущений, которые она вызывает? Откуда же тогда берется, в конце концов, сам вкус? Да от ничтожных примесей химических веществ — своих для каждого вида пищи.

Открытие поразительное! Значит, и здесь в будущем без химии не обойдутся.

Разумеется, вряд ли понадобится менять привычное и мясо превращать в рыбу. Все дело в микродобавках. Первые успехи уже есть — это специальные соли: достаточно долей грамма, чтобы пища стала заметно вкуснее.

Сейчас хозяйки сдабривают блюда лишь природными специями — перцем, лавровым листом, гвоздикой, известными очень давно. Хозяйки будущего получат химические приправы — безвредные, сильнодействующие, дешевые и, главное, неузнаваемо меняющие вкус непривычной нам пищи.

В первую очередь это понадобится для приготовления «морских» блюд. Быть может, станут добывать не один планктон, а и животных, чтобы с помощью химии преобразовать их вкус?

Рыболовство уйдет в глубину, И тогда наряду с известной нам рыбой войдут в обиход и новые сорта и новые животные. Морскую целину будут «вспахивать» чуть ли не до дна. Стол наш при участии моря и химии станет куда более богатым и разнообразным.

Но и рыболовству обычному химия сможет кое в чем помочь.

Привлекать рыбу станут химическими приманками, а гнать ее к месту лова и собирать в сети будут, устраивая преграды из воздушных пузырьков с химическими же примесями. Рыба пойдет туда, куда нужно рыбакам.

Химическая подкормка рыбной молоди, своего рода удобрение моря, — не фантазия. Заливы, удобные для разведения рыб, превратятся в гигантские садки, в рыбьи пастбища. Удобрять будут не только землю, но и Океан, и пруды, и озера.

У побережий возникнет новая отрасль морского хозяйства, которая сейчас находится, по существу, лишь в зачатке. Водоросли вырабатывают в год органического вещества 225 миллиардов тонн, а наземные растения — всего 40.

Впрочем, 60 видов морских водорослей уже идут в пищу у народов, живущих на берегах морей. Их едят в свежем, вареном и сушеном виде, из них делают порошки, приготовляют консервы. Из них получается отличный корм для скота. Полмиллиона тонн съедобных водорослей добывается ежегодно в наше время.

Так что начало положено. И если химия даст к водорослям хорошие вкусовые приправы, то Океан обеспечит нас в изобилии еще и растительной пищей. Можно будет тогда говорить уже о настоящем морском земледелии.

Пока мы лишь собираем то, что вырастила природа. Это крохи, но и их мы берем далеко не все. А нужно, чтобы подводные плантации, где работали бы машины, возникли всюду у берегов. Нужно, чтобы растения моря, содержащие множество полезных химических элементов, стали столь же привычными, как хлеб.

Вероятно, в будущем водорослевые плантации возникнут не только в Океане. Игра стоит свеч! Среди водорослей есть такие рекордсмены, мимо которых просто нельзя пройти. Они оставляют далеко позади своих собратьев на суше. Там нет растений, столь неприхотливых, столь живучих, могущих дать такие сверхрекордные урожаи.

Интересно, что внимание к зелени моря пробудили космические полеты, В поисках пищи и кислорода для космонавтов вспомнили об удивительном одноклеточном растении, живущем в воде. Оно намного богаче белком, чем фасоль и пшеница. Его белок намного питательнее, чем яичный или молочный. Его жиры почти ничем по своему составу не отличаются от тех растительных жиров, какими мы питаемся обычно, Его углеводы полезны для человека, И оно же может дать все нужные витамины.

Выходит, хлорелла — это о ней идет сейчас речь — обеспечила бы космонавту полный пищевой рацион.

«Безвкусицу» хлореллы уже начинают преодолевать: в опытном образце «карманной» оранжереи для космонавтов выращивается специально выведенный сорт. В этой маленькой пластмассовой камере автоматически создается микроклимат, а также есть искусственное освещение. Урожай обрабатывается, и получается богатая азотом масса, из которой готовят всевозможную пищу — от супов и пюре до хлеба и чая. Это один из примеров того, как освоение космоса поможет освоению самой Земли! Ведь такая миниатюрная оранжерея пригодится в Арктике и Антарктиде и вообще в путешествиях.

Для того чтобы разводить в космосе не одну лишь хлореллу, а и овощи, надо воспользоваться гидропоникой. Почву заменят полимеры. Сквозь поры питательный раствор даже в условиях невесомости просочится к корням. В меню космонавтов войдут свежие огурцы, морковь, свекла, капуста.

Однако думают и иначе. Для замкнутого мирка космического корабля, возможно, и не удастся подобрать подходящих обитателей. Во всяком случае, даже то, что и пригодится на первых порах, может не подойти, когда наступит пора дальних и сверхдальних рейсов. И биологи вместе с химиками займутся выведением новых форм живых организмов, с новыми свойствами — по заказу космонавтов.

Это, впрочем, цель более дальнего прицела. Пока же и водорослями тоже не стоит пренебрегать.

Многим хороша хлорелла, одного ей не хватает — приятного вкуса. Вот этим-то и предстоит заняться химикам.

Заставить работать на людей самые примитивные живые организмы — в высшей степени заманчивая задача. Почему? На это отвечает химия, и она же подсказывает путь, по какому надо пойти.

И бактерии, и водоросли куда менее прихотливы в выборе пищи для себя, «стол» у них более разнообразен, чем у высших растений и животных. Природные биохимические фабрики умеют куда лучше перерабатывать неживое вещество, строя из него живые клетки. Искусству белкового синтеза у них следовало бы поучиться.

Крайне интересно, что водоросли способны менять свой химический состав. Различные добавки повышают содержание в них белков и углеводов — значит, ценность одноклеточных как пищи возрастет. Управляя фотосинтезом, мы увеличим урожаи «сухопутных» растений. Управляя питанием, мы повысим урожайность и питательность водорослей.

Их удобно разводить — земли для этого не потребуется. Можно наладить настоящее фабричное производство пищевого белка, широко применяя в нем автоматику. И, наконец, микроскопических биохимиков легко «приручить» — вывести наиболее плодовитые и наиболее приспособленные для выработки пищи сорта.

Вот почему думают даже, что такие белковые фабрики станут почти основными поставщиками пищи растущему человечеству. Биохимические заводы белков и жиров разместятся у побережий, где под прозрачными колпаками — тоже дар химии! — оборудуют лестницу из бассейнов, В верхнюю «ступеньку» подадут питательный раствор, под колпак — углекислый газ.

Зеленая масса, созревая, переполнит верхний бассейн и постепенно станет стекать вниз. С самой нижней «ступеньки» она пойдет прямо в цистерны. Раствор же снизу снова подадут наверх.

Фабрика будет работать автоматически. Автоматы станут перемешивать зеленую массу, чтобы она равномерно освещалась солнцем. Они же позаботятся о продувке раствора углекислотой.

Вероятно, и урожай станут снимать автоматами, Вручную этого даже и не сделать, потому что на каждом гектаре за сутки созреют сотни килограммов водорослей-крошек! И так непрерывно круглый год. Только поспевай убирать!

Такую фабрику можно устроить и иначе — не привязывая ее к берегу, в любом месте, и даже там, где солнца мало. Ведь искусственное освещение, особенно в эпоху атомной энергии, — не проблема, Надо только прокачивать раствор по системе каналов, питать его солями и углекислым газом, да еще, пожалуй, подбавлять препараты против вредителей и болезней. Гидропоника в чистом виде!

«Водоросли важнее, чем атомная энергия». Не преувеличивают ли японские ученые, говоря так? Вот перечень того, что уже сейчас можно готовить из морских «овощей»: хлеб (и притом очень вкусный!), мармелад, «яичный» порошок, шоколад, всевозможные супы. Разве это мало?

Про химию академик Д, Н. Прянишников сказал, что, повышая урожаи удобрениями, она как бы создает новые континенты. Это справедливо для «сухопутного» сельского хозяйства, но еще более справедливо для водорослевых плантаций будущего.

Земледелие — и опять не без помощи химии — шагнет в Океан. Шагнет в буквальном смысле слова. Что там жалкие кусочки суши, которые удается отвоевывать у моря! Что там новые острова, которые иной раз дарит сама природа, выбрасывая лаву из жерл подводных вулканов! Можно будет поступить совершенно иначе.

Из искусственных материалов построить искусственные острова. Насыпать на них слой почвы, а лучше использовать гидропонику — тогда почву заменят те же полимеры, например типа пенопластов. Поля, сады, огороды, плантации водорослей закроют тонкой прозрачной пленкой, чтобы как можно лучше утилизировать солнечное тепло.

Под пленкой легко устроить и атмосферу по заказу, насытить воздух углекислотой, нужной и сухопутным растениям (попавшим на острова!), и водорослям. Под пленочной броней легко регулировать и температуру, и влажность — создать свой микроклимат. Наконец, если понадобится, электролампы продлят день в таком плавающем парнике.

Места под солнцем в Океане сколько угодно. Вот почему дрейфующие сельскохозяйственные острова (кстати, одновременно и города, и курорты) смогут немало добавить всевозможных продуктов на стол человечества.

Химия уже участвует в приготовлении пищевых продуктов. Соль, правда, природный продукт, но сахар, уксус, лимонная кислота — химические препараты. Ими пользуются давным-давно. Но не о них сейчас речь.

Человеку недостаточно того, что предоставляет ему природа. Без витаминов, без добавок целого ряда минеральных элементов нельзя представить себе сейчас нашу пищу. Ее нельзя представить и без многих приправ, тоже химических, которые могут улучшать вкус или запах, качество, а иногда и внешний вид.

Помогает химия и готовить пищу — размельчать, вспенивать, делать желе, плавить, разжижать продукты. Она же помогает их сохранять — консервировать, стерилизовать, предохранять от порчи. И чем дальше, тем шире будет эта помощь.

Еще до того как в питании человека произойдут кардинальные изменения, вероятно, начнется отход от традиций.

В самом деле, почему проходить мимо того, что годилось бы в пищу? Часто мешает здесь сложность, дороговизна. Однако так будет не всегда. Надо искать новые пути, а не только совершенствовать старые.

Злаки, овощи и фрукты — пища, знакомая с древнейших времен. Они основа питания и современного человека.

Мы начинаем уже подбираться к водорослям, примериваемся, как лучше подать их к столу.

До травы и древесины пока очередь еще не дошла. А дойти может, и должна! Для этого надо научиться всю непригодную пока для пищи органическую массу сделать съедобной.

Зеленая масса возобновляется сама собой, но человечеству, конечно, и не придется ни скашивать всю траву, ни вырубать все леса, ни собирать все водоросли. Между прочим, это обеспечило бы пищей 100 миллиардов человек. 100 миллиардов человек за счет совершенно нетронутых нами ресурсов растительного мира!

Но нам так много и не нужно, привычная наша пища тоже остается. И тем не менее, какое подспорье к столу человечества даст зелень, если химия и биохимия научатся перерабатывать ее!

Трава — корова — молоко и мясо. Различный корм — скот или птица — мясо, яйца или молоко. Химия сумеет сократить эти цепи питания. Она научится приготовлять из растительного сырья животные белки, не пользуясь услугами животных.

Это все звучит невероятно, но в далеком будущем пригодится и такой путь получения пищи. Понадобится лишь энергия. Но за нею дело не станет.

Огромный рост населения, освоение космоса — вот что может заставить воспользоваться этим путем.

Поставщиками пищи для нас служат растительное и животное царства.

Правда, берем мы оттуда не все, что можно. Из пятисот тысяч видов растений, например, — только шесть сотен. А когда настанет эра белкового синтеза, когда создадут синтетические ферменты, столь же совершенные, как и природные белковые катализаторы, то заводы дадут все то, что дают сейчас поля.

С другой стороны, химия, вероятно, пойдет и по пути подражания природе. Она научится воспроизводить то, что сейчас происходит только в растении. Углекислый газ (а его в атмосфере достаточно много) и вода (в ней недостатка тоже не будет) — вот сырье для химической пищевой индустрии. Сначала углекислота послужит подкормкой растениям, потом она станет основой для производства пищи.

Но не обеднеет ли атмосфера, когда человечество начнет добывать пищу из углекислоты и воды? Не нарушится ли равновесие в природе? Нет, даже если бы мы забрали всего тысячную долю углекислоты, то ее хватило бы на изготовление полутора миллиардов тонн сахара!

К тому же углекислого газа со временем становится в атмосфере все больше и больше. Об этом «заботятся» сами люди. Все больше сжигают они топлива, все больше дыма выбрасывают в воздух заводы. Так что о нехватке сырья для искусственной пищи говорить не приходится.

Сначала пойдут по пути, выбранному самой природой, станут ей подражать, создадут искусственные катализаторы-ферменты, создадут и молекулы, которые смогут запасать энергию, служить своего рода аккумуляторами. И не в живой клетке, а па химическом заводе станут получать белки, жиры и углеводы из простейшего сырья.

Бактерий заставят тоже производить пищу.

Есть среди них такие, которые приготовляют белок, питаясь нефтью, соломой и древесиной. И уже из нефти с помощью бактерий готовят корм для животных. Подсчитано, что всего 200 миллионов тонн нефти в год — ее же добывается более миллиарда тонн — обеспечили бы человечество белком.

Теперь мы подходим, наконец, к вопросу, который нельзя обойти, когда начинаешь говорить о будущем.

Чем же все-таки будет питаться человечество? Как насчет пилюль, порошков, таблеток синтетической пищи, столь излюбленных фантастами?

Ученые на это не согласны. Пища — не лекарство. Она основа основ нашей жизни. Она дает и энергию, и строительный материал для клеток.

Казалось бы, чего проще дать человеку по 100 граммов белка и жира да 450 граммов углеводов? Плюс вода, витамины и соли. Но эту порцию в пилюли не запрячешь. Да и нельзя лишать человека удовольствия питаться вкусной, ароматной, разнообразной пищей.

Нам бы хотелось видеть искусственную пищу похожей на естественную, практически неотличимую от нее. Но нам бы хотелось, чтобы по качеству химия и здесь перегнала бы природу. Ведь умеют же химики создавать материалы куда лучше природных!

Вкус и запах — не проблема. Это просто комбинация небольшого числа известных химических веществ, и подобрать их не так сложно. Уже сейчас можно изготовить запах вареной курицы или тушеной говядины. Ассортимент синтетических запахов, конечно, будет расширен.

Со вкусом еще проще. Сладкое, кислое, соленое, горькое — вот набор, создающий всю гамму вкусовых ощущений.

Трудность состоит не во вкусе и запахе.

Как должна выглядеть пища, какой вид должны иметь все эти блюда, приготовленные не из природных продуктов на кухне, а из нефти или угля на заводе?

Видимо, она должна напоминать что-то привычное, чтобы ее приятно было взять в рот, прожевать и проглотить, а не принимать по необходимости, как лекарство. Из смесей питательных порошков, как из муки, надо готовить паштеты, пудинги, печенья, макароны, желе, кисели и многое другое.

На первых порах непривычно будет есть мясные макароны или фруктовый паштет. Но это не так страшно. К этому можно привыкнуть.

Зато мы будем иметь пищу в чистом виде, полноценную, идеально высокого качества — да, именно идеального качества, потому что наша сегодняшняя пища от идеала весьма далека: чтобы набрать нужное количество питательных веществ, мы вынуждены съедать много лишнего. Человек должен получить определенный набор аминокислот, чего как раз часто и не бывает в нашей пище. Ее исправляют химически, вводя аминокислотные добавки.

Пища искусственная будет готовиться не только без излишеств, но и с наилучшим соотношением составных частей.

Это для здорового человека. Он получит самые разные варианты продуктов — поистине на любой вкус, на все возрасты. Больным же станут готовить искусственное диетическое питание по любому заказу, но не в ущерб вкусу.

Вот когда домашние хозяйки освободятся по-настоящему от кухни! Ничего не надо будет варить, жарить, печь, тушить. Все будет в готовом виде выходить с заводов, останется только разве лишь подогреть.

То, о чем мы здесь рассказали, вовсе не такая уж фантазия. Химики сегодня могут приготовить из нефти превосходное печенье, Советские ученые создали искусственно черную икру, неотличимую от рыбьей. В шутку они говорят, что единственный ее недостаток в том, что пока из нее нельзя вывести мальков…

И уже появилось полноценное мясо, правда, в виде крупы, макарон, лапши. Теперь получены волоконца из сои, окрашенные как говядина, свинина или курятина и имеющие их вкус, — основа таких псевдомясных изделий. Они насыщены белком, в них меньше жира.

Итак, от примесей, улучшающих пищу, — к белковым добавкам, а затем к замене природных жиров и углеводов и, наконец, к полностью искусственной пище.

Одной растительной пищей сыт не будешь, человеку нужны белки и жиры животного происхождения. А химия может сравнять хлеб и мясо, добавив к зерну недостающие в нем аминокислоты.

Никому из фантастов не пришло в голову описать, что бы произошло, если бы вдруг исчез весь животный и растительный мир Земли. Что было бы, если бы исчезли микробы, изменилась сила тяжести или скорость света? Об этом, как и о многом другом, они писали. Поместить же современного человека на первобытную Землю или, еще лучше, на чужую планету, где жизни еще нет, — вот о таком обороте дела не было сказано ни слова.

А ведь при всей фантастичности подобного предположения в нем есть над чем призадуматься.

Стоит выйти за пределы Земли, и мы попадем в бесплодный мир. Быть может, Марс или Венера составят исключение. Но какое? Полеты автоматических станций к этим нашим соседям разрушили надежду найти там даже отдаленное подобие Земли, Пришлось расстаться с мечтой о марсианах и пышной растительности на Венере.

И представим себе человека, попавшего на каменистую, голую пустыню вроде Луны, этакого грядущего Робинзона, вооруженного техникой и химией. Он бы, пожалуй, там не пропал.

Мы умеем уже получать искусственно различные вещества — и такие, какие есть в природе, и нечто совершенно новое, чего в ней нет. Еще шаг — и будет получен уже не простейший, а любой, даже самый сложный белок. Это произойдет вот-вот, может быть, еще до конца XX века.

Тогда наш космический Робинзон в химической лаборатории на своем корабле смог бы наладить производство воды, искусственных белков, жиров, углеводов и витаминов, если, конечно, окружающая мертвая природа предоставила бы ему нужные элементы. Ему не так уж много их и понадобилось бы. Углерод, водород, азот, кислород, фосфор и еще некоторые другие — уже по мелочам.

Между прочим, необязательно ему пришлось бы создавать столь же сложные белки, какие содержит природная пища. Можно было бы ограничиться и соединениями попроще, скажем, аминокислотами, А что касается витаминов, то даже и сейчас ими приходится пополнять естественную пищу.

Чтобы закончить разговор о космонавте, стоит сказать немного о том, что же послужит ему сырьем для химической кухни. Простейшие углеводороды — не редкость во Вселенной. Предполагают, что нефть можно найти даже на Луне. В связанном виде найдутся на планетах и другие атомы, которые есть в живой природе.

Давая волю фантазии, можно допустить, что космонавт сделает недостающие элементы из других, из тех, какие найдет. В сырье у него недостатка не будет, А из нефти, если действительно он ее встретит, ему уж и совсем нетрудно будет приготовить искусственный белок.

Теперь перекинем мостик из космоса на Землю. Никто, конечно, не думает лишать человека привычной животной и растительной пищи. Человечество будущего, безусловно, вынуждено будет дополнять природу. И недаром так настойчиво идет оно к синтезу белка, Оно, безусловно, воссоздаст искусственно все составные части пищи. Ему хватит для этого химических запасов, которые хранятся в земной коре, Океане и атмосфере.

Черпая оттуда все, что понадобится, люди будут хозяйничать разумно и не нарушат заведенный природой круговорот элементов. Если чего-либо не хватит, пробел восполнит та же химия вместе с ядерной физикой, — превращение элементов уже реальность XX века.

Вот почему у нас есть основания утверждать, что человечество, решив социальные проблемы, сможет решить с помощью химии и проблемы питания. Ему не придется опасаться голодной смерти, даже если не миллиарды, а десятки миллиардов людей станут населять нашу планету.

Растущему человечеству предрекали голодную смерть. Угроза оказалась несостоятельной. Но в последнее время появилась другая, и весьма реальная, опасность. Если ее не устранить, то лишь ограниченное число людей сможет жить на земном шаре. И число это вовсе не велико — 20 миллиардов. Таков вывод, к которому пришел ученый Раймон Фюрон, подсчитав наши запасы пресной воды. Пройдет менее полутора веков — и предел будет достигнут.

Теперь даже степень экономического развития любой страны иногда выражают количеством потребляемой воды. «Душа населения» — та единица, к которой статистики относят все в мире, — приобрела еще один весьма существенный показатель. Она расходует воды 500 кубометров в год в Западной Европе и 1000 — в США.

Уже сейчас Токио, крупнейший город мира, страдает от жажды. Уже сейчас Америке в сутки требуется около миллиарда кубометров воды. А ее не хватает. Через двадцатилетие же понадобится два миллиарда!

Городской житель расходует в сутки не меньше четырехсот литров пресной воды — такова статистика.

Сколько же потребляют воды все города земного шара за сутки, за месяц, за год? А население растет, людям нужно все больше воды. У нас, например, за тридцать лет расход ее увеличился в двадцать пять раз!

Фактически любая вещь, какую бы мы ни взяли, требует для своего создания воды — не питьевой, так технической. Все равно пресной. Каждая тонна стали, например, — это 350 тонн воды! А тонна серной кислоты — больше 700! Вода становится наиважнейшим сырьем, и недостаток ее все острее дает о себе знать.

Меньше трети процента всех запасов влаги на нашей планете составляют воды рек и озер. Атмосфера дает еще меньше — пять десятитысячных. Львиную долю занимает Океан — соляной раствор. Остаток, и очень небольшой, приходится на долю полярных льдов и ледников.

Соленой воды у человечества в изобилии, пресной — жалкие крохи. Правда, можно пустить в дело ледовые глыбы айсбергов. Правда, пресная вода запасена в недрах Земли, хотя ее там не так уж много. Но даже если и найдут еще подземные пресные источники, их все равно не хватит.

И мы обращаем поэтому свои взоры к единственному богатейшему резервуару, подаренному природой, — Океану. Только он способен утолить жажду человечества.

Соль из воды можно выпаривать. В южных районах эту работу выполнит солнце — в гелиоопреснителях. Однако лучше это сделает химия с помощью ионитов. Но иониты не могут обессолить воду так, чтобы ее можно было пить. Хотя пренебрегать этим методом не стоит — молекулярные сита еще не сказали своего последнего слова.

В роли опреснителя выступает электрохимия. Воду пропускают через несколько полупроницаемых мембран. Под действием тока частички солей ионизируются, мембрана сортирует их, а ионы уже нетрудно нейтрализовать.

Соли, конечно, не выбрасывают. Они сами по себе ценнейшее сырье.

Существует и такой проект опреснительной установки. Если опустить глубоко в море шар из полупроницаемой пленки, то наружное давление будет проталкивать в него воду, соли же останутся «за бортом». Шар наполнится пресной водой, и останется только откачать ее по трубопроводу.

Лед всегда пресный. Нельзя ли избавиться от солей, заморозив морскую воду? Да, и это лучше сделать опять-таки с участием химии.

Можно в морозильную камеру впрыснуть сжиженный газ, который, как в обычном холодильнике, быстро отнимает тепло у воды. Появляются кристаллы пресного льда. Их легко отделить, а газ снова использовать для вымораживания.

Еще один дешевый способ опреснения придумали химики. Можно пропустить воду сквозь пористый пластик, покрытый химическим фильтром. Все соли задерживаются. Установка может работать очень долго. Нужно лишь изредка менять фильтр, что несложно.

В роли опреснителя выступает биохимия. Есть водоросли, способные на свету питаться солями морской воды. Ими надо заселить освещенные бассейны и оттуда забирать опресненную воду.

И, наконец, едва ли не лучшим опреснителем станет ядерный реактор, Он сможет испарять воду, освобождая ее от солей. Здесь игра стоит свеч. Старый способ выпаривания будет выгодным, если им воспользоваться на новой основе. На каждый киловатт мощности можно получить кубометр пресной воды в сутки! Недаром сейчас считают атомную энергетику той палочкой-выручалочкой, которая обеспечит человечество пресной водой.

Мы нуждаемся в воде. А сырья для ее химического синтеза сколько угодно. Кислород есть в атмосфере, водород — в нефти или природном газе. Около каждого нефтяного месторождения можно было бы устроить завод по производству воды. И, конечно, особенно важным был бы такой завод где-нибудь в пустынях, где воды мало, а нефть нередко в изобилии залегает под землей. Тогда не потребовалось бы бурить глубокие скважины и искать пресноводные подземные моря. Может быть, не нужны были бы искусственные водохранилища.

Но каким путем на этих заводах добывать воду? Природа подсказывает: с помощью ферментов. Среди них мы найдем синтезаторы воды. У шелкопряда, например, они приготовляют воду из кислорода воздуха и водорода пищи. Похожее происходит у кактуса, и энергию для этого дает солнечный свет.

Искусственно получаемая пресная вода отличается от природной, в которой все же остаются кое-какие соли. Вода ведь бывает жесткая и мягкая, вкусная и невкусная.

Если мы пищу хотим улучшить химическими добавками, то не придется ли то же сделать с водой? Может быть, и не стоит добиваться совершенно чистой воды, а лишь частично ее опреснять? Может быть, лучше готовить питьевую воду, подправляя природу, как подправляем мы пищу?

Вода будущего — это и более приятная на вкус, и более полезная для организма. Думают даже о том, чтобы наладить снабжение целебной питьевой водой прямо из водопровода.

«Широко простирает химия руки свои в дела человеческие»…

Эти слова М. В. Ломоносов написал почти два века назад. Но только теперь можно понять, насколько они справедливы. Потому что теперь нет ни одной области жизни, в которой так или иначе, прямо или косвенно, не участвовала бы химия.

Какими только эпитетами ее ни награждают! Она и чудесница, она и волшебница, она и всемогущая, она и вездесущая… Но как ни называй, все будет мало. Ведь химия открывает дорогу к изобилию везде и всюду.

 

ФАНТАСТЫ ПРЕДЛАГАЮТ…

…Я увидел на блюде желтоватый студень с круглыми кусками каких-то овощей или фруктов. Небольшой костяной ложкой, дополнявшей сервировку стола, я попробовал содержимое одной из чашек. Теплая, слегка солоноватая и в то же время приятная ароматная масса была не похожа ни на одно из известных мне кушаний. Мяса не было, но мясной вкус чувствовался в одном желе, которое мы запили какой-то темно-рубиновой жидкостью, напоминавшей по вкусу мускатное вино».

Понравилось? Рассказчику, прибывшему на машине времени в XXX век, — да. Впрочем, люди будущего ему объяснили, что обычно они питаются «более легкими веществами». «Таблетки», — подумал тогда герой романа.

А вот еще меню — тоже из будущего (фантастического, конечно!).

Это — желтые диски: в одних была приятная освежающая кислинка, другие напоминали, скорее, сладковатую сдобу. Диски легко таяли во рту.

Правда, не все фантасты решались переводить человечество целиком на синтетическую пищу. Предполагали так: пусть химия обеспечит хотя бы углеводами да жирами, белки же по-прежнему даст природа.

Ради полноты картины надо сказать, что встречаются среди фантастов и противники химического питания.

Нужно только исключить из рациона рыбу и мясо, сделать вегетарианцами всех людей — так лучше для здоровья, — говорит один. — Оставить, пожалуй, лишь молоко, молочные продукты и яйца, а также, разумеется, хлеб, овощи и фрукты. Только готовить будут, конечно, более питательные, более вкусные и разнообразные блюда, не похожие на современные. И никаких капель или пилюль, которые могли бы сразу утолить голод. Иначе не понадобится желудок, а это уже никуда не годится…

Другой фантаст пишет о том, как в далеком будущем, когда все заполонит синтетика, людям надоест питаться этой едой: им захочется натуральной пищи, а не искусственных яиц с химической формулой на эластичной пластиковой скорлупе… Захочется хлеба, теплого и мягкого, пахнущего спелым зерном, дождем и солнцем. И масла, пахнущего клевером, и джема из черной смородины, и мяса — всего, что дает живая природа…

О плодах грядущей химии живого фантазировали давно. Да и как не мечтать, если проблема питания становится на Земле одной из самых насущных.

Самых насущных для человечества, которое все растет: Землю населяют три с лишним миллиарда людей, к 2040 году населять ее будут десять миллиардов, А голод? От его костлявой хватки и сейчас тяжко страдают в слаборазвитых странах мира. Пищи! Больше пищи! И мысленному взору рисуются заманчивые картины.

Воздух — неиссякаемая кладовая азота, того самого, который растения добывают из почвы. Что, если заставить бактерии перерабатывать атмосферное сырье в съедобную массу, в даровую пищу, в «вечный хлеб», растущий сам собой, ибо микроорганизмы размножаются неимоверно быстро…

Из углекислого газа химия сумеет приготовить крахмал (опять даровое сырье атмосферы, опять химия!). В нашем распоряжении окажутся миллионы, десятки и сотни миллионов тонн клетчатки — пищи для животных и людей. Между прочим, добывать углекислый газ можно также из недр земли, из минералов, из отходов. Даже камни превращались бы в пищу!

Вода, воздух, углекислота, соли, которые находятся в почве, — таков рацион растений. И свет, этот бесценный солнечный дар, нужен для того, чтобы свершалось таинство фотосинтеза, чтобы работала растительная биохимическая фабрика. Главный работник на ней хлорофилл — белковое вещество, похожее на красный гемоглобин крови. Сходны их молекулярные постройки. И фантасты предлагают переделать гемоглобин, сроднить его с хлорофиллом, И тот и другой — комплексы, тот и другой — клешневидные молекулы. Так не удастся ли когда-нибудь заменить частички у этих клешней, чтобы они стали сродни друг другу?

Тогда животные приобрели бы свойства растений. Они, как и растения, перешли бы на воздушное питание с ничтожной добавкой элементов, извлекаемых из солей. Но это же сущие пустяки в сравнении с пастбищами, сеном, силосом, комбикормами, нужными сейчас. Вот было бы гениальное решение животноводческой проблемы! Коровы, овцы, козы, свиньи — заботу о них взяло бы Солнце, человеку не пришлось бы кормить миллионные стада. Да и землю бывших пастбищ он пустил бы на другое.

Заманчиво, что и говорить! Прямо-таки революция в сельском хозяйстве… Однако не слишком ли увлеклись фантасты? Да, видимо, фантазия увела их здесь далеко. Едва ли такая идея осуществима. Едва ли осуществление такой идеи целесообразно. Найдутся другие пути.

Об этом много пишут фантасты.

Не придумать ли пищу, которая ускоряет рост? Это путь к животным-гигантам, изобилию мяса, яиц, молока («Пища богов» Уэллса).

Не попытаться ли сделать то же самое действием излучений? Это тоже был бы путь к изобилию мясных и молочных продуктов, к высоким урожаям фруктов, грибов, овощей, какие нам и не снились.

И не дополнять ли, в конце концов, наше меню чем-то таким, что ныне пропадает бесполезно? Добавить необычное к обычному, ввести в обиход блюда из… Давайте-ка вспомним Жюля Верна!

«— Море, — говорил капитан Немо профессору Аронаксу, — море, господин профессор, кормит меня… Это кушанье, которое вы приняли за мясо земного животного, есть не что иное, как филе морской черепахи, Вот соус из печени дельфина… Вот консервы из ракушек… Вот крем, сливки для которого дало вымя кита, а сахар — водоросли… Наконец, вот варенье из анемонов».

Чем плохо? Разве только одна поправка: убивать дельфинов не будут. Охота на этих интересных животных, которые, по-видимому, обладают в какой-то мере разумом, теперь запрещена.

В Океане миллиарды тонн всякой живности. Вычтем отсюда рыбу — она входит и в ресурсы сегодняшнего дня. Дню завтрашнему придется использовать все остальное, все живое из Океана. Морскую живность станут превращать в продукты, подобные угощениям капитана Немо, да и прибавят к ним десятки других. Сейчас ведь «каплю в море» составляют дары моря на нашем столе. Не здесь ли скрыто будущее благоденствие растущего человечества?

Вот, пожалуй, мы и исчерпали фантастические пути. В мечтах изобилие обеспечено. Фантасты позаботились и о людях Земли, и о тех, кому доведется надолго покидать Землю. Космонавтам в длительных рейсах они предлагают брать с собой оранжереи, аквариумы — для питательных водорослей, разводить мелких животных и птиц, пользоваться искусственной пищей.

Не все думают, однако, и я уже упоминал об этом, что пилюли заменят мясо и рыбу, овощи и все прочее разнообразие нормального человеческого стола. Но существенно пополнят. И, говоря о синтетической пище, проектировщики будущего обращают взоры ко всему, чем располагает мертвая природа.

Если камни послужат пищевым сырьем, то такое сырье найдется не только на земном шаре, но и на Луне, и на других небесных телах, будь то астероиды или спутники планет. Не здесь ли секрет снабжения пищей уже не разведчиков, а покорителей космоса? Тех, кто будет обживать бескрайнее внеземное пространство, жить в лунных, марсианских и венерианских поселках, на искусственных лунах и везде, где удастся устроить филиалы Земли?

Возможно, именно космонавты будут первыми, для кого приготовят не концентрат все из тех же щедрот природы, а пищу, рожденную чисто лабораторным путем. Фантасты предлагают сделать ее одновременно и фармацевтическим препаратом — скажем, бодрящим, возбуждающим мозг.

Мы сейчас дополняем еду витаминами; почему бы не получить сразу все, что необходимо и желудку, и мышцам, и мозгу?

Итак, что же, в конце концов, ожидает человека, допустим, XXI века, когда он сядет за стол или отправится в какое-либо путешествие? В догадках и вымыслах недостатка нет. И правильно, что, говоря о пище грядущего, не обходят химию. В ней как раз и склонны видеть главного «повара», она должна предотвратить угрозу голода, она улучшит питание, сделает его разнообразнее и богаче.

Здесь сходятся пути химии и биологии. И создание пищи искусственной, и улучшение продуктов природных, и повышение урожайности, и все другое, что связано с сельским хозяйством, — все это теперь проблемы не одной химии и не одной биологии, а их союза.

Вот она, кухня будущего, как ее представлял себе писатель И. Нечаев, погибший в годы войны. Его книга «Рассказы об элементах» знакома многим. Эта фантастическая картинка — отрывок из его незаконченной повести.

Злаки, фрукты, овощи в течение долгих месяцев вызревали некогда под солнцем на необозримых пространствах Земли. Сегодня синтетическая пища создается за один час в химических аппаратах. Искусственные ускорители-катализаторы действуют надежнее, чем хлорофилловые зерна. Электрическое поле высокой частоты греет лучше и вернее, чем солнце. Воду, которую некогда, изнывая, ждал с капризного неба крестьянин, теперь неутомимо качают на пищевые фабрики неисчерпаемым потоком могучие сверкающие насосы из легких металлов.

Витамины, гормоны и ферменты — таинственные могущественные вещества, которые природа скупой рукой раздавала живым организмам неуловимо микроскопическими порциями, чтобы они управляли ростом, рождением, здоровьем и силой, — были распознаны человеком до конца и воссозданы чисто химическим путем. Он и здесь перещеголял природу. Она обходилась каким-нибудь десятком гормонов — он создавал их сотнями; естественные вещества обладали чудесными свойствами, а он усиливал эти свойства в тысячи раз; природа оперировала миллионными долями грамма, а он фабриковал витамины и гормоны тоннами, он грузил ими железнодорожные составы, как песком.

Несколько больших фабрик, где синтезируют углеводы, полностью обеспечивают пищей многомиллионный город. Они работают автоматически, день и ночь, как часы. И все, что требуется им, — это воздух, вода, энергия…

Из воздуха извлекают углекислоту. Вода в вакуумных котлах превращается в пар. Энергию дает электричество.

Углекислота и пар смешиваются, проходят через губчатые пластины катализаторов. И вот уже исходные продукты исчезают, и появляется новое вещество — углеводы.

Но не думайте, что этот беленький порошок отправляется прямо в рот. Так было бы чересчур просто.

Во-первых, одних углеводов человеку мало. Ему еще нужны жиры, белок, соли, витамины. Ему нужны также ничтожные доли йода, марганца, кобальта и многих других элементов, которые совершенно случайно попадали в пищу человека прошлого, потому что он и не подозревал об их значении для организма.

Во-вторых, нуте-ка попробуйте наших углеводов… Вы плюетесь! Конечно, это просто невкусно. Но погодите, вы еще пальчики оближете!

Углеводный порошок уходит с фабрики по трем трубопроводам в соседние здания. Часть поступает на белковую фабрику, часть — на жировую, часть — непосредственно на сборочную кухню.

На наших белковых фабриках орудуют грибки, дрожжи.

Да, дрожжи, правда не совсем такие, какие применялись в старину для приготовления теста, но схожие с ними, родственные им. Бактериологи вывели дрожжевые культуры, которые развиваются еще во много раз быстрее. Они размножаются с потрясающей стремительностью. Если им дать волю, они затопили бы земной шар, переполнили бы океаны, растеклись бы по всей Вселенной. Но мы их крепко держим в узде, и даже не сами, а наши безмолвные электрические слуги — фотоэлементы, наблюдающие за уровнем в фабричных чанах.

Жиры добываются таким же точно путем.

Вторая половина XX века родила новые отрасли органической химии — химию вкусов и запахов. Были раскрыты составы всех ароматов, когда-либо щекотавших обоняние человека.

Были выделены в чистом виде все вещества, ничтожному содержанию которых в пище были обязаны своими восторгами заядлые гурманы. Нежный аромат персика и жгучее действие перца, приторность меда и горечь хрена, вкус телятины и печеной картошки — все было приведено к химическим формулам, превращено в порошки и разноцветные жидкости…

Еще до того как мир отказался от животной и растительной пищи, химики уже умели готовить в лаборатории сотни синтетических вкусов и запахов. В концентрированном состоянии эти вещества производили чудовищное действие. Содержимого одной баночки хватило бы для того, чтобы угостить население целого города иллюзией чарджоуской дыни или жареной утки.

Здесь возможны миллионы комбинаций, бесчисленные варианты. И нужны недюжинные знания, чтобы разбираться в них до тонкостей. Обыкновенному же смертному, если он любит посмаковать еду, приходится прибегать к помощи многотомных справочников, к специальным путеводителям по царству вкусов…

Ни одному богатому чревоугоднику прошлого не могли даже присниться изумительные, поистине райские блюда, которые доступны любому человеку XXI века. И все они готовятся из одного и того же безвкусного месива углеводов, жиров, белков.

Главный повар включает экран, и цех за цехом мелькают перед нами. Мы видим склады, где обеды и завтраки лежат многоэтажными штабелями, лабиринт деликатесов, по которому согласился бы блуждать всю жизнь любой лакомка прошлого. 4 000 000 пайков 1250 наименований. Такова ее суточная производительность…

* * *

А вот еще фантастическая установка для получения крахмала из углекислоты (по роману Н. Лукина «Судьба открытия», 1951 год).

В обыкновенной печи горит обыкновенный уголь. Очищенные дымовые газы проходят через каскады брызг холодной воды, газовая смесь растворяет в ней свою углекислоту. Далее газовый остаток вентилятором выбрасывается прочь. Обыкновенная вода разлагается электрическим током на водород и кислород. Энергия здесь используется почти на сто процентов. Вода с углекислым газом, водород и кислород поступают в колонну. Вся колонна наполнена зернами катализатора. Водород в его присутствии соединяется с кислородом и образует воду. При этом освобождается энергия, Она обеспечивает синтез — взаимодействие углекислоты с водой, многоступенчатую цепь химических реакций, в результате которых возникает крахмал. Пищевой продукт получается из углекислоты, образующейся при горении топлива, из отбросов, пока бесполезно уходящих в атмосферу.

* * *

Наконец, Г, Тушкан в повести «Разведчики зеленой страны» (1950 год) выдвигал фантастическое предложение создать из зеленой массы растений вещество, которое, используя лучистую энергию солнца, помогало бы вырабатывать крахмал из минерального сырья.

* * *

Перед нами прошло несколько предложении фантастов, которые касаются будущей пищи человечества, Наука идет вперед, и даже то, что сравнительно недавно представлялось фантастикой, теперь отстало от жизни.

«Витамины, гормоны, ферменты — таинственные могущественные вещества», — писал И. Нечаев. А сейчас они перестали быть таинственными. Химия и биология разгадали их природу. Уже начинают создавать синтетические запахи и приправы, да и сама искусственная пища, видимо, еще до наступления 2000 года станет явью.

Но надо заметить, что иногда фантазия все же заводила слишком далеко. Нам незачем стараться перещеголять природу и стремиться создавать, например, сотни гормонов вместо десятка. Вполне достаточно, если мы хотя бы догоним природу.

И все же эти отрывки любопытны. Они говорят о том, что мечта об искусственной пище зародилась давно, и, как мы увидим дальше, не только у писателей, но и у ученых.

 

УЧЕНЫЕ МЕЧТАЮТ…

…Узкая дорожка вьется по лесу. Трава на обочинах еще седая от росы, но теплые полосы солнечного света легли поперек дороги, и там уже знойно пахнет смолой. Рой белых бабочек ведет хоровод над невысохшей лужей, темно поблескивающей из-под шершавой листвы орешника. Спокойствие всюду.

Рано или поздно дорожка приведет в город или промышленный поселок. Какой разительный контраст! Мир техники встречает человека шумом станков и моторов, гулом и грохотом машин, копотью печей, стуком насосов, облаками пара над градирнями, пылью и запахом газов.

Такой контраст не может не родить противопоставления техники и природы. Казалось бы, два мира, ни в чем не схожие, сосуществуют рядом, и нет возможности свести их к гармоническому единству. Но так лишь кажется. Леса, луга, поля — это тоже промышленные комбинаты, где производство идет не менее напряженно, чем в заводских цехах.

…В травах и деревьях, в плодах и корнеплодах идут сложнейшие, еще не доступные промышленности процессы синтеза белков, углеводов, жиров и многих других соединений. И то, чего мы достигаем на заводах ценой громадных затрат энергии, ценой создания громоздких, огромных, потрясающих воображение машин и аппаратов, растительность, живые организмы производят бесшумно, просто, экономично и в громадных количествах», — говорит академик С. И. Вольфкович.

«Может быть, на заводе будущего потоки солнечного света, падая на поверхность растворов, содержащих специальные катализаторы, сформируют из атомов азота, углерода, водорода и кислорода аминокислоты, и вещества, в которых солнечная энергия будет занесена в виде энергии химических связей, подвергнутся затем действию других катализаторов. В результате мы получим из воды, воздуха и углекислого газа бесконечное разнообразие удивительных молекул искусственного белка.

Это, несомненно, одна из самых величественных перспектив развития науки. Действительно, организмы животных и человека не способны сами создавать белки из простых веществ — они лишь перестраивают молекулы белков, попадающие в организмы с растительной пищей, а в растениях белки и другие вещества образуются под влиянием катализаторов и солнечного света из очень нехитрых исходных продуктов: из воды, углекислого газа и различных солей. Искусственный синтез аминокислот заменил бы, следовательно, одну из важнейших функций клеток растений.

Не кажется ли такая перспектива слишком фантастической? Нет!» — пишет профессор Л. А. Николаев.

* * *

«Часто говорят о будущем человеческого общества, и я хочу представить его таким, каким оно будет в 2000 году — разумеется, с точки зрения химика.

Когда будет получена дешевая энергия, станет возможным синтез продуктов питания из углерода (полученного из углекислого газа), из водорода (добытого из воды), из азота и кислорода (извлеченных из атмосферы).

Ту работу, которую до сих пор выполняли растения при помощи энергии Солнца, мы уже осуществляем и в недалеком будущем осуществим в более широких масштабах, ибо власть химии безгранична.

Вероятно, наступит день, когда человек будет питаться таблетками, содержащими азотистые вещества, синтетические жиры, крахмал или сахар. Все это будут изготовлять наши заводы в огромном количестве: производство искусственных продуктов питания не будет зависеть ни от времени года, ни от дождей, ни от засухи, ни от мороза, и, наконец, все это не будет содержать болезнетворных микробов — первопричины эпидемий и врага человеческой жизни.

Химия осуществит коренной переворот, важность которого никто не может представить. Исчезнет разница между урожайными и неурожайными районами. И, может быть, человеческая цивилизация изберет для своего пребывания как раз песчаные пустыни, так как они будут полезнее для здоровья, чем распространяющие заразу долины рек и заболоченные равнины, удобренные гнилью.

Но не думайте, что в этой всемирной державе могущества химии исчезнут искусство, очарование человеческой жизни. Если землю перестанут использовать для выращивания продуктов сельского хозяйства, она вновь покроется травами, лесами, цветами, превратится в обширный сад, орошаемый подземными водами, в котором люди будут жить в изобилии и испытают все радости легендарного «золотого века»…

Вы чувствуете, как созвучна эта картинка тому, что мы говорили? Больше полувека прошло, но эти слова о «химии в 2000 году», сказанные знаменитым французским химиком Марселеном Бертло, звучат столь же ярко и сегодня. Мечта о химической пище владела и владеет умами как писателей, так и ученых.

* * *

Что же говорят по этому поводу ученые сегодня? Предоставим слово академику А. Н. Несмеянову и кандидату химических наук М. В. Беликову.

«Представим себе вслед за Бертло то время, когда экономика синтеза пищи (и качество самой этой пищи) одержала верх над старинными традиционными способами ее получения. Несколько огромных заводов, расположенных в разных местностях страны, богатых углем или нефтью, вырабатывают всю потребную населению пищу. Занимают они в сумме площадь всего в несколько сотен квадратных километров… Трудоемкое сельское хозяйство отошло в прошлое, за исключением разве плодоводства и цветоводства. Отошла в прошлое и индустрия, снабжающая сельское хозяйство машинами, горючим, удобрениями, средствами борьбы с полевыми вредителями. Освободилось для более производительной работы 34 процента населения, ныне работающих в сельском хозяйстве.

К этому надо прибавить освобождение рабочих, занятых производством сельскохозяйственных машин, тракторов, сельскохозяйственного грузового транспорта, горючего и всего металла и материалов для них, ядохимикатов и удобрений, — ведь синтез пищи требует лишь части продукции последних. Старую пищевую промышленность сменила новая…

Нет больше неурожайных лет и неурожайных местностей. Нет больше огромных потерь пищи из-за капризов погоды, стихийных бедствий, от вредителей, порчи, гнили, мороза, сегодня уничтожающих большую долю урожая. Отмерли профессии, связанные с кустарным приготовлением пищи, — поваров и кухарок, значительной части официантов; раскрепощение домашних хозяек стало реальным, так как пища готовая, упакованная, подобно консервам, но в отличие от них сполна витаминизированная и вкусная, требует самое большее подогревания. Идеальным становится гигиенический аспект питания. Стандартная по составу — белки, углеводы, жиры, витамины, — приспособленная к возрасту пища лучше обеспечивает нормальные функции организма, чем любая естественная. Нет больше толстяков, больных ожирением сердца и печени… В случае отклонения от нормы можно подобрать специально выпускаемые для больных диетические рационы с повышенным содержанием или, наоборот, отсутствием тех или иных ингредиентов (составных частей. — Б. Л.).

Постепенно уменьшается площадь пахотной земли и взамен возрастает лесная и парковая площадь. Прекращается высыхание и обмеление рек и, наряду с изобилием пищи, непосредственно питающей человека, решается все более острый на земном шаре вопрос о недостатке пресной воды.

Нужны большие и дружные усилия химиков, биологов, врачей, экономистов, для того чтобы наилучшим образом решить эту задачу. Любой, даже частичный успех, достигнутый здесь, окупится сторицею, даст колоссальную экономию средств и выигрыш в здоровье населения.

Все это только постановка проблемы — посадка древа, крона которого уходит высоко в будущее, но корни заложены в почве настоящего и ждут самого заботливого ухода».

 

ХИМИЯ ЖИВОГО

ХИМИЧЕСКАЯ ЖИЗНЬ КЛЕТКИ

«Вселенная живой клетки» — вот как говорят ученые о единичке живого, крошечной, не видимой простым глазом, в которой заключен целый мир. Это настоящая фабрика, получающая и перерабатывающая энергию и вещество.

Однако какая фабрика может выполнять тысячи разных задач? Какой механизм может так быстро и точно отзываться на малейшие перемены обстановки и приспосабливаться к ним? На какой химической фабрике одновременно работают тысячи разных катализаторов и перерабатываются десятки тысяч веществ?

И, наконец, в клетке совершается еще одно чудо. Она способна производить себе подобных: делиться, размножаться. Повторяет же она себя так точно, что мы и не замечаем, как постоянно обновляемся, От рождения и до смерти живой организм множество раз становится фактически другим.

Диаметр клетки всего несколько микрон, несколько тысячных долей миллиметра!

Между тем эта крошка живет чрезвычайно сложной жизнью. Сотни триллионов молекул составляют ее. Десятки миллиардов из них — постоянные участники химических превращений.

Этой «единичке» живого приходится выполнять тысячи всевозможных задач.

В ней работают тысячи биокатализаторов — ферментов; в ней протекает одновременно до двух тысяч реакций; в ней непрерывно двигаются по определенным путям различные вещества — есть своеобразный внутриклеточный транспорт, Идет переработка сырья, которого не меньше десяти тысяч видов.

Клетка дышит. Кровь доносит до нее углеводы, которые, окисляясь, выделяют энергию. У крошечной клеточной биохимической фабрики есть своя собственная энергоцентраль.

Меняется обстановка — и клетка немедленно приспосабливается, выживает даже в тяжелых условиях. У нее идеальная автоматика. Она может восстанавливаться, если будет повреждена; может собрать и направить в нужный момент и в нужном направлении ударную силу — химическую активность, Все в ней согласованно, все действует безотказно, все приспособлено и для работы, и для самозащиты от опасности.

Клетка себя защищает от вторжения чужих белков, вырабатывая особые защитные белковые антитела. Стоит появиться чужеродной клетке, как эти защитники проникают в нее и начинают свою разрушительную работу.

Нет более совершенной химической лаборатории, чем живая клетка!

 

БИОПОЛИМЕРЫ

Самые удивительные полимеры изготовлены в лаборатории природы. Достаточно познакомиться с веществом, которое составляет основу всего живого.

На первый взгляд кажется, что белковая молекула устроена беспорядочно. Какие-то петли, узоры, спирали, закрученные в плотный клубок… Ничего похожего на строгие геометрические формы кристаллов или снежинок.

В молекуле белкового полимера — сотни тысяч и даже миллионы атомов. Это молекула-гигант, которую можно наблюдать в электронный микроскоп. Глядя на такое хитросплетение, думали, что клубок никогда не удастся распутать.

Но архитектура молекулы белка на самом деле подчинена вполне определенным законам. Каждой части постройки отведено свое место, каждое их чередование не случайно.

Уже удалось разгадать секреты строения простейших белков. Через разгадку лежит путь к искусственной белковой постройке. Но до создания настоящего наисложнейшего белка еще далеко.

Белков очень много: в человеческом теле больше ста тысяч видов. Каждый живой организм — микроб или животное, растение или человек — имеет свой белковый набор. Они похожи друг на друга, эти комки из перекрученных нитей, но есть и разница — едва уловимая, почти неприметная. Именно из-за нее и различаются белковые основы, именно потому по-разному устроены ткани различных живых организмов.

Архитектура белковых молекул подчинена какой-то целесообразности, которую наука еще не в силах до конца понять, хотя и стремится это сделать. Известно уже, что малейшее нарушение порядка в белковой постройке ведет к катастрофе. Не надо даже менять состава белка, не надо его разрушать. Стоит только чуть-чуть — именно чуть-чуть — переставить звенья цепи, и сразу же белок заболеет, перестанет нормально работать.

А работа у белков необычайно разнообразная. Они искуснейшие на свете химики. И у каждого из них своя строго определенная задача. Ни на одном нашем производстве не найдешь такой идеальной организации и разделения труда.

Все удивительно целесообразно устроено природой. Она позаботилась, например, о том, чтобы кровь не свертывалась в сосудах, не закупоривала их, чтобы не прекращался приток кислорода к тканям. Если вы порезались, кровь, выйдя из ранки, свернется. Немедленно начнет происходить сложная цепочка реакций, и кровотечение остановится.

Про пластмассы говорят, что это материалы тысячи назначений, а белки — вещества уже не тысяч, а десятков тысяч возможностей.

Они ускоряют химические реакции, и эти биологические катализаторы не имеют себе равных. Они разлагают одни вещества и воссоздают другие. С их помощью создаются жиры, углеводы, витамины. Благодаря им появляются в организме красящие вещества — пигменты; от них зависит выработка гормонов, тоже белков, которые регулируют рост.

Управляет созданием белков наследственный механизм, скрытый в ядре клетки, Этот механизм хранит в зашифрованном виде программу развития потомства. Он обеспечивает появление существа, подобного родителям. Все, что в дальнейшем проявит себя в полной мере, заложено в ядре клетки, в ее нуклеиновых кислотах. Попробовали подсчитать, сколько сведений хранит ядро клетки человеческого тела. Результаты выразили в привычных единицах — печатном тексте. И что же? Если расшифровать эти сведения, то они займут десять тысяч книг, по двести тысяч слов каждая…

Есть в нашем теле такие вещества, которые преобразуют химическую энергию пищи в механическую энергию мышцы. Более совершенного преобразователя пока не придумали инженеры. Белковая молекула меняет свою форму, белковые молекулы меняют свое расположение одна относительно другой — и мышца сокращается либо удлиняется. Конечно, управляет этими движениями нервная система. Но ведь и нервные клетки тоже построены из белков.

Белок — основа жизни. Однако к нему нужно добавить тот наследственный механизм, который строит живую клетку и управляет ею от рождения до смерти, обеспечивает непрерывность возобновления живого. Отсюда — вся жизнь, во всей ее многогранности, со всеми ее невероятно сложными проявлениями. Вот что означает белок!

Помощь, которую биология получает от химии, становится все более ощутимой, сотрудничество биологии и химии — все более тесным. Перед ними, идущими теперь вместе, открылась новая дорога, открылись и новые горизонты.

Правда, неоткрытого намного больше, чем ставшего известным теперь. Синтез белков сложнейшего состава все еще остается мечтой, хотя и получены в лаборатории простейшие белковые молекулы. Уже разведано устройство ряда белковых цепочек, становится все более ясным, как работают мышцы, во всех тонкостях, во всех деталях. Одна из самых каверзных загадок — механизм наследственности — близка к разгадке.

Почему же биология поднялась на новую ступень, и притом так быстро? Потому что она заключила союз с другими науками. Потому что от большого она перешла к малому, занялась миром атомов и молекул, составляющим все живое. А пути молекулярной биологии и химии тогда неизбежно должны были сойтись, ибо эти «кирпичики» материи в ведении химиков.

И пути сошлись. Нельзя понять, как происходит фотосинтез, если не обратиться к молекулам хлорофилла, к тем реакциям, которые совершаются в зеленом листе. Нельзя узнать, как дышит животное и человек, если не познакомиться с той работой, которую производят молекулы гемоглобина — этого красящего вещества крови.

Химический механизм встречается не только в мышце. Мимоза открывает и закрывает свои листья, захлопываются ловушки хищных растений. Есть и такие цветы, которые открываются днем и закрываются ночью, и наоборот.

Перейдя к микроорганизмам, можно тоже подметить движение и тоже найти его химическую «подкладку».

Вот враг бактерий — бактериофаг. У него есть головка и длинная ножка. Он подбирается к своему врагу и впрыскивает ему яд, запасенный в головке. Ножка проделывает при этом движения подобно шприцу: она сокращается, как мышца. Химические реакции заставляют ее сокращаться.

Химическая энергия рождает движение и в макро-и в микромире живого. Была сделана проверка — создали искусственную модель мышечного волокна. Нити из синтетического материала сокращались, когда происходила реакция, похожая на ту, что идет в настоящей мышце. И, наоборот, растягивая нити, получали химические изменения, наблюдали переход механической энергии в химическую.

На стыках наук рождается новое. Если сначала физика и химия стояли отдельно, то в конце концов возникли физическая химия и химическая физика. Биология и химия, объединившись, дали биохимию. Физика, химия и механика дали физико-химическую механику. А теперь, в самое последнее время, рождается механохимия и хемомеханика — науки о превращениях механической энергии в химическую и обратно.

О союзе техники и биологии говорит академик В. Энгельгардт.

«Надо думать, что с течением времени связи между биологией и техникой будут расширяться и углубляться. Ведь живые организмы — это «механизмы» необычайного совершенства. Изучение, познание их секретов — дело увлекательное и важное. Разве не интересно технологу вскрыть природу необычайно эффективных биологических катализаторов? Разве не заманчиво найти способы прямого превращения химической энергии в механическую (как это происходит при работе мышц)? Разве не соблазнительно строить химические соединения, вещества с помощью световой энергии так, как это делает природа при фотосинтезе?

Важнейшая проблема современности — обеспечить продовольствием возрастающее население земного шара. И в первую очередь полноценными белками, Сейчас источником пищи для человека и животных служат растения. Но сельское хозяйство трудоемко и зависит от климатических условий, пока что неуправляемых. А если бы удалось перенести создание пищевых продуктов с полей в цехи заводов — это стало бы настоящим переворотом».

Биология переходит на «молекулярный уровень» — занимается молекулами, ибо там кроются ответы на бесчисленные вопросы. Потому и возникла биохимия, о делах которой мы еще много услышим. Поэтому биология призывает на помощь вместе с химией и физику.

«Мне кажется, что первой проблемой, особенно в будущем, надо считать проблему науки о синтезе живого, об управлении жизненными процессами. В полном объеме эта проблема может быть решена лишь совместными усилиями биологии, физики и химии, принципами и методами, развиваемыми новой пограничной ветвью биологических наук — физико-химической биологией», — говорит академик П. А. Ребиндер.

Так, химия, проникая в тайники живого, расширяет наши представления о веществе, о его круговороте, о превращениях энергии, которые совершаются в природе, в том числе и в нас самих.